
MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1

MPC5644A Microcontroller
Reference Manual

Devices Supported:
MPC5644A
MPC5643A

MPC5644ARM
Rev. 6

16 Jan 2012

MPC5644A Microcontroller Reference Manual, Rev. 6

2 Freescale Semiconductor

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 3

Chapter 1
Introduction

1.1 The MPC5644A Microcontroller Family .27
1.2 MPC5644A and MPC5642A Device Comparison .28
1.3 Device block diagram .30
1.4 Feature summary .32

1.4.1 Feature details .33
1.4.2 e200z4 core .33
1.4.3 Crossbar Switch (XBAR) .34
1.4.4 eDMA .34
1.4.5 Interrupt controller .35
1.4.6 Memory protection unit (MPU) .36
1.4.7 FMPLL .37
1.4.8 SIU .37
1.4.9 Flash memory .38
1.4.10 BAM .39
1.4.11 eMIOS .40
1.4.12 eTPU2 .40
1.4.13 Reaction module .42
1.4.14 eQADC .42
1.4.15 DSPI .44
1.4.16 eSCI .45
1.4.17 FlexCAN .46
1.4.18 FlexRay .47
1.4.19 System timers .47
1.4.20 Software watchdog timer (SWT) .48
1.4.21 Cyclic redundancy check (CRC) module .48
1.4.22 Error correction status module (ECSM) .49
1.4.23 External bus interface (EBI) .49
1.4.24 Calibration EBI .49
1.4.25 Power management controller (PMC) .50
1.4.26 Nexus port controller .50
1.4.27 JTAG .50
1.4.28 Development Trigger Semaphore (DTS) .51

Chapter 2
Memory Map

2.1 Introduction .53
2.2 Memory map .53

Chapter 3
Signal Description

3.1 Signal Properties .58
3.2 Signal Details .85

MPC5644A Microcontroller Reference Manual, Rev. 6

4 Freescale Semiconductor

Chapter 4
Resets

4.1 Reset sources .93
4.2 Reset vector .94
4.3 Reset pins .94

4.3.1 RESET .94
4.3.2 RSTOUT .94

4.4 FMPLL lock gating signal .95
4.5 Reset source descriptions .95

4.5.1 Power-on reset (POR) .98
4.5.2 External reset .98
4.5.3 Loss of lock .98
4.5.4 Loss of clock .99
4.5.5 Core watchdog timer/debug reset .99
4.5.6 JTAG reset .100
4.5.7 Software system reset .100
4.5.8 Software external reset .100

4.6 Reset registers in the SIU .100
4.7 Reset configuration .101

4.7.1 Reset configuration half word (RCHW) .101
4.7.2 Reset configuration timing .103
4.7.3 Reset weak pull up/down configuration .104

Chapter 5
Operating Modes and Clocking

5.1 Overview .105
5.2 Modes of operation .105

5.2.1 Normal mode .105
5.2.2 Debug mode .105
5.2.3 Low power modes .105

5.3 Clock architecture .106
5.3.1 Overview .106
5.3.2 Block diagram .107
5.3.3 System clock sources .107
5.3.4 FMPLL modes of operation .109

Chapter 6
Device Performance Optimization

6.1 Introduction . 117
6.2 Features . 117
6.3 Configuring hardware features . 118

6.3.1 Branch target buffer (BTB) . 118
6.3.2 Frequency-modulated PLL . 119
6.3.3 Flash bus interface unit .120

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 5

6.3.4 Crossbar switch .120
6.3.5 Cache .121
6.3.6 Memory management unit (MMU) .123

6.4 Application software .124
6.4.1 Compiler optimizations .124
6.4.2 Signal processing extension .125
6.4.3 Hardware single precision floating point .126
6.4.4 Variable length encoding .126

6.5 Peripherals and general application guidelines .127
6.6 Performance optimization checklist .128

Chapter 7
e200z4 Core

7.1 Overview .131
7.2 Features .131
7.3 Microarchitecture summary .132

7.3.1 Instruction unit features .134
7.3.2 Integer unit features .135
7.3.3 Load/Store unit features .135
7.3.4 Cache features .135
7.3.5 MMU features .135
7.3.6 e200z4 system bus features .136
7.3.7 Nexus 3 features .136

Chapter 8
Enhanced Direct Memory Access Controller (eDMA)

8.1 Introduction .137
8.1.1 Block diagram .137
8.1.2 Features .137
8.1.3 Modes of operation .138

8.2 External signal description .139
8.3 Memory map and registers .139

8.3.1 Module memory map .139
8.3.2 Register descriptions .146

8.4 Functional description .172
8.4.1 eDMA basic data flow .173

8.5 Initialization / Application information .176
8.5.1 eDMA initialization .176
8.5.2 DMA programming errors .178
8.5.3 DMA request assignments .179
8.5.4 DMA arbitration mode considerations .182
8.5.5 DMA transfer .183
8.5.6 TCD status .186
8.5.7 Channel linking .188

MPC5644A Microcontroller Reference Manual, Rev. 6

6 Freescale Semiconductor

8.5.8 Dynamic programming .189

Chapter 9
Multi-Layer AHB Crossbar Switch (XBAR)

9.1 Introduction .193
9.1.1 Overview .193
9.1.2 Features .194
9.1.3 Limitations .194
9.1.4 General operation .194

9.2 XBAR registers .195
9.2.1 Register summary .195
9.2.2 XBAR register descriptions .196
9.2.3 Coherency .201

9.3 Function .202
9.3.1 Arbitration .202
9.3.2 Priority assignment .203

Chapter 10
Peripheral Bridge (PBRIDGE)

10.1 PBRIDGE features .205
10.2 PBRIDGE modes of operation .205
10.3 PBRIDGE block diagram .205
10.4 PBRIDGE signal description .206
10.5 PBRIDGE functional description .206

10.5.1 Read cycles .206
10.5.2 Write cycles .206

10.6 Memory map and register description .206
10.6.1 Memory map .206
10.6.2 Register descriptions .208

Chapter 11
General-Purpose Static RAM (SRAM)

11.1 Introduction .213
11.2 Features .213
11.3 Modes of operation .213

11.3.1 Normal (Functional) mode .213
11.3.2 Standby mode .213

11.4 Block diagram .213
11.5 External signal description .214
11.6 Register memory map .214
11.7 Functional description .214
11.8 SRAm ecc mechanism .214

11.8.1 Access timing .215
11.8.2 Reset effects on SRAM accesses .215

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 7

11.9 Initialization and application information .216
11.9.1 Example code .216

Chapter 12
Flash memory

12.1 Introduction .217
12.1.1 Block diagram .218
12.1.2 Features .219
12.1.3 Modes of operation .220

12.2 External signal description .220
12.3 Memory map and registers .220

12.3.1 Module memory map .221
12.3.2 Register descriptions .223

12.4 Functional description .245
12.4.1 Flash User Mode .245
12.4.2 Flash Read and Write .245
12.4.3 Read While Write (RWW) .245
12.4.4 UTest Mode .246
12.4.5 Flash Programming .249
12.4.6 Flash Erase .252
12.4.7 Flash shadow block .255
12.4.8 Flash reset .256
12.4.9 DMA requests .256
12.4.10Interrupt requests .256

Chapter 13
Memory Protection Unit (MPU)

13.1 Introduction .257
13.1.1 Features .257
13.1.2 Modes of operation .258

13.2 MPU-to-XBAR slave port mapping .258
13.3 Signal description .258
13.4 Memory map and registers .258

13.4.1 Module memory map .258
13.4.2 Register descriptions .260

13.5 Functional Description .271
13.5.1 Access Evaluation .271
13.5.2 XBAR Error Terminations .271

13.6 Initialization Information .272
13.7 Application Information .272

Chapter 14
External Bus Interface (EBI)

14.1 Information Specific to This Device .275

MPC5644A Microcontroller Reference Manual, Rev. 6

8 Freescale Semiconductor

14.1.1 Device-Specific Features .275
14.1.2 Unsupported Features .275

14.2 Introduction .275
14.2.1 Overview .276
14.2.2 Features .278
14.2.3 Modes of operation .278

14.3 External signal description .281
14.3.1 Overview .281
14.3.2 Detailed signal descriptions .282
14.3.3 Signal output buffer enable logic by mode .284

14.4 Memory map/Register definition .284
14.4.1 Register Descriptions .285

14.5 Functional Description .295
14.5.1 External Bus Interface Features .295
14.5.2 External bus operations .300

14.6 Initialization/Application information .333
14.6.1 Booting from external memory .333
14.6.2 Running with SDR (Single Data Rate) burst memories 333
14.6.3 Running with asynchronous memories .334
14.6.4 Connecting an mcu to multiple memories .336
14.6.5 EBI operation with reduced Pinout MCUs .337
14.6.6 Summary of Differences from MPC5xx .338

Chapter 15
Interrupt Controller (INTC)

15.1 Information specific to this device .341
15.1.1 Device-specific features .341

15.2 Introduction .341
15.2.1 Block diagram .341
15.2.2 Overview .342
15.2.3 Features .345
15.2.4 Modes of operation .345

15.3 External signal description .347
15.4 Memory map and register definition .347

15.4.1 Register descriptions .348
15.5 Functional description .354

15.5.1 Interrupt request sources .354
15.5.2 Priority management .368
15.5.3 Details on handshaking with processor .370

15.6 Initialization and application information .372
15.6.1 Initialization flow .372
15.6.2 Interrupt exception handler .372
15.6.3 ISR, RTOS, and task hierarchy .374
15.6.4 Order of execution .375
15.6.5 Priority ceiling protocol .376

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 9

15.6.6 Selecting priorities according to request rates and
deadlines .377

15.6.7 Software configurable interrupt requests .377
15.6.8 Lowering priority within an ISR .378
15.6.9 Negating an interrupt request outside of its ISR .378
15.6.10Examining LIFO contents .379

Chapter 16
System Integration Unit (SIU)

16.1 Overview .381
16.2 Features .381
16.3 Modes of operation .382

16.3.1 Normal mode .382
16.3.2 Debug mode .382

16.4 Block diagram .382
16.5 Signal description .383
16.6 Memory map and register descriptions .384

16.6.1 Memory map .384
16.6.2 MCU ID Register 2 (SIU_MIDR2) .387
16.6.3 MCU ID Register (SIU_MIDR) .388
16.6.4 Reset Status Register (SIU_RSR) .390
16.6.5 System Reset Control Register (SIU_SRCR) .392
16.6.6 External Interrupt Status Register (SIU_EISR) .393
16.6.7 DMA/Interrupt Request Enable Register (SIU_DIRER) 394
16.6.8 DMA/Interrupt Request Select Register (SIU_DIRSR)395
16.6.9 Overrun Status Register (SIU_OSR) .396
16.6.10Overrun Request Enable Register (SIU_ORER) .396
16.6.11IRQ Rising-Edge Event Enable Register (SIU_IREER)397
16.6.12External IRQ Falling-Edge Event Enable Register (SIU_IFEER) 398
16.6.13External IRQ Digital Filter Register (SIU_IDFR) .398
16.6.14IRQ Filtered Input Register (SIU_IFIR) .399
16.6.15Pad Configuration Registers (SIU_PCR) .400
16.6.16GPIO Pin Data Output Registers (SIU_GPDO0_3 – SIU_GPDO412_413) . .521
16.6.17GPIO Pin Data Input Registers (SIU_GPDI0_3 – SIU_GPDI_232)522
16.6.18eQADC Trigger Input Select Register (SIU_ETISR) .523
16.6.19External IRQ Input Select Register (SIU_EIISR) .526
16.6.20DSPI Input Select Register (SIU_DISR) .528
16.6.21IMUX Select Register 3 (SIU_ISEL3) .530
16.6.22IMUX Select Register 8 (SIU_ISEL8) .537
16.6.23IMUX Select Register 9 (SIU_ISEL9) .538
16.6.24IMUX Select Register 10 (SIU_ISEL10) .539
16.6.25Chip Configuration Register (SIU_CCR) .541
16.6.26External Clock Control Register (SIU_ECCR) .542
16.6.27Compare A High Register (SIU_CARH) .543
16.6.28Compare A Low Register (SIU_CARL) .543

MPC5644A Microcontroller Reference Manual, Rev. 6

10 Freescale Semiconductor

16.6.29Compare B High Register (SIU_CBRH) .544
16.6.30Compare B Low Register (SIU_CBRL) .544
16.6.31System Clock Register (SIU_SYSDIV) .545
16.6.32Halt Register (SIU_HLT) .546
16.6.33Halt Acknowledge Register (SIU_HLTACK) .548
16.6.34Core MMU PID Control Register (SIU_EMPCR0) .551

16.7 Functional description .552
16.7.1 System configuration .553
16.7.2 Reset control .553
16.7.3 External interrupt request input (IRQ) .553
16.7.4 GPIO operation .555
16.7.5 Internal multiplexing .556

Chapter 17
Frequency-modulated phase locked loop (FMPLL)

17.1 Information specific to this device .559
17.1.1 Device-specific features .559
17.1.2 Device-specific parameters .559

17.2 Introduction .559
17.2.1 Overview .560
17.2.2 Features .560
17.2.3 Modes of operation .561

17.3 External signal description .562
17.3.1 Detailed signal descriptions .563

17.4 Memory map and register definition .563
17.4.1 Memory map .563
17.4.2 Register descriptions .564

17.5 Functional description .574
17.5.1 Input clock frequency .574
17.5.2 Clock configuration .574
17.5.3 Lock detection .576
17.5.4 Loss-of-clock detection .576
17.5.5 Frequency modulation .579

Chapter 18
Error Correction Status Module (ECSM)

18.1 Overview .583
18.2 Features .583
18.3 Module memory map .583
18.4 Register descriptions .584

18.4.1 Miscellaneous Reset Status Register (ECSM_MRSR)584
18.4.2 Miscellaneous Wakeup Control Register (ECSM_MWCR)585
18.4.3 Miscellaneous User-Defined Control Register (ECSM_MUDCR)586
18.4.4 ECC registers .587

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 11

Chapter 19
System Timer Module (STM)

19.1 Information Specific to This Device .607
19.1.1 Device-Specific Features .607

19.2 Introduction .607
19.2.1 Overview .607
19.2.2 Modes of operation .607

19.3 External signal description .607
19.4 Memory map and register definition .607

19.4.1 Memory map .607
19.4.2 Register descriptions .608

19.5 Functional Description .612

Chapter 20
Software Watchdog Timer (SWT)

20.1 Introduction .613
20.1.1 Overview .613
20.1.2 Features .613
20.1.3 Modes of operation .613

20.2 External signal description .613
20.3 Memory map and register definition .613

20.3.1 Memory map .614
20.3.2 Register descriptions .614

20.4 Functional description .619

Chapter 21
Boot Assist Module (BAM)

21.1 Overview .621
21.2 Features .621
21.3 Modes of operation .621

21.3.1 Normal mode .621
21.3.2 Debug mode .621
21.3.3 Internal boot mode .622
21.3.4 Serial boot mode .622
21.3.5 Calibration bus boot mode .622

21.4 Memory map .622
21.5 Functional description .622

21.5.1 BAM Program flow chart .622
21.5.2 BAM program operation .623
21.5.3 Reset configuration half word (RCHW) .626
21.5.4 Internal boot mode .628
21.5.5 Serial boot mode .630
21.5.6 Booting from the External Bus Interface (EBI) .637

MPC5644A Microcontroller Reference Manual, Rev. 6

12 Freescale Semiconductor

Chapter 22
Configurable Enhanced Modular IO Subsystem (eMIOS200)

22.1 Device-specific features .639
22.2 Introduction .639

22.2.1 Features .640
22.2.2 Modes of operation .641
22.2.3 Channel configurations .641

22.3 External signals description .642
22.4 Memory map/register definition .642

22.4.1 Memory map .642
22.4.2 Global registers .649
22.4.3 Channel registers .652

22.5 Functional description .660
22.5.1 Unified channel (UC) .660
22.5.2 IP bus interface unit (BIU) .684
22.5.3 STAC client submodule .684
22.5.4 Global clock prescaler submodule (GCP) .686

22.6 Initialization/Application information .686
22.6.1 Considerations .686
22.6.2 Application information .686

Chapter 23
Reaction Module (REACM)

23.1 Introduction .689
23.1.1 Features .689
23.1.2 Modes of operation .689
23.1.3 Block diagram .691

23.2 Signal description .695
23.2.1 REACM_RCHn — REACM Channel (n) Output Pin a, b and c 696

23.3 Memory map and register definition .696
23.3.1 Module memory map .696
23.3.2 REACM module configuration register (REACM_MCR)697
23.3.3 REACM Timer Configuration Register (REACM_TCR) 699
23.3.4 REACM Threshold Router Register (REACM_THRR)700
23.3.5 REACM ADC Sensor Input Register (REACM_SINR)701
23.3.6 REACM Global Error Flag Register (REACM_GEFR) 702
23.3.7 REACM Channel n Configuration Register (REACM_CHCRn) 703
23.3.8 REACM Channel n Status Register (REACM_CHSRn)705
23.3.9 REACM Channel n Router Register (REACM_CHRRn) 708
23.3.10REACM Shared Timer Bank Registers (REACM_STBK) 710
23.3.11REACM Hold-off Timer Bank Registers (REACM_HOTBK) 710
23.3.12REACM Threshold Bank Register (REACM_THBK) . 711
23.3.13REACM ADC result maximum limit check register (REACM_ADCMAX) 712
23.3.14REACM Modulation Range Pulse Width Register (REACM_RANGEPWD) . .712

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 13

23.3.15REACM Modulation Minimum Pulse Width Register (REACM_MINPWD) . . .713
23.3.16REACM Modulation Control Word Bank Registers (REACM_MWBK) 714

23.4 Functional description .717
23.4.1 Reaction channel .717
23.4.2 Modulation control words bank .719
23.4.3 Shared timer bank .720
23.4.4 Hold-off timer bank .721
23.4.5 Threshold bank and comparator .722
23.4.6 ADC interface .723
23.4.7 Prescalers .725
23.4.8 Banked mode support .725

23.5 Modulation Modes .727
23.5.1 Threshold/Threshold mode .727
23.5.2 Threshold/Hold-off mode .727
23.5.3 Limitations on the modulation process .728

23.6 Monitored modulation .731
23.7 DMA support .734
23.8 Reset overview .735
23.9 Reaction module interrupts .735

23.9.1 Interrupt sources .736
23.10Use cases .736

23.10.1Advancing modulation phase on a threshold level .742
23.10.2Controlling the loop function .743
23.10.3Banked mode .744

Chapter 24
Enhanced Time Processing Unit (eTPU2)

24.1 Information specific to this device .745
24.1.1 Device-specific features .745

24.2 Introduction .745
24.2.1 Overview .746
24.2.2 Features .752
24.2.3 Modes of operation .756

24.3 External signal description .758
24.3.1 Overview .758
24.3.2 Detailed signal descriptions .758

24.4 Memory map/register definition .760
24.4.1 Memory map .760
24.4.2 System configuration registers .767
24.4.3 Time base registers .781
24.4.4 Engine related registers .790
24.4.5 Channel registers layout .792
24.4.6 Global channel registers .792
24.4.7 Channel configuration and control registers .801

24.5 Functional description .810

MPC5644A Microcontroller Reference Manual, Rev. 6

14 Freescale Semiconductor

24.5.1 Functions and threads .810
24.5.2 Host interface .823
24.5.3 Scheduler .829
24.5.4 Parameter sharing and coherency .836
24.5.5 Enhanced Channels .840
24.5.6 Time Bases .885
24.5.7 EAC – eTPU angle counter .893
24.5.8 Microengine .912
24.5.9 Microinstruction set .929
24.5.10Test and Development Support .962

24.6 Initialization/Application information .969
24.6.1 Configuration sequence .969
24.6.2 Reset options .970
24.6.3 Multiple parameter coherency methods .970
24.6.4 Programming hints and caveats .971
24.6.5 Estimating worst-case latency .972
24.6.6 Endianness .988

24.7 Appendices .988
24.7.1 Microcycle and I/O timing .988
24.7.2 Initialization code example .992
24.7.3 Predefined channel mode summary .995
24.7.4 MISC algorithm .999

Chapter 25
Enhanced Queued Analog-to-Digital Converter (EQADC)

25.1 Information Specific to This Device .1001
25.1.1 Device-Specific Pin Configuration Features .1001
25.1.2 Availability of Analog Inputs .1002

25.2 Introduction .1002
25.2.1 Module overview .1002
25.2.2 Block diagram .1003
25.2.3 Features .1004

25.3 Modes of operation .1006
25.3.1 Normal mode .1006
25.3.2 Streaming mode .1006
25.3.3 Debug mode .1007
25.3.4 Stop mode .1008

25.4 External signal description .1009
25.4.1 Overview .1009
25.4.2 Detailed signal descriptions . 1011

25.5 Memory Map/Register Definition .1015
25.5.1 EQADC Memory Map .1015
25.5.2 EQADC Register Descriptions .1019
25.5.3 On-Chip ADC Registers .1057

25.6 Functional Description .1071

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 15

25.6.1 Overview .1071
25.6.2 Data Flow in EQADC .1072
25.6.3 Command/Result Queues .1089
25.6.4 EQADC Command FIFOs .1089
25.6.5 EQADC Result FIFOs . 1118
25.6.6 On-Chip ADC Configuration and Control . 1122
25.6.7 Internal/External Multiplexing . 1134
25.6.8 EQADC DMA/Interrupt request . 1141
25.6.9 EQADC Synchronous Serial Interface (SSI) Sub-Block 1143
25.6.10EQADC Parallel Side Interface (PSI) Sub-Block . 1148
25.6.11Analog Sub-Block . 1151

25.7 Initialization/Application information . 1154
25.7.1 Multiple queues control setup example . 1154
25.7.2 EQADC/DMAC Interface . 1159
25.7.3 Sending immediate command setup example . 1160
25.7.4 Modifying queues . 1161
25.7.5 CQueue and RQueues usage . 1162
25.7.6 ADC Result Calibration . 1164
25.7.7 EQADC versus QADC . 1166

Chapter 26
Decimation Filter

26.1 Information specific to this device . 1171
26.1.1 Device-specific features . 1171
26.1.2 Device-specific parameters . 1171

26.2 Introduction . 1171
26.2.1 Overview . 1171
26.2.2 Features . 1173
26.2.3 Modes of operation . 1174

26.3 External signal description . 1175
26.3.1 Decimation trigger signal . 1175
26.3.2 Integrator enable signal . 1175
26.3.3 Integrator halt signal . 1176
26.3.4 Integrator reset signal . 1176
26.3.5 Integrator output request signal . 1176

26.4 Memory map and register definition . 1176
26.4.1 Decimation filter device memory map . 1176
26.4.2 Decimation filter register descriptions . 1178
26.4.3 Decimation Filter Memory Map for Parallel Side Interface 1199
26.4.4 PSI Register Description .1200

26.5 Functional description .1202
26.5.1 Overview .1202
26.5.2 Parallel Side Interface (PSI) description .1202
26.5.3 Input buffer description .1202
26.5.4 Output buffer description .1204

MPC5644A Microcontroller Reference Manual, Rev. 6

16 Freescale Semiconductor

26.5.5 Bypass configuration description .1205
26.5.6 IIR and FIR filter .1206
26.5.7 Filter prefill control description .1209
26.5.8 Timestamp data transmission .1210
26.5.9 Flush command description .1210
26.5.10Soft-reset command description . 1211
26.5.11Interrupts requests description .1212
26.5.12DMA requests description .1213
26.5.13Freeze mode description .1214
26.5.14Enhanced debug monitor description .1214
26.5.15Integrator .1215
26.5.16Cascade mode description .1218

26.6 Initialization information .1224
26.6.1 Initialization procedure .1224

26.7 Application information .1224
26.7.1 eQADC IP as the PSI master block .1224

26.8 Filter example simulation .1225
26.8.1 Coefficients calculation .1225
26.8.2 Input data calculation .1226
26.8.3 Filter results .1227

Chapter 27
Temperature Sensor

27.1 Overview .1229
27.2 Detailed description .1229
27.3 Temperature formula .1230

27.3.1 TLOW and THIGH .1231
27.3.2 TTSENS_CODE(TLOW) and TTSENS_CODE(THIGH) .1231
27.3.3 VBG_CODE(TLOW) .1232
27.3.4 Temperature sensor voltage (VTENS(T)) .1232
27.3.5 Bandgap reference voltage (VBG_CODE(T)) .1232
27.3.6 Registers .1232

Chapter 28
System Information Module and Trim (SIM)

28.1 Overview .1235
28.2 User trim values .1235

Chapter 29
Cyclic Redundancy Checker (CRC) Unit

29.1 Overview .1237
29.2 Features .1237

29.2.1 Access and performance .1237
29.3 Calculating a CRC checksum .1238

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 17

29.3.1 Configuring the context .1239
29.3.2 Initializing the context seed value .1240
29.3.3 Writing the data stream to the context input .1240
29.3.4 Reading the checksum .1241

29.4 Register descriptions .1241
29.4.1 CRC Configuration Register (CRC_CFG) .1242
29.4.2 CRC Input Register (CRC_INP) .1243
29.4.3 CRC Current Status Register (CRC_CSTAT) .1244
29.4.4 CRC Output Register (CRC_OUTP) .1245

29.5 Use cases and limitations .1246
29.5.1 Checksums for configuration registers .1246
29.5.2 Calculations on incoming/outgoing protocol frames .1246

Chapter 30
Deserial Serial Peripheral Interface (DSPI)

30.1 Introduction .1251
30.2 Overview .1251
30.3 Features .1252
30.4 DSPI configurations .1253

30.4.1 SPI configuration .1254
30.4.2 DSI configuration .1254
30.4.3 CSI configuration .1255

30.5 DSPI frequency support .1255
30.6 Modes of operation .1256

30.6.1 Master mode .1256
30.6.2 Slave mode .1256
30.6.3 Module Disable mode .1256
30.6.4 Debug mode .1256

30.7 External signal description .1257
30.7.1 Overview .1257
30.7.2 Detailed signal description .1257

30.8 Memory map and register definition .1258
30.8.1 Memory map .1258
30.8.2 Register descriptions .1260

30.9 Functional description .1290
30.9.1 Start and stop of DSPI transfers .1291
30.9.2 Serial peripheral interface (SPI) configuration .1291
30.9.3 Deserial serial interface (DSI) configuration .1294
30.9.4 Combined serial interface (CSI) configuration .1301
30.9.5 DSPI baud rate and clock delay generation .1302
30.9.6 Transfer formats .1304
30.9.7 Continuous serial communications clock .1313
30.9.8 Timed serial bus (TSB) .1315
30.9.9 Parity generation and check .1317
30.9.10Interrupts/DMA requests .1318

MPC5644A Microcontroller Reference Manual, Rev. 6

18 Freescale Semiconductor

30.9.11Buffered SPI operation .1320
30.9.12Continuous peripheral chip select .1321
30.9.13Peripheral chip select expansion and deglitching .1321
30.9.14DMA and interrupt conditions .1321
30.9.15Modified SPI transfer format .1322
30.9.16LVDS pad usage .1322
30.9.17DSPI connections to eTPU_A, eMIOS and SIU .1323
30.9.18Power saving features .1330

30.10Initialization/Application information .1331
30.10.1How to manage DSPI queues .1331
30.10.2Switching master and slave mode .1332
30.10.3Baud rate settings .1332
30.10.4Delay settings .1333
30.10.5DSPI Compatibility with the QSPI of the MPC500 MCUs 1333
30.10.6Calculation of FIFO pointer addresses .1334

Chapter 31
Enhanced Serial Communication Interface (ESCI)

31.1 Introduction .1337
31.1.1 Bibliography .1337
31.1.2 Acronyms and abbreviations .1337
31.1.3 Glossary .1337
31.1.4 Overview .1338
31.1.5 Features .1339
31.1.6 Modes of operation .1340

31.2 External signal description .1340
31.2.1 Detailed signal descriptions .1340

31.3 Memory map and register definition .1341
31.3.1 Memory map .1341
31.3.2 Register descriptions .1342

31.4 Functional description .1356
31.4.1 Module control .1356
31.4.2 Frame formats .1356
31.4.3 Baud rate and clock generation .1359
31.4.4 Baud rate tolerance .1361
31.4.5 SCI mode .1363
31.4.6 LIN mode .1377
31.4.7 Interrupts .1386

31.5 Application Information .1387
31.5.1 SCI data frames separated by preamble .1387

Chapter 32
FlexCAN Module

32.1 Information specific to this device .1389

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 19

32.1.1 Device-specific features .1389
32.2 Introduction .1389

32.2.1 Overview .1391
32.2.2 FlexCAN module features .1391
32.2.3 Modes of operation .1392

32.3 External signal description .1393
32.3.1 Overview .1393
32.3.2 Signal descriptions .1394

32.4 Memory map/Register definition .1394
32.4.1 FlexCAN memory mapping .1394
32.4.2 Message buffer architecture .1396
32.4.3 Message buffer structure .1398
32.4.4 Rx FIFO structure .1401
32.4.5 Register descriptions .1403

32.5 Functional description .1421
32.5.1 Overview .1421
32.5.2 Transmit process .1422
32.5.3 Arbitration process .1422
32.5.4 Receive process .1423
32.5.5 Matching process .1424
32.5.6 Data coherence .1426
32.5.7 Rx FIFO .1428
32.5.8 CAN protocol related features .1430
32.5.9 Modes of operation details .1434
32.5.10Interrupts .1436
32.5.11Bus interface .1437

32.6 Initialization/Application information .1437
32.6.1 FlexCAN initialization sequence .1437
32.6.2 FlexCAN addressing and RAM size configurations .1438

Chapter 33
FlexRay Communication Controller (FlexRay)

33.1 Introduction .1441
33.1.1 Reference .1441
33.1.2 Glossary .1441
33.1.3 Color coding .1442
33.1.4 Overview .1442
33.1.5 Features .1444
33.1.6 Modes of operation .1445

33.2 External signal description .1446
33.2.1 Detailed signal descriptions .1446

33.3 Controller host interface clocking .1447
33.4 Protocol engine clocking .1447

33.4.1 Oscillator clocking .1448
33.4.2 PLL clocking .1448

MPC5644A Microcontroller Reference Manual, Rev. 6

20 Freescale Semiconductor

33.5 Memory map and register description .1448
33.5.1 Memory map .1448
33.5.2 Register descriptions .1454

33.6 Functional description .1531
33.6.1 Message buffer concept .1531
33.6.2 Physical message buffer .1531
33.6.3 Message buffer types .1533
33.6.4 FlexRay memory area layout .1538
33.6.5 Physical message buffer description .1541
33.6.6 Individual message buffer functional description .1551
33.6.7 Individual message buffer search .1578
33.6.8 Individual message buffer reconfiguration .1580
33.6.9 Receive FIFOs .1581
33.6.10Channel device modes .1587
33.6.11External clock synchronization .1589
33.6.12Sync frame ID and sync frame deviation tables .1590
33.6.13MTS generation .1593
33.6.14Key slot transmission .1594
33.6.15Sync frame filtering .1595
33.6.16Strobe signal support .1596
33.6.17Timer support .1597
33.6.18Slot status monitoring .1598
33.6.19System bus access .1601
33.6.20Interrupt support .1602
33.6.21Lower bit rate support .1607
33.6.22PE data memory (PE DRAM) .1607
33.6.23CHI lookup-table memory (CHI LRAM) .1608
33.6.24Memory content error detection .1609
33.6.25Memory error injection .1614

33.7 Application information .1616
33.7.1 Module configuration .1616
33.7.2 Initialization Sequence .1617
33.7.3 CHI LRAM error injection out of POC:default config .1618
33.7.4 PE DRAM error injection out of POC:default config .1618
33.7.5 Shut down sequence .1618
33.7.6 Number of usable message buffers .1619
33.7.7 Protocol control command execution .1620
33.7.8 Message buffer search on simple message buffer configuration1621

Chapter 34
Periodic Interrupt Timer (PIT)

34.1 Information specific to this device .1625
34.1.1 Device-specific features .1625

34.2 Introduction .1625
34.2.1 Overview .1626

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 21

34.2.2 Features .1626
34.3 Signal description .1627
34.4 Memory map and register description .1627

34.4.1 Memory map .1627
34.4.2 Register descriptions .1627

34.5 Functional description .1631
34.5.1 General .1631
34.5.2 Interrupts .1632

34.6 Initialization and application information .1633
34.6.1 Example configuration .1633

Chapter 35
Power Management Controller (PMC)

35.1 Introduction .1635
35.1.1 Block diagram .1636

35.2 External signal description .1637
35.2.1 Detailed signal descriptions .1637

35.3 Memory map/register definition .1638
35.3.1 Module Configuration Register (MCR) .1639
35.3.2 Trimming Register (TRIMR) .1641
35.3.3 Status Register (SR) .1644

35.4 Functional description .1647
35.4.1 Bandgap .1647
35.4.2 5 V LVI .1648
35.4.3 3.3 V internal voltage regulator .1648
35.4.4 3.3 V LVI .1650
35.4.5 1.2 V voltage regulator controller .1651
35.4.6 1.2 V LVI .1651
35.4.7 Resets and interrupts .1651
35.4.8 Soft-Start (for 1.2 V and 3.3 V regulators) .1655
35.4.9 ADC test mux .1655

35.5 Electrical characteristics .1656

Chapter 36
JTAG Controller (JTAGC)

36.1 Information specific to this device .1657
36.1.1 Device-specific parameters .1657
36.1.2 Device identification register parameters .1657
36.1.3 Auxiliary TAP controller instructions .1657

36.2 Introduction .1658
36.2.1 Overview .1658
36.2.2 Features .1658
36.2.3 Modes of operation .1659

36.3 External signal description .1660

MPC5644A Microcontroller Reference Manual, Rev. 6

22 Freescale Semiconductor

36.3.1 Overview .1660
36.3.2 Detailed signal descriptions .1660

36.4 Register definition .1661
36.4.1 Register descriptions .1661

36.5 Functional description .1664
36.5.1 JTAGC reset configuration .1664
36.5.2 IEEE 1149.1-2001 (JTAG) test access port .1664
36.5.3 TAP controller state machine .1664
36.5.4 JTAGC block instructions .1666
36.5.5 Boundary scan .1668

36.6 Initialization/application information .1669

Chapter 37
Nexus Port Controller (NPC)

37.1 Information specific to this device .1671
37.1.1 Device-specific features .1671
37.1.2 Parameter values .1672

37.2 Introduction .1673
37.2.1 Overview .1674
37.2.2 Features .1674
37.2.3 Modes of operation .1675

37.3 External signal description .1676
37.3.1 Overview .1676
37.3.2 Detailed signal descriptions .1676

37.4 Register definition .1677
37.4.1 Register descriptions .1678

37.5 Functional description .1682
37.5.1 NPC reset configuration .1682
37.5.2 Auxiliary output port .1682
37.5.3 IEEE 1149.1-2001 (JTAG) TAP .1685
37.5.4 Nexus JTAG port sharing .1690
37.5.5 MCKO and ipg_sync_mcko .1690
37.5.6 EVTO sharing .1690
37.5.7 Nexus reset control .1691
37.5.8 System clock locked indication .1691

37.6 Initialization/Application information .1691
37.6.1 Accessing NPC tool-mapped registers .1691

Chapter 38
Development Trigger Semaphore (DTS)

38.1 Introduction .1693
38.2 Overview .1693
38.3 DTS device connections .1694

38.3.1 DTS register access .1695

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 23

38.4 Memory map .1696
38.5 Register descriptions .1696

38.5.1 DTS Output Enable Register (DTS_ENABLE) .1696
38.5.2 DTS Startup Register (DTS_STARTUP) .1697
38.5.3 DTS Semaphore Register (DTS_SEMAPHORE) .1698

38.6 Example application .1699

Appendix A
Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

24 Freescale Semiconductor

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 25

Preface
Overview
The primary objective of this document is to define the functionality of the MPC5644A family of
microcontrollers for use by software and hardware developers. The MPC5644A family is built on Power
Architecture® technology and integrates technologies that are important for today’s lower-end
applications.

As with any technical documentation, it is the reader’s responsibility to be sure he or she is using the most
recent version of the documentation.

To locate any published errata or updates for this document, visit the Freescale Web site at
http://www.freescale.com.

Audience
This manual is intended for system software and hardware developers and applications programmers who
want to develop products with the MPC5644A device. It is assumed that the reader understands operating
systems, microprocessor system design, basic principles of software and hardware, and basic details of the
Power Architecture.

Chapter organization and device-specific information
This document includes chapters that describe:

• The device as a whole

• The functionality of the individual modules on the device

In the latter, any device-specific information is presented in the section “Information Specific to This
Device” at the beginning of the chapter.

References
In addition to this reference manual, the following documents provide additional information on the
operation of the MPC5644A:

• IEEE-ISTO 5001™ - 2003 and 2010, The Nexus 5001™ Forum Standard for a Global Embedded
Processor Debug Interface

• IEEE 1149.1-2001 standard - IEEE Standard Test Access Port and Boundary-Scan Architecture

• Power Architecture V1.0
(http://www.freescale.com/files/32bit/doc/user_guide/BOOK_EUM.pdf?fsrch=1)

http://www.freescale.com
http://www.freescale.com/files/32bit/doc/user_guide/BOOK_EUM.pdf?fsrch=1

MPC5644A Microcontroller Reference Manual, Rev. 6

26 Freescale Semiconductor

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 27

Chapter 1
Introduction

1.1 The MPC5644A Microcontroller Family

The MPC5644A is part of a family of microcontrollers that serves two main application areas:

• Mid-range engine management

• Automotive transmission control

The MPC5644A contains features of Freescale’s MPC5600 family and many new features coupled with
high performance 90 nm CMOS technology to provide substantial reduction of cost per feature and
significant performance improvement.

The e200z4 host processor core of the MPC5644A complies with the Power Architecture® embedded
category architecture. It is 100% user mode compatible (with floating point library) with the classic
PowerPC instruction set. In addition to the Power Architecture instruction set, this core also has additional
instruction support for digital signal processing (DSP).

The MPC5644A has two levels of memory hierarchy consisting of 8 KB of instruction cache, backed by
up to 192 KB on-chip SRAM and up to 4 MB of internal flash memory. The MPC5644A includes an
external bus interface and a “calibration bus” that is only accessible when using the Freescale Vertical
Calibration calibration tools.

On-chip modules include:

• Dual issue, 32-bit Power Architecture embedded category compliant e200z4 CPU core complex

• Memory protection unit (MPU)

• Interrupt controller (INTC)

• Frequency-modulated phase-locked loop (FMPLL)

• System integration unit (SIU)

• Boot assist module (BAM)

• 32-channel second generation enhanced time processor unit (eTPU2)

• 24-channel enhanced modular Input Output System (eMIOS)

• Enhanced queued analog-to-digital converter (eQADC)

• 3 deserial serial peripheral interface (DSPI) modules

• 3 enhanced serial communication interface (eSCI) modules

• 3 controller-area network (FlexCAN) modules

• Cyclic redundancy check (CRC) module

• System timers

• Nexus development interface (NDI) per IEEE-ISTO 5001-2003 and 2010 standards

• On-chip voltage regulator for regulating 5 V down to 3.3 V for internal functions and Nexus
interface

• On-chip voltage Regulator controller for regulating 5 V down to 1.2 V for core logic

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

28 Freescale Semiconductor

1.2 MPC5644A and MPC5642A Device Comparison

Table 1-1 summarizes the features MPC5644A and MPC5642A microcontrollers.

Table 1-1. MPC5644A and MPC5642A comparison

Feature MPC5644A MPC5642A

Process 90 nm

Core e200z4 e200z4

SIMD Yes

VLE Yes

Cache 8 KB instruction

Non-Maskable Interrupt (NMI) NMI & Critical Interrupt

MMU 24 entry

MPU 16 entry

Crossbar switch 5  4 4  4

Core performance 0–150 MHz 0–150 MHz

Windowing software watchdog Yes

Core Nexus Class 3+ Class 3+

SRAM 192 KB 128 KB

Flash 4 MB 2 MB

Flash fetch accelerator 4  256-bit

External bus 16-bit (incl 32-bit muxed) 4  128-bit

Calibration bus 16-bit (incl 32-bit muxed) None

DMA 64 ch.

DMA Nexus None

Serial 3

eSCI_A Yes (MSC Uplink)

eSCI_B Yes (MSC Uplink)

eSCI_C Yes

CAN 3

CAN_A 64 buf

CAN_B 64 buf

CAN_C 64 buf

SPI 3

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 29

Micro Second Channel (MSC) bus
downlink

Yes

DSPI_A No

DSPI_B Yes (with LVDS)

DSPI_C Yes (with LVDS)

DSPI_D Yes

FlexRay Yes

System timers 5 PIT channels
4 STM channels

1 Software Watchdog

eMIOS 24 ch.

eTPU 32 ch. eTPU2

Code memory 14 KB

Data memory 3 KB

Interrupt controller 486 ch.1

ADC 40 ch.

ADC_A Yes

ADC_B Yes

Temp sensor Yes

Variable gain amp. Yes

Decimation filter 2 2

Sensor diagnostics Yes

CRC Yes

FMPLL Yes

VRC Yes

Supplies 5 V, 3.3 V2

Low-power modes Stop Mode
Slow Mode

Packages 176 LQFP3

208 MAPBGA3,4

324 TEPBGA3245

496-pin CSP6

176 LQFP3

208 MAPBGA3,4

324 TEPBGA496-pin
CSP6

1 199 interrupt vectors are reserved.
2 5 V single supply only for 176 LQFP.
3 Pinout compatible with Freescale’s MPC5634M devices.
4 Pinout compatible with Freescale’s MPC5534.

Table 1-1. MPC5644A and MPC5642A comparison (continued)

Feature MPC5644A MPC5642A

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

30 Freescale Semiconductor

1.3 Device block diagram

Figure 1-1 shows a top-level block diagram of the MPC5644A.

5 Ballmap upwardly compatible with the standardized package ballmap used for various Freescale
MPC5xxx family members, including MPC5554, MPC5567 and MPC5666.

6 For Freescale VertiCal Calibration System only.

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 31

Figure 1-1. MPC5644A Block Diagram

ADC – Analog to Digital Converter
ADCi – ADC interface
AMux – Analog Multiplexer
BAM – Boot Assist Module
CRC – Cyclic Redundancy Check unit
DEC – Decimation Filter
DTS – Development Trigger Semaphore
DSPI – Deserial/Serial Peripheral Interface
EBI – External Bus Interface
ECSM – Error Correction Status Module
eDMA – Enhanced Direct Memory Access
eMIOS – Enhanced Modular Input Output System
eSCI – Enhanced Serial Communications Interface
eTPU2 – Second gen. Enhanced Time Processing Unit
FlexCAN– Controller Area Network (FlexCAN)
FMPLL – Frequency-Modulated Phase Locked Loop

JTAG – IEEE 1149.1 test controller
MMU – Memory Management Unit
MPU – Memory Protection Unit
PMC – Power Management Controller
PIT – Periodic Interrupt Timer
RCOSC – low-speed RC oscillator
REACM – Reaction module
SIU – System Integration Unit
SPE – Signal Processing Extension
SRAM – Static RAM
STM – System Timer Module
SWT – Software Watchdog Timer
VGA – Variable Gain Amplifier
VLE – Variable Length (instruction) Encoding
XOSC – XTAL Oscillator

LEGEND

eMIOS
24

Channel

3 KB Data
RAM

14 KB Code
RAM

eTPU2
32

Channel

Te
m

p
S

en
s ADCi DEC

x2

VGAA
D

C
A

D
C

AMux

4 MB
Flash

192 KB
SRAM

MPU

Crossbar Switch

Interrupt
Controller

eDMA
64 Channel

SPE

VLE

MMU

8 KB I-cache

Power Architecture
e200z4

TM

JTAG

Nexus
IEEE-ISTO
5001-2003/2010

FlexRay

E
xt

. B
us

 In
te

rf
ac

e
C

al
 B

us
 In

te
rf

ac
e

F
le

xC
A

N
3

Nexus Class 3+

Nexus

I/O Bridge

F
M

P
LL

C
R

C

B
A

M

P
M

C

S
T

M

P
IT

S
W

T

S
IU

Analog PLL

RCOSC

XOSC

Voltage Regulator

Standby
Regulator

with Switch

D
S

P
I

3

eS
C

I
3

M4 M0 M6 M7

S0

S2 S7

S1

M1
R

E
A

C
M

D
T

S

Class 1

ECSM

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

32 Freescale Semiconductor

1.4 Feature summary
• 150 MHz e200z4 Power Architecture core

— Variable length instruction encoding (VLE)

— Superscalar architecture with 2 execution units

— Up to 2 integer or floating point instructions per cycle

— Up to 4 multiply and accumulate operations per cycle

• Memory organization

— 4 MB on-chip flash memory with ECC and Read While Write (RWW)

— 192 KB on-chip SRAM with standby functionality (32 KB) and ECC

— 8 KB instruction cache (with line locking), configurable as 2- or 4-way

— 14 + 3 KB eTPU code and data RAM

— 5  4 crossbar switch (XBAR)

— 24-entry MMU

— External Bus Interface (EBI) with slave and master port

• Fail Safe Protection

— 16-entry Memory Protection Unit (MPU)

— CRC unit with 3 sub-modules

— Junction temperature sensor

• Interrupts

— Configurable interrupt controller (with NMI)

— 64-channel DMA

• Serial channels

— 3  eSCI

— 3  DSPI (2 of which support downstream Micro Second Channel [MSC])

— 3  FlexCAN with 64 messages each

— 1  FlexRay module (V2.1) up to 10 Mbit/s with dual or single channel and 128 message
objects and ECC

• 1  eMIOS

— 24 unified channels

• 1  eTPU2 (second generation eTPU)

— 32 standard channels

— 1  reaction module (6 channels with three outputs per channel)

• 2 enhanced queued analog-to-digital converters (eQADCs)

— Forty 12-bit input channels (multiplexed on 2 ADCs); expandable to 56 channels with external
multiplexers

— 6 command queues

— Trigger and DMA support

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 33

— 688 ns minimum conversion time

• On-chip CAN/SCI/FlexRay Bootstrap loader with Boot Assist Module (BAM)

• Nexus

— Class 3+ for the e200z4 core

— Class 1 for the eTPU

• JTAG (5-pin)

• Development Trigger Semaphore (DTS)

— Register of semaphores (32-bits) and an identification register

— Used as part of a triggered data acquisition protocol

— EVTO pin is used to communicate to the external tool

• Clock generation

— On-chip 4–40 MHz main oscillator

— On-chip FMPLL (frequency-modulated phase-locked loop)

• Up to 120 general purpose I/O lines

— Individually programmable as input, output or special function

— Programmable threshold (hysteresis)

• Power reduction mode: slow, stop and stand-by modes

• Flexible supply scheme

— 5 V single supply with external ballast

— Multiple external supply: 5 V, 3.3 V and 1.2 V

• Packages

— 176 LQFP

— 208 MAPBGA

— 324 TEPBGA

— 496-pin CSP (calibration tool only)

1.4.1 Feature details

1.4.2 e200z4 core

MPC5644A devices have a high performance e200z448n3 core processor:

• Dual issue, 32-bit Power Architecture embedded category CPU

• Variable Length Encoding Enhancements

• 8 KB instruction cache: 2- or 4- way set associative instruction cache

• Thirty-two 64-bit general purpose registers (GPRs)

• Memory management unit (MMU) with 24-entry fully-associative translation look-aside buffer
(TLB)

• Harvard Architecture: Separate instruction bus and load/store bus

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

34 Freescale Semiconductor

• Vectored interrupt support

• Non-maskable interrupt input

• Critical Interrupt input

• New ‘Wait for Interrupt’ instruction, to be used with new low power modes

• Reservation instructions for implementing read-modify-write accesses

• Signal processing extension (SPE) APU

• Single Precision Floating point (scalar and vector)

• Nexus Class 3+ debug

• Process ID manipulation for the MMU using an external tool

1.4.3 Crossbar Switch (XBAR)

The XBAR multiport crossbar switch supports simultaneous connections between five master ports and
four slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width.

The crossbar allows three concurrent transactions to occur from the master ports to any slave port but each
master must access a different slave. If a slave port is simultaneously requested by more than one master
port, arbitration logic selects the higher priority master and grants it ownership of the slave port. All other
masters requesting that slave port are stalled until the higher priority master completes its transactions.
Requesting masters are treated with equal priority and are granted access to a slave port in round-robin
fashion, based upon the ID of the last master to be granted access. The crossbar provides the following
features:

• 5 master ports

— CPU instruction bus

— CPU data bus

— eDMA

— FlexRay

— External Bus Interface

• 4 slave ports

— Flash

— Calibration and EBI bus

— SRAM

— Peripheral bridge

• 32-bit internal address, 64-bit internal data paths

1.4.4 eDMA

The enhanced direct memory access (eDMA) controller is a second-generation module capable of
performing complex data movements via 64 programmable channels, with minimal intervention from the
host processor. The hardware micro-architecture includes a DMA engine which performs source and
destination address calculations, and the actual data movement operations, along with an SRAM-based

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 35

memory containing the transfer control descriptors (TCD) for the channels. This implementation is utilized
to minimize the overall block size. The eDMA module provides the following features:

• All data movement via dual-address transfers: read from source, write to destination

• Programmable source and destination addresses, transfer size, plus support for enhanced
addressing modes

• Transfer control descriptor organized to support two-deep, nested transfer operations

• An inner data transfer loop defined by a “minor” byte transfer count

• An outer data transfer loop defined by a “major” iteration count

• Channel activation via one of three methods:

— Explicit software initiation

— Initiation via a channel-to-channel linking mechanism for continuous transfers

— Peripheral-paced hardware requests (one per channel)

• Support for fixed-priority and round-robin channel arbitration

• Channel completion reported via optional interrupt requests

• One interrupt per channel, optionally asserted at completion of major iteration count

• Error termination interrupts optionally enabled

• Support for scatter/gather DMA processing

• Ability to suspend channel transfers by a higher priority channel

1.4.5 Interrupt controller

The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt requests,
suitable for statically scheduled hard real-time systems.

For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral
to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC
provides a unique vector for each interrupt request source for quick determination of which ISR needs to
be executed. It also provides an ample number of priorities so that lower priority ISRs do not delay the
execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request,
the priority of each interrupt request is software configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC
supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the
priority can be raised temporarily so that all tasks which share the resource cannot preempt each other.

The INTC provides the following features:

• 9-bit vector addresses

• Unique vector for each interrupt request source

• Hardware connection to processor or read from register

• Each interrupt source can assigned a specific priority by software

• Preemptive prioritized interrupt requests to processor

• ISR at a higher priority preempts executing ISRs or tasks at lower priorities

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

36 Freescale Semiconductor

• Automatic pushing or popping of preempted priority to or from a LIFO

• Ability to modify the ISR or task priority to implement the priority ceiling protocol for accessing
shared resources

• Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to
processor

This device also includes a non-maskable interrupt (NMI) pin that bypasses the INTC and multiplexing
logic.

1.4.6 Memory protection unit (MPU)

The Memory Protection Unit (MPU) provides hardware access control for all memory references
generated in a device. Using preprogrammed region descriptors, which define memory spaces and their
associated access rights, the MPU concurrently monitors all system bus transactions and evaluates the
appropriateness of each transfer. Memory references with sufficient access control rights are allowed to
complete; references that are not mapped to any region descriptor or have insufficient rights are terminated
with a protection error response.

The MPU has these major features:

• Support for 16 memory region descriptors, each 128 bits in size

— Specification of start and end addresses provide granularity for region sizes from 32 bytes to
4 GB

— MPU is invalid at reset, thus no access restrictions are enforced

— Two types of access control definitions: processor core bus master supports the traditional
{read, write, execute} permissions with independent definitions for supervisor and user mode
accesses; the remaining non-core bus masters (eDMA, FlexRay, and EBI1) support {read,
write} attributes

— Automatic hardware maintenance of the region descriptor valid bit removes issues associated
with maintaining a coherent image of the descriptor

— Alternate memory view of the access control word for each descriptor provides an efficient
mechanism to dynamically alter the access rights of a descriptor only1

— For overlapping region descriptors, priority is given to permission granting over access
denying as this approach provides more flexibility to system software

• Support for two XBAR slave port connections (SRAM and PBRIDGE)

— For each connected XBAR slave port (SRAM and PBRIDGE), MPU hardware monitors every
port access using the pre-programmed memory region descriptors

— An access protection error is detected if a memory reference does not hit in any memory region
or the reference is flagged as illegal in all memory regions where it does hit. In the event of an
access error, the XBAR reference is terminated with an error response and the MPU inhibits
the bus cycle being sent to the targeted slave device

— 64-bit error registers, one for each XBAR slave port, capture the last faulting address,
attributes, and detail information

1. EBI not available on all packages and is not available, as a master, for customer.

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 37

1.4.7 FMPLL

The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 40 MHz crystal
oscillator or external clock generator. Further, the FMPLL supports programmable frequency modulation
of the system clock. The PLL multiplication factor, output clock divider ratio are all software configurable.
The PLL has the following major features:

• Input clock frequency from 4 MHz to 40 MHz

• Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to
relock

• 3 modes of operation

— Bypass mode with PLL off

— Bypass mode with PLL running (default mode out of reset)

— PLL normal mode

• Each of the three modes may be run with a crystal oscillator or an external clock reference

• Programmable frequency modulation

— Modulation enabled/disabled through software

— Triangle wave modulation up to 100 kHz modulation frequency

— Programmable modulation depth (0% to 2% modulation depth)

— Programmable modulation frequency dependent on reference frequency

• Lock detect circuitry reports when the PLL has achieved frequency lock and continuously monitors
lock status to report loss of lock conditions

• Clock Quality Module

— Detects the quality of the crystal clock and causes interrupt request or system reset if error is
detected

— Detects the quality of the PLL output clock; if error detected, causes system reset or switches
system clock to crystal clock and causes interrupt request

• Programmable interrupt request or system reset on loss of lock

• Self-clocked mode (SCM) operation

1.4.8 SIU

The MPC5644A SIU controls MCU reset configuration, pad configuration, external interrupt, general
purpose I/O (GPIO), internal peripheral multiplexing, and the system reset operation. The reset
configuration block contains the external pin boot configuration logic. The pad configuration block
controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete
input/output control of the I/O pins of the MCU. The reset controller performs reset monitoring of internal
and external reset sources, and drives the RSTOUT pin. Communication between the SIU and the e200z4
CPU core is via the crossbar switch. The SIU provides the following features:

• System configuration

— MCU reset configuration via external pins

— Pad configuration control for each pad

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

38 Freescale Semiconductor

— Pad configuration control for virtual I/O via DSPI serialization

• System reset monitoring and generation

— Power-on reset support

— Reset status register provides last reset source to software

— Glitch detection on reset input

— Software controlled reset assertion

• External interrupt

— Rising or falling edge event detection

— Programmable digital filter for glitch rejection

— Critical Interrupt request

— Non-Maskable Interrupt request

• GPIO

— Centralized control of I/O and bus pins

— Virtual GPIO via DSPI serialization (requires external deserialization device)

— Dedicated input and output registers for setting each GPIO and Virtual GPIO pin

• Internal multiplexing

— Allows serial and parallel chaining of DSPIs

— Allows flexible selection of eQADC trigger inputs

— Allows selection of interrupt requests between external pins and DSPI

1.4.9 Flash memory

The MPC5644A provides up to 4 MB of programmable, non-volatile, flash memory. The non-volatile
memory (NVM) can be used to store instructions or data, or both. The flash module includes a Fetch
Accelerator that optimizes the performance of the flash array to match the CPU architecture. The flash
module interfaces the system bus to a dedicated flash memory array controller. For CPU ‘loads’, DMA
transfers and CPU instruction fetch, it supports a 64-bit data bus width at the system bus port, and 128-
and 256-bit read data interfaces to flash memory. The module contains a prefetch controller which
prefetches sequential lines of data from the flash array into the buffers. Prefetch buffer hits allow no-wait
responses.

The flash memory provides the following features:

• Supports a 64-bit data bus for instruction fetch, CPU loads and DMA access. Byte, halfword, word
and doubleword reads are supported. Only aligned word and doubleword writes are supported.

• Fetch Accelerator

— Architected to optimize the performance of the flash

— Configurable read buffering and line prefetch support

— Four-entry 256-bit wide line read buffer

— Prefetch controller

• Hardware and software configurable read and write access protections on a per-master basis

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 39

• Interface to the flash array controller pipelined with a depth of one, allowing overlapped accesses
to proceed in parallel for interleaved or pipelined flash array designs

• Configurable access timing usable in a wide range of system frequencies

• Multiple-mapping support and mapping-based block access timing (0-31 additional cycles) usable
for emulation of other memory types

• Software programmable block program/erase restriction control

• Erase of selected block(s)

• Read page size of 128 bits (four words)

• ECC with single-bit correction, double-bit detection

• Program page size of 128 bits (four words) to accelerate programming

• ECC single-bit error corrections are visible to software

• Minimum program size is two consecutive 32-bit words, aligned on a 0-modulo-8 byte address,
due to ECC

• Embedded hardware program and erase algorithm

• Erase suspend, program suspend and erase-suspended program

• Shadow information stored in non-volatile shadow block

• Independent program/erase of the shadow block

1.4.10 BAM

The BAM (Boot Assist Module) is a block of read-only memory that is programmed once by Freescale
and is identical for all MPC5644A MCUs. The BAM program is executed every time the MCU is
powered-on or reset in normal mode. The BAM supports different modes of booting. They are:

• Booting from internal flash memory

• Serial boot loading (A program is downloaded into RAM via eSCI or the FlexCAN and then
executed)

• Booting from external memory on external bus

The BAM also reads the reset configuration half word (RCHW) from internal flash memory and
configures the MPC5644A hardware accordingly. The BAM provides the following features:

• Sets up MMU to cover all resources and mapping of all physical addresses to logical addresses with
minimum address translation

• Sets up MMU to allow user boot code to execute as either Power Architecture embedded category
(default) or as Freescale VLE code

• Location and detection of user boot code

• Automatic switch to serial boot mode if internal flash is blank or invalid

• Supports user programmable 64-bit password protection for serial boot mode

• Supports serial bootloading via FlexCAN bus and eSCI using Freescale protocol

• Supports serial bootloading via FlexCAN bus and eSCI with auto baud rate sensing

• Supports serial bootloading of either Power Architecture code (default) or Freescale VLE code

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

40 Freescale Semiconductor

• Supports booting from calibration bus interface

• Supports censorship protection for internal flash memory

• Provides an option to enable the core watchdog timer

• Provides an option to disable the system watchdog timer

1.4.11 eMIOS

The eMIOS timer module provides the capability to generate or measure events in hardware.

The eMIOS module features include:

• Twenty-four 24-bit wide channels

• 3 channels’ internal timebases can be shared between channels

• 1 Timebase from eTPU2 can be imported and used by the channels

• Global enable feature for all eMIOS and eTPU timebases

• Dedicated pin for each channel (not available on all package types)

Each channel (0–23) supports the following functions:

• General-purpose input/output (GPIO)

• Single-action input capture (SAIC)

• Single-action output compare (SAOC)

• Output pulse-width modulation buffered (OPWMB)

• Input period measurement (IPM)

• Input pulse-width measurement (IPWM)

• Double-action output compare (DAOC)

• Modulus counter buffered (MCB)

• Output pulse width and frequency modulation buffered (OPWFMB)

1.4.12 eTPU2

The eTPU2 is an enhanced co-processor designed for timing control. Operating in parallel with the host
CPU, the eTPU2 processes instructions and real-time input events, performs output waveform generation,
and accesses shared data without host intervention. Consequently, for each timer event, the host CPU setup
and service times are minimized or eliminated. A powerful timer subsystem is formed by combining the
eTPU2 with its own instruction and data RAM. High-level assembler/compiler and documentation allows
customers to develop their own functions on the eTPU2.

MPC5644A devices feature the second generation of the eTPU, called eTPU2. Enhancements of the
eTPU2 over the standard eTPU include:

• The Timer Counter (TCR1), channel logic and digital filters (both channel and the external timer
clock input [TCRCLK]) now have an option to run at full system clock speed or system clock / 2.

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 41

• Channels support unordered transitions: transition 2 can now be detected before transition 1.
Related to this enhancement, the transition detection latches (TDL1 and TDL2) can now be
independently negated by microcode.

• A new User Programmable Channel Mode has been added: the blocking, enabling, service request
and capture characteristics of this channel mode can be programmed via microcode.

• Microinstructions now provide an option to issue Interrupt and Data Transfer requests selected by
channel. They can also be requested simultaneously at the same instruction.

• Channel Flags 0 and 1 can now be tested for branching, in addition to selecting the entry point.

• Channel digital filters can be bypassed.

The eTPU2 includes these distinctive features:

• 32 channels; each channel associated with one input and one output signal

— Enhanced input digital filters on the input pins for improved noise immunity

— Identical, orthogonal channels: each channel can perform any time function. Each time
function can be assigned to more than one channel at a given time, so each signal can have any
functionality.

— Each channel has an event mechanism which supports single and double action functionality
in various combinations. It includes two 24-bit capture registers, two 24-bit match registers,
24-bit greater-equal and equal-only comparators.

— Input and output signal states visible from the host

• 2 independent 24-bit time bases for channel synchronization:

— First time base clocked by system clock with programmable prescale division from 2 to 512 (in
steps of 2), or by output of second time base prescaler

— Second time base counter can work as a continuous angle counter, enabling angle based
applications to match angle instead of time

— Both time bases can be exported to the eMIOS timer module

— Both time bases visible from the host

• Event-triggered microengine:

— Fixed-length instruction execution in two-system-clock microcycle

— 14 KB of code memory (SCM)

— 3 KB of parameter (data) RAM (SPRAM)

— Parallel execution of data memory, ALU, channel control and flow control sub-instructions in
selected combinations

— 32-bit microengine registers and 24-bit wide ALU, with 1 microcycle addition and subtraction,
absolute value, bitwise logical operations on 24-bit, 16-bit, or byte operands, single-bit
manipulation, shift operations, sign extension and conditional execution

— Additional 24-bit Multiply/MAC/Divide unit which supports all signed/unsigned
Multiply/MAC combinations, and unsigned 24-bit divide. The MAC/Divide unit works in
parallel with the regular microcode commands.

• Resource sharing features support channel use of common channel registers, memory and
microengine time:

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

42 Freescale Semiconductor

— Hardware scheduler works as a “task management” unit, dispatching event service routines by
predefined, host-configured priority

— Automatic channel context switch when a “task switch” occurs, that is, one function thread
ends and another begins to service a request from other channel: channel-specific registers,
flags and parameter base address are automatically loaded for the next serviced channel

— SPRAM shared between host CPU and eTPU2, supporting communication either between
channels and host or inter-channel

— Hardware implementation of four semaphores support coherent parameter sharing between
both eTPU engines

— Dual-parameter coherency hardware support allows atomic access to two parameters by host

• Test and development support features:

— Nexus Class 1 debug, supporting single-step execution, arbitrary microinstruction execution,
hardware breakpoints and watchpoints on several conditions

— Software breakpoints

— SCM continuous signature-check built-in self test (MISC - multiple input signature calculator),
runs concurrently with eTPU2 normal operation

1.4.13 Reaction module

The reaction module provides the ability to modulate output signals to manage closed loop control without
CPU assistance. It works in conjunction with the eQADC and eTPU2 to increase system performance by
removing the CPU from the current control loop.

The reaction module has the following features:

• 6 reaction channels

• Each channel output is a bus of 3 signals, providing ability to control 3 inputs.

• Each channel can implement a peak and hold waveform, making it possible to implement up to six
independent peak and hold control channels

Target applications include solenoid control for direct injection systems and valve control in automatic
transmissions

1.4.14 eQADC

The enhanced queued analog to digital converter (eQADC) block provides accurate and fast conversions
for a wide range of applications. The eQADC provides a parallel interface to two on-chip analog to digital
converters (ADC), and a single master to single slave serial interface to an off-chip external device. Both
on-chip ADCs have access to all the analog channels.

The eQADC prioritizes and transfers commands from six command conversion command ‘queues’ to the
on-chip ADCs or to the external device. The block can also receive data from the on-chip ADCs or from
an off-chip external device into the six result queues, in parallel, independently of the command queues.
The six command queues are prioritized with Queue_0 having the highest priority and Queue_5 the lowest.
Queue_0 also has the added ability to bypass all buffering and queuing and abort a currently running

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 43

conversion on either ADC and start a Queue_0 conversion. This means that Queue_0 will always have a
deterministic time from trigger to start of conversion, irrespective of what tasks the ADCs were performing
when the trigger occurred. The eQADC supports software and external hardware triggers from other
blocks to initiate transfers of commands from the queues to the on-chip ADCs or to the external device. It
also monitors the fullness of command queues and result queues, and accordingly generates DMA or
interrupt requests to control data movement between the queues and the system memory, which is external
to the eQADC.

The ADCs also support features designed to allow the direct connection of high impedance acoustic
sensors that might be used in a system for detecting engine knock. These features include differential
inputs; integrated variable gain amplifiers for increasing the dynamic range; programmable pull-up and
pull-down resistors for biasing and sensor diagnostics.

The eQADC also integrates a programmable decimation filter capable of taking in ADC conversion results
at a high rate, passing them through a hardware low pass filter, then down-sampling the output of the filter
and feeding the lower sample rate results to the result FIFOs. This allows the ADCs to sample the sensor
at a rate high enough to avoid aliasing of out-of-band noise; while providing a reduced sample rate output
to minimize the amount DSP processing bandwidth required to fully process the digitized waveform.

The eQADC provides the following features:

• Dual on-chip ADCs

— 2  12-bit ADC resolution

— Programmable resolution for increased conversion speed (12-bit, 10-bit, 8-bit)

– 12-bit conversion time: 938 ns (1 M sample/sec)

– 10-bit conversion time: 813 ns (1.2 M sample/second)

– 8-bit conversion time: 688 ns (1.4 M sample/second)

— Up to 10-bit accuracy at 500 KSample/s and 8-bit accuracy at 1 MSample/s

— Differential conversions

— Single-ended signal range from 0 to 5 V

— Variable gain amplifiers on differential inputs (1, 2, 4)

— Sample times of 2 (default), 8, 64 or 128 ADC clock cycles

— Provides time stamp information when requested

— Allows time stamp information relative to eTPU clock sources, such as an angle clock

— Parallel interface to eQADC CFIFOs and RFIFOs

— Supports both right-justified unsigned and signed formats for conversion results

• 40 single-ended input channels, expandable to 56 channels with external multiplexers (supports
four external 8-to-1 muxes)

• 8 channels can be used as 4 pairs of differential analog input channels

• Differential channels include variable gain amplifier for improved dynamic range

• Differential channels include programmable pull-up and pull-down resistors for biasing and sensor
diagnostics (200 k100 k5 k

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

44 Freescale Semiconductor

• Additional internal channels for monitoring voltages (such as core voltage, I/O voltage, LVI
voltages, etc.) inside the device

• An internal bandgap reference to allow absolute voltage measurements

• Silicon die temperature sensor

— Provides temperature of silicon as an analog value

— Read using an internal ADC analog channel

— May be read with either ADC

• 2 Decimation Filters

— Programmable decimation factor (1 to 16)

— Selectable IIR or FIR filter

— Up to 4th order IIR or 8th order FIR

— Programmable coefficients

— Saturated or non-saturated modes

— Programmable Rounding (Convergent; Two’s Complement; Truncated)

— Prefill mode to precondition the filter before the sample window opens

— Supports Multiple Cascading Decimation Filters to implement more complex filter designs

— Optional Absolute Integrators on the output of Decimation Filters

• Full duplex synchronous serial interface to an external device

— Free-running clock for use by an external device

— Supports a 26-bit message length

• Priority based queues

— Supports six queues with fixed priority. When commands of distinct queues are bound for the
same ADC, the higher priority queue is always served first

— Queue_0 can bypass all prioritization, buffering and abort current conversions to start a
Queue_0 conversion a deterministic time after the queue trigger

— Supports software and hardware trigger modes to arm a particular queue

— Generates interrupt when command coherency is not achieved

• External hardware triggers

— Supports rising edge, falling edge, high level and low level triggers

— Supports configurable digital filter

1.4.15 DSPI

The deserial serial peripheral interface (DSPI) block provides a synchronous serial interface for
communication between the MPC5644A MCU and external devices. The DSPI supports pin count
reduction through serialization and deserialization of eTPU and eMIOS channels and memory-mapped
registers. The channels and register content are transmitted using a SPI-like protocol. This SPI-like
protocol is completely configurable for baud rate, polarity and phase, frame length, chip select assertion,
etc. Each bit in the frame may be configured to serialize either eTPU channels, eMIOS channels or GPIO
signals. The DSPI can be configured to serialize data to an external device that implements the

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 45

Microsecond Bus protocol. There are three identical DSPI blocks on the MPC5644A MCU. The DSPI pins
support 5 V logic levels or Low Voltage Differential Signalling (LVDS) to improve high speed operation.

DSPI module features include:

• Selectable LVDS pads working at 40 MHZ for SOUT and SCK pins for DSPI_B and DSPI_C

• 3 sources of serialized data: eTPU_A, eMIOS output channels and memory-mapped register in the
DSPI

• 4 destinations for deserialized data: eTPU_A and eMIOS input channels, SIU external Interrupt
input request, memory-mapped register in the DSPI

• 32-bit DSI and TSB modes require 32 PCR registers, 32 GPO and GPI registers in the SIU to select
either GPIO, eTPU or eMIOS bits for serialization

• The DSPI Module can generate and check parity in a serial frame

1.4.16 eSCI

Three enhanced serial communications interface (eSCI) modules provide asynchronous serial
communications with peripheral devices and other MCUs, and include support to interface to Local
Interconnect Network (LIN) slave devices. Each eSCI block provides the following features:

• Full-duplex operation

• Standard mark/space non-return-to-zero (NRZ) format

• 13-bit baud rate selection

• Programmable 8-bit or 9-bit, data format

• Programmable 12-bit or 13-bit data format for Timed Serial Bus (TSB) configuration to support
the Microsecond bus standard

• Automatic parity generation

• LIN support

— Autonomous transmission of entire frames

— Configurable to support all revisions of the LIN standard

— Automatic parity bit generation

— Double stop bit after bit error

— 10- or 13-bit break support

• Separately enabled transmitter and receiver

• Programmable transmitter output parity

• 2 receiver wake-up methods:

— Idle line wake-up

— Address mark wake-up

• Interrupt-driven operation with flags

• Receiver framing error detection

• Hardware parity checking

• 1/16 bit-time noise detection

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

46 Freescale Semiconductor

• DMA support for both transmit and receive data

— Global error bit stored with receive data in system RAM to allow post processing of errors

1.4.17 FlexCAN

The MPC5644A MCU includes three controller area network (FlexCAN) blocks. The FlexCAN module
is a communication controller implementing the CAN protocol according to Bosch Specification version
2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the
specific requirements of this field: real-time processing, reliable operation in the EMI environment of a
vehicle, cost-effectiveness and required bandwidth. Each FlexCAN module contains 64 message buffers.

The FlexCAN modules provide the following features:

• Based on and including all existing features of the Freescale TouCAN module

• Full Implementation of the CAN protocol specification, Version 2.0B

— Standard data and remote frames

— Extended data and remote frames

— Zero to eight bytes data length

— Programmable bit rate up to 1 Mbit/s

• Content-related addressing

• 64 message buffers of zero to eight bytes data length

• Individual Rx Mask Register per message buffer

• Each message buffer configurable as Rx or Tx, all supporting standard and extended messages

• Includes 1088 bytes of embedded memory for message buffer storage

• Includes 256-byte memory for storing individual Rx mask registers

• Full featured Rx FIFO with storage capacity for six frames and internal pointer handling

• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against 8 extended, 16 standard
or 32 partial (8 bits) IDs, with individual masking capability

• Selectable backwards compatibility with previous FlexCAN versions

• Programmable clock source to the CAN Protocol Interface, either system clock or oscillator clock

• Listen only mode capability

• Programmable loop-back mode supporting self-test operation

• 3 programmable Mask Registers

• Programmable transmit-first scheme: lowest ID, lowest buffer number or highest priority

• Time Stamp based on 16-bit free-running timer

• Global network time, synchronized by a specific message

• Maskable interrupts

• Warning interrupts when the Rx and Tx Error Counters reach 96

• Independent of the transmission medium (an external transceiver is assumed)

• Multi-master concept

• High immunity to EMI

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 47

• Short latency time due to an arbitration scheme for high-priority messages

• Low power mode, with programmable wake-up on bus activity

1.4.18 FlexRay

The MPC5644A includes one dual-channel FlexRay module that implements the FlexRay
Communications System Protocol Specification, Version 2.1 Rev A. Features include:

• Single channel support

• FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported

• 128 message buffers, each configurable as:

— Receive message buffer

— Single buffered transmit message buffer

— Double buffered transmit message buffer (combines two single buffered message buffer)

• 2 independent receive FIFOs

— 1 receive FIFO per channel

— Up to 255 entries for each FIFO

• ECC support

1.4.19 System timers

The system timers include two distinct types of system timer:

• Periodic interrupts/triggers using the Periodic Interrupt Timer (PIT)

• Operating system task monitors using the System Timer Module (STM)

1.4.19.1 Periodic interrupt timer (PIT)

The PIT provides five independent timer channels, capable of producing periodic interrupts and periodic
triggers. The PIT has no external input or output pins and is intended to provide system ‘tick’ signals to
the operating system, as well as periodic triggers for eQADC queues. Of the five channels in the PIT, four
are clocked by the system clock and one is clocked by the crystal clock. This one channel is also referred
to as Real-Time Interrupt (RTI) and is used to wake up the device from low power stop mode.

The following features are implemented in the PIT:

• 5 independent timer channels

• Each channel includes 32-bit wide down counter with automatic reload

• 4 channels clocked from system clock

• 1 channel clocked from crystal clock (wake-up timer)

• Wake-up timer remains active when System STOP mode is entered; used to restart system clock
after predefined time-out period

• Each channel optionally able to generate an interrupt request or a trigger event (to trigger eQADC
queues) when timer reaches zero

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

48 Freescale Semiconductor

1.4.19.2 System timer module (STM)

The System Timer Module (STM) is designed to implement the software task monitor as defined by
AUTOSAR1. It consists of a single 32-bit counter, clocked by the system clock, and four independent
timer comparators. These comparators produce a CPU interrupt when the timer exceeds the programmed
value.

The following features are implemented in the STM:

• One 32-bit up counter with 8-bit prescaler

• Four 32-bit compare channels

• Independent interrupt source for each channel

• Counter can be stopped in debug mode

1.4.20 Software watchdog timer (SWT)

The Software Watchdog Timer (SWT) is a second watchdog module to complement the standard Power
Architecture watchdog integrated in the CPU core. The SWT is a 32-bit modulus counter, clocked by the
system clock or the crystal clock, that can provide a system reset or interrupt request when the correct
software key is not written within the required time window.

The following features are implemented:

• 32-bit modulus counter

• Clocked by system clock or crystal clock

• Optional programmable watchdog window mode

• Can optionally cause system reset or interrupt request on timeout

• Reset by writing a software key to memory mapped register

• Enabled out of reset

• Configuration is protected by a software key or a write-once register

1.4.21 Cyclic redundancy check (CRC) module

The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC features:

• Support for CRC-16-CCITT (x25 protocol):

— X16 + X12 + X5 + 1

• Support for CRC-32 (Ethernet protocol):

— X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1

• Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the
maximum frequency

1.AUTOSAR: AUTomotive Open System ARchitecture (see http://www.autosar.org)

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 49

1.4.22 Error correction status module (ECSM)

The ECSM provides a myriad of miscellaneous control functions regarding program-visible information
about the platform configuration and revision levels, a reset status register, a software watchdog timer,
wakeup control for exiting sleep modes, and information on platform memory errors reported by
error-correcting codes and/or generic access error information for certain processor cores.

The Error Correction Status Module supports a number of miscellaneous control functions for the
platform. The ECSM includes these features:

• Registers for capturing information on platform memory errors if error-correcting codes (ECC) are
implemented

• For test purposes, optional registers to specify the generation of double-bit memory errors are
enabled on the MPC5644A.

The sources of the ECC errors are:

• Flash

• SRAM

• Peripheral RAM (FlexRay, CAN, eTPU2 Parameter RAM)

1.4.23 External bus interface (EBI)

The MPC5644A device features an external bus interface that is available in 324 TEPBGA and calibration
packages.

The EBI supports operation at frequencies of system clock /1, /2 and /4, with a maximum frequency
support of 80 MHz. Customers running the device at 120 MHz or 132 MHz will use the /2 divider, giving
an EBI frequency of 60 MHz or 66 MHz. Customers running the device at 80 MHz will be able to use the
/1 divider to have the EBI run at the full 80 MHz frequency.

Features include:

• 1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V)

• Memory controller with support for various memory types

• 16-bit data bus, up to 22-bit address bus

• Pin muxing included to support 32-bit muxed bus

• Selectable drive strength

• Configurable bus speed modes

• Bus monitor

• Configurable wait states

1.4.24 Calibration EBI

The Calibration EBI controls data transfer across the crossbar switch to/from memories or peripherals
attached to the VertiCal connector in the calibration address space. The Calibration EBI is only available
in the VertiCal Calibration System.

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

50 Freescale Semiconductor

Features include:

• 1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V)

• Memory controller supports various memory types

• 16-bit data bus, up to 22-bit address bus

• Pin muxing supports 32-bit muxed bus

• Selectable drive strength

• Configurable bus speed modes

• Bus monitor

• Configurable wait states

1.4.25 Power management controller (PMC)

The power management controller contains circuitry to generate the internal 3.3 V supply and to control
the regulation of 1.2 V supply with an external NPN ballast transistor. It also contains low voltage inhibit
(LVI) and power-on reset (POR) circuits for the 1.2 V supply, the 3.3 V supply, the 3.3 V/5 V supply of
the closest I/O segment (VDDEH1) and the 5 V supply of the regulators (VDDREG).

1.4.26 Nexus port controller

The NPC (Nexus Port Controller) block provides real-time Nexus Class3+ development support
capabilities for the MPC5644A Power Architecture-based MCU in compliance with the IEEE-ISTO
5001-2003 and 2010 standards. MDO port widths of 4 pins and 12 pins are available in all packages.

1.4.27 JTAG

The JTAGC (JTAG Controller) block provides the means to test chip functionality and connectivity while
remaining transparent to system logic when not in test mode. Testing is performed via a boundary scan
technique, as defined in the IEEE 1149.1-2001 standard. All data input to and output from the JTAGC
block is communicated in serial format. The JTAGC block is compliant with the IEEE 1149.1-2001
standard and supports the following features:

• IEEE 1149.1-2001 Test Access Port (TAP) interface 4 pins (TDI, TMS, TCK, and TDO)

• A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:

— BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD, HIGHZ, CLAMP

• A 5-bit instruction register that supports the additional following public instructions:

— ACCESS_AUX_TAP_NPC

— ACCESS_AUX_TAP_ONCE

— ACCESS_AUX_TAP_eTPU

— ACCESS_CENSOR

• 3 test data registers to support JTAG Boundary Scan mode

— Bypass register

— Boundary scan register

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 51

— Device identification register

• A TAP controller state machine that controls the operation of the data registers, instruction register
and associated circuitry

• Censorship Inhibit Register

— 64-bit Censorship password register

— If the external tool writes a 64-bit password that matches the Serial Boot password stored in the
internal flash shadow row, Censorship is disabled until the next system reset.

1.4.28 Development Trigger Semaphore (DTS)

MPC5644A devices include a system development feature, the Development Trigger Semaphore (DTS)
module, that enables software to signal an external tool by driving a persistent (affected only by reset or
an external tool) signal on an external device pin. There is a variety of ways this module can be used,
including as a component of an external real-time data acquisition system.

Introduction

MPC5644A Microcontroller Reference Manual, Rev. 6

52 Freescale Semiconductor

Memory Map

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 53

Chapter 2
Memory Map

2.1 Introduction

Table 2-1 shows the memory map for the MPC5644A. All addresses on the MPC5644A, including those
that are reserved, are identified in the table. The addresses represent the physical addresses assigned to
each IP block.

2.2 Memory map
Table 2-1. MPC5644A memory map

Start Address End Address Allocated Size Used Size Region Name

0x0000_0000 0x003F_FFFF 4 MB 4 MB FLASH

0x0040_0000 0x00EF_BFFF — — Reserved

0x00EF_C000 0x00EF_FFFF 16 KB 16 KB FLASH shadow Block - FL_A

0x00FF_0000 0x00FF_BFFF — — Reserved

0x00FF_C000 0x00FF_FFFF 16 KB 16 KB FLASH Shadow Block - FL_B

0x0100_0000 0x1FFF_FFFF 507 MB — Emulation Remapping of Flash

0x2000_0000 0x2FFF_FFFF 256 MB — External Bus

0x3000_0000 0x3FFF_FFFF 256 MB — Calibration Bus

0x4000_0000 0x4000_7FFF 32 KB 32 KB SRAM Array, Standby Powered

0x4000_8000 0x4002_FFFF 160 KB 160 KB SRAM Array

0x4003_0000 0xBFFF_FFFF 2 GB – 192 KB — Reserved

Bridge A Peripherals

0xC000_0000 0xC3EF_FFFF 63 MB — Reserved

0xC3F0_0000 0xC3F0_3FFF 16 KB — Reserved

0xC3F0_4000 0xC3F7_FFFF — — Reserved

0xC3F8_0000 0xC3F8_3FFF 16 KB — FMPLL

0xC3F8_4000 0xC3F8_7FFF 16 KB — External Bus Interface (EBI) Configuration

0xC3F8_8000 0xC3F8_BFFF 16 KB — Flash_FL1 Configuration

0xC3F8_C000 0xC3F8_FFFF 16 KB — Flash_FL2 Configuration

0xC3F9_0000 0xC3F9_3FFF 16 KB — SIU

0xC3F9_4000 0xC3F9_BFFF — — Reserved

0xC3F9_C000 0xC3F9_FFFF 16 KB — DTS

0xC3FA_0000 0xC3FA_3FFF 16 KB — eMIOS

0xC3FA_4000 0xC3FB_BFFF — — Reserved

Memory Map

MPC5644A Microcontroller Reference Manual, Rev. 6

54 Freescale Semiconductor

0xC3FB_C000 0xC3FB_FFFF 16 KB — PMC

0xC3FC_0000 0xC3FC_3FFF 16 KB — eTPU Registers

0xC3FC_4000 0xC3FC_6FFF — — Reserved

0xC3FC_7000 0xC3FC_77FF 2 KB — Reaction Module (REACM)

0xC3FC_7800 0xFFE6_7FFF — — Reserved

0xC3FC_8000 0xC3FC_BFFF 16KB 3 KB eTPU Parameter RAM

0xC3FC_C000 0xC3FC_FFFF 16 KB 3 KB eTPU Parameter RAM Mirror

0xC3FD_0000 0xC3FD_37FF 14 KB 14 KB eTPU Code RAM

0xC3FD_3800 0xC3FE_FFFF — — Reserved

0xC3FF_0000 0xC3FF_3FFF 16 KB — PIT/RTI

0xC3FF_4000 0xFFE6_7FFF — — Reserved

0xFFE6_8000 0xFFE6_BFFF 16 KB — Cyclic Redundancy Check Unit (CRC)

0xFFE6_C000 0xFFEF_FFFF — — Reserved

0xFFF0_0000 0xFFF0_3FFF 16 KB — PBRIDGE

0xFFF0_4000 0xFFF0_7FFF 16 KB — Crossbar (XBAR)

0xFFF0_8000 0xFFF0_FFFF 16 KB — Reserved

0xFFF1_0000 0xFFF1_3FFF 16 KB — MPU

0xFFF1_4000 0xFFF3_7FFF 144 KB — Reserved

0xFFF3_8000 0xFFF3_BFFF 16 KB — SWT

0xFFF3_C000 0xFFF3_FFFF 16 KB — STM

0xFFF4_0000 0xFFF4_3FFF 16 KB — ECSM

0xFFF4_4000 0xFFF4_7FFF 16 KB — eDMA

0xFFF4_8000 0xFFF4_BFFF 16 KB — INTC

0xFFF4_C000 0xFFF7_FFFF 208 KB — Reserved

0xFFF8_0000 0xFFF8_3FFF 16 KB — eQADC

0xFFF8_4000 0xFFF8_7FFF 16 KB — Reserved

0xFFF8_8000 0xFFF8_BFFF 16 KB — Decimation Filter A

0xFFF8_C000 0xFFF8_FFFF 16 KB — Decimation Filter B

0xFFF9_0000 0xFFF9_3FFF 16 KB — Reserved

0xFFF9_4000 0xFFF9_7FFF 16 KB — DSPI_B

0xFFF9_8000 0xFFF9_BFFF 16 KB — DSPI_C

0xFFF9_C000 0xFFF9_FFFF 16 KB — DSPI_D

0xFFFA_0000 0xFFFA_FFFF 64 KB — Reserved

Table 2-1. MPC5644A memory map (continued)

Start Address End Address Allocated Size Used Size Region Name

Memory Map

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 55

0xFFFB_0000 0xFFFB_3FFF 16 KB — eSCI_A

0xFFFB_4000 0xFFFB_7FFF 16 KB — eSCI_B

0xFFFB_8000 0xFFFB_BFFF 16 KB — eSCI_C

0xFFFB_C000 0xFFFB_FFFF 16 KB — Reserved

0xFFFC_0000 0xFFFC_3FFF 16 KB — FlexCAN_A

0xFFFC_4000 0xFFFC_7FFF 16 KB — FlexCAN_B

0xFFFC_8000 0xFFFC_BFFF 16 KB — FlexCAN_C

0xFFFC_C000 0xFFFD_FFFF 80 KB — Reserved

0xFFFE_0000 0xFFFE_3FFF 16 KB — FlexRay

0xFFFE_4000 0xFFFE_BFFF 32 KB — Reserved

0xFFFE_C000 0xFFFE_FFFF 16 KB — System Information Module (Temperature
sensor calibration parameters and unique

device ID code)

0xFFFF_0000 0xFFFF_BFFF 48 KB — Reserved

0xFFFF_C000 0xFFFF_FFFF 16 KB 16 KB Boot Assist Module

Table 2-1. MPC5644A memory map (continued)

Start Address End Address Allocated Size Used Size Region Name

Memory Map

MPC5644A Microcontroller Reference Manual, Rev. 6

56 Freescale Semiconductor

Signal Description

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 57

Chapter 3
Signal Description
This chapter describes signals that connect off chip. It includes a table of signal properties and the detailed
descriptions of signals.

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
58

3.1 Signal Properties

Table 1. MPC5644A signal properties

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

GPIO

EMIOS148

GPIO[203]
eMIOS channel
GPIO

P
G

01
00

203 O
I/O

VDDEH7
Slow

— / Up — / Up — — A15

EMIOS158

GPIO[204]
eMIOS channel
GPIO

P
G

01
00

204 O
I/O

VDDEH7
Slow

— / Up —/ Up — — D14

GPIO[206]
ETRIG0

GPIO / eQADC Trigger Input G 00 206 I/O9 VDDEH7
Slow10

— / Up — / Up 143 R4 C14

GPIO[207]
ETRIG1

GPIO / eQADC Trigger Input G 00 207 I/O9 VDDEH7
Slow

— / Up — / Up 144 P5 B14

GPIO[219] GPIO G — 21911 I/O VDDEH7
MultiV12

— / Up — / Up 122 T6 —

Reset / Configuration

RESET External Reset Input P — — I VDDEH6
Slow

I/ Up RESET / Up 97 L16 R22

RSTOUT External Reset Output P 01 230 O VDDEH6
Slow

RSTOUT / Low RSTOUT / High 102 K15 P21

PLLREF
IRQ[4]
ETRIG2
GPIO[208]

FMPLL Mode Selection
External Interrupt Request
eQADC Trigger Input
GPIO

P
A1
A2
G

001
010
100
000

208 I
I
I

I/O

VDDEH6
Slow

PLLREF/ Up — / Up 83 M14 V21

PLLCFG113

IRQ[5]
DSPI_D_SOUT
GPIO[209]

—
External interrupt request
DSPI D data output
GPIO

—
A1
A2
G

—
010
100
000

209 —
I
O

I/O

VDDEH6
Medium

— / Up — / Up — — U20

RSTCFG
GPIO[210]

RSTCFG
GPIO

P
G

01
00

210 I
I/O

VDDEH6
Slow

— / Down — — — P22

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

59

BOOTCFG[0]
IRQ[2]
GPIO[211]

Boot Config. Input
External Interrupt Request
GPIO

P
A1
G

01
10
00

211 I
I

I/O

VDDEH6
Slow

BOOTCFG[0] /
Down

— / Down — — T20

BOOTCFG[1]
IRQ[3]
ETRIG3
GPIO[212]

Boot Config. Input
External Interrupt Request
eQADC Trigger Input
GPIO

P
A1
A2
G

001
010
100
000

212 I
I
I

I/O

VDDEH6
Slow

BOOTCFG[1] /
Down

— / Down 85 M15 U21

WKPCFG
NMI
DSPI_B_SOUT
GPIO[213]

Weak Pull Config. Input
Non-Maskable Interrupt
DSPI D data output
GPIO

P
A1
A2
G

001
010
100
000

213 I
I
O

I/O

VDDEH6
Medium

WKPCFG / Up — / Up 86 L15 AA20

External Bus Interface

CS[0]
ADDR[8]
GPIO[0]

External chip selects
External address bus
GPIO

P
A1
G

01
10
00

0 O
I/O
I/O

VDDE2
Fast

— / Up — / Up — — G1

CS[1]
ADDR9
GPIO[1]

External chip selects
External address bus
GPIO

P
A1
G

01
10
00

1 O
I/O
I/O

VDDE2
Fast

— / Up — / Up — — H1

CS[2]
ADDR10
WE[2]/BE[2]
CAL_WE[2]/BE[2]
GPIO[2]

External chip selects
External address bus
Write/byte enable
Cal. bus write/byte enable
GPIO

P
A1
A2
A3
G

0001
0010
0100
1000
0000

2 O
I/O
O
O

I/O

VDDE2
Fast

— / Up — / Up — — H2

CS[3]
ADDR11
WE[3]/BE[3]
CAL_WE[3]/BE[3]
GPIO[3]

External chip selects
External address bus
Write/byte enable
Cal bus write/byte enable
GPIO

P
A1
A2
A3
G

0001
0010
0100
1000
0000

3 O
I/O
O
O

I/O

VDDE2
Fast

— / Up — / Up — — H4

ADDR12
GPIO[8]

External address bus
GPIO

P
G

01
00

8 I/O
I/O

VDDE3
Fast

— / Up — / Up — — N2

ADDR13
WE[2]
GPIO[9]

External address bus
Write/byte enable
GPIO

P
A2
G

001
100
000

9 I/O
O

I/O

VDDE3
Fast

— / Up — / Up — — N1

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
60

ADDR14
WE[3]
GPIO[10]

External address bus
Write/byte enables
GPIO

P
A2
G

001
100
000

10 I/O
O

I/O

VDDE3
Fast

— / Up — / Up — — P1

ADDR15
GPIO[11]

External address bus
GPIO

P
G

01
00

11 I/O
I/O

VDDE3
Fast

— / Up — / Up — — P2

ADDR16
FR_A_TX
DATA16
GPIO[12]

External address bus
Flexray TX data channel A
External data bus
GPIO

P
A1
A2
G

001
010
100
000

12 I/O
O

I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — P3

ADDR17
FR_A_TX_EN
DATA17
GPIO[13]

External address bus
FlexRay ch. A TX data enable
External data bus
GPIO

P
A1
A2
G

001
010
100
000

13 I/O
O

I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — P4

ADDR18
FR_A_RX
DATA18
GPIO[14]

External address bus
Flexray RX data ch. A
External data bus
GPIO

P
A1
A2
G

001
010
100
000

14 I/O
I

I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — R1

ADDR19
FR_B_TX
DATA19
GPIO[15]

External address bus
Flexray TX data ch. B
External data bus
GPIO

P
A1
A2
G

001
010
100
000

15 I/O
O

I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — R2

ADDR20
FR_B_TX_EN
DATA20
GPIO[16]

External address bus
Flexray TX data enable for ch.
B
External data bus
GPIO

P
A1
A2
G

001
010
100
000

16 I/O
O

I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — R4

ADDR21
FR_B_RX
DATA21
GPIO[17]

External address bus
Flexray RX data channel B
External data bus
GPIO

P
A1
A2
G

001
010
100
000

17 I/O
I

I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — T1

ADDR22
DATA22
GPIO[18]

External address bus
External data bus
GPIO

P
A2
G

001
100
000

18 I/O
I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — T2

ADDR23
DATA23
GPIO[19]

External address bus
External data bus
GPIO

P
A2
G

001
100
000

19 I/O
I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — T3

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

61

ADDR24
DATA24
GPIO[20]

External address bus
External data bus
GPIO

P
A2
G

001
100
000

20 I/O
I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — T4

ADDR25
DATA25
GPIO[21]

External address bus
External data bus
GPIO

P
A2
G

001
100
000

21 I/O
I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — U1

ADDR26
DATA26
GPIO[22]

External address bus
External data bus
GPIO

P
A2
G

001
100
000

22 I/O
I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — U2

ADDR27
DATA27
GPIO[23]

External address bus
External data bus
GPIO

P
A2
G

001
100
000

23 I/O
I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — U3

ADDR28
DATA28
GPIO[24]

External address bus
External data bus
GPIO

P
A2
G

001
100
000

24 I/O
I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — U4

ADDR29
DATA29
GPIO[25]

External address bus
External data bus
GPIO

P
A2
G

001
100
000

25 I/O
I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — V1

ADDR30
ADDR68

DATA30
GPIO[26]

External address bus
External address bus
External data bus
GPIO

P
A1
A2
G

001
010
100
000

26 I/O
O

I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — V3

ADDR31
ADDR78

DATA31
GPIO[27]

External address bus
External address bus
External data bus
GPIO

P
A1
A2
G

001
010
100
000

27 I/O
O

I/O
I/O

VDDE-EH
Medium

— / Up — / Up — — V4

DATA0
ADDR16
GPIO[28]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

28 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — Y5

DATA1
ADDR17
GPIO[29]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

29 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — AA5

DATA2
ADDR18
GPIO[30]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

30 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — AB5

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
62

DATA3
ADDR19
GPIO[31]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

31 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — AB6

DATA4
ADDR20
GPIO[32]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

32 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — AA6

DATA5
ADDR21
GPIO[33]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

33 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — Y6

DATA6
ADDR22
GPIO[34]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

34 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — W6

DATA7
ADDR23
GPIO[35]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

35 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — AB7

DATA8
ADDR24
GPIO[36]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

36 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — AA7

DATA9
ADDR25
GPIO[37]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

37 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — Y7

DATA10
ADDR26
GPIO[38]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

38 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — W7

DATA11
ADDR27
GPIO[39]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

39 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — AB8

DATA12
ADDR28
GPIO[40]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

40 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — AA8

DATA13
ADDR29
GPIO[41]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

41 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — Y8

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

63

DATA14
ADDR30
GPIO[42]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

42 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — W9

DATA15
ADDR31
GPIO[43]

External data bus
External address bus
GPIO

P
A1
G

001
010
000

43 I/O
I/O
I/O

VDDE5
Fast

— / Up — / Up — — Y9

RD_WR
GPIO[62]

External read/write
GPIO

P
G

01
00

62 I/O
I/O

VDDE2
Fast

— / Up — / Up — — J4

BDIP
GPIO[63]

External burst data in progress
GPIO

P
G

01
00

63 O
I/O

VDDE2
Fast

— / Up — / Up — — J3

WE[0]/BE[0]
GPIO[64]

External write/byte enable
GPIO

P
G

01
00

64 O
I/O

VDDE2
Fast

— / Up — / Up — — J2

WE[1]/BE[1]
GPIO[65]

External write/byte enable
GPIO

P
G

01
00

65 O
I/O

VDDE2
Fast

— / Up — / Up — — J1

OE
GPIO[68]

External output enable
GPIO

P
G

01
00

68 O
I/O

VDDE2
Fast

— / Up — / Up — — H3

TS
ALE
GPIO[69]

External transfer start
Address latch enable
GPIO[69]

P
A1
G

001
010
000

69 I/O
O

I/O

VDDE2
Fast

— / Up — / Up — — K3

TA
TS8

GPIO[70]

External transfer acknowledge
External transfer start
GPIO

P
A1
G

001
010
000

70 I/O
O

I/O

VDDE2
Fast

— / Up — / Up — — K2

Calibration Bus

CAL_CS0 Calibration chip select P 01 336 O VDDE12
Fast

— / — — — —

CAL_CS2
CAL_ADDR[10]
CAL_WE[2]/BE[2]

Calibration chip select
Calibration address bus
Calibration write/byte enable

P
A

A2

001
010
100

338 O
I/O
O

VDDE12
Fast

— / — — — —

CAL_CS3
CAL_ADDR[11]
CAL_WE[3]/BE[3]

Calibration chip select
Calibration address bus
Calibration write/byte enable

P
A

A2

001
010
100

339 O
I/O
O

VDDE12
Fast

— / — — — —

CAL_ADDR[12]
CAL_WE[2]/BE[2]

Calibration address bus
Calibration write/byte enable

P
A

01
10

340 I/O
O

VDDE12
Fast

— / — — — —

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
64

CAL_ADDR[13]
CAL_WE[3]/BE[3]

Calibration address bus
Calibration write/byte enable

P
A

01
10

340 I/O
O

VDDE12
Fast

— / — — — —

CAL_ADDR[14]
CAL_DATA[31]

Calibration address bus
Calibration data bus

P
A

01
10

340 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[15]
CAL_ALE

Calibration address bus
Calibration address latch
enable

P
A1

01
10

340 I/O
O

VDDE12
Fast

— / — — — —

CAL_ADDR[16]
CAL_DATA[16]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[17]
CAL_DATA[17]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[18]
CAL_DATA[18]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[19]
CAL_DATA[19]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[20]
CAL_DATA[20]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[21]
CAL_DATA[21]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[22]
CAL_DATA[22]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[23]
CAL_DATA[23]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[24]
CAL_DATA[24]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[25]
CAL_DATA[25]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[26]
CAL_DATA[26]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[27]
CAL_DATA[27]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

65

CAL_ADDR[28]
CAL_DATA[28]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[29]
CAL_DATA[29]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_ADDR[30]
CAL_DATA[30]

Calibration address bus
Calibration data bus

P
A

01
10

345 I/O
I/O

VDDE12
Fast

— / — — — —

CAL_DATA[0] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[1] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[2] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[3] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[4] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[5] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[6] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[7] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[8] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[9] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[10] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[11] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[12] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
66

CAL_DATA[13] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[14] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_DATA[15] Calibration data bus P 01 341 I/O VDDE12
Fast

— / Up — / Up — — —

CAL_RD_WR Calibration read/write enable P 01 342 O VDDE12
Fast

— / — — — —

CAL_WE[0]/BE[0] Calibration write/byte enable P 01 342 O VDDE12
Fast

— / — — — —

CAL_WE[1]/BE[1] Calibration write/byte enable P 01 342 O VDDE12
Fast

— / — — — —

CAL_OE Calibration output enable P 01 342 O VDDE12
Fast

— / — — — —

CAL_TS
CAL_ALE

Calibration transfer start
Address Latch Enable

P
A

01
10

343 O
O

VDDE12
Fast

— / — — — —

CAL_MDO[4] Calibration Nexus Message
Data Out

P 01 — O VDDE12
Fast

— CAL_MDO[4] / — — — —

CAL_MDO[5] Calibration Nexus Message
Data Out

P 01 — O VDDE12
Fast

— CAL_MDO[5] / — — — —

CAL_MDO[6] Calibration Nexus Message
Data Out

P 01 — O VDDE12
Fast

— CAL_MDO[6] / — — — —

CAL_MDO[7] Calibration Nexus Message
Data Out

P 01 — O VDDE12
Fast

— CAL_MDO[7] / — — — —

CAL_MDO[8] Calibration Nexus Message
Data Out

P 01 — O VDDE12
Fast

— CAL_MDO[8] / — — — —

CAL_MDO[9] Calibration Nexus Message
Data Out

P 01 — O VDDE12
Fast

— CAL_MDO[9] / — — — —

CAL_MDO[10] Calibration Nexus Message
Data Out

P 01 — O VDDE12
Fast

— CAL_MDO[10] /
—

— — —

CAL_MDO[11] Calibration Nexus Message
Data Out

P 01 — O VDDE12
Fast

— CAL_MDO[11] /
—

— — —

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

67

NEXUS

EVTI Nexus event in P 01 231 I VDDEH7
MultiV12,14

— / Up EVTI / Up 116 E15 H20

EVTO Nexus event out P 01 227 O VDDEH7
MultiV12,14,

15

— EVTO / — 120 D15 G20

MCKO Nexus message clock out P — 21911 O VRC33
Fast

— MCKO / — 14 F15 F1

MDO016 Nexus message data out P 01 220 O VRC33
Fast

— MDO[0] / — 17 A14 F3

MDO116 Nexus message data out P 01 221 O VRC33
Fast

— MDO[1] / — 18 B14 G2

MDO216 Nexus message data out P 01 222 O VRC33
Fast

— MDO[2] / — 19 A13 G3

MDO316 Nexus message data out P 01 223 O VRC33
Fast

— MDO[3] / — 20 B13 G4

MDO416

ETPUA2_O8

GPIO[75]

Nexus message data out
eTPU A channel (output only)
GPIO[

P
A1
G

01
10
00

75 O
O

I/O

VDDEH7
MultiV12,14

— — / — 126 P10 B19

MDO516

ETPUA4_O8

GPIO[76]

Nexus message data out
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

76 O
O

I/O

VDDEH7
MultiV12,14

— — / — 129 T10 B20

MDO616

ETPUA13_O8

GPIO[77]

Nexus message data out
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

77 O
O

I/O

VDDEH7
MultiV12,14

— — / — 135 T11 C18

MDO716

ETPUA19_O8

GPIO[78]

Nexus message data out
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

78 O
O

I/O

VDDEH7
MultiV12,14

— — / — 136 N11 B18

MDO816

ETPUA21_O8

GPIO[79]

Nexus message data out
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

79 O
O

I/O

VDDEH7
MultiV12,14

— — / — 137 P11 A18

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
68

MDO916

ETPUA25_O8

GPIO[80]

Nexus message data out
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

80 O
O

I/O

VDDEH7
MultiV12,14

— — / — 139 T7 D18

MDO1016

ETPUA27_O8

GPIO[81]

Nexus message data out
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

81 O
O

I/O

VDDEH7
MultiV12,14

— — / — 134 R10 A19

MDO1116

ETPUA29_O8

GPIO[82]

Nexus message data out
eTPU A channel (output only)
GPIO[82]

P
A1
G

01
10
00

82 O
O

I/O

VDDEH7
MultiV12,14

— — / — 124 P9 C19

MSEO[0]16 Nexus message start/end out P 01 224 O VDDEH7
MultiV12,14

— MSEO[0] / — 118 C15 G21

MSEO[1]16 Nexus message start/end out P 01 225 O VDDEH7
MultiV12,14

— MSEO[1] / — 117 E16 G22

RDY Nexus ready output P 01 226 O VDDEH7
MultiV12,14

— — — — G19

JTAG

TCK JTAG test clock input P 01 — I VDDEH7
MultiV12

TCK / Down TCK / Down 128 C16 D21

TDI JTAG test data input P 01 232 I VDDEH7
MultiV12

TDI / Up TDI / Up 130 E14 D22

TDO JTAG test data output P 01 228 O VDDEH7
MultiV12

TDO / Up TDO / Up 123 F14 E21

TMS JTAG test mode select input P 01 — I VDDEH7
MultiV12

TMS / Up TMS / Up 131 D14 E20

JCOMP JTAG TAP controller enable P 01 — I VDDEH7
MultiV12

JCOMP / Down JCOMP / Down 121 F16 F20

FlexCAN

CAN_A_TX
SCI_A_TX
GPIO[83]

FlexCAN A TX
eSCI A TX
GPIO

P
A1
G

01
10
00

83 O
O

I/O

VDDEH6
Slow

— / Up — / Up 81 P12 AB19

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

69

CAN_A_RX
SCI_A_RX
GPIO[84]

FlexCAN A RX
eSCI A RX
GPIO

P
A1
G

01
10
00

84 I
I

I/O

VDDEH6
Slow

— / Up — / Up 82 R12 Y19

CAN_B_TX
DSPI_C_PCS[3]
SCI_C_TX
GPIO[85]

FlexCAN B TX
DSPI C peripheral chip select
eSCI C TX
GPIO

P
A1
A2
G

001
010
100
000

85 O
O
O

I/O

VDDEH6
Slow

— / Up — / Up 88 T12 Y22

CAN_B_RX
DSPI_C_PCS[4]
SCI_C_RX
GPIO[86]

FlexCAN B RX
DSPI C peripheral chip select
eSCI C RX
GPIO

P
A1
A2
G

001
010
100
000

86 I
O
I

I/O

VDDEH6
Slow

— / Up — / Up 89 R13 W21

CAN_C_TX
DSPI_D_PCS[3]
GPIO[87]

FlexCAN C TX
DSPI D peripheral chip select
GPIO

P
A1
G

01
10
00

87 O
O

I/O

VDDEH6
Medium

— / Up — / Up 101 K13 P19

CAN_C_RX
DSPI_D_PCS[4]
GPIO[88]

FlexCAN C RX
DSPI D peripheral chip select
GPIO

P
A1
G

01
10
00

88 I
O

I/O

VDDEH6
Slow

— / Up — / Up 98 L14 V20

eSCI

SCI_A_TX
EMIOS138

GPIO[89]

eSCI A TX
eMIOS channel
GPIO

P
A1
G

01
10
00

89 O
O

I/O

VDDEH6
Medium

— / Up — / Up 100 J14 N20

SCI_A_RX
EMIOS158

GPIO[90]

eSCI A RX
eMIOS channel
GPIO

P
A1
G

01
10
00

90 I
O

I/O

VDDEH6
Medium

— / Up — / Up 99 K14 P20

SCI_B_TX
DSPI_D_PCS[1]
GPIO[91]

eSCI B TX
DSPI D peripheral chip select
GPIO

P
A1
G

01
10
00

91 O
O

I/O

VDDEH6
Medium

— / Up — / Up 87 L13 AB21

SCI_B_RX
DSPI_D_PCS[5]
GPIO[92]

eSCI B RX
DSPI D peripheral chip select
GPIO

P
A1
G

01
10
00

92 I
O

I/O

VDDEH6
Medium

— / Up — / Up 84 M13 AB20

SCI_C_TX
GPIO[244]

eSCI C TX
GPIO

P
G

01
00

244 O
I/O

VDDEH6
Medium

— / Up — / Up — — W19

SCI_C_RX
GPIO[245]

eSCI C RX
GPIO

P
G

01
00

245 I
I/O

VDDEH6
Medium

— / Up — / Up — — V19

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
70

DSPI

DSPI_A_SCK17

DSPI_C_PCS[1]
GPIO[93]

—
DSPI C peripheral chip select
GPIO

—
A1
G

—
10
00

93 —
O

I/O

VDDEH7
Medium

— / Up — / Up — — C17

DSPI_A_SIN17

DSPI_C_PCS[2]
GPIO[94]

—
DSPI C peripheral chip select
GPIO

—
A1
G

—
10
00

94 —
O

I/O

VDDEH7
Medium

— / Up — / Up — — B17

DSPI_A_SOUT17

DSPI_C_PCS[5]
GPIO[95]

—
DSPI C peripheral chip select
GPIO

—
A1
G

—
10
00

95 —
O

I/O

VDDEH7
Medium

— / Up — / Up — — A17

DSPI_A_PCS[0]17

DSPI_D_PCS[2]
GPIO[96]

—
DSPI D peripheral chip select
GPIO

—
A1
G

—
10
00

96 —
O

I/O

VDDEH7
Medium

— / Up — / Up — — D16

DSPI_A_PCS[1]17

DSPI_B_PCS[2]
GPIO[97]

—
DSPI B peripheral chip select
GPIO

—
A1
G

—
10
00

97 —
O

I/O

VDDEH7
Medium

— / Up — / Up — — C16

CS[2]
DSPI_D_SCK
GPIO[98]

—
SPI clock pin for DSPI module
GPIO

—
A1
G

—
10
00

98 —
I/O
I/O

VDDEH7
Medium

— / Up — / Up 141 J15 C15

CS[3]
DSPI_D_SIN
GPIO[99]

—
DSPI D data input
GPIO

—
A1
G

—
10
00

99 —
I

I/O

VDDEH7
Medium

— / Up — / Up 142 H13 B15

DSPI_A_PCS[4]17

DSPI_D_SOUT
GPIO[100]

—
DSPI D data output
GPIO

—
A1
G

—
10
00

100 O
I/O

VDDEH7
Medium

— / Up — / Up — — B16

DSPI_A_PCS[5]17

DSPI_B_PCS[3]
GPIO[101]

—
DSPI B peripheral chip select
GPIO

—
A1
G

—
10
00

101 O
I/O

VDDEH7
Medium

— / Up — / Up — — A16

DSPI_B_SCK
DSPI_C_PCS[1]
GPIO[102]

SPI clock pin for DSPI module
DSPI C peripheral chip select
GPIO

P
A1
G

01
10
00

102 I/O
O

I/O

VDDEH6
Medium

— / Up — / Up 106 J16 K21

DSPI_B_SIN
DSPI_C_PCS[2]
GPIO[103]

DSPI B data input
DSPI C peripheral chip select
GPIO

P
A1
G

01
10
00

103 I
O

I/O

VDDEH6
Medium

— / Up — / Up 112 G15 H22

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

71

DSPI_B_SOUT
DSPI_C_PCS[5]
GPIO[104]

DSPI B data output
DSPI C peripheral chip select
GPIO

P
A1
G

01
10
00

104 O
O

I/O

VDDEH6
Medium

— / Up — / Up 113 G13 J19

DSPI_B_PCS[0]
DSPI_D_PCS[2]
GPIO[105]

DSPI B peripheral chip select
DSPI D peripheral chip select
GPIO

P
A1
G

01
10
00

105 I/O
O

I/O

VDDEH6
Medium

— / Up — / Up 111 G16 J21

DSPI_B_PCS[1]
DSPI_D_PCS[0]
GPIO[106]

DSPI B peripheral chip select
DSPI D peripheral chip select
GPIO

P
A1
G

01
10
00

106 O
I/O
I/O

VDDEH6
Medium

— / Up — / Up 109 H16 J22

DSPI_B_PCS[2]
DSPI_C_SOUT
GPIO[107]

DSPI B peripheral chip select
DSPI C data output
GPIO

P
A1
G

01
10
00

107 O
O

I/O

VDDEH6
Medium

— / Up — / Up 107 H15 K22

DSPI_B_PCS[3]
DSPI_C_SIN
GPIO[108]

DSPI B peripheral chip select
DSPI C data input
GPIO

P
A1
G

01
10
00

108 O
I

I/O

VDDEH6
Medium

— / Up — / Up 114 G14 J20

DSPI_B_PCS[4]
DSPI_C_SCK
GPIO[109]

DSPI B peripheral chip select
SPI clock pin for DSPI module
GPIO

P
A1
G

01
10
00

109 O
I/O
I/O

VDDEH6
Medium

— / Up — / Up 105 H14 K20

DSPI_B_PCS[5]
DSPI_C_PCS[0]
GPIO[110]

DSPI B peripheral chip select
DSPI C peripheral chip select
GPIO

P
A1
G

01
10
00

110 O
I/O
I/O

VDDEH6
Medium

— / Up — / Up 104 J13 L19

eQADC

AN018

DAN0+
Single Ended Analog Input
Positive Terminal Diff. Input

P — — I
I

VDDA
Analog

I / — AN[0] / — 172 B5 C6

AN118

DAN0-
Single Ended Analog Input
Negative Terminal Diff. Input

P — — I
I

VDDA
Analog

I / — AN[1] / — 171 A6 C7

AN218

DAN1+
Single Ended Analog Input
Positive Terminal Diff. Input

P — — I
I

VDDA
Analog

I / — AN[2] / — 170 D6 D7

AN318

DAN1-
Single Ended Analog Input
Negative Terminal Diff. Input

P — — I
I

VDDA
Analog

I / — AN[3] / — 169 C7 D8

AN418

DAN2+
Single Ended Analog Input
Positive Terminal Diff. Input

P — — I
I

VDDA
Analog

I / — AN[4] / — 168 B6 B7

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
72

AN518

DAN2-
Single Ended Analog Input
Negative Terminal Diff. Input

P — — I
I

VDDA
Analog

I / — AN[5] / — 167 A7 B8

AN618

DAN3+
Single Ended Analog Input
Positive Terminal Diff. Input

P — — I
I

VDDA
Analog

I / — AN[6] / — 166 D7 C8

AN718

DAN3-
Single Ended Analog Input
Negative Terminal Diff. Input

P — — I
I

VDDA
Analog

I / — AN[7] / — 165 C8 C9

AN8
ANW

Single-ended Analog Input
Multiplexed Analog Input

P 01 — I VDDA
Analog

I / — AN[8] / — 9 B3 E1

AN9
ANX

Single-ended Analog Input
External Multiplexed Analog
Input

P 01 — I
I

VDDA
Analog

I / — AN[9] / — 5 A2 C2

AN10
ANY

Single-ended Analog Input
Multiplexed Analog Input

P 01 — I VDDA
Analog

I / — AN[10] / — — — D1

AN11
ANZ

Single-ended Analog Input
Multiplexed Analog Input

P 01 — I VDDA
Analog

I / — AN[11] / — 4 A3 C1

AN12 - SDS
MA0
ETPUA19_O8

SDS

Single-ended Analog Input
MUX Address 0
eTPU A channel (output only)
eQADC Serial Data Select

P
A1
A2
G

001
010
100
000

215 I
O
O

I/O

VDDEH719

Medium
I / — AN[12] / — 148 A12 C13

AN13 - SDO
MA1
ETPUA21_O8

SDO

Single-ended Analog Input
MUX Address 1
eTPU A channel (output only)
eQADC Serial Data Out

P
A1
A2
G

001
010
100
000

216 I
O
O
O

VDDEH719

Medium
I / — AN[13] / — 147 B12 B13

AN14 - SDI
MA2
ETPUA27_O8

SDI

Single-ended Analog Input
MUX Address 2
eTPU A channel (output only)
eQADC Serial Data In

P
A1
A2
G

001
010
100
000

217 I
O
O
I

VDDEH719

Medium
I / — AN[14] / — 146 C12 A13

AN15 - FCK
FCK
ETPUA29_O8

Single-ended Analog Input
eQADC Free Running Clock
eTPU A channel (output only)

P
A1
A2

001
010
100

218 I
O
O

VDDEH719

Medium
I / — AN[15] / — 145 C13 A14

AN16 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[16] / — 3 C6 A3

AN17 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[17] / — 2 C4 A4

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

73

AN18 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[18] / — 1 D5 B4

AN19 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[19] / — — — D6

AN20 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[20] / — — — C5

AN21 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[21] / — 173 B4 B6

AN22 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[22] / — 161 B8 D9

AN23 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[23] / — 160 C9 A8

AN24 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[24] / — 159 D8 B9

AN25 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[25] / — 158 B9 A9

AN26 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[26] / — — — D10

AN27 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[27] / — 157 A10 C10

AN28 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[28] / — 156 B10 D11

AN29 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[29] / — — — C11

AN30 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[30] / — 155 D9 B11

AN31 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[31] / — 154 D10 D12

AN32 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[32] / — 153 C10 C12

AN33 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[33] / — 152 C11 B12

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
74

AN34 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[34] / — 151 C5 A12

AN35 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[35] / — 150 D11 D13

AN36 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[36] / — 174 F4 B5

AN37 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[37] / — 175 E3 A5

AN38 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[38] / — — — D3

AN39 Single-ended Analog Input P — — I VDDA
Analog

I / — AN[39] / — 8 D2 D2

VRH Voltage Reference High P — — I VDDA
—

I / — VRH 163 A8 A10

VRL Voltage Reference Low P — — I VDDA
—

I / — VRL 162 A9 A11

REFBYBC Reference Bypass Capacitor
Input

P — — I VDDA
Analog

I / — REFBYPC 164 B7 B10

eTPU2

TCRCLKA
IRQ[7]
GPIO[113]

eTPU A TCR clock
External interrupt request
GPIO

P
A1
G

01
10
00

113 I
I

I/O

VDDEH4
Slow

— / Up — / Up — L4 AB12

ETPUA0
ETPUA12_O8

ETPUA19_O8

GPIO[114]

eTPU A channel
eTPU A channel (output only)
eTPU A channel (output only)
GPIO

P
A1
A2
G

001
010
100
000

114 I/O
O
O

I/O

VDDEH4
Slow

— /
WKPCFG

— /
WKPCFG

61 N3 Y12

ETPUA1
ETPUA13_O8

GPIO[115]

eTPU A channel
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

115 I/O
O

I/O

VDDEH4
Slow

— /
WKPCFG

— /
WKPCFG

60 M3 W12

ETPUA2
ETPUA14_O8

GPIO[116]

eTPU A channel
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

116 I/O
O

I/O

VDDEH4
Slow

— /
WKPCFG

— /
WKPCFG

59 P2 AA11

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

75

ETPUA3
ETPUA15_O8

GPIO[117]

eTPU A channel
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

117 I/O
O

I/O

VDDEH4
Slow

— / WKPCFG GPIO / WKPCFG 58 P1 Y11

ETPUA4
ETPUA16_O8

FR_B_TX
GPIO[118]

eTPU A channel
eTPU A channel (output only)
Flexray TX data channel B
GPIO

P
A1
A3
G

0001
0010
1000
0000

118 I/O
O
O

I/O

VDDEH4
Slow

— /
WKPCFG

— /
WKPCFG

56 N2 W11

ETPUA5
ETPUA17_O8

DSPI_B_SCK_LV
DS-
FR_B_TX_EN
GPIO[119]

eTPU A channel
eTPU A channel (output only)
LVDS negative DSPI clock
Flexray TX data enable for ch.
B
GPIO

P
A1
A2
A3
G

0001
0010
0100
1000
0000

119 I/O
O
O
O

I/O

VDDEH4
Slow +
LVDS

— /
WKPCFG

— /
WKPCFG

54 M4 AB11

ETPUA6
ETPUA18_O8

DSPI_B_SCK_LV
DS+
FR_B_RX
GPIO[120]

eTPU A channel
eTPU A channel (output only)
LVDS positive DSPI clock
Flexray RX data channel B
GPIO

P
A1
A2
A3
G

0001
0010
0100
1000
0000

120 I/O
O
O
I

I/O

VDDEH4
Medium +

LVDS

— /
WKPCFG

— /
WKPCFG

53 L3 AB10

ETPUA7
ETPUA19_O8

DSPI_B_SOUT_L
VDS-
ETPUA6_O8

GPIO[121]

eTPU A channel
eTPU A channel (output only)
LVDS negative DSPI data out
eTPU A channel (output only)
GPIO

P
A1
A2
A3
G

0001
0010
0100
1000
0000

121 I/O
O
O
O

I/O

VDDEH4
Slow +
LVDS

— /
WKPCFG

— /
WKPCFG

52 K3 AA10

ETPUA8
ETPUA20_O8

DSPI_B_SOUT_L
VDS+
GPIO[122]

eTPU A channel
eTPU A channel (output only)
LVDS positive DSPI data out
GPIO

P
A1
A2
G

001
010
100
000

122 I/O
O
O

I/O

VDDEH4
Slow +
LVDS

— /
WKPCFG

— /
WKPCFG

51 N1 Y10

ETPUA9
ETPUA21_O8

RCH1_B
GPIO[123]

eTPU A channel
eTPU A channel (output only)
Reaction channel 1B
GPIO

P
A1
A2
G

001
010
100
000

123 I/O
O
O

I/O

VDDEH4
Slow

— /
WKPCFG

— /
WKPCFG

50 M2 AA9

ETPUA10
ETPUA22_O8

RCH1_C
GPIO[124]

eTPU A channel
eTPU A channel (output only)
Reaction channel 1C
GPIO

P
A1
A2
G

001
010
100
000

124 I/O
O
O

I/O

VDDEH1
Slow

— /
WKPCFG

— /
WKPCFG

49 M1 AA4

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
76

ETPUA11
ETPUA23_O8

RCH4_B
GPIO[125]

eTPU A channel
eTPU A channel (output only)
Reaction channel 4B
GPIO

P
A1
A2
G

001
010
100
000

125 I/O
O
O

I/O

VDDEH1
Slow

— /
WKPCFG

— /
WKPCFG

48 L2 AB4

ETPUA12
DSPI_B_PCS[1]
RCH4_C
GPIO[126]

eTPU A channel
DSPI B peripheral chip select
Reaction channel 4C
GPIO

P
A1
A2
G

001
010
100
000

126 I/O
O
O

I/O

VDDEH1
Medium

— /
WKPCFG

— /
WKPCFG

47 L1 AB3

ETPUA13
DSPI_B_PCS[3]
GPIO[127]

eTPU A channel
DSPI B peripheral chip select
GPIO

P
A1
G

01
10
00

127 I/O
O

I/O

VDDEH1
Medium

— /
WKPCFG

— /
WKPCFG

46 J4 AB2

ETPUA14
DSPI_B_PCS[4]
ETPUA9_O8

RCH0_A
GPIO[128]

eTPU A channel
DSPI B peripheral chip select
eTPU A channel (output only)
Reaction channel 0A
GPIO

P
A1
A2
A3
G

0001
0010
0100
1000
0000

128 I/O
O
O
O

I/O

VDDEH1
Medium

— /
WKPCFG

— /
WKPCFG

42 J3 AA2

ETPUA15
DSPI_B_PCS[5]
RCH1_A
GPIO[129]

eTPU A channel
DSPI B peripheral chip select
Reaction channel 1A
GPIO

P
A1
A2
G

001
010
100
000

129 I/O
O
O

I/O

VDDEH1
Medium

— /
WKPCFG

— /
WKPCFG

40 K2 AA1

ETPUA16
DSPI_D_PCS[1]
RCH2_A
GPIO[130]

eTPU A channel
DSPI D peripheral chip select
Reaction channel 2A
GPIO

P
A1
A2
G

001
010
100
000

130 I/O
O
O

I/O

VDDEH1
Slow

— /
WKPCFG

— /
WKPCFG

39 K1 Y2

ETPUA17
DSPI_D_PCS[2]
RCH3_A
GPIO[131]

eTPU A channel
DSPI D peripheral chip select
Reaction channel 3A
GPIO

P
A1
A2
G

001
010
100
000

131 I/O
O
O

I/O

VDDEH1
Slow

— /
WKPCFG

— /
WKPCFG

38 H3 Y1

ETPUA18
DSPI_D_PCS[3]
RCH4_A
GPIO[132]

eTPU A channel
DSPI D peripheral chip select
Reaction channel 4A
GPIO

P
A1
A2
G

001
010
100
000

132 I/O
O
O

I/O

VDDEH1
Slow

— /
WKPCFG

— /
WKPCFG

37 H4 W3

ETPUA19
DSPI_D_PCS[4]
RCH5_A
GPIO[133]

eTPU A channel
DSPI D peripheral chip select
Reaction channel 5A
GPIO

P
A1
A2
G

001
010
100
000

133 I/O
O
O

I/O

VDDEH1
Slow

— /
WKPCFG

— /
WKPCFG

36 J2 W2

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

77

ETPUA20
IRQ[8]
RCH0_B
FR_A_TX
GPIO[134]

eTPU A channel
External interrupt request
Reaction channel 0B
Flexray TX data channel A
GPIO

P
A1
A2
A3
G

0001
0010
0100
1000
0000

134 I/O
I
O
O

I/O

VDDEH1
Slow

— /
WKPCFG

— /
WKPCFG

35 J1 W1

ETPUA21
IRQ[9]
RCH0_C
FR_A_RX
GPIO[135]

eTPU A channel
External interrupt request
Reaction channel 0C
Flexray RX channel A
GPIO

P
A1
A2
A3
G

0001
0010
0100
1000
0000

135 I/O
I
O
I

I/O

VDDEH1
Slow

— /
WKPCFG

— /
WKPCFG

34 G4 N4

ETPUA22
IRQ[10]
ETPUA17_O8

GPIO[136]

eTPU A channel
External interrupt request
eTPU A channel (output only)
GPIO

P
A1
A2
G

001
010
100
000

136 I/O
I
O

I/O

VDDEH1
Slow

— /
WKPCFG

— /
WKPCFG

32 H2 N3

ETPUA23
IRQ[11]
ETPUA21_O8

FR_A_TX_EN
GPIO[137]

eTPU A channel
External interrupt request
eTPU A channel (output only)
Flexray ch. A TX enable
GPIO

P
A1
A2
A3
G

0001
0010
0100
1000
0000

137 I/O
I
O
O

I/O

VDDEH1
Slow

— /
WKPCFG

— /
WKPCFG

30 H1 M1

ETPUA24
IRQ[12]
DSPI_C_SCK_LV
DS-
GPIO[138]

eTPU A channel
External interrupt request
LVDS negative DSPI clock
GPIO

P
A1
A2
G

001
010
100
000

138 I/O
I
O

I/O

VDDEH1
Slow +
LVDS

— /
WKPCFG

— /
WKPCFG

28 G1 M2

ETPUA25
IRQ[13]
DSPI_C_SCK_LV
DS+
GPIO[139]

eTPU A channel
External interrupt request
LVDS positive DSPI clock
GPIO

P
A1
A2
G

001
010
100
000

139 I/O
I
O

I/O

VDDEH1
Medium +

LVDS

— /
WKPCFG

— /
WKPCFG

27 G3 M3

ETPUA26
IRQ[14]
DSPI_C_SOUT_L
VDS-
GPIO[140]

eTPU A channel
External interrupt request
LVDS negative DSPI data out
GPIO

P
A1
A2
G

001
010
100
000

140 I/O
I
O

I/O

VDDEH1
Slow +
LVDS

— /
WKPCFG

— /
WKPCFG

26 F3 L2

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
78

ETPUA27
IRQ[15]
DSPI_C_SOUT_L
VDS+
DSPI_B_SOUT
GPIO[141]

eTPU A channel
External interrupt request
LVDS positive DSPI data out
DSPI data out
GPIO

P
A1
A2
A3
G

0001
0010
0100
1000
0000

141 I/O
I
O
O

I/O

VDDEH1
Slow +
LVDS

— /
WKPCFG

— /
WKPCFG

25 G2 L1

ETPUA28
DSPI_C_PCS[1]
RCH5_B
GPIO[142]

eTPU A channel
DSPI C peripheral chip select
Reaction channel 5B
GPIO

P
A1
A2
G

001
010
100
000

142 I/O
O
O

I/O

VDDEH1
Medium

— /
WKPCFG

— /
WKPCFG

24 F1 M4

ETPUA29
DSPI_C_PCS[2]
RCH5_C
GPIO[143]

eTPU A channel
DSPI C peripheral chip select
Reaction channel 5C
GPIO

P
A1
A2
G

001
010
100
000

143 I/O
O
O

I/O

VDDEH1
Medium

— /
WKPCFG

— /
WKPCFG

23 F2 L3

ETPUA30
DSPI_C_PCS[3]
ETPUA11_O8

GPIO[144]

eTPU A channel
DSPI C peripheral chip select
eTPU A channel (output only)
GPIO

P
A1
A2
G

001
010
100
000

144 I/O
O
O

I/O

VDDEH1
Medium

— /
WKPCFG

— /
WKPCFG

22 E1 L4

ETPUA31
DSPI_C_PCS[4]
ETPUA13_O8

GPIO[145]

eTPU A channel
DSPI C peripheral chip select
eTPU A channel (output only)
GPIO

P
A1
A2
G

001
010
100
000

145 I/O
O
O

I/O

VDDEH1
Medium

— /
WKPCFG

— /
WKPCFG

21 E2 K1

eMIOS

EMIOS0
ETPUA0_O8

ETPUA25_O8

GPIO[179]

eMIOS channel
eTPU A channel (output only)
eTPU A channel (output only)
GPIO

P
A1
A2
G

001
010
100
000

179 I/O
O
O

I/O

VDDEH4
Slow

— / Up — / Up 63 T4 AA12

EMIOS1
ETPUA1_O8

GPIO[180]

eMIOS channel
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

180 I/O
O

I/O

VDDEH4
Slow

— / Up — / Up 64 T5 W13

EMIOS2
ETPUA2_O8

RCH2_B
GPIO[181]

eMIOS channel
eTPU A channel (output only)
Reaction channel 2B
GPIO

P
A1
A2
G

001
010
100
000

181 I/O
O
O

I/O

VDDEH4
Slow

— / Up — / Up 65 N7 Y13

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

79

EMIOS3
ETPUA3_O8

GPIO[182]

eMIOS channel
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

182 I/O
O

I/O

VDDEH4
Slow

— /
WKPCFG

— /
WKPCFG

66 R6 AA13

EMIOS4
ETPUA4_O8

RCH2_C
GPIO[183]

eMIOS channel
eTPU A channel (output only)
Reaction channel 2C
GPIO

P
A1
A2
G

001
010
100
000

183 I/O
O
O

I/O

VDDEH4
Slow

— /
WKPCFG

— /
WKPCFG

67 R5 AB13

EMIOS5
ETPUA5_O8

GPIO[184]

eMIOS channel
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

184 I/O
O

I/O

VDDEH4
Slow

— /
WKPCFG

— /
WKPCFG

— — Y14

EMIOS6
ETPUA6_O8

GPIO[185]

eMIOS channel
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

185 I/O
O

I/O

VDDEH4
Slow

— / Down — / Down 68 P7 AA14

EMIOS7
ETPUA7_O8

GPIO[186]

eMIOS channel
eTPU A channel (output only)
GPIO

P
A1
G

01
10
00

186 I/O
O

I/O

VDDEH4
Slow

— / Down — / Down 69 — AB14

EMIOS8
ETPUA8_O8

SCI_B_TX
GPIO[187]

eMIOS channel
eTPU A channel (output only)
eSCI B TX
GPIO

P
A1
A2
G

001
010
100
000

187 I/O
O
O

I/O

VDDEH4
Slow

— / Up — / Up 70 P8 W15

EMIOS9
ETPUA9_O8

SCI_B_RX
GPIO[188]

eMIOS channel
eTPU A channel (output only)
eSCI B RX
GPIO

P
A1
A2
G

001
010
100
000

188 I/O
O
I

I/O

VDDEH4
Slow

— / Up — / Up 71 R7 Y15

EMIOS10
DSPI_D_PCS[3]
RCH3_B
GPIO[189]

eMIOS channel
DSPI D peripheral chip select
Reaction channel 3B
GPIO

P
A1
A2
G

001
010
100
000

189 I/O
O
O

I/O

VDDEH4
Medium

— /
WKPCFG

— /
WKPCFG

73 N8 AA15

EMIOS11
DSPI_D_PCS[4]
RCH3_C
GPIO[190]

eMIOS channel
DSPI D peripheral chip select
Reaction channel 3C
GPIO

P
A1
A2
G

001
010
100
000

190 I/O
O
O

I/O

VDDEH4
Medium

— /
WKPCFG

— /
WKPCFG

75 R8 AB15

EMIOS12
DSPI_C_SOUT
ETPUA27_O8

GPIO[191]

eMIOS channel
DSPI C data output
eTPU A channel (output only)
GPIO

P
A1
A2
G

001
010
100
000

191 I/O
O
O

I/O

VDDEH4
Medium

— /
WKPCFG

— /
WKPCFG

76 N10 AB16

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
80

EMIOS13
DSPI_D_SOUT
GPIO[192]

eMIOS channel
DSPI D data output
GPIO

P
A1
G

01
10
00

192 I/O
O

I/O

VDDEH4
Medium

— /
WKPCFG

— /
WKPCFG

77 T8 AA16

EMIOS14
IRQ[0]
ETPUA29_O8

GPIO[193]

eMIOS channel
External interrupt request
eTPU A channel (output only)
GPIO

P
A1
A2
G

001
010
100
000

193 I/O
I
O

I/O

VDDEH4
Slow

— / Down — / Down 78 R9 Y16

EMIOS15
IRQ[1]
GPIO[194]

eMIOS channel
External interrupt request
GPIO

P
A1
G

01
10
00

194 I/O
I

I/O

VDDEH4
Slow

— / Down — / Down 79 T9 W16

EMIOS16
GPIO[195]

eMIOS channel
GPIO

P
G

01
00

195 I/O
I/O

VDDEH4
Slow

— / Up — / Up — — W17

EMIOS17
GPIO[196]

eMIOS channel
GPIO

P
G

01
00

196 I/O
I/O

VDDEH4
Slow

— / Up — / Up — — Y17

EMIOS18
GPIO[197]

eMIOS channel
GPIO

P
G

01
00

197 I/O
I/O

VDDEH4
Slow

— / Up — / Up — — AA17

EMIOS19
GPIO[198]

eMIOS channel
GPIO

P
G

01
00

198 I/O
I/O

VDDEH4
Slow

— /
WKPCFG

— /
WKPCFG

— — AB17

EMIOS20
GPIO[199]

eMIOS channel
GPIO

P
G

01
00

199 I/O
I/O

VDDEH4
Slow

— /
WKPCFG

— /
WKPCFG

— — AB18

EMIOS21
GPIO[200]

eMIOS channel
GPIO

P
G

01
00

200 I/O
I/O

VDDEH4
Slow

— /
WKPCFG

— /
WKPCFG

— — AA18

EMIOS22
GPIO[201]

eMIOS channel
GPIO

P
G

01
00

201 I/O
I/O

VDDEH4
Slow

— / Down — / Down — — Y18

EMIOS23
GPIO[202]

eMIOS channel
GPIO

P
G

01
00

202 I/O
I/O

VDDEH4
Slow

— / Down — / Down 80 R11 W18

Clock Synthesizer

XTAL Crystal oscillator output P 01 — O VDDEH6
Analog

— — 93 P16 V22

EXTAL
EXTCLK

Crystal oscillator input
External clock input

P
A

01
10

— I VDDEH6
Analog

— — 92 N16 U22

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

81

CLKOUT System clock output P 01 229 O VDDE5
Fast

— CLKOUT — — AB9

ENGCLK Engineering clock output P 01 214 O VDDE5
Fast

— ENGCLK — T14 W10

Power / Ground

VDDREG Voltage Regulator Supply — — I 5 V I / — VDDREG 10 K16 F4

VRCCTL Voltage Regulator Control
Output

— — O — O / — VRCCTL 11 N14 F2

VRC3320 Internal regulator output — — O 3.3 V I/O / — VRC33 13 A15,
D1, N6,
N12

B1,
M19, P11

Input for external 3.3 V supply — — 3.3 V

VDDA eQADC high reference voltage — — I 5 V I / — VDDA 6 — —

VSSA eQADC ground/low reference
voltage

— — I — I / — VSSA 7 — —

VDDA021 eQADC high reference voltage — — I 5 V I / — VDDA0 — B11 E3

VSSA022 eQADC ground/low reference
voltage

— — I — I / — VSSA0 — A11 E2

VDDA121 eQADC high reference voltage — — I 5 V I / — VDDA1 — A4 A6

VSSA122 eQADC ground/low reference
voltage

— — I — I / — VSSA1 — A5 A7

VDDPLL FMPLL Supply Voltage — — I 1.2 I / — VDDPLL 91 R16 W22

VSTBY Power Supply for Standby RAM — — I 0.9 V - 6 V I / — VSTBY 12 C1 E4

VDD Core supply for input or
decoupling

— — I 1.2 V I / — VDD 33,
45,
62,
103,
132,
149,
176

B1,
B16,
C2, D3,
E4, N5,
P4,
P13,
R3,
R14,
T2, T15

A2, A20, A21,
B3, C4, C22,
D5, W20, Y4,
Y21, AA3,
AA22

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
82

VDDE12 External supply input for
calibration bus interfaces

— — I 1.8 V - 3.3 V I / — VDDE12 — — —

VDDE223 External supply input for EBI
interfaces

— — I 1.8 V - 3.3 V I / — VDDE224 — — M9, M10

VDDE5 External supply input for
ENGCLK, CLKOUT and EBI
signals DATA[0:15]

— — I 1.8 V - 3.3 V I / — VDDE5 — T13 N11, W5, W8

VDDE-EH External supply for EBI
interfaces

— — I 3.0 V - 5 V I / — VDDE-EH — — R3, V2

VDDEH1A25 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH1A25 31 — —

VDDEH1B25 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH1B25 41 — —

VDDEH1AB25 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH1AB25 — K4 K4

VDDEH426 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH426 — — —

VDDEH4A26 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH4A26 55 — —

VDDEH4B26 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH4B26 74 — —

VDDEH4AB26 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH4AB26 — N9 W14, AA19

VDDEH627 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH627 — — —

VDDEH6A27 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH6A27 95 — —

VDDEH6B27 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH6B27 110 — —

VDDEH6AB27 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH6AB27 — F13 M22, U19

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

S
ig

n
al P

ro
p

erties

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

83

VDDEH7 I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH7 — D12 B22, C21,
D15, D20,
E19, F19,
H19, J14

VDDEH7A I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH7A 125 — —

VDDEH7B I/O Supply Input — — I 3.3 V - 5.0 V I / — VDDEH7B 138 — —

VSS Ground — — I — I / — VSS 15,
29,
43,
57,
72,
90,
94,
96,
108,
115,
127,
133,
140

A1,
A16,
B2,
B15,
C3,
C14,
D4,
D13,
G7, G8,
G9,
G10,
H7, H8,
H9,
H10,
J7, J8,
J9, J10,
K7,
K8, K9,
K10,
M16,
N4,
N13,
P3,
P14,
R2,
R15,
T1, T16

A1, A22, B2,
B21, C3,
C20, D4,
D17, D19,
F21, H21, J9,
J10, J11, J12,
J13, K9, K10,
K11, K12,
K13, K14, L9,
L10, L11,
L12, L13,
L14, L21,
M11, M12,
M13, M14,
N9, N10,
N12, N13,
N14, N21,
P9, P10, P12,
P13, P14,
T19, T21,
T22, W4, Y3,
Y20, AA21,
AB1, AB22

1 For each pin in the table, each line in the Function column is a separate function of the pin. For all I/O pins the selection of primary pin function or
secondary function or GPIO is done in the SIU except where explicitly noted. See the Signal details table for a description of each signal.

Table 1. MPC5644A signal properties (continued)

Name Function1
P
A
G2

PCR
PA

Field
3

PCR4 I/O
Type

Voltage5 /
Pad Type6

Status7 Package pin #

During Reset
After
Reset

176 208 324

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

S
ig

n
al P

ro
p

erties

F
re

escale
 S

em
ico

nductor
84 2 The P/A/G column indicates the position a signal occupies in the muxing order for a pin—Primary, Alternate 1, Alternate 2, Alternate 3, or GPIO.

Signals are selected by setting the PA field value in the appropriate PCR register in the SIU module. The PA field values are as follows: P - 0b0001,
A1 - 0b0010, A2 - 0b0100, A3 - 0b1000, or G - 0b0000. Depending on the register, the PA field size can vary in length. For PA fields having fewer
than four bits, remove the appropriate number of leading zeroes from these values.

3 The Pad Configuration Register (PCR) PA field is used by software to select pin function.
4 Values in the PCR No. column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR

number. For example, PCR[190] refers to the SIU register named SIU_PCR190.
5 The VDDE and VDDEH supply inputs are broken into segments. Each segment of slow I/O pins (VDDEH) may have a separate supply in the 3.3

V to 5.0 V range (-10%/+5%). Each segment of fast I/O (VDDE) may have a separate supply in the 1.8 V to 3.3 V range (+/- 10%).
6 See Table 2 for details on pad types.
7 The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. Terminology is

O - output, I - input, Up - weak pull up enabled, Down - weak pull down enabled, Low - output driven low, High - output driven high. A dash for the
function in this column denotes that both the input and output buffer are turned off. The signal name to the left or right of the slash indicates the
pin is enabled.

8 Output only.
9 When used as ETRIG, this pin must be configured as an input. For GPIO it can be configured either as an input or output.
10 Maximum frequency is 50 kHz.
11 The SIU_PCR219 register is unusual in that it controls pads for two separate device pins: GPIO[219] and MCKO. Section 16.6.15.138, Pad

Configuration Register 219 (SIU_PCR219)”.
12 Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function is selected, otherwise they are high swing.
13 On 176 LQFP and 208 MAPBGA packages, this pin is tied low internally.
14 Nexus multivoltage pads default to 5 V operation until the Nexus module is enabled.
15 EVTO should be clamped to 3.3 V to prevent possible damage to external tools that only support 3.3 V.
16 Do not connect pin directly to a power supply or ground.
17 This signal name is used to support legacy naming.
18 During and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors are

disabled when the system clock propagates through the device.
19 For pins AN12-AN15, if the analog features are used the VDDEH7 input pins should be tied to VDDA because that segment must meet the VDDA

specification to support analog input function.
20 Do not use VRC33 to drive external circuits.
21 VDDA0 and VDDA1 are shorted together internally in BGA packages. In the QFP package the two pads are double bonded on one pin called

VDDA.
22 VSSA0 and VSSA1 are shorted together internally in BGA packages. In the QFP package the two pads are double bonded on one pin called VSSA.
23 VDDE2 and VDDE3 are shorted together in all production packages.
24 VDDE2 and VDDE3 are shorted together in all production packages.
25 VDDEH1A, VDDEH1B, and VDDEH1AB are shorted together in all production packages. The separation of the signal names is present to support

legacy naming, however they should be considered as the same signal in this document.
26 VDDEH4, VDDEH4A, VDDEH4B, and VDDEH4AB are shorted together in all production packages. The separation of the signal names is present

to support legacy naming, however they should be considered as the same signal in this document.
27 VDDEH6, VDDEH6A, VDDEH6B, and VDDEH6AB are shorted together in all production packages. The separation of the signal names is present

to support legacy naming, however they should be considered as the same signal in this document.

Signal Description

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 85

3.2 Signal Details

Table 2. Pad types

Pad Type I/O Voltage Range

Slow 3.0V - 5.5 V

Medium 3.0 V - 5.5 V

Fast 3.0 V - 3.6 V

MultiV1,2

1 Multivoltage pads are automatically configured in low swing mode
when a JTAG or Nexus function is selected, otherwise they are high
swing.

2 VDDEH7 supply cannot be below 4.5 V when in low-swing mode.

3.0 V - 5.5 V (high swing mode)
3.0 V - 3.6 V (low swing mode)

Analog 0.0 - 5.5 V

LVDS —

Table 3-3. Signal details

Signal Module or Function Description

CLKOUT Clock Generation MPC5644A clock output for the external/calibration bus
interface

ENGCLK Clock Generation Clock for external ASIC devices

EXTAL Clock Generation Input pin for an external crystal oscillator or an external clock
source based on the value driven on the PLLREF pin at reset.

PLLREF Clock Generation
Reset/Configuration

PLLREF is used to select whether the oscillator operates in xtal
mode or external reference mode from reset. PLLREF=0 selects
external reference mode. On the 324BGA package, PLLREF is
bonded to the ball used for PLLCFG[0] for compatibility with
MPC55xx devices .

For the 176-pin QFP and 208-ball BGA packages:
0: External reference clock is selected.
1: XTAL oscillator mode is selected

For the 324 ball BGA package:
If RSTCFG is 0:

0: External reference clock is selected.
1: XTAL oscillator mode is selected.

If RSTCFG is 1, XTAL oscillator mode is selected.

XTAL Clock Generation Crystal oscillator input

DSPI_B_SCK_LVDS-
DSPI_B_SCK_LVDS+

DSPI LVDS pair used for DSPI_B TSB mode transmission

Signal Description

MPC5644A Microcontroller Reference Manual, Rev. 6

86 Freescale Semiconductor

DSPI_B_SOUT_LVDS-
DSPI_B_SOUT_LVDS+

DSPI LVDS pair used for DSPI_B TSB mode transmission

DSPI_C_SCK_LVDS-
DSPI_C_SCK_LVDS+

DSPI LVDS pair used for DSPI_C TSB mode transmission

DSPI_C_SOUT_LVDS-
DSPI_C_SOUT_LVDS+

DSPI LVDS pair used for DSPI_C TSB mode transmission

PCS_B[0]
PCS_C[0]
PCS_D[0]

DSPI_B - DSPI_D Peripheral chip select when device is in master mode—slave
select when used in slave mode

PCS_B[1:5]
PCS_C[1:5]
PCS_D[1:5]

DSPI_B - DSPI_D Peripheral chip select when device is in master mode—not used
in slave mode

SCK_B
SCK_C
SCK_D

DSPI_B - DSPI_D DSPI clock—output when device is in master mode; input when
in slave mode

SIN_B
SIN_C
SIN_D

DSPI_B - DSPI_D DSPI data in

SOUT_B
SOUT_C
SOUT_D

DSPI_B - DSPI_D DSPI data out

ADDR[10:31] EBI The ADDR[10:31] signals specify the physical address of the
bus transaction.

The 26 address lines correspond to bits 3-31 of the EBI’s 32-bit
internal address bus.
ADDR[15:31] can be used as Address and Data signals when
configured appropriately for a multiplexed external bus. This
allows 32-bit data operations, or 16-bit data operations without
using DATA[0:15] signals.

ALE EBI The Address Latch Enable (ALE) signal is used to demultiplex
the address from the data bus. It is asserted while the least
significant 16 bits of the address are present in the multiplexed
address/data bus.

BDIP EBI BDIP is asserted to indicate that the master is requesting
another data beat following the current one.

CS[0:3] EBI CSx is asserted by the master to indicate that this transaction is
targeted for a particular memory bank on the Primary external
bus.

DATA[0:31] EBI The DATA[0:31] signals contain the data to be transferred for the
current transaction.

OE EBI OE is used to indicate when an external memory is permitted to
drive back read data. External memories must have their data
output buffers off when OE is negated. OE is only asserted for
chip-select accesses.

Table 3-3. Signal details (continued)

Signal Module or Function Description

Signal Description

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 87

RD_WR EBI RD_WR indicates whether the current transaction is a read
access or a write access.

TA EBI TA is asserted to indicate that the slave has received the data
(and completed the access) for a write cycle, or returned data for
a read cycle. If the transaction is a burst read, TA is asserted for
each one of the transaction beats. For write transactions, TA is
only asserted once at access completion, even if more than one
write data beat is transferred.

TS EBI The Transfer Start signal (TS) is asserted by the MPC5644A to
indicate the start of a transfer.

WE[2:3] EBI Write enables are used to enable program operations to a
particular memory. WE[2:3] are only asserted for write accesses

WE[0:3]/BE[0:3] EBI Write enables are used to enable program operations to a
particular memory. These signals can also be used as byte
enables for read and write operation by setting the WEBS bit in
the appropriate EBI Base Register (EBI_BRn). WE[0:3] are only
asserted for write accesses. BE[0:3] are asserted for both read
and write accesses

eMIOS[0:23] eMIOS eMIOS I/O channels

AN[0:39] eQADC Single-ended analog inputs for analog-to-digital converter

FCK eQADC eQADC free running clock for eQADC SSI.

MA[0:2] eQADC These three control bits are output to enable the selection for an
external Analog Mux for expansion channels.

REFBYPC eQADC Bypass capacitor input

SDI eQADC Serial data in

SDO eQADC Serial data out

SDS eQADC Serial data select

VRH eQADC Voltage reference high input

VRL eQADC Voltage reference low input

SCI_A_RX
SCI_B_RX
SCI_C_RX

eSCI_A - eSCI_C eSCI receive

SCI_A_TX
SCI_B_TX
SCI_C_TX

eSCI_A - eSCI_C eSCI transmit

ETPU_A[0:31] eTPU eTPU I/O channel

RCH0_[A:C]
RCH1_[A:C]
RCH2_[A:C]
RCH3_[A:C]
RCH4_[A:C]
RCH5_[A:C]

eTPU2
Reaction Module

eTPU2 reaction channels. Used to control external actuators,
e.g., solenoid control for direct injection systems and valve
control in automatic transmissions

Table 3-3. Signal details (continued)

Signal Module or Function Description

Signal Description

MPC5644A Microcontroller Reference Manual, Rev. 6

88 Freescale Semiconductor

TCRCLKA eTPU2 Input clock for TCR time base

CAN_A_TX
CAN_B_TX
CAN_C_TX

FlexCan_A -
FlexCAN_C

FlexCAN transmit

CAN_A_RX
CAN_B_RX
CAN_C_RX

FlexCAN_A -
FlexCAN_C

FlexCAN receive

FR_A_RX
FR_B_RX

FlexRay FlexRay receive (Channels A, B)

FR_A_TX_EN
FR_B_TX_EN

FlexRay FlexRay transmit enable (Channels A, B)

FR_A_TX
FR_B_TX

FlexRay Flexray transmit (Channels A, B)

JCOMP JTAG Enables the JTAG TAP controller.

TCK JTAG Clock input for the on-chip test logic.

TDI JTAG Serial test instruction and data input for the on-chip test logic.

TDO JTAG Serial test data output for the on-chip test logic.

TMS JTAG Controls test mode operations for the on-chip test logic.

EVTI Nexus EVTI is an input that is read on the negation of RESET to enable
or disable the Nexus Debug port. After reset, the EVTI pin is
used to initiate program synchronization messages or generate
a breakpoint.

EVTO Nexus Output that provides timing to a development tool for a single
watchpoint or breakpoint occurrence.

MCKO Nexus MCKO is a free running clock output to the development tools
which is used for timing of the MDO and MSEO signals.

MDO[0:11]1 Nexus Trace message output to development tools. This pin also
indicates the status of the crystal oscillator clock following a
power-on reset, when MDO[0] is driven high until the crystal
oscillator clock achieves stability and is then negated.

MSEO[0:1]1 Nexus Output pin—Indicates the start or end of the variable length
message on the MDO pins

RDY Nexus Nexus Ready Output (RDY) is an output that indicates to the
development tools the data is ready to be read from or written to
the Nexus read/write access registers.

Table 3-3. Signal details (continued)

Signal Module or Function Description

Signal Description

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 89

BOOTCFG[0:1] SIU - Configuration Two BOOTCFG signals are implemented in MPC5644A MCUs.

The BAM program uses the BOOTCFG0 bit to determine where
to read the reset configuration word, and whether to initiate a
FlexCAN or eSCI boot.

The BOOTCFG1 pin is sampled during the assertion of the
RSTOUT signal, and the value is used to update the RSR and
the BAM boot mode

See Section 4.7.1, Reset configuration half word (RCHW)” for
details on the RCHW. Table 21-3 in Section 21.5.2, BAM
program operation,” defines the boot modes specified by the
BOOTCFG1 pin.

The following values are for BOOTCFG[0:1}:
00:Boot from internal flash memory
01:FlexCAN/eSCI boot
10:Boot from external memory using EBI
11:Reserved

Note: For the 176-pin QFP and 208-ball BGA packages
BOOTCFG[0] is always 0 since the EBI interface is not
available.

WKPCFG SIU - Configuration The WKPCFG pin is applied at the assertion of the internal reset
signal (assertion of RSTOUT), and is sampled 4 clock cycles
before the negation of the RSTOUT pin.

The value is used to configure whether the eTPU and eMIOS
pins are connected to internal weak pull up or weak pull down
devices after reset. The value latched on the WKPCFG pin at
reset is stored in the Reset Status Register (RSR), and is
updated for all reset sources except the Debug Port Reset and
Software External Reset.

0: Weak pulldown applied to eTPU and eMIOS pins at reset
1: Weak pullup applied to eTPU and eMIOS pins at reset.

ETRIG[2:3] SIU - eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx

GPIO[206] ETRIG0
(Input)

SIU - eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx

GPIO[207] ETRIG1
(Input)

SIU - eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx

IRQ[0:5]
IRQ[7:15]

SIU - External
Interrupts

The IRQ[0:15] pins connect to the SIU IRQ inputs. IMUX Select
Register 1 is used to select the IRQ[0:15] pins as inputs to the
IRQs.

See Section 16.6.19, External IRQ Input Select Register
(SIU_EIISR)” for more detail.

Table 3-3. Signal details (continued)

Signal Module or Function Description

Signal Description

MPC5644A Microcontroller Reference Manual, Rev. 6

90 Freescale Semiconductor

NMI SIU - External
Interrupts

Non-Maskable Interrupt

GPIO[0:3]
GPIO[8:43]
GPIO[62:65]
GPIO[68:70]
GPIO[75:145]
GPIO[179:204]
GPIO[208:213]
GPIO[219]
GPIO[244:245]

SIU - GPIO Configurable general purpose I/O pins. Each GPIO input and
output is separately controlled by an 8-bit input (GPDI) or output
(GPDO) register. Additionally, each GPIO pins is configured
using a dedicated SIU_PCR register.

The GPIO pins are generally multiplexed with other I/O pin
functions.

See the following sections for more information:
 • Section 16.6.15, Pad Configuration Registers (SIU_PCR)”
 • Section 16.6.16, GPIO Pin Data Output Registers

(SIU_GPDO0_3 – SIU_GPDO412_413)”
 • Section 16.6.17, GPIO Pin Data Input Registers

(SIU_GPDI0_3 – SIU_GPDI_232)”

RESET SIU - Reset The RESET pin is an active low input. The RESET pin is
asserted by an external device during a power-on or external
reset. The internal reset signal asserts only if the RESET pin
asserts for 10 clock cycles. Assertion of the RESET pin while the
device is in reset causes the reset cycle to start over.

The RESET pin has a glitch detector which detects spikes
greater than two clock cycles in duration that fall below the
switch point of the input buffer logic of the VDDEH input pins.
The switch point lies between the maximum VIL and minimum
VIH specifications for the VDDEH input pins.

RSTCFG SIU - Reset Used to enable or disable the PLLREF and the BOOTCFG[0:1]
configuration signals.

0: Get configuration information from BOOTCFG[0:1] and
PLLREF
1: Use default configuration of booting from internal flash with
crystal clock source

Note: For the 176-pin QFP and 208-ball BGA packages
RSTCFG is always 0, so PLLREF and BOOTCFG signals
are used.

RSTOUT SIU - Reset The RSTOUT pin is an active low output that uses a push/pull
configuration. The RSTOUT pin is driven to the low state by the
MCU for all internal and external reset sources. There is a delay
between initiation of the reset and the assertion of the RSTOUT
pin. See Section 4.3.2, RSTOUT,” for details.

1 Do not connect pin directly to a power supply or ground.

Table 3-3. Signal details (continued)

Signal Module or Function Description

Signal Description

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 91

Table 3-4. Power/ground segmentation

Power Segment Voltage I/O Pins Powered by Segment

VDDE2 1.8 V - 3.3 V CS0, CS1, CS2, CS3,RD_WR, BDIP, WE0, WE1, OE, TS, TA

VDDE3 1.8 V - 3.3 V ADDR12, ADDR13, ADDR14, ADDR15

VDDE5 1.8 V - 3.3 V DATA0, DATA1, DATA2, DATA3, DATA4, DATA5, DATA6,
DATA7, DATA8, DATA9, DATA10, DATA11, DATA12, DATA13,
DATA14, DATA15, CLKOUT, ENGCLK

VDDE12 1.8 V - 3.3 V CAL_CS0, CAL_CS2, CAL_CS3 CAL_ADDR12,
CAL_ADDR13, CAL_ADDR14, CAL_ADDR15,
CAL_ADDR16, CAL_ADDR17, CAL_ADDR18,
CAL_ADDR19, CAL_ADDR20, CAL_ADDR21,
CAL_ADDR22, CAL_ADDR23, CAL_ADDR24,
CAL_ADDR25, CAL_ADDR26, CAL_ADDR27,
CAL_ADDR28, CAL_ADDR29, CAL_ADDR30, CAL_DATA0,
CAL_DATA1, CAL_DATA2, CAL_DATA3, CAL_DATA4,
CAL_DATA5, CAL_DATA6, CAL_DATA7, CAL_DATA8,
CAL_DATA9, CAL_DATA10, CAL_DATA11, CAL_DATA12,
CAL_DATA13, CAL_DATA14, CAL_DATA15, CAL_RD_WR,
CAL_WE0, CAL_WE1, CAL_OE, CAL_TS

VDDE-EH 3.0 V - 5 V ADDR16, ADDR17, ADDR18, ADDR19, ADDR20, ADDR21,
ADDR22, ADDR23, ADDR24, ADDR25, ADDR26, ADDR27,
ADDR28, ADDR29, ADDR30, ADDR31

VDDEH1 3.3 V - 5.0 V ETPUA10, ETPUA11, ETPUA12, ETPUA13, ETPUA14,
ETPUA15, ETPUA16, ETPUA17, ETPUA18, ETPUA19,
ETPUA20, ETPUA21, ETPUA22, ETPUA23, ETPUA24,
ETPUA25, ETPUA26, ETPUA27, ETPUA28, ETPUA29,
ETPUA30, ETPUA31

VDDEH4 3.3 V - 5.0 V EMIOS0, EMIOS1, EMIOS2, EMIOS3, EMIOS4, EMIOS5,
EMIOS6, EMIOS7, EMIOS8, EMIOS9, EMIOS10, EMIOS11,
EMIOS12, EMIOS13, EMIOS14, EMIOS15, EMIOS16,
EMIOS17, EMIOS18, EMIOS19, EMIOS20, EMIOS21,
EMIOS22, EMIOS23, TCRCLKA, ETPUA0, ETPUA1,
ETPUA2, ETPUA3, ETPUA4, ETPUA5, ETPUA6, ETPUA7,
ETPUA8, ETPUA9, ETPUA0

VDDEH6 3.3 V - 5.0 V RESET, RSTOUT, PLLREF, PLLCFG1, RSTCFG,
BOOTCFG0, BOOTCFG1, WKPCFG, CAN_A_TX,
CAN_A_RX, CAN_B_TX, CAN_B_RX, CAN_C_TX,
CAN_C_RX, SCI_A_TX, SCI_A_RX, SCI_B_TX, SCI_C_RX,
DSPI_B_SCK, DSPI_B_SIN, DSPI_B_SOUT,
DSPI_B_PCS[0], DSPI_B_PCS[1], DSPI_B_PCS[2],
DSPI_B_PCS[3], DSPI_B_PCS[4], DSPI_B_PCS[5],
SCI_B_RX, SCI_C_TX, EXTAL, XTAL

VDDEH7 3.3 V - 5.0 V EMIOS14, EMIOS 15, GPIO98, GPIO99, GPIO203,
GPIO204, GPIO206, GPIO207, GPIO219, EVTI, EVTO,
MDO4, MDO5, MDO6, MDO7, MDO8, MDO9, MDO10,
MDO11, MSEO0, MSEO1, RDY, TCK, TDI, TDO, TMS,
JCOMP, DSPI_A_SCK, DSPI_A_SIN, DSPI_A_SOUT,
DSPI_A_PCS[0], DSPI_A_PCS[1], DSPI_A_PCS[4],
DSPI_A_PCS[5], AN12-SDS, AN13-SDO, AN14-SDI,
AN15-FCK

Signal Description

MPC5644A Microcontroller Reference Manual, Rev. 6

92 Freescale Semiconductor

VDDA 5 V AN0, AN1, AN2, AN3, AN4, AN5, AN6, AN7, AN8, AN9, AN10,
AN11, AN16, AN17, AN18, AN19, AN20, AN21, AN22, AN23,
AN24, AN25, AN26, AN27, AN28, AN29, AN30, AN31, AN32,
AN33, AN34, AN35, AN36, AN37, AN38, AN39, VRH, VRL,
REFBYBC

VRC331 3.3 V MCKO, MDO0, MDO1, MDO2, MDO3

Other Power Segments

VDDREG 5 V —

VRCCTL — —

VDDPLL 1.2 V —

VSTBY 0.95–1.2 V
(unregulated mode)

—

2.0–5.5 V
(regulated mode)

—

VSS — —

1 Do not use VRC33 to drive external circuits.

Table 3-4. Power/ground segmentation

Power Segment Voltage I/O Pins Powered by Segment

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 93

Chapter 4
Resets

NOTE

Throughout this text the phrase “reset configuration pins” is used to refer to
WKPCFG, BOOTCFG, and PLLREF pins.

Not all packages have BOOTCFG[0]. In this case, BOOTCFG[0] is
sampled as 0b0.

4.1 Reset sources

This device supports the following system reset sources:

• Power-on Reset

• External Reset

• Loss of Lock Reset

• Loss of Clock Reset

• Watchdog Timer/Debug Reset

• JTAG Reset

• Software System Reset

• Software External Reset (resets external resources but not the device)

All reset sources are processed by the reset controller, which monitors the reset input sources, and upon
detection of a reset event, resets internal logic and controls the assertion of the RSTOUT pin. The Software
External Reset only causes the RSTOUT pin to be asserted for a number of clock cycles determined by the
PLL mode (refer to Section 4.3.2, RSTOUT), and does not reset the device.

For all reset sources, the BOOTCFG[0:1] and PLLREF signals are used to determine the boot mode and
configuration of the FMPLL, respectively. Table 4-1 shows the options for BOOTCFG[0:1] and Table 4-2
for PLLCFG[0:2]. Refer to Chapter 17, Frequency-modulated phase locked loop (FMPLL), for
information on the FMPLL during reset.

Table 4-1. BOOTCFG options

BOOTCFG[0]
BOOTCFG[1

]
Meaning

0 0 Boot from internal flash memory

0 1 FlexCAN / eSCI boot

1 0 Boot from external memory (no arbitration)1

1 This mode is only available in packages that have an EBI.

1 1 Reserved

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

94 Freescale Semiconductor

The Reset Status Register (SIU_RSR) gives the source, or sources, of the last reset and indicates whether
a glitch has occurred on the RESET pin. The SIU_RSR is updated for all reset sources except JTAG reset.

All reset sources initiate execution of the Boot Assist Module (BAM) program with the exception of the
Software External Reset.

The Reset Configuration Half Word (RCHW) determines the MCU configuration after reset. The RCHW
is stored in internal flash, or a default configuration is used. During reset, the RCHW is read from internal
flash memory. The BOOTCFG[0:1]1 pins are defined in Chapter 16, System Integration Unit (SIU). The
BAM program reads the value of the BOOTCFG[0:1] pins from field SIU_RSR[BOOTCFG], then reads
the RCHW from the specified location, and then uses the RCHW value to determine and execute the
specified boot procedure. Note: the reset controller latches the value on the BOOTCFG input to the SIU
four clock cycles prior to the negation of RSTOUT.

4.2 Reset vector

The reset vector for this device is 0xFFFF_FFFC. This is a fixed location in the BAM. The BAM program
executes after every internal reset. The BAM program determines where to branch after its execution
completes based on the value on the BOOTCFG[0:1] pins. See the BAM chapter’s functional description
for details on the BAM program operation and branch location to application software.

4.3 Reset pins

4.3.1 RESET

The RESET pin is an active low input. The RESET pin must be asserted by an external device during a
power-on or whenever an external reset is required. The internal reset signal asserts only if the RESET pin
asserts for 10 clock cycles. Assertion of the RESET pin while the reset state machine is already processing
a reset causes the reset cycle to start over. The RESET pin has a glitch detector which detects spikes greater
than two clocks in duration that fall below the switch point of the input buffer logic of the VDDEH input
pins. The switch point lies between the maximum VIL and minimum VIH specifications for the VDDEH
input pins. Figure 4-1 and Figure 4-2 show logic flows of the reset state machine on assertion of RESET.

4.3.2 RSTOUT

The RSTOUT pin is an active low output that uses a push/pull configuration. The RSTOUT pin is driven
to the low state by the MCU for all internal and external reset sources.

Depending on the PLL configuration, External Reference or Crystal Mode, the RSTOUT pin is asserted
after a delay defined in Table 4-3, plus four cycles for sampling of the configuration pins.

Table 4-2. PLLREF options

PLLREF Clock mode

0 Normal mode with external reference

1 Normal mode with crystal reference

1. BOOTCFG[0] is not available on all packages.

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 95

The RSTOUT pin can also be asserted by a write to the SER bit of the System Reset Control Register
(SIU_SRCR). Asserting SIU_SRCR[SER], the RSTOUT duration will follow the value specified in
Table 4-3.

4.4 FMPLL lock gating signal

The FMPLL Loss of Lock reset request is connected to both a reset request and a reset gating signal in the
SIU. The FMPLL asserts the Loss of Lock reset request until the PLL has achieved lock.

4.5 Reset source descriptions

For the following reset source descriptions refer to the reset flow diagrams in Figure 4-1 and Figure 4-2.
Figure 4-1 shows the reset flow for assertion of the RESET pin. Figure 4-2 shows the internal processing
of reset for all reset sources.

Table 4-3. Timing for reset sources

Reset source Description
Number of clocks

Crystal reference External reference

POR Power On Reset 2400 16000

ER External Reset (RESET pin) 2900 16500

LLR Loss of Lock Reset 3400 17000

WTR Watchdog Timer (core) or Debug Reset 3900 17500

SWTR System Software Watchdog Reset 4900 18500

LCR Loss of Clock Reset 5400 19000

SSR SIU Software External Reset 5900 19500

SER SIU Software System Reset 6400 20000

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

96 Freescale Semiconductor

Figure 4-1. External reset flow diagram

Asserted?

F

T

RESET

F

T

Asserted?
RESET

Asserted?
RESET

A

Wait 2
Clock Cycles

Set Latch,

Wait 8 Clock

Set RGF Bit

To entry point in
internal reset flow

F

T

Cycles

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 97

Figure 4-2. Internal reset flow diagram

F

T

RSTOUT

Assert

Negated?

Software

Asserted?
External Reset

Update Reset
Status Register

Asserted?

Software
System Reset

F

T

F

T

Clock Cycles

Clock Cycles

F

T

Latch
WKPCFG Pin

Latch PLLREF and
BOOTCFG[0:1]

Reset
Request

RSTOUT

Negate Internal
Resets and

Wait CNT1

Wait 4

Clock Cycles
Wait CNT1

Apply

WKPCFG Pin

RSTOUT

Assert Internal
Resets and

A

Entry point from

Values

Asserted?

Internal
Reset

F

T

Crystal Stable?

external reset flow
and POR

NOTES:

1. The clock count CNT depends on the reset source and type of clock reference. Please refer to Table 4-3.

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

98 Freescale Semiconductor

4.5.1 Power-on reset (POR)

The internal power-on reset signal is asserted when either the supply voltages, nominally 3.3 V or 1.2 V
or the RESET supply (VDDEH6a) fall below defined values. See the device data sheet for the threshold
specifications of these voltages. The output signals from the power-on reset circuits are active low signals.
All power-on reset output signals are combined into one POR signal at the 1.2 V level and input to the reset
controller. Although assertion of the power-on reset signal causes reset, the RESET pin must be asserted
during a power-on reset to guarantee proper operation of the MCU.

The PLLREF pin determines the source of reference clock, either crystal or external, at the negation of
RSTOUT. During the assertion of RSTOUT, the system clock will switch to the input specified by the
PLLREF pin. The value on the PLLREF pin must be kept constant during reset to avoid transients in the
system clock. See Section 17.2.3, Modes of operation, for more details.

The signal on the WKPCFG pin determines whether weak pull up or pull down devices are enabled after
reset on the eTPU and eMIOS pins. The WKPCFG pin is applied on the assertion of the internal reset
signal (assertion of RSTOUT). See Section 4.7.3, Reset weak pull up/down configuration, for more
information.

Once a power-on-reset is triggered, if the clock reference is the crystal (PLLREF = 1), then the clock to
the whole chip, including the reset state machine, is kept frozen until the Clock Quality Monitor detects
that the crystal oscillator has already stabilized. If the clock reference is external (PLLREF = 0) the clock
is released to the system immediately. When the clock is stable and released to the chip, the reset controller
counts a predetermined number of clock cycles (refer to Section 4.3.2, RSTOUT) before negating the
RSTOUT pin. The WKPCFG and BOOTCFG[0:1] pins are sampled four clock cycles before the negation
of RSTOUT, and the associated bits/fields are updated in the SIU_RSR. In addition, SIU_RSR[PORS] and
SIU_RSR[ERS] are set, and all other reset status bits are cleared in the SIU_RSR.

4.5.2 External reset

When the reset controller detects assertion of the RESET pin, the internal reset signal and RSTOUT pin
are asserted. The values on the WKPCFG pin and PLLCFG pins are applied at the assertion of the internal
reset signal (assertion of RSTOUT). Once the RESET pin is negated and the FMPLL Loss of Lock reset
request signal is negated, the reset controller waits for a predetermined number of clock cycles (refer to
Section 4.3.2, RSTOUT). Once the clock count finishes, the reset configuration pins are latched. The reset
controller then waits four clock cycles before negating RSTOUT, and the associated bits/fields are updated
in the SIU_RSR. In addition, SIU_RSR[ERS] is set, and all other reset status bits in the SIU_RSR are
cleared.

4.5.3 Loss of lock

A Loss of Lock Reset occurs when the FMPLL loses lock and the Loss of Lock Reset Enable (LOLRE)
bit in the FMPLL Synthesizer Control Register (SYNCR) is set. The internal reset signal and RSTOUT
pin are asserted. The value on the WKPCFG pin is applied at the assertion of the internal reset signal
(assertion of RSTOUT), as is the PLLREF value. Once the FMPLL Loss of Lock reset request signal is
negated, the reset controller waits for a predetermined number of clock cycles (refer to Section 4.3.2,
RSTOUT). Once the clock count finishes, the WKPCFG and BOOTCFG[0:1] pins are sampled. The reset

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 99

controller then waits four clock cycles before negating RSTOUT, and the associated bits/fields are updated
in the SIU_RSR. In addition, SIU_RSR[LLRS] is set, and all other reset status bits in the SIU_RSR are
cleared. Refer to Section 17.5.3, Lock detection, for more information on loss of lock.

4.5.4 Loss of clock

A Loss of Clock Reset occurs when the Clock Quality Monitor Module (CQM) detects a failure in either
the reference signal or FMPLL output, and the Loss of Clock Reset Enable (LOCRE) bit in the SYNCR is
set. The internal reset signal and RSTOUT pin are asserted. The value on the WKPCFG pin is applied at
the assertion of the internal reset signal (assertion of RSTOUT), as is the PLLREF value. Once the Loss
of Clock reset request signals is negated, the reset controller waits for a predetermined number of clock
cycles (refer to Section 4.3.2, RSTOUT). Once the clock count finishes, the WKPCFG and
BOOTCFG[0:1] pins are sampled. The reset controller then waits four clock cycles before negating
RSTOUT, and the associated bits/fields are updated in the SIU_RSR. In addition, SIU_RSR[LCRS] is set,
and all other reset status bits in the SIU_RSR are cleared. Refer to Section 17.5.3, Lock detection, for more
information on loss of clock.

The CQM module, when enabled, can generate either a system reset or an interrupt signal (refer to
Section 17.5.4, Loss-of-clock detection, for details).

4.5.5 Core watchdog timer/debug reset

There are two watchdog timer resets: A core watchdog and a platform watchdog.

A Core Watchdog Timer Reset occurs when the e200z4 core watchdog timer is enabled (the e200z4 core
watchdog is counting core clocks, which is different than the peripheral/platform clocks), and a time-out
occurs with the Enable Next Watchdog Timer (EWT) and Watchdog Timer Interrupt Status (WIS) bits set
in the Timer Status Register, and with the Watchdog Reset Control (WRC) field in the Timer Control
Register configured for a reset. SIU_RSR[WDRS] is also set when a debug reset command is issued from
a debug tool. To determine whether SIU_RSR[WDRS] was set due to a Watchdog Timer or Debug Reset,
see the WRS field in the e200z4 core Timer Status Register.

The effect of a Watchdog Timer or Debug Reset request is the same for the reset controller. The internal
reset signal and RSTOUT pin are asserted. The value on the WKPCFG pin is applied at the assertion of
the internal reset signal (assertion of RSTOUT), as is the PLLREF value. Once the Watchdog Timer/Debug
reset request is negated and the FMPLL Loss of Lock reset request signal is negated, the reset controller
waits for a predetermined number of clock cycles (refer to Section 4.3.2, RSTOUT). Once the clock count
finishes the reset configuration pins are sampled. The reset controller then waits four clock cycles before
negating RSTOUT, and the associated bits/fields are updated in the SIU_RSR. In addition,
SIU_RSR[WDRS] is set, and all other reset status bits in the SIU_RSR are cleared.

Refer to the e200z4 Power Architecture Core Reference Manual for descriptions of the Timer Status
Register and Timer Control Register, as for more information on the core watchdog timer and debug
operation. Refer to Chapter 20, Software Watchdog Timer (SWT), for more information on the platform
watchdog.

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

100 Freescale Semiconductor

4.5.6 JTAG reset

A system reset occurs when JTAG is enabled and either the EXTEST, CLAMP, or HIGHZ instructions are
executed by the JTAG controller. The internal reset signal is asserted. The state of the RSTOUT pin is
determined by the JTAG instruction. The value on the WKPCFG pin is applied at the assertion of the
internal reset signal, as is the PLLREF value. After the JTAG reset request is negated, the reset controller
waits for a predetermined number of clock cycles (refer to Section 4.3.2, RSTOUT). Once the clock count
finishes the WKPCFG and BOOTCFG[0:1] pins are sampled, and the associated bits/fields are updated in
the SIU_RSR. The reset status bits in the SIU_RSR are unaffected. Refer to Chapter 36, JTAG Controller
(JTAGC), for more information.

4.5.7 Software system reset

A Software System Reset is caused by a write to field SIU_SRCR[SSR]; see Section 16.6.5, System Reset
Control Register (SIU_SRCR). A write of ‘1’ to SIU_SRCR[SSR] causes an internal reset of the MCU.
The internal reset signal and RSTOUT pin are asserted. The value on the WKPCFG pin is applied at the
assertion of the internal reset signal (assertion of RSTOUT), as is the PLLREF value. SIU_SRCR[SSR] is
automatically cleared and the reset controller waits for a predetermined number of clock cycles (refer to
Section 4.3.2, RSTOUT”). Once the clock count finishes the WKPCFG and BOOTCFG[0:1] pins are
sampled. The reset controller then waits four clock cycles before negating RSTOUT, and the associated
bits/fields are updated in the SIU_RSR. In addition, SIU_RSR[SSRS] is set, and all other reset status bits
in the SIU_RSR are cleared.

4.5.8 Software external reset

A write of ‘1’ to field SIU_SRCR[SER] causes the external RSTOUT pin to be asserted for a
predetermined number of clock cycles (refer to Section 4.3.2, RSTOUT”). SIU_SRCR[SER]
automatically clears after the clock counting expires. A Software External Reset does not cause a reset of
the MCU, the BAM program is not executed, the PLLREF, BOOTCFG, and WKPCFG pins are not
sampled. Field SIU_RSR[SERF] is set, but no other status bits are affected. SIU_RSR[SERF] is not
automatically cleared and remains set until cleared by software or another reset besides the Software
External Reset occurs.

For a Software External Reset, the e200z4 core will continue to execute instructions, timers that are
enabled will continue to operate, and interrupt requests will continue to be processed. The application must
ensure that devices connected to RSTOUT are not accessed during a Software External Reset, and it must
determine how to manage MCU resources when using the Software External Reset.

4.6 Reset registers in the SIU

The System Integration Unit (SIU) on this device includes two registers, SIU_RSR and SIU_SRCR, that
affect the reset behavior of this device. See Chapter 16, System Integration Unit (SIU), for descriptions of
these registers.

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 101

4.7 Reset configuration

4.7.1 Reset configuration half word (RCHW)

4.7.1.1 RCHW overview

The Reset Configuration Half Word (RCHW) defines boot options and must be programmed in a choice
of predefined locations in internal flash. The word at the word address boundary after the RCHW must be
programmed with the user application’s starting address. The BAM passes control to the user application
at this starting address.

On every reset except the Software External Reset (SER), in internal or external boot modes, the BAM
attempts to read the RCHW from internal or external memory respectively. The locations for the RCHW
are given in Table 4-4. For internal boot, the predefined locations are searched in the order given in the
table. If a valid RCHW is not found in internal boot mode or in external boot mode, the BAM initiates the
serial boot mode. Note that in serial boot mode, a user defined start address must still be supplied as part
of the download protocol. Refer to the BAM Chapter for complete details.

4.7.1.2 RCHW structure

When booting from the external flash device, the RCHW must reside in the first 16 bits of memory.

Table 4-4. RCHW location

Boot mode Address

External 0x0000_0000

Internal 0x0000_0000
0x0000_4000
0x0001_0000
0x0001_C000
0x0002_0000
0x0003_0000

BOOT_BLOCK_ADDRESS + 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SWT WTE PS0 VLE 0 1 0 1 1 0 1 0

Boot Identifier = 0x5A

Figure 4-3. Reset Configuration Half Word

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

102 Freescale Semiconductor

When enabled by RCHW[SWT, WTE] bits, the watchdog timeout periods are as shown in Table 4-6.

Note the following:

• The SWT clock source is directly from the crystal oscillator. The core WD is clocked by the PLL.

• The core WD timeouts reported here correspond to the PLL settings after reset. Core WD timeouts
will change as soon as the PLL is programmed with different multipliers.

Table 4-5. Reset Configuration Half Word (RCHW) field descriptions

Field Description

0–3 Reserved
These bit values are ignored when the halfword is read. Program to 0 for future compatibility.

SWT Software watchdog timer enable
This bit determines if the software watchdog timer is enabled after passing control to the user
application code.
0 Disable software watchdog timer
1 Enable software watchdog timer after reset. The timeout period is 261,600 system clocks.

WTE MCU core watchdog timer enable
This bit determines if the core software watchdog timer is enabled.after passing control to the user
application code.
0 Disable core software watchdog timer
1 Enable core watchdog timer after reset. The timeout period is 2.5*217 system clocks.

PS0 Port size
Defines the width of the data bus connected to the memory on D_CS0. After system reset, the BAM
changes D_CS0 to a 16-bit port to fetch the RCHW from either 16- or 32-bit external memories. Then
the BAM reconfigures the EBI as a 16- or 32-bit port, depending on this bit.
0 32-bit D_CS0 port size
1 16-bit D_CS0 port size
Note: Used in development bus boot modes only (not available on all packages). Do not clear this

bit if the device only has a 16-bit data bus.

VLE VLE Code Indicator
This bit configures the MMU entries 1–3 coded as Power Architecture embedded category
instructions or as Freescale VLE instructions.
0 User code executes as classic Book E code
1 User code executes as Freescale VLE code

BOOTID Boot identifier
This field serves two functions:
 • Indicates which block in flash memory contains the boot program
 • Indicates if the flash memory is programmed (BOOTID=0x5A) or invalid

Table 4-6. Watchdog timeout periods

Crystal frequency (MHz) Core WD timeout1 (ms) SWT timeout2 (ms)

8 40.1 32.7

12 27.3 21.8

16 20.5 16.35

20 16.4 13.08

40 8.2 6.54

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 103

4.7.2 Reset configuration timing

The timing diagram in Figure 4-4 shows the sampling of the BOOTCFG[0:1], WKPCFG, and PLLREF
pin for a power-on reset. The timing diagram is also valid for internal/external resets assuming that VDD
and VRC33 are within valid operating ranges. The value of the PLLREF pin is latched at the negation of
the RSTOUT pin. The value of the WKPCFG signal is applied at the assertion of the internal reset signal
(assertion of RSTOUT). The values of the WKPCFG and BOOTCFG[0:1] pins are latched four clock
cycles before the negation of the RSTOUT pin and stored in the SIU_RSR.

Figure 4-4. Reset configuration timing

1 327,680 system clocks
2 261,600 system clocks

RSTOUT

RESET

Internal
Reset

VDD

POR

PLL

XTAL Clock Ready

Crystal powering up or acquiring lock

WKPCFG, PLLREF,

User drives
config pins relative
to RSTOUT

PLLREF is

(4 clock cycles)

 CNT1 clock cycles

‘Don’t Care’ and WKPCFG is
treated as ‘1’ during POR assertion.

PLLREF and WKPCFG
are applied, but not latched.

NOTE:
1. The clock count CNT depends on the reset source and type of clock reference. Please refer to Table 4-3.

BOOTCFG[0:1]

Resets

MPC5644A Microcontroller Reference Manual, Rev. 6

104 Freescale Semiconductor

4.7.3 Reset weak pull up/down configuration

The signal on the WKPCFG pin determines whether specified eTPU and eMIOS pins are connected to
weak pull up or weak pull down devices at reset (see the Signal Description chapter for the eTPU and
eMIOS pins that are affected by WKPCFG). For all reset sources except the Software External Reset, the
WKPCFG pin is applied at the assertion of the internal reset signal (assertion of RSTOUT). If the
WKPCFG signal is logic high at this time, pull up devices will be enabled on the eTPU and eMIOS pins.
If the WKPCFG signal is logic low at the assertion of the internal reset signal, pull down devices will be
enabled on those pins. The value on WKPCFG must be held constant during reset to avoid oscillations on
the eTPU and eMIOS pins caused by switching pull up/down states. The final value of WKPCFG is
latched four clock cycles before the negation of RSTOUT. After reset, software may modify the weak pull
up/down selection for all I/O pins through the PCR registers in the SIU.

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 105

Chapter 5
Operating Modes and Clocking

5.1 Overview

This section gives a brief overview of the operating modes of this device.

5.2 Modes of operation

5.2.1 Normal mode

Normal Mode is the functional mode of this device.

5.2.2 Debug mode

Debug Mode provides access to powerful debugging and development features of this device. The debug
and development features are distributed between Nexus blocks in the e200z4 core, eDMA and the eTPU,
and some of the peripheral modules. The Nexus debug and development features are described in
Chapter 37, Nexus Port Controller (NPC).

The peripheral blocks that implement Debug Mode are:

• DSPI B, DSPI C, DSPI D

• FlexCAN A, FlexCAN B, FlexCAN C

• eMIOS

• eQADC

• eTPU (referenced as Halt State in Chapter 24, Enhanced Time Processing Unit (eTPU2))

See the “Modes of Operation” section of the individual module for a description of how the Debug Mode
affects the behavior of the module.

5.2.3 Low power modes

This device can be configured such that the clock to some or all of the modules can be stopped to reduce
the power consumption. A tiered approach towards clock gating is implemented. In the first tier (Module
Disable mode) some modules can be configured to stop the clock to the non-memory mapped registers
within the module. In the second tier (Module Halt mode) the clock to each of the modules, including the
CPU, can be completely stopped.

5.2.3.1 Module disable mode

Module Disable Mode is a low-power mode supported by some of the modules on this device, in which
the clock to the non-memory mapped registers within the module is gated-off. Table 5-2 lists the modules
that support Module Disable Mode. The register and bit in each module that must be written to enter or

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

106 Freescale Semiconductor

exit this mode are also listed. See the “Modes of Operation” section of the individual module for a
description of how the Module Disable Mode affects the behavior of the module.

5.2.3.2 Module halt mode

Module Halt mode is a low power mode in which the clock to all registers within each module can be
completely halted. The control of the clock gating is centralized in the SIU_HLT register, which has one
control bit for each module to be halted. The CPU itself can also be halted.

5.2.3.3 Standby mode

In this mode, the power is removed from all functions except the standby RAM. Standby mode is entered
by removing all power supplies except the one on the VSTBY pin. The device is recovered from the
standby mode when powered again; see Chapter 4, Resets for more information.

5.3 Clock architecture

The following sections detail the MPC5644A clocking architecture.

5.3.1 Overview

This section describes different sources for the system clocks. The MPC5644A clocking architecture
consists of the following:

• On-chip MHz oscillator: Range (4–40 MHz)

• Relaxation oscillator (RCOSC): 16 MHz

• Phase-locked loop (PLL): VCO range (256–512 MHz)

• PLLREF top level pin to control PLL reference

• Clock quality monitor

• System Clock Divider (SYSDIV) used to further reduce the system clock frequency

• Register to control system clock source and programming of PLL parameter

• Clock gating for individual modules controlled by either SIU_HLT register or module’s MDIS
register bit

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 107

5.3.2 Block diagram

Figure 5-1. System clock diagram

Figure 5-2. FMPLL

5.3.3 System clock sources

The on-chip MHz oscillator, PLL and the top level pin are the possible sources of system clock. The system
clock can be generated using any of the following options:

• PLL disabled

— MHz crystal oscillator with crystal as the reference

— MHz crystal oscillator bypassed

• PLL enabled

— MHz crystal oscillator (with crystal as the reference) output used as PLL reference frequency

— MHz crystal oscillator (bypassed) output used as PLL reference frequency

0

1
1

0

XTAL OSC FMPLLXTAL

EXTAL

PLLREF

clkcfg[0]

SYSDIV

/2, /4, /8, /16

bypass_sysdiv

siu_system_div[1:0]

IDF PDODFNDIV Lock

Control & Status Registers

PHI

CLKIN

Clock Quality Monitor
(CQM)

loss of
VCO

loss of
Reference

system
clock

RCOSC

PFD Charge pump
Low Pass Filter

VCO

/NDIV

/IDF
CLKIN

/ODF

FMPLL

PHI

FM
Controller

/6
PHI1

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

108 Freescale Semiconductor

Upon Reset, the system clock source is the oscillator clock with either crystal as reference or bypassed
based on the PLLREF pin value driven during system reset.

Please note the following:

1. RCOSC is never used as a source of system clock.

2. PHI1 output from PLL is never used as a source of system clock. It is used as one of the clock
sources for the FlexRay module.

3. See the FMPLL chapter for details on FMPLL operation.

5.3.3.1 Support for 150 MHz system clock generation

The oscillator and PLL support generation of a 150 MHz system clock while using the 40 MHz crystal
required for FlexRay operation. A possible PLL configuration is shown below:

• Input clock (crystal frequency): 40 MHz

• EPREDIV/IDF divider = /8 (1–15 range supported)

• EMFD/NDIV loop divider = 60 (32–96 supported)

• VCO clock out = 300 MHz (256–512 MHz range supported)

• ERFD/ODF output divider = /2 (/2, /4, /8, /16 supported)

• SYSDIV divider = /1 (/1, /2, /4, /8, /16 supported)

• System clock = 150 MHz

5.3.3.2 Support for 100 MHz system clock generation

The oscillator and PLL support generation of a 100 MHz system clock while using the 40 MHz crystal
required fro FlexRay operation. A possible PLL configuration is shown below:

• Input clock (crystal frequency): 40 MHz

• EPREDIV/IDF divider = /8 (1–15 range supported)

• EMFD/NDIV loop divider = 80 (32–96 supported)

• VCO clock out = 400 MHz (256–512 MHz range supported)

• ERFD/ODF output divider = /4 (/2, /4, /8, /16 supported)

• SYSDIV divider = /1 (/1, /2, /4, /8, /16 supported)

• System clock = 100 MHz

5.3.3.3 Support for FlexRay operation

The MPC5644A MCU supports generation of the clock signals needed for the operation of the FlexRay
module. Two options are supported for the generation of the FlexRay clock:

• If the PLL is used with Frequency Modulation enabled, a 40 MHz crystal or external clock source
must be used to supply the FlexRay clock.

• If the PLL is configured to generate a 120 MHz system clock without Frequency Modulation, then
the FlexRay module can be clocked from the system clock, allowing the use of other crystal
frequencies. In this mode of operation, the VCO frequency would be 480 MHz (256–512 MHz

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 109

VCO range supported) with the /4 output divider to achieve 120 MHz system clock. The VCO/6
(80 MHz) output from PLL(PHI1) would be selected as the clock source for FlexRay by
configuration of the MCF[CLKSEL] control bit on the FlexRay module.

5.3.3.4 Support for CAN interface operation

The FlexCAN modules have two distinct software controlled clock domains. One of the clock domains is
always derived from the system clock. This clock domain includes the message buffer logic.

The source for the second clock domain can be either the system clock or a direct feed from the crystal
oscillator pin. The logic in the second clock domain controls the CAN interface pins. Field
FlexCAN_CR[CLKSRC] selects between the system clock and the on-chip MHz oscillator clock as the
clock source for the second domain. Selecting the oscillator as the clock source ensures very low jitter on
the CAN bus.

Software can gate both clocks by writing to FlexCAN_MCR[MDIS] or by writing to the SIU_HLT
register.

5.3.4 FMPLL modes of operation

Upon reset, the FMPLL operational mode is bypass with PLL running, and the source of the reference
clock, either the crystal oscillator or external clock, is determined by the state of the CLKCFG[] bit of the
FMPLL_ESYNCR1 register. The reset state of this bit comes from an external signal to the module
connected to a package pin called PLLREF. After reset, a different operational mode can be selected by
writing to FMPLL_ESYNCR1[CLKCFG]. The available modes are specified in Table 5-1.

The reset state of the FMPLL is enabled with the pre-divider set such that it inhibits the clock to the PLL
Phase detector, making the VCO run within its free-running frequency range of 25 MHz to 125 MHz,
unconnected from the system clock (since bypass is the default mode at reset). If using crystal reference,

Table 5-1. Clock Mode Selection

CLKCFG[]
(Bypass)

CLKCFG[1]1

(PLL enable)

1 CLKCFG[1] is not writable to zero while CLKCFG[]=1.

CLKCFG[]2

(Clock source)

2 The reset state of this bit is determined by the logical state applied to the PLLREF pin.

Clock mode

0 0 0 Bypass mode with external reference and PLL off

0 0 1 Bypass mode with crystal reference and PLL off

0 1 0 Bypass mode with external reference and PLL running

0 1 1 Bypass mode with crystal reference and PLL running

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Normal mode with external reference

1 1 1 Normal mode with crystal reference

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

110 Freescale Semiconductor

after power-on reset the Clock Quality Monitor (CQM) inhibits the system clock and keep system reset
asserted while the crystal oscillator has not stabilized. The PLLREF pin must be kept stable during the
whole period while system reset is asserted.

5.3.4.1 Bypass mode with crystal reference

In the bypass mode with crystal reference, the FMPLL is completely bypassed and the system clock is
driven from the crystal oscillator. The user must supply a crystal that is within the appropriate frequency
range, the crystal manufacturer recommended external support circuitry, and short signal route from the
MCU to the crystal.

In bypass mode the PLL itself may or may not be running, depending on the state of the CLKCFG[1] bit
of the FMPLL_ESYNCR1 register, but the PLL output is not connected to the system clock. Consequently,
frequency modulation is not available. The pre-divider is also bypassed, but the system clock divider
(SYSDIV) can be used to reduce the system clock frequency. The system clock divider can be programmed
by writing to SIU_ SYSDIV[SYSDIV].

Bypass mode with crystal reference is the default mode at reset if the PLLREF pin is driven high. After
reset, this mode can be entered by programming FMPLL_ESYNCR1[CLKCFG] as shown in Table 5-1.

Figure 5-3. Bypass mode with crystal reference

5.3.4.2 Bypass mode with external reference

The bypass mode with external reference functions the same as bypass mode with crystal reference, except
that the system clock is driven by an external clock generator connected to the EXTAL pin, rather than a
crystal oscillator. The input frequency range is the same and frequency modulation is not available.

Bypass mode with external reference is the default mode at reset if the PLLREF pin is driven low. After
reset, this mode can be entered by programming FMPLL_ESYNCR1[CLKCFG] as shown in Table 5-1.

0

1
0

1

XTAL OSC FMPLL
XTAL

EXTAL

PLLREF

clkcfg[0]

SYSDIV

/2, /4, /8, /16

bypass_sysdiv

siu_system_div[1:0]

IDF PDODFNDIV Lock

Control & Status Registers

PHI

CLKIN

Clock Quality Monitor
(CQM)

loss of
VCO

loss of
Reference

system
clock

RCOSC

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 111

Figure 5-4. Bypass mode with external reference

5.3.4.3 Normal mode with crystal reference

In the normal mode with crystal reference, the FMPLL receives an input clock frequency from the crystal
oscillator and the pre-divider, and multiplies the frequency to create the FMPLL output clock. The user
must supply a crystal that is within the appropriate frequency range, the crystal manufacturer
recommended external support circuitry, and short signal route from the MCU to the crystal.

In normal mode with crystal reference, the FMPLL can generate a frequency-modulated clock or a
non-modulated clock (locked on a single frequency). The modulation rate, modulation depth, output
divider (RFD) and whether the FMPLL is modulating or not can be programmed by writing to the FMPLL
registers. The system clock divider (SYSDIV) can also be used to further reduce the system clock
frequency in addition to the FMPLL output divider. The system clock divider can be programmed by
writing to SIU_SYSDIV[SYSDIV]. See Section 16.6.31, System Clock Register (SIU_SYSDIV) for
details.

NOTE

The PLL output frequency (before the system clock divider) must not
exceed the maximum device operating frequency. Therefore, when
operating at the maximum operating frequency, the only division factor
allowed in the system clock divider is divide-by-1.

0

1
0

1

XTAL OSC FMPLL
XTAL

EXTAL

PLLREF

clkcfg[0]

SYSDIV

/2, /4, /8, /16

bypass_sysdiv

siu_system_div[1:0]

IDF PDODFNDIV Lock

Control & Status Registers

PHI

CLKIN

Clock Quality Monitor
(CQM)

loss of
VCO

loss of
Reference

system
clock

RCOSC

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

112 Freescale Semiconductor

Figure 5-5. Normal Mode with Crystal Reference

5.3.4.4 Normal mode with external reference

The normal mode with external reference functions the same as normal mode with crystal reference,
except that the input clock reference to the FMPLL is driven by an external clock generator connected to
the EXTAL pin, rather than a crystal oscillator. The input frequency range is the same and frequency
modulation is available.

Figure 5-6. Normal Mode with External Reference

5.3.4.5 Software controlled power management

Software controlled power management and clock gating is supported on a peripheral by peripheral basis,
using a three tiered approach. The first tier is a clock gating feature implemented in some of the IP

0

1
0

1

XTAL OSC FMPLL
XTAL

EXTAL

PLLREF

clkcfg[0]

SYSDIV

/2, /4, /8, /16

bypass_sysdiv

siu_system_div[1:0]

IDF PDODFNDIV Lock

Control & Status Registers

PHI

CLKIN

Clock Quality Monitor
(CQM)

loss of
VCO

loss of
Reference

system
clock

RCOSC

0

1
0

1

XTAL OSC FMPLL
XTAL

EXTAL

PLLREF

clkcfg[0]

SYSDIV

/2, /4, /8, /16

bypass_sysdiv

siu_system_div[1:0]

IDF PDODFNDIV Lock

Control & Status Registers

PHI

CLKIN

Clock Quality Monitor
(CQM)

loss of
VCO

loss of
Reference

system
clock

RCOSC

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 113

modules, which allows software to disable the non-memory-mapped portions of the modules by setting the
module disable (MDIS1) bits in the registers within the modules. The second tier is provided by the
SIU_HLT register, which can be used to halt the clock of both memory-mapped and non-memory-mapped
portions of each module. The third tier is provided by the WAIT instruction of the Power Architecture
instruction set, which controls the clock gating of the CPU itself. Figure 5-7 illustrates how the MDIS and
halt bits affect the clocks to the modules.

Figure 5-7. MDIS and halt clock gating

5.3.4.5.1 MDIS clock gating

The MDIS bit disables the clock to some or all of the non-memory-mapped registers of the module. The
memory-mapped portion of the modules are clocked by the system clock when they are accessed.

When the NPC module is disabled by MDIS, the MCKO clock is disabled. Furthermore, the NPC can be
configured to disable the MCKO clock when there are no messages pending.

When the EBI module is disabled by MDIS, the CLKOUT clock is disabled. Furthermore, the EBI
automatically disables the CLKOUT clock when there are no transactions on the external (calibration) bus.

The flash memory array can be disabled by writing to a bit in the flash memory map.

The modules that implement the MDIS function are listed in Table 5-2, along with the registers and bits
that disable each module. The software controlled clocks are enabled when the CPU comes out of reset.

1. For compatibility with legacy devices, the default value of MDIS bit is zero.

MDIS

IP

ipg_stop_ack
ipg_stop

system_clk_enable

SIU

HLT

HLTACK

Memory mapped registers

Non memory mapped
affected by MDIS

system_clk_s

IP Inactive

ips_module_en

system_clk

system_clk

Non memory mapped,
not affected by MDIS

system_clk

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

114 Freescale Semiconductor

5.3.4.5.2 Halt clock gating

Software controlled clock gating can be done via the centralized halt mechanism. The SIU_HLT register
bits corresponding to individual modules are configured to determine which modules are clock gated.

The SIU_HLT register bits are used to drive a stop request signal to the modules. After the module
completes a clean shut down, the module asserts a stop acknowledge handshake signal that is used to gate
the clock to the module (see Figure 5-7). The stop acknowledge signals are also captured in the
SIU_HLTACK read-only register bits.

The halted modules recover when the corresponding SIU_HLT register bit is cleared by software. Once
the bit is cleared, logic will re-enable the clocks to the modules and then negate the stop request signal after
the required timing has been met.

5.3.4.5.3 CPU clock gating

The SIU_HLT register has a bit to halt the clock to the CPU, but in order to prevent accidental CPU halting,
a stop request is only activated if the CPU is in wait state due to the execution of the WAIT instruction.

NOTE

To gate the CPU clock you need to first program the SIU_HLT register bit
assigned for CPU and then execute the CPU WAIT instruction.

Table 5-2. MDIS support1

1 The MDIS bit default reset value is zero.

Block name Register name Bit name

DSPI_B DSPI_B_MCR MDIS

DSPI_C DSPI_C_MCR MDIS

DSPI_D DSPI_D_MCR MDIS

EBI EBI_MCR MDIS

eTPU ETPUECR_1 MDIS

FlexCAN A FLEXCAN_A_MCR MDIS

FlexCAN B FLEXCAN_B_MCR MDIS

FlexCAN C FLEXCAN_C_MCR MDIS

eMIOS EMIOS_MCR MDIS

eSCI_A eSCI_A_SCICR3 MDIS

eSCI_B eSCI_B_SCICR3 MDIS

eSCI_C eSCI_C_SCICR3 MDIS

Decimation Filter DECFILTERMCR MDIS

Red Line Module TBD MDIS

NPC NPC_PCR MCKO_EN, MCKO_GT

Flash Memory Array FLASH_MCR STOP

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 115

The CPU recovers from the halted state when one of the following events happens:

• A valid pending interrupt is detected by the core

• A request to enter debug mode is made by setting the DR bit in the OnCE control register (OCR)

• The processor is in a debug session

• A request to enable the CPU clock input has been made by setting the WKUP bit in the OCR

When one of these events is detected, the CPU asserts an asynchronous output signal that re-enables the
clock to the CPU so that it can exit the stopped state. Typically, the wake-up interrupt request will come
from one of three sources: periodic interval timer (PIT) interrupt, external pin interrupt or CAN wake-up
interrupt.

When the clock to the CPU is gated, the clocks to the platform, the system RAM and the flash memory are
also gated. The platform logic includes the cross-bar, peripheral bridge, DMA and flash memory
controller. Note that the interrupt controller (INTC) and the SIU are not clock gated to allow interrupts to
be used to recover the CPU halt state.

5.3.4.6 Clock dividers

The MCU provides five clock dividers:

• System Clock Divider (SYSDIV)

• External Bus Clock Divider (CLKOUT-DIV)

• Nexus Message Clock Divider (MCKO-DIV)

• Engineering Clock Divider (ENGDIV)

• FlexCAN clock divider (CAN2:1)

5.3.4.6.1 System Clock Divider (SYSDIV)

The system clock divider is placed right at the output of the system clock mux (selection between FMPLL
and the crystal clock) and before the clock is used by any other circuits, including the other clock dividers.
It affects the clock in both normal mode and bypass mode. The system clock divider can be programmed
to divide by 1, 2, 4, 8, or 16 depending on the values of fields BYPASS and SYSCLKDIV in the
SIU_SYSDIV register.

SIU_SYSDIV[BYPASS] determines whether or not the system clock divider is bypassed. The
SIU_SYSDIV[BYPASS] reset value ‘1’ causes the system clock divider to be bypassed and results in a
divide-by-1 reset configuration of the system clock divider. Only if the SIU_SYSDIV[BYPASS] value is
‘0’ can field SIU_SYSDIV[SYSCLKDIV] be programmed to divide by 2, 4, 8, or 16.

5.3.4.6.2 External Bus Clock (CLKOUT)

The external bus clock (CLKOUT) divider can be programmed to divide the system clock by one, two or
four based on the settings of the EBDF field in the SIU external clock control register (SIU_ECCR). The
reset value of SIU_ECCR[EBDF] selects a CLKOUT frequency of one half of the system clock frequency.
The EBI supports gating of the CLKOUT signal when there are no external bus accesses in progress.

Operating Modes and Clocking

MPC5644A Microcontroller Reference Manual, Rev. 6

116 Freescale Semiconductor

The hold time for external bus pins can be changed by writing to SIU_ECCR[EBTS] (external bus tap
select bit).

NOTE

The CLKOUT pin is only available in the 324-pin package.

5.3.4.6.3 Nexus Message Clock (MCKO)

The Nexus message clock (MCKO) divider can be programmed to divide the system clock by two, four or
eight based on the MCKO_DIV field in the port configuration register (PCR) in the Nexus port controller
(NPC). The reset value of NPC_PCR[MCKO_DIV] selects an MCKO clock frequency one half of the
system clock frequency. The MCKO divider is configured by writing to the NPC through the JTAG port.

5.3.4.6.4 Engineering Clock Divider (ENGDIV)

The engineering clock divider (ENGDIV) can be programmed to divide system clock. This clock is mainly
used to clock some ASIC devices integrated on the board. There is no timing relation of this clock with
respect to any other clock in the design.

Refer to Section 16.6.26, External Clock Control Register (SIU_ECCR) for ENGDIV register bit
programming.

5.3.4.6.5 FlexCAN Clock Divider (CAN2:1)

The FlexCAN module has the ability to run from the system clock. It is possible, at the input to the
FlexCAN module, to perform a divide-by-1 or a divide-by-2 division of the system clock.

This FlexCAN system clock divider can be programmed by configuring the FlexCAN2:1 mode bit (field
SIU_SYSDIV[CAN_SRC]). The reset value is to divide-by-1.

The FlexCAN module does not support a divide-by-1 of the system clock above a certain frequency,
defined in the devicedatasheet. When running at maximum system frequency this setting will have to be
adjusted from its default value.

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 117

Chapter 6
Device Performance Optimization

6.1 Introduction

The MPC5644A contains several features that can influence the overall level of performance provided by
the device.

Some of these features may be initialized upon negation of reset either by a software program called the
Boot Assist Module (BAM), by a hardware state machine or by appropriate default register settings.
Although the device exits the reset state into a functional state it does not necessarily have the default
optimum performance settings for any given application.

This chapter provides guidance for users to fully optimize their application to achieve the highest possible
performance from the MPC5644A. It provides a description of the areas that should be focused on when
optimizing an application for performance by describing the features and recommending settings to be
applied. It focuses on hardware configurations although certain aspects of the application software such as
compiler settings and optimizations will be discussed.

6.2 Features

The MPC5644A has the following hardware features that can be configured to impact the overall
performance of the device:

• Branch Prediction

— Branch Target Buffer

— Branch Prediction Control

• Frequency-modulated PLL

• Flash Bus Interface Unit

— Flash access wait state and address pipelining control

— Flash instruction prefetching

— Flash data prefetching

• Crossbar switch

• System Cache

— Instruction Cache

• Memory Management Unit

Further application level features can impact the application performance:

• Hardware Single Precision Floating point

• Signal Processing Extension (SPE-APU)

• Variable Length Encoding (VLE)

• Compiler optimizations

Further factors that impact the overall application performance are the use of the intelligent peripherals:

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

118 Freescale Semiconductor

• Use of DMA rather than CPU to transfer data efficiently

• Use of DMA service requests rather than CPU interrupts to avoid software polling

• Off-loading tasks from the CPU to the eTPU2 or eDMA

• Careful allocation of cache usage for code and data ranges, particularly when using with external
memories.

Different items in this list will have different performance impacts in a real system. Features like the
system cache, the FMPLL and the flash access times tend to provide the most significant performance
impacts in terms of hardware settings.

The subsequent sections in this chapter describe how to configure and use these features.

6.3 Configuring hardware features

6.3.1 Branch target buffer (BTB)

6.3.1.1 Description

To resolve branch instructions and improve the accuracy of branch predictions the e200z4 core implements
a dynamic branch prediction mechanism using a branch target buffer (BTB), a fully associative address
cache of branch target addresses. Its purpose is to accelerate the execution of software loops with some
potential change of flow within the loop body. In addition, the BTB on the e200z4 has a subroutine call
stack that speeds up indirect branches.

6.3.1.2 Recommended configuration

By default, this BTB is disabled following negation of reset. It is controlled by the Branch Unit Control
and Status Register (BUCSR). The BTB’s contents should be flushed and invalidated by writing
BUCSR[BBFI] = 1, and it may be enabled by subsequently writing BUCSR[BPEN] = 1.

Additional control is available in BUCSR[BPRED] and BUCSR[BALLOC] to control whether forward or
backward branches (or both) are candidates for entry into the BTB, and thus for branch prediction. By
default the BUCSR[BPRED] and BUCSR[BALLOC] fields are set to 0b00, which enables forward and
backward branch prediction. It is recommended to not disable branch prediction although for extremely
fine tuning of a given application the optimum setting of BUCSR[BPRED] and BUCSR[BALLOC]
should be assessed.

.

0

B
B

F
I

0

B
A

LL
O

C

0

B
P

R
E

D

B
P

E
N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1013; Read/Write; Reset - 0x0

Figure 6-1. Branch Unit Control and Status Register (BUCSR)

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 119

Further details of the BUCSR can be found in the e200z4 Power Architecture® Core Reference Manual.

6.3.2 Frequency-modulated PLL

6.3.2.1 Description

The frequency-modulated phase-locked loop (FMPLL) allows the user to generate high speed system
clocks from a crystal oscillator or external clock generator. Further, the FMPLL supports programmable
frequency modulation of the system clock. This module is typically configured early in the initialization
code to ensure satisfactory performance levels are achieved.

6.3.2.2 Recommended configuration

The default operating frequency of the MPC5644A device is 2 to 3 times the crystal reference frequency
depending on the state of the PLL configuration pins as reset negates. Typically, the system frequency is
increased shortly after reset negates to provide acceptable performance. Chapter 17, Frequency-modulated
phase locked loop (FMPLL), provides details on how the frequency-modulated phase-locked loop should

Table 6-1. BUCSR field descriptions

Field Description

BBFI Branch target buffer flash invalidate
When set, BBFI flash clears the valid bit of all BTB entries; clearing occurs regardless of the value of
the enable bit (BPEN).
Note: BBFI is always read as 0.

BALLOC Branch Target Buffer Allocation Control
00: Branch Target Buffer allocation for all branches is enabled.
01: Branch Target Buffer allocation is disabled for backward branches.
10: Branch Target Buffer allocation is disabled for forward branches.
11: Branch Target Buffer allocation is disabled for both branch directions.
This field controls BTB allocation for branch acceleration when BPEN = 1. Note that BTB hits are not
affected by the settings of this field. Note that for branches with AA = ‘1’, the MSB of the displacement
field is still used to indicate forward/backward, even though the branch is absolute.

BPRED Branch Prediction Control (Static)
00: Branch predicted taken on BTB miss for all branches.
01: Branch predicted taken on BTB miss only for forward branches.
10: Branch predicted taken on BTB miss only for backward branches.
11: Branch predicted not taken on BTB miss for both branch directions.
This field controls operation of static prediction mechanism on a BTB miss. Unless disabled, fetching
of the predicted target location will be performed for branch acceleration. BPRED operates
independently of BPEN, and with a BPEN setting of 0, will be used to perform static prediction of all
unresolved branches.
Note that BTB hits are not affected by the settings of this field. Note that for certain applications, setting
BPRED to a non-default value may result in improved performance.

BPEN Branch target buffer (BTB) enable
0: BTB prediction disabled. No hits are generated from the BTB and no new entries are allocated.
Entries are not automatically invalidated when BPEN is cleared; BBFI controls entry invalidation.
1: BTB prediction enabled (enables BTB to predict branches).

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

120 Freescale Semiconductor

be initialized in an application. The maximum frequency of operation for this device is specified in the
device data sheet.

System performance cannot be linearly extrapolated with system frequency, as is often the expectation. It
is due to the insertion of additional Flash wait states as system frequency increases that system
performance does not scale linearly. Take care to ensure that the correct internal and/or external Flash
configuration is chosen for the selected system frequency. The specific flash access times to be applied are
detailed in Section 12.3.2.8, Bus Interface Unit Configuration Register (BIUCR).

6.3.3 Flash bus interface unit

6.3.3.1 Description

The Flash Bus Interface Unit (FBIU) interfaces the system bus to the Flash memory array controller. The
FBIU contains prefetch buffers and a prefetch controller which, if enabled, speculatively prefetches
sequential lines of data from the Flash array into the buffer. Prefetch buffer hits allow zero-wait state
responses.

The Flash Bus Interface Configuration Registers (BIUCRx) control access to the internal Flash array. Its
settings define the number of cycles required to access the array, access times, and how the prefetch
buffering scheme operates.

Following negation of reset and execution of the BAM, the instruction and data prefetching is disabled,
and the number of cycles required to access the internal Flash array is set to its maximum value of fifteen
additional wait states.

6.3.3.2 Recommended configuration

As the operating frequency of the device is set by configuring the FMPLL (see Section 6.3.2,
Frequency-modulated PLL), the number of cycles required to access the internal array should be
configured accordingly. Note that the Flash BIUCRx registers cannot be altered by code executing from
the Flash array. Code for configuring the Flash should be executed from a separate memory array i.e copied
to and executed from system RAM.

Section 12.3.2.8, Bus Interface Unit Configuration Register (BIUCR), documents the register fields used
to configure flash wait state settings. The “Platform flash controller electrical characteristics” section of
the device data sheet contains the specific values for the flash wait state settings for a given operating
frequency. This also provides recommendations for the prefetch buffer settings. Note that the BIUCRx
settings may vary between revisions of the MPC5644A.

6.3.4 Crossbar switch

6.3.4.1 Description

The multi-port crossbar switch (XBAR) supports simultaneous connections between master ports and
slave ports. The XBAR allows for concurrent transactions to occur from any master port to any slave port.
If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 121

priority master and grants it ownership of the slave port. All other masters requesting that slave port are
stalled until the higher priority master completes its transactions. By default, requesting masters are
granted access based on a fixed priority. A round-robin priority mode also is available.

The main goal of the XBAR is to increase overall system performance by allowing multiple masters to
communicate concurrently with multiple slaves. In order to maximize data throughput it is essential to
keep arbitration delays to a minimum. The configuration of the crossbar can have implications for the
performance of a system and particular care should be taken when assigning master priorities in a fixed
priority application. Further, by correctly parking saves on relevant masters the initial access times to the
slaves can be minimized by negating any initial arbitration penalties.

6.3.4.2 Recommended configuration

The specific settings for a given situation are application dependent and thus should be assessed by the
user. However, some general guidelines are available.

Optimal XBAR settings are application dependent, but in e200z4/7 (Harvard configuration) based devices
assigning the CPU data bus to have highest priority and parking the slave port associated with system
RAM on this master generally provides the best overall performance.

To reconfigure the XBAR as described on the MPC5644A, write the following registers:

1. XBAR_SGPCR2 = 0x0000_0001. This parks slave 2 (internal SRAM) on master port 1 (CPU data
bus).

2. Write XBAR_MPR0 = 0x5432_0001. This sets slave port 0 (Flash) to give the master port 1 (CPU
data bus) highest priority.

On the e200z4 based devices it may also be beneficial to assign the eDMA to have highest priority for the
Flash slave port depending upon the application.

More details of the XBAR register configuration can be found in Section 9.2, XBAR registers.

6.3.5 Cache

6.3.5.1 Description

The MPC5644A provides an 8 KB Instruction, 2-way or 4-way set-associative, Harvard cache design with
a 32-byte line size. The cache is disabled by default when reset is negated.

The cache improves system performance by providing low-latency instructions to the e200z4 instruction
pipelines, which decouples processor performance from system memory performance. There are several
stages to enabling the cache. Not only does the cache itself have to be invalidated then enabled, but
memory regions upon which it can operate must be configured in the MMU to permit cache access.

6.3.5.2 Recommended configuration

The exact usage of cache is application dependent but some general guidelines for using cache to improve
performance in a typical application are listed below:

• Enable instruction cache for all internal and external memories that code is being executed from.

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

122 Freescale Semiconductor

• Consider locking critical performance routines in cache.

The process of enabling the instruction cache involves first invalidating the cache (by setting
L1CSR1[ICINV]) then when invalidation is completed (L1CSR1[ICINV, ICABT] = 0) enabling the cache
(by setting L1CSR1[ICE]).

The L1CSR1 special purpose register is detailed below.For further details of cache configuration registers,
refer to the e200z4 Power Architecture® Core Reference Manual.

0

IC
E

C
E

IC
E

I

0

IC
E

D
T

0

IC
U

L

IC
L

O

IC
LF

C

IC
LO

A

IC
E

A

IC
O

R
G

IC
A

B
T

IC
IN

V

IC
E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 1011; Read/Write; Reset - 0x0

Figure 6-2. L1 Cache Control and Status Register 1 (L1CSR1)

Table 6-2. L1CSR1 field descriptions

Field Description

ICECE Instruction Cache Error Checking Enable

ICEI Instruction Cache Error Injection Enable

ICEDT Instruction Cache Error Detection Type

ICUL Instruction Cache Unable to Lock

ICLO Instruction Cache Lock Overflow

ICLFC Instruction Cache Lock Bits Flash Clear

ICLOA Instruction Cache Lock Overflow Allocate

ICEA Instruction Cache Error Action

ICORG Cache Organization
0 The cache is organized as 64 sets and 2 ways
1 The cache is organized as 32 sets and 4 ways

ICABT Instruction Cache Operation Aborted
Indicates a Cache Invalidate or a Cache Lock Bits Flash Clear operation was aborted prior to
completion. This bit is set by hardware on an aborted condition, and will remain set until cleared by
software writing 0 to this bit location.

ICINV Instruction Cache Invalidate
0: No cache invalidate
1: Cache invalidation operation
When written to a ‘1’, a cache invalidation operation is initiated by hardware. Once complete, this bit is
reset to ‘0’. Writing a ‘1’ while an invalidation operation is in progress will result in an undefined
operation. Writing a ‘0’ to this bit while an invalidation operation is in progress will be ignored. Cache
invalidation operations require approximately 36 cycles to complete. Invalidation occurs regardless of
the enable (ICE) value.
During cache invalidations, the parity check bits are written with a value dependent on the ICEDT
selection. ICEDT should be written with the desired value for subsequent cache operation when ICINV
is set to ‘1’ for proper operation of the cache.

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 123

Note that configuration of the cache has to be performed in conjunction with configuration of the Memory
Management unit. Refer to section 6.3.6, Memory management unit (MMU).

6.3.6 Memory management unit (MMU)

6.3.6.1 Description

The Memory Management Unit is a 32-bit Power Architecture compliant implementation which provides
functionality that includes address translation and application of access attributes to memory ranges
defined in Translation Lookaside Buffer entries. Although the MMU does not directly impact
performance, it is within the MMU that memory regions are configured to permit the use of system cache
to improve performance and Variable Length Encoding (VLE) to enhance code density. Thus it is essential
that the MMU is correctly configured to ensure optimal application performance is achieved.

6.3.6.1.1 Recommended configuration

The core uses MMU Assist Registers (MASx) which are special purpose registers to facilitate reading,
writing and searching the Translation Lookaside Buffer (TLB) entries. These MAS registers are software
managed by tlbre, tlbwe, tlbsx, tlbsync, and tlbivax instructions. Refer to the core reference manual for
full details of the MMU and its configurations.

There are several MMU Assist Register registers (MAS0–3) that require configuring. Details of these are
provided in the e200z4 Power Architecture® Core Reference Manual. Specifically, the MAS2 register
contains the fields to control whether a specified memory region described by the valid TLB Entry is cache
inhibited or whether VLE encoding is valid.

ICE Instruction Cache Enable
0: Cache is disabled
1: Cache is enabled
When disabled, cache lookups are not performed for instruction accesses.
Other L1CSR0 cache control operations are still available.

EPN 0

V
LE W I M G E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SPR - 626; Read/Write

Figure 6-3. MMU Assist Register 2 (MAS2)

Table 6-3. MAS2 field descriptions

Field Description

EPN Effective page number [0:21]

Table 6-2. L1CSR1 field descriptions (continued)

Field Description

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

124 Freescale Semiconductor

Refer to the e200z4 Power Architecture® Core Reference Manual for further details of MMU
configuration registers.

6.4 Application software

6.4.1 Compiler optimizations

The most significant opportunity for influencing the performance of a given application is by compiler and
linker optimizations. Optimizing is a trade off between code size and performance. Typically higher
performance of the application comes at the expense of larger code size. Compilers use a host of features,
such as loop unrolling, function inlining, and application profile feedback to make the desired trade-offs
between enhanced performance and minimized code size.

The data in Figure 6-4 shows the effects of compiler optimization on a simple application. In this case, the
Dhrystone benchmark was run under three conditions:

• Optimized for small code size

• Optimized for high performance

• A trade-off between code size and performance

Although this is an extreme example, it highlights how significant the role of the compiler and linker is in
determining the overall performance of an application.

VLE VLE
0: This page is a standard BookE page
1: This page is a VLE page

W Write-through required

I Cache inhibited
0: This page is considered cacheable
1: This page is considered cache-inhibited

M Memory coherence required

G Guarded

E Endianness

Table 6-3. MAS2 field descriptions (continued)

Field Description

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 125

Figure 6-4. Influence of compiler settings on application performance and code size

NOTE

Data measured using Dhrystone version 2.1 run on a Power Architecture
based powertrain device that uses a standard commercial compiler.

The compiler optimizations do not necessarily have to be applied to the entire application. Analysis of an
application can identify time critical functions that may subsequently be targeted for performance
optimization, without incurring the impact of optimizing the entire application.

There are several other aspects of the compiler and linker that should be considered. In particular, the use
of Small Data Areas (SDAs, sometimes referred to as Special Data Areas) can make a significant
performance improvement. Refer to compiler documentation for usage guidelines on Small Data Areas.

6.4.2 Signal processing extension

To further optimize time critical functions, the Signal Processing Extension Auxiliary Processing Unit
(SPE-APU) may be used. The SPE-APU provides a set of Single Instruction Multiple Data (SIMD)
instructions. These SIMD instructions typically involve performing the same operation on multiple data
elements stored within a single 64-bit register. Through the implementation of SIMD instructions,
including vector multiply and accumulate (MAC) instructions, the SPE APU provides Digital Signal
Processing (DSP) functionality. This can be used to accelerate signal processing routines, such as Finite
Impulse Response (FIR), Infinite Impulse Response (IIR) and Discrete Fourier Transforms (DFT). A more
general benefit of the SPE instruction set is the ability to load/store 64-bits of data in single instruction.
Thus highly load/store intensive functions make good candidates for SPE optimization.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Performance vs. Code Size

N
or

m
al

iz
e

d
E

xe
cu

tio
n

T
im

e

Normalized Code Size

Size optimized

Trade-off

Speed optimized

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

126 Freescale Semiconductor

6.4.3 Hardware single precision floating point

The SPE-APU also supports 32-bit IEEE®-754 single-precision floating-point formats, and supports
vector and scalar single-precision floating-point operations. Most compiler vendors include libraries that
can emulate floating point functionality. However, by specifying the correct compiler options, the single
precision floating point instructions may be used.

To enable use of hardware floating point the MSR[SPE] field must be set. Refer to Section 6.4.2, Signal
processing extension for register details.

6.4.4 Variable length encoding

In addition to the base Power Architecture instruction set support, the e200z4 core also implements the
VLE (variable-length encoding) APU, providing improved code density. The VLE-APU can be viewed as
a supplement to the existing Power Architecture instruction set that can be conditionally applied to a
portion of, or an entire application for which improved code density is desired.

0

U
C

LE

S
P

E

0 W
E

C
E 0 E
E

P
R

F
P

M
E 0 D
E 0

IS D
S 0 R
I 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Read / Write; Reset - 0x0

Figure 6-5. Machine State Register (MSR)

Table 6-4. MSR field descriptions

Field Description

UCLE User Cache Lock Enable

SPE SPE Available
0: Execution of SPE APU vector instructions is disabled; SPE Unavailable exception taken instead, and
SPE bit is set in ESR.
1: Execution of SPE APU vector instructions is enabled.

WE Wait State (Power management) enable

CE Critical Interrupt Enable

EE External Interrupt Enable

PR Problem State

FP Floating-Point Available

ME Machine Check Enable

DE Debug Interrupt Enable

IS Instruction Address Space

DS Data Address Space

RI Recoverable Interrupt

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 127

Using it is straightforward:

1. Select the appropriate compiler target and option to generate VLE code.

2. Configure the Memory Management Unit (MMU) to specify VLE attributes for the relevant MMU
pages. Refer to the register description in Section 6.3.6, Memory management unit (MMU).

VLE-enabled cores run both Power Architecture and VLE instruction encodings on a page by page basis,
with pages defined by the MMU. The reduction is code size is typically between 25% and 30%.

6.5 Peripherals and general application guidelines

Optimizing the device configuration and compiler setup is only one part of optimizing an entire
application. Correct use of the peripherals can also dramatically improve overall system performance. In
particular, use of the interrupt controller, the enhanced Direct Memory Access (eDMA), and intelligent
peripherals such as the Enhanced Timer Processing unit (eTPU2), can off-load significant work from the
CPU.

For example, eDMA may be used to shift data to avoid unnecessary CPU loading. Most peripheral
modules can generate eDMA requests to trigger data transfers. An example of a typical application is to
use the eDMA to pass conversion commands to the analog to digital converter (ADC) ,while maintaining
circular buffers results of the ADC in the system RAM, with no core intervention.

Section 6.6, Performance optimization checklist provides several system level examples of how to
optimize an application.

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

128 Freescale Semiconductor

6.6 Performance optimization checklist
Table 6-5. Performance optimization checklist—Part 1. Hardware configuration

Description Register(s) Details

Branch Target Buffer Flush with BUCSR[BBFI]
Enable with BUCSR[BPEN]

Flush and enable to improve accuracy of
branch predictions.

Branch Prediction BUCSR[BPRED]
BUCSR[BALLOC]

Consider fine tuning of BTB operation for
specific applications.

System Frequency FMPLL_ESYNCR1
FMPLL_ESYNCR2

Select desired frequency taking into account
the performance impact of additional wait
states.

Flash Wait States BIUCR[APC, WW, RWSC] Refer to Flash chapter Section 12.3.2.8, Bus
Interface Unit Configuration Register (BIUCR),
for BIUCR settings for FMPLL frequency
ranges.

Flash Prefetching BIUCR[DPFEN, IPFEN, PFLIM, BFEN] Enable prefetching for instructions. Prefetching
for data should be assessed for the specific
application.

Flash Prefetch
Algorithm

BIUCR2[LBCFG] Allocate buffers to data and/or instructions.
Fine tune for specific applications.

Crossbar Switch Park slave SRAM on master port with
XBAR_SGPCR2.
Set Flash slave port to highest priority with
XBAR_MPR0.

For e200z7 based devices reconfigure to
optimize for Harvard architecture.

Cache Invalidate Icache with L1CSR1[ICINV]
Enable Icache with L1CSR1[ICE]

Invalidate and the enable the cache for
instructions.

Memory Management
Unit

TLB_MAS2[VLE, I] Configure relevant pages for cache and VLE
by setting MMU TLB attributes.

Table 6-6. Performance optimization checklist—Part 2. Software configuration

Description Registers Details

Compiler optimization — Use the features of the compiler to select the
optimum trade off between code size and
performance improvements.

Hardware Single Precision
Floating Point

Enable with MSR[SPE] Set compiler switches to specify using hardware
single precision floating point as opposed to
software emulation.

Signal Processing Extensions Enable with MSR[SPE] Take advantage of the SPE-APU to encode time
critical functions using SPE assembly code.

Variable Length Encoding Enabled with TLB_MAS2[VLE] Set compiler switches and configure the MMU to
take advantage of the VLE-APU.

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 129

Table 6-7. Performance optimization checklist—Part 3. Peripherals and general application guidelines

Peripherals and general application guidelines

Use eDMA rather than the core to move data where possible. Most peripherals can generate eDMA requests to shift
data.
 • Use eDMA to control movement of commands and results from ADC and to maintain circular buffers in system

memory.
 • Create circular buffers so that ADC results can be stored in RAM with no core overhead.

Shift loading from the CPU to the eTPU2 whenever possible.
 • The eTPU2 can provide effective CPU off-loading for time and angle based operations.
 • The eTPU2 can trigger the ADC directly with no need for CPU interruption.

Avoid software polling and allow peripherals to trigger interrupts or request eDMA servicing.
 • Use hardware instead of software vectored interrupts to reduce latency.
 • Trigger eDMA requests rather than interrupting the CPU to move data/results.

Configure the external memory interface.
 • Enable bursting on the external bus.
 • Reduce external bus wait states from default maximum settings.
 • Place time critical functions in internal memory.
 • Small, but frequently executed routines can be considered as candidates to be locked in cache.

Device Performance Optimization

MPC5644A Microcontroller Reference Manual, Rev. 6

130 Freescale Semiconductor

e200z4 Core

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 131

Chapter 7
e200z4 Core
This chapter contains an overview of the e200z4 processor core integrated in MPC5644A devices. For
detailed information see the publication e200z4 Power Architecture® Core Reference Manual on
www.freescale.com.

NOTE

There are two differences between the processor core in MPC5644A
devices and the e200z4 documented in the core reference manual.
MPC5644A devices feature a e200z448n3 core with 8 KB of instruction
cache (vs. 4 KB) and 24 MMU entries (vs. 16).

7.1 Overview

The microcontroller’s cost-efficient e200z4 host processor core is built on the Power Architecture
technology and designed specifically for embedded applications.

The e200z4 is a dual-issue, 32-bit Power Architecture compliant design with 64-bit general purpose
registers (GPRs). Power Architecture floating-point instructions are not supported by this core in
hardware, but are trapped and may be emulated by software.

An Embedded Floating-point (EFPU) APU is provided to support real-time single-precision embedded
numerics operations using the general-purpose registers.

A Signal Processing Extension (SPE) APU is provided to support real-time SIMD fixed point and
single-precision, embedded numerics operations using the general-purpose registers. All arithmetic
instructions that execute in the core operate on data in the general purpose registers (GPRs). The GPRs
have been extended to 64-bits in order to support vector instructions defined by the SPE APU. These
instructions operate on a vector pair of 16-bit or 32-bit data types, and deliver vector and scalar results.

In addition to the base Power Architecture instruction set support, the e200z4 core also implements the
VLE (variable-length encoding) technology, providing improved code density.

The e200z4 processor integrates a pair of integer execution units, a branch control unit, instruction fetch
unit and load/store unit, and a multi-ported register file capable of sustaining six read and three write
operations per clock. Most integer instructions execute in a single clock cycle. Branch target prefetching
is performed by the branch unit to allow single-cycle branches in many cases.

The e200z4 contains an 8 KB Instruction Cache as well as a Memory Management Unit. A Nexus Class 3
module is also integrated.

7.2 Features

Features of the e200z4 core include:

• Dual issue, 32-bit Power Architecture compliant CPU

• Implements the VLE APU for reduced code footprint

• In-order execution and retirement

e200z4 Core

MPC5644A Microcontroller Reference Manual, Rev. 6

132 Freescale Semiconductor

• Precise exception handling

• Branch processing unit

— Dedicated branch address calculation adder

— Branch target prefetching using 8-entry BTB

• Supports independent instruction and data accesses to different memory subsystems, such as
SRAM and Flash memory via independent Instruction and Data BIUs

• Load/store unit

— 2 cycle load latency

— Fully pipelined

— Big and Little endian support

— Misaligned access support

• 64-bit General Purpose Register file

• 64-bit Instruction bus, 64-bit Data bus

• Memory Management Unit (MMU) with 24-entry fully-associative TLB and multiple page size
support

• 8 KB, 2-way or 4-way Set Associative Instruction Cache

• Signal Processing Extension (SPE1.1) APU supporting SIMD fixed-point operations using the
64-bit General Purpose Register file.

• Embedded Floating-Point (EFP2) APU supporting scalar and vector SIMD single-precision
floating-point operations, using the 64-bit General Purpose Register file.

• Nexus Class 3 real-time Development Unit

• Power management

— Power saving mode: WAIT

• Process ID manipulation for the MMU using an external tool

7.3 Microarchitecture summary

The e200z4 utilizes a five-stage pipeline for instruction execution.

These stages are:

• Instruction Fetch (stage 1)

• Instruction Decode/Register file Read/Effective Address Calculation (stage 2)

• Execute 0/Memory Access 0 (stage 3)

• Execute 1/Memory Access 1 (stage 4)

• Register Writeback (stage 5)

The stages operate in an overlapped fashion, allowing single clock instruction execution for most
instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-bit Barrel
shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation Unit (CRU), a

e200z4 Core

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 133

Count-Leading-Zeros unit (CLZ), a 32x32 Hardware Multiplier array, and result feed-forward hardware.
Integer EU1 also supports hardware division.

Most arithmetic and logical operations are executed in a single cycle with the exception of multiply, which
is implemented with a 2-cycle pipelined hardware array, and the divide instructions. A
Count-Leading-Zeros unit operates in a single clock cycle.

The Instruction Unit contains a PC incrementer and dedicated Branch Address adders to minimize delays
during change of flow operations. Sequential prefetching is performed to ensure a supply of instructions
into the execution pipeline. Branch target prefetching using the BTB is performed to accelerate taken
branches. Prefetched instructions are placed into an 8-entry instruction buffer, with each entry capable of
holding a single 32-bit instruction or a pair of 16-bit instructions.

Branch target addresses are calculated in parallel with branch instruction decode. Conditional branches,
which are not taken execute in a single clock. Branches with successful BTB target prefetching have an
effective execution time of one clock if correctly predicted.

Memory load and store operations are provided for byte, halfword, word (32-bit), and doubleword data
with automatic zero or sign extension of byte and halfword load data as well as optional byte reversal of
data. These instructions can be pipelined to allow effective single cycle throughput. Load and store
multiple word instructions allow low overhead context save and restore operations. The load/store unit
contains a dedicated effective address adder to allow effective address generation to be optimized. There
is a single load-to-use bubble for load instructions.

The Condition Register unit supports the condition register (CR) and condition register operations defined
by the Power Architecture technology. The condition register consists of eight 4-bit fields that reflect the
results of certain operations, such as move, integer and floating-point compare, arithmetic, and logical
instructions, and provides a mechanism for testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support is provided to
allow multiple interrupt sources to have unique interrupt handlers invoked with no software overhead.

The SPE APU supports vector instructions operating on 16 and 32-bit fixed-point data types, as well as
32-bit IEEE-754 single-precision floating-point formats, and supports single-precision floating-point
operations in a pipelined fashion. The 64-bit general purpose register file is used for source and destination
operands, and there is a unified storage model for single-precision floating-point data types of 32-bits and
the normal integer type. Low latency fixed-point and floating-point add, subtract, multiply, multiply-add,
multiply-sub, divide, compare, and conversion operations are provided, and most operations can be
pipelined.

e200z4 Core

MPC5644A Microcontroller Reference Manual, Rev. 6

134 Freescale Semiconductor

Figure 7-1. e200z4 block diagram

7.3.1 Instruction unit features

The features of e200z4 instruction unit are:

• 64-bit path to cache supports fetching of two 32-bit instruction per clock

• Instruction buffer holds up to eight 32-bit instructions

• Dedicated PC incrementer supporting instruction prefetches

• Branch unit with dedicated branch address adder, and branch lookahead logic (BTB) supporting
single cycle execution of successfully predicted branches

CPU

CONTROL LOGIC

LOAD/

DATA

MEMORY

MANAGEMENT

UNIT

ADDRESS

STORE
UNIT

INSTRUCTION UNIT

BRANCH
UNIT

PC
UNIT

INSTRUCTION BUFFER

GPR
CR

SPR

MULTIPLY
UNITS

SPE
UNIT

DATA BUS INTERFACE UNIT

CONTROL

32 64 N

EXTENDED
FUNCTIONAL

CONTROL

INST

DATA

OnCE/NEXUS

CONTROL LOGIC

UNIT
INTERFACE

INTERFACE

CONTROL

DATA

(MTSPR/MFSPR)

INTEGER
EXECUTION

UNITS

EXTERNAL
SPR

CTR
XER

LR

D
A

T
A

A
D

D
R

E
S

S

IN
S

T
R

U
C

T
IO

N
 B

U
S

 IN
T

E
R

F
A

C
E

 U
N

IT

C
O

N
T

R
O

L

3
2

64
N IN

S
T

R
U

C
T

IO
N

 C
A

C
H

E

e200z4 Core

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 135

7.3.2 Integer unit features

The e200z4 integer units support single cycle execution of most integer instructions:

• 32-bit AU for arithmetic and comparison operations

• 32-bit LU for logical operations

• 32-bit priority encoder for count leading zero’s function

• 32-bit single cycle barrel shifter for static shifts and rotates

• 32-bit mask unit for data masking and insertion

• Divider logic for signed and unsigned divide in <=14 clocks with minimized execution timing
(EU1 only)

• Pipelined 32x32 hardware multiplier array supports 32x32->32 multiply with 2 clock latency, 1
clock throughput

7.3.3 Load/Store unit features

The e200z4 load/store unit supports load, store, and the load multiple / store multiple instructions:

• 32-bit effective address adder for data memory address calculations

• Pipelined operation supports throughput of one load or store operation per cycle

• Dedicated 64-bit interface to memory supports saving and restoring of up to two registers per cycle
for load multiple and store multiple word instructions

7.3.4 Cache features

The features of the e200z4 Cache are as follows:

• 8 KB, 2- or 4-way configurable set-associative Instruction Cache

• Linefill Buffer

• 32-bit address bus plus attributes and control

• Supports cache line locking

• Supports Way allocation

• Supports Tag and Data Parity

• Supports Tag and Data Double Error Detection

• Correction/Auto-invalidation capability

7.3.5 MMU features

The features of the MMU are as follows:

• Virtual Memory support

• 32-bit Virtual and Physical Addresses

• 8-bit Process Identifier

• 24-entry fully-associative TLB

e200z4 Core

MPC5644A Microcontroller Reference Manual, Rev. 6

136 Freescale Semiconductor

• Per-entry multiple page size support from 1 Kbyte to 4 Gbyte

• Entry Flush Protection

• Process ID manipulation for the MMU using an external tool

7.3.6 e200z4 system bus features

The features of the e200z4 System Bus interface are as follows:

• Independent Instruction and Data buses

• 32-bit address bus, 64-bit data bus, plus attributes and control

• Data interface provides separate unidirectional 64-bit read and write data buses

7.3.7 Nexus 3 features

The Nexus 3 module is compliant with Class 3 of the IEEE-ISTO 5001™ - 2003 standard, with certain
additional Class 4 features available. The following features are implemented:

• Program Trace via Branch Trace Messaging (BTM). Branch trace messaging displays program
flow discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool
to interpolate what transpires between the discontinuities. Thus, static code may be traced.

• Data Trace via Data Write Messaging (DWM) and Data Read Messaging (DRM). This provides
the capability for the development tool to trace reads and/or writes to selected internal memory
resources.

• Ownership Trace via Ownership Trace Messaging (OTM). OTM facilitates ownership trace by
providing visibility of which process ID or operating system task is activated. An Ownership Trace
Message is transmitted when a new process/task is activated, allowing the development tool to
trace ownership flow.

• Run-time access to the processor memory map via the JTAG port. This allows for enhanced
download/upload capabilities.

• Watchpoint Messaging via the auxiliary interface.

• Watchpoint Trigger enable of Program and/or Data Trace Messaging.

• Data Acquisition Messaging (DQM) allows code to be instrumented to export customized
information to the Nexus Auxiliary Output Port.

• Auxiliary interface for higher data input/output.

• Registers for Program Trace, Data Trace, Ownership Trace, Data Acquisition, and Watchpoint
Trigger control.

• All features controllable and configurable via the JTAG port.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 137

Chapter 8
Enhanced Direct Memory Access Controller (eDMA)

8.1 Introduction

This device includes an enhanced direct memory access controller (eDMA) block. The eDMA is a
second-generation platform block capable of performing complex data movements through 64
programmable channels with minimal intervention from the host processor. The hardware
microarchitecture includes a DMA engine that performs source and destination address calculations, and
the actual data movement operations, along with an SRAM-based memory containing the transfer control
descriptors (TCD) for the channels.

8.1.1 Block diagram

Figure 8-1 shows a simplified block diagram of the eDMA.

Figure 8-1. eDMA block diagram

8.1.2 Features

The eDMA has these major features:

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA Done

S
ys

te
m

 b
us

Data path Control
Address

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn – 1*

eDMA Peripheral Request

Bus read data

channel arbitration

path

SRAM
transfer control descriptor

(TCD)

SRAM

*n = 64 channels for eDMA

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

138 Freescale Semiconductor

• All data movement via dual-address transfers: read from source, write to destination

— Programmable source, destination addresses, transfer size, and support for enhanced
addressing modes

• Both 32- and 64-channel implementation performs complex data transfers with minimal
intervention from a host processor

— 32 bytes of data registers, used as temporary storage to support burst transfers
(refer to SSIZE bit)

— Connections to the crossbar switch for bus mastering the data movement

• Transfer control descriptor organized to support two-deep, nested transfer operations

— An inner data transfer loop defined by a minor byte transfer count

— An outer data transfer loop defined by a major iteration count

• Channel activation via 1 of 3 methods:

— Explicit software initiation

— Initiation via a channel-to-channel linking mechanism for continuous transfers

— Peripheral-paced hardware requests (one per channel)

All three methods require one activation per execution of the minor loop

• Support for fixed-priority and round-robin channel arbitration

• Support for complex data structures

• Support to cancel transfers via software

• Channel completion reported via optional interrupt requests

— 1 interrupt per channel, optionally asserted at completion of major iteration count

— Error terminations are optionally enabled per channel and logically summed together to form
a single error interrupt (32-channel eDMA) or two error interrupts (64-channel eDMA).

• Support for scatter-gather DMA processing

• Support for complex data structures

• Any channel can be programmed to be suspended by a higher priority channel’s activation, before
completion of a minor loop.

8.1.3 Modes of operation

There are two main operating modes of eDMA: normal mode and debug mode. These modes are briefly
described in this section.

8.1.3.1 Normal mode

In normal mode, the eDMA is used to transfer data between a source and a destination. The source and
destination can be a memory block or an I/O block capable of operation with the eDMA.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 139

8.1.3.2 Debug mode

In debug mode, the eDMA does not accept new transfer requests when its debug input signal is asserted.
If the signal is asserted during transfer of a block of data described by a minor loop in the current active
channel’s TCD, the eDMA continues operation until completion of the minor loop.

8.2 External signal description

The eDMA has no external signals.

8.3 Memory map and registers

This section provides a detailed description of all eDMA registers.

8.3.1 Module memory map

The eDMA memory map is shown in Table 8-1. The address of each register is given as an offset to the
eDMA base address. Registers are listed in address order, identified by complete name and mnemonic, and
list the type of accesses allowed. Table 8-2 shows a graphical representation of the same memory map. In
register names, an “x” is used to indicate A or B, depending on which eDMA’s register you are using. If a
register only exists in one of the eDMAs, the register description will state that.

The eDMA’s programming model is partitioned into two regions: the first region defines a number of
registers providing control functions; however, the second region corresponds to the local transfer control
descriptor memory.

Some registers are implemented as two 32-bit registers, and include H and L suffixes, signaling the high
and low portions of the control function.

Table 8-1. eDMA memory map

Offset from
EDMA_BASE

Register Location Size

EDMA_BASE
(0xFFF4_4000)

EDMA_CR—eDMA control register on page 8-147 32

EDMA_BASE + 0x0004 EDMA_ESR—eDMA error status register on page 8-149 32

EDMA_BASE + 0x0008 EDMA_ERQRH—eDMA enable request high register
(channels 63–32)

on page 8-152 32

EDMA_BASE + 0x000C EDMA_ERQRL—eDMA enable request low register
(channels 31–00)

on page 8-152 32

EDMA_BASE + 0x0010 EDMA_EEIRLH—eDMA enable error Interpol register
(channels 63–32)

on page 8-154 32

EDMA_BASE + 0x0014 EDMA_EEIRL—eDMA enable error interrupt register
(channels 31–00)

on page 8-154 32

EDMA_BASE + 0x0018 EDMA_SERQR—eDMA set enable request register on page 8-155 8

EDMA_BASE + 0x0019 EDMA_CERQR—eDMA clear enable request register on page 8-155 8

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

140 Freescale Semiconductor

EDMA_BASE + 0x001A EDMA_SEEIR—eDMA set enable error interrupt register on page 8-156 8

EDMA_BASE + 0x001B EDMA_CEEIR—eDMA clear enable error interrupt register on page 8-157 8

EDMA_BASE + 0x001C EDMA_CIRQR—eDMA clear interrupt request register on page 8-157 8

EDMA_BASE + 0x001D EDMA_CER—eDMA clear error register on page 8-158 8

EDMA_BASE + 0x001E EDMA_SSBR—eDMA set start bit register on page 8-159 8

EDMA_BASE + 0x001F EDMA_CDSBR—eDMA clear done status bit register on page 8-159 8

EDMA_BASE + 0x0020 EDMA_IRQRH—eDMA interrupt request register
(channels 63–32)

on page 8-160 32

EDMA_BASE + 0x0024 EDMA_IRQRL—eDMA interrupt request register
(channels 31–00)

on page 8-160 32

EDMA_BASE + 0x0028 EDMA_ERH—eDMA error register
(channels 63–32)

on page 8-161 32

EDMA_BASE + 0x002C EDMA_ERL—eDMA error register
(channels 31–00)

on page 8-161 32

EDMA_BASE + 0x0030 EDMA_HRSH—eDMA hardware request status register
(channels 63–32)

on page 8-162 32

EDMA_BASE + 0x0034 EDMA_HRSL—eDMA hardware request status register
(channels 31–00)

on page 8-162 32

EDMA_BASE + 0x0038–
EDMA_BASE + 0x00FF

Reserved

EDMA_BASE + 0x0100 EDMA_CPR0—eDMA channel 0 priority register on page 8-163 8

EDMA_BASE + 0x0101 EDMA_CPR1—eDMA channel 1 priority register on page 8-163 8

EDMA_BASE + 0x0102 EDMA_CPR2—eDMA channel 2 priority register on page 8-163 8

EDMA_BASE + 0x0103 EDMA_CPR3—eDMA channel 3 priority register on page 8-163 8

EDMA_BASE + 0x0104 EDMA_CPR4—eDMA channel 4 priority register on page 8-163 8

EDMA_BASE + 0x0105 EDMA_CPR5—eDMA channel 5 priority register on page 8-163 8

EDMA_BASE + 0x0106 EDMA_CPR6—eDMA channel 6 priority register on page 8-163 8

EDMA_BASE + 0x0107 EDMA_CPR7—eDMA channel 7 priority register on page 8-163 8

EDMA_BASE + 0x0108 EDMA_CPR8—eDMA channel 8 priority register on page 8-163 8

EDMA_BASE + 0x0109 EDMA_CPR9—eDMA channel 9 priority register on page 8-163 8

EDMA_BASE + 0x010A EDMA_CPR10—eDMA channel 10 priority register on page 8-163 8

EDMA_BASE + 0x010B EDMA_CPR11—eDMA channel 11 priority register on page 8-163 8

EDMA_BASE + 0x010C EDMA_CPR12—eDMA channel 12 priority register on page 8-163 8

EDMA_BASE + 0x010D EDMA_CPR13—eDMA channel 13 priority register on page 8-163 8

EDMA_BASE + 0x010E EDMA_CPR14—eDMA channel 14 priority register on page 8-163 8

Table 8-1. eDMA memory map (continued)

Offset from
EDMA_BASE

Register Location Size

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 141

EDMA_BASE + 0x010F EDMA_CPR15—eDMA channel 15 priority register on page 8-163 8

EDMA_BASE + 0x0110 EDMA_CPR16—eDMA channel 16 priority register on page 8-163 8

EDMA_BASE + 0x0111 EDMA_CPR17—eDMA channel 17 priority register on page 8-163 8

EDMA_BASE + 0x0112 EDMA_CPR18—eDMA channel 18 priority register on page 8-163 8

EDMA_BASE + 0x0113 EDMA_CPR19—eDMA channel 19 priority register on page 8-163 8

EDMA_BASE + 0x0114 EDMA_CPR20—eDMA channel 20 priority register on page 8-163 8

EDMA_BASE + 0x0115 EDMA_CPR21—eDMA channel 21 priority register on page 8-163 8

EDMA_BASE + 0x0116 EDMA_CPR22—eDMA channel 22 priority register on page 8-163 8

EDMA_BASE + 0x0117 EDMA_CPR23—eDMA channel 23 priority register on page 8-163 8

EDMA_BASE + 0x0118 EDMA_CPR24—eDMA channel 24 priority register on page 8-163 8

EDMA_BASE + 0x0119 EDMA_CPR25—eDMA channel 25 priority register on page 8-163 8

EDMA_BASE + 0x011A EDMA_CPR26—eDMA channel 26 priority register on page 8-163 8

EDMA_BASE + 0x011B EDMA_CPR27—eDMA channel 27 priority register on page 8-163 8

EDMA_BASE + 0x011C EDMA_CPR28—eDMA channel 28 priority register on page 8-163 8

EDMA_BASE + 0x011D EDMA_CPR29—eDMA channel 29 priority register on page 8-163 8

EDMA_BASE + 0x011E EDMA_CPR30—eDMA channel 30 priority register on page 8-163 8

EDMA_BASE + 0x011F EDMA_CPR31—eDMA channel 31 priority register on page 8-163 8

EDMA_BASE + 0x0120 EDMA_CPR32—eDMA channel 32 priority register on page 8-163 8

EDMA_BASE + 0x0121 EDMA_CPR33—eDMA channel 33 priority register on page 8-163 8

EDMA_BASE + 0x0122 EDMA_CPR34—eDMA channel 34 priority register on page 8-163 8

EDMA_BASE + 0x0123 EDMA_CPR35—eDMA channel 35 priority register on page 8-163 8

EDMA_BASE + 0x0124 EDMA_CPR36—eDMA channel 36 priority register on page 8-163 8

EDMA_BASE + 0x0125 EDMA_CPR37—eDMA channel 37 priority register on page 8-163 8

EDMA_BASE + 0x0126 EDMA_CPR38—eDMA channel 38 priority register on page 8-163 8

EDMA_BASE + 0x0127 EDMA_CPR39—eDMA channel 39 priority register on page 8-163 8

EDMA_BASE + 0x0128 EDMA_CPR40—eDMA channel 40 priority register on page 8-163 8

EDMA_BASE + 0x0129 EDMA_CPR41—eDMA channel 41 priority register on page 8-163 8

EDMA_BASE + 0x012A EDMA_CPR42—eDMA channel 42 priority register on page 8-163 8

EDMA_BASE + 0x012B EDMA_CPR43—eDMA channel 43 priority register on page 8-163 8

EDMA_BASE + 0x012C EDMA_CPR44—eDMA channel 44 priority register on page 8-163 8

EDMA_BASE + 0x012D EDMA_CPR45—eDMA channel 45 priority register on page 8-163 8

EDMA_BASE + 0x012E EDMA_CPR46—eDMA channel 46 priority register on page 8-163 8

Table 8-1. eDMA memory map (continued)

Offset from
EDMA_BASE

Register Location Size

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

142 Freescale Semiconductor

EDMA_BASE + 0x012F EDMA_CPR47—eDMA channel 47 priority register on page 8-163 8

EDMA_BASE + 0x0130 EDMA_CPR48—eDMA channel 48 priority register on page 8-163 8

EDMA_BASE + 0x0131 EDMA_CPR49—eDMA channel 49 priority register on page 8-163 8

EDMA_BASE + 0x0132 EDMA_CPR50—eDMA channel 50 priority register on page 8-163 8

EDMA_BASE + 0x0133 EDMA_CPR51—eDMA channel 51 priority register on page 8-163 8

EDMA_BASE + 0x0134 EDMA_CPR52—eDMA channel 52 priority register on page 8-163 8

EDMA_BASE + 0x0135 EDMA_CPR53—eDMA channel 53 priority register on page 8-163 8

EDMA_BASE + 0x0136 EDMA_CPR54—eDMA channel 54 priority register on page 8-163 8

EDMA_BASE + 0x0137 EDMA_CPR55—eDMA channel 55 priority register on page 8-163 8

EDMA_BASE + 0x0138 EDMA_CPR56—eDMA channel 56 priority register on page 8-163 8

EDMA_BASE + 0x0139 EDMA_CPR57—eDMA channel 57 priority register on page 8-163 8

EDMA_BASE + 0x013A EDMA_CPR58—eDMA channel 58 priority register on page 8-163 8

EDMA_BASE + 0x013B EDMA_CPR59—eDMA channel 59 priority register on page 8-163 8

EDMA_BASE + 0x013C EDMA_CPR60—eDMA channel 60 priority register on page 8-163 8

EDMA_BASE + 0x013D EDMA_CPR61—eDMA channel 61 priority register on page 8-163 8

EDMA_BASE + 0x013E EDMA_CPR62—eDMA channel 62 priority register on page 8-163 8

EDMA_BASE + 0x013F EDMA_CPR63—eDMA channel 63 priority register on page 8-163 8

EDMA_BASE + 0x0140–
EDMA_BASE + 0x0FFF

Reserved

EDMA_BASE + 0x1000 EDMA_TCD00—eDMA transfer control descriptor 00 on page 8-165 256

EDMA_BASE + 0x1020 EDMA_TCD01—eDMA transfer control descriptor 01 on page 8-165 256

EDMA_BASE + 0x1040 EDMA_TCD02—eDMA transfer control descriptor 02 on page 8-165 256

EDMA_BASE + 0x1060 EDMA_TCD03—eDMA transfer control descriptor 03 on page 8-165 256

EDMA_BASE + 0x1080 EDMA_TCD04—eDMA transfer control descriptor 04 on page 8-165 256

EDMA_BASE + 0x10A0 EDMA_TCD05—eDMA transfer control descriptor 05 on page 8-165 256

EDMA_BASE + 0x10C0 EDMA_TCD06—eDMA transfer control descriptor 06 on page 8-165 256

EDMA_BASE + 0x10E0 EDMA_TCD07—eDMA transfer control descriptor 07 on page 8-165 256

EDMA_BASE + 0x1100 EDMA_TCD08—eDMA transfer control descriptor 08 on page 8-165 256

EDMA_BASE + 0x1120 EDMA_TCD09—eDMA transfer control descriptor 09 on page 8-165 256

EDMA_BASE + 0x1140 EDMA_TCD10—eDMA transfer control descriptor 10 on page 8-165 256

EDMA_BASE + 0x1160 EDMA_TCD11—eDMA transfer control descriptor 11 on page 8-165 256

EDMA_BASE + 0x1180 EDMA_TCD12—eDMA transfer control descriptor 12 on page 8-165 256

Table 8-1. eDMA memory map (continued)

Offset from
EDMA_BASE

Register Location Size

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 143

EDMA_BASE + 0x11A0 EDMA_TCD13—eDMA transfer control descriptor 13 on page 8-165 256

EDMA_BASE + 0x11C0 EDMA_TCD14—eDMA transfer control descriptor 14 on page 8-165 256

EDMA_BASE + 0x11E0 EDMA_TCD15—eDMA transfer control descriptor 15 on page 8-165 256

EDMA_BASE + 0x1200 EDMA_TCD16—eDMA transfer control descriptor 16 on page 8-165 256

EDMA_BASE + 0x1220 EDMA_TCD17—eDMA transfer control descriptor 17 on page 8-165 256

EDMA_BASE + 0x1240 EDMA_TCD18—eDMA transfer control descriptor 18 on page 8-165 256

EDMA_BASE + 0x1260 EDMA_TCD19—eDMA transfer control descriptor 19 on page 8-165 256

EDMA_BASE + 0x1280 EDMA_TCD20—eDMA transfer control descriptor 20 on page 8-165 256

EDMA_BASE + 0x12A0 EDMA_TCD21—eDMA transfer control descriptor 21 on page 8-165 256

EDMA_BASE + 0x12C0 EDMA_TCD22—eDMA transfer control descriptor 22 on page 8-165 256

EDMA_BASE + 0x12E0 EDMA_TCD23—eDMA transfer control descriptor 23 on page 8-165 256

EDMA_BASE + 0x1300 EDMA_TCD24—eDMA transfer control descriptor 24 on page 8-165 256

EDMA_BASE + 0x1320 EDMA_TCD25—eDMA transfer control descriptor 25 on page 8-165 256

EDMA_BASE + 0x1340 EDMA_TCD26—eDMA transfer control descriptor 26 on page 8-165 256

EDMA_BASE + 0x1360 EDMA_TCD27—eDMA transfer control descriptor 27 on page 8-165 256

EDMA_BASE + 0x1380 EDMA_TCD28—eDMA transfer control descriptor 28 on page 8-165 256

EDMA_BASE + 0x13A0 EDMA_TCD29—eDMA transfer control descriptor 29 on page 8-165 256

EDMA_BASE + 0x13C0 EDMA_TCD30—eDMA transfer control descriptor 30 on page 8-165 256

EDMA_BASE + 0x13E0 EDMA_TCD31—eDMA transfer control descriptor 31 on page 8-165 256

EDMA_BASE + 0x1400 EDMA_TCD32—eDMA transfer control descriptor 32 on page 8-165 256

EDMA_BASE + 0x1420 EDMA_TCD33—eDMA transfer control descriptor 33 on page 8-165 256

EDMA_BASE + 0x1440 EDMA_TCD34—eDMA transfer control descriptor 34 on page 8-165 256

EDMA_BASE + 0x1460 EDMA_TCD35—eDMA transfer control descriptor 35 on page 8-165 256

EDMA_BASE + 0x1480 EDMA_TCD36—eDMA transfer control descriptor 36 on page 8-165 256

EDMA_BASE + 0x14A0 EDMA_TCD37—eDMA transfer control descriptor 37 on page 8-165 256

EDMA_BASE + 0x14C0 EDMA_TCD38—eDMA transfer control descriptor 38 on page 8-165 256

EDMA_BASE + 0x14E0 EDMA_TCD39—eDMA transfer control descriptor 39 on page 8-165 256

EDMA_BASE + 0x1500 EDMA_TCD40—eDMA transfer control descriptor 40 on page 8-165 256

EDMA_BASE + 0x1520 EDMA_TCD41—eDMA transfer control descriptor 41 on page 8-165 256

EDMA_BASE + 0x1540 EDMA_TCD42—eDMA transfer control descriptor 42 on page 8-165 256

EDMA_BASE + 0x1560 EDMA_TCD43—eDMA transfer control descriptor 43 on page 8-165 256

EDMA_BASE + 0x1580 EDMA_TCD44—eDMA transfer control descriptor 44 on page 8-165 256

Table 8-1. eDMA memory map (continued)

Offset from
EDMA_BASE

Register Location Size

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

144 Freescale Semiconductor

EDMA_BASE + 0x15A0 EDMA_TCD45—eDMA transfer control descriptor 45 on page 8-165 256

EDMA_BASE + 0x15C0 EDMA_TCD46—eDMA transfer control descriptor 46 on page 8-165 256

EDMA_BASE + 0x15E0 EDMA_TCD47—eDMA transfer control descriptor 47 on page 8-165 256

EDMA_BASE + 0x1600 EDMA_TCD48—eDMA transfer control descriptor 48 on page 8-165 256

EDMA_BASE + 0x1620 EDMA_TCD49—eDMA transfer control descriptor 49 on page 8-165 256

EDMA_BASE + 0x1640 EDMA_TCD50—eDMA transfer control descriptor 50 on page 8-165 256

EDMA_BASE + 0x1660 EDMA_TCD51—eDMA transfer control descriptor 51 on page 8-165 256

EDMA_BASE + 0x1680 EDMA_TCD52—eDMA transfer control descriptor 52 on page 8-165 256

EDMA_BASE + 0x16A0 EDMA_TCD53—eDMA transfer control descriptor 53 on page 8-165 256

EDMA_BASE + 0x16C0 EDMA_TCD54—eDMA transfer control descriptor 54 on page 8-165 256

EDMA_BASE + 0x16E0 EDMA_TCD55—eDMA transfer control descriptor 55 on page 8-165 256

EDMA_BASE + 0x1700 EDMA_TCD56—eDMA transfer control descriptor 56 on page 8-165 256

EDMA_BASE + 0x1720 EDMA_TCD57—eDMA transfer control descriptor 57 on page 8-165 256

EDMA_BASE + 0x1740 EDMA_TCD58—eDMA transfer control descriptor 58 on page 8-165 256

EDMA_BASE + 0x1760 EDMA_TCD59—eDMA transfer control descriptor 59 on page 8-165 256

EDMA_BASE + 0x1780 EDMA_TCD60—eDMA transfer control descriptor 60 on page 8-165 256

EDMA_BASE + 0x17A0 EDMA_TCD61—eDMA transfer control descriptor 61 on page 8-165 256

EDMA_BASE + 0x17C0 EDMA_TCD62—eDMA transfer control descriptor 62 on page 8-165 256

EDMA_BASE + 0x17E0 EDMA_TCD63—eDMA transfer control descriptor 63 on page 8-165 256

Table 8-2. eDMA 32-bit memory map—graphical view

Address Register

0xFFF4_4000 eDMA Control Register (EDMA_CR)

0xFFF4_4004 eDMA Error Status (EDMA_ESR)

0xFFF4_4008 eDMA enable request high register (EDMA_ERQRH)

0xFFF4_400C eDMA Enable Request
(EDMA_ERQRL, channels 31–16)

eDMA Enable Request
(EDMA_ERQRL, channels 15–00)

0xFFF4_4010 eDMA Enable Error Interrupt High
(EDMA_EEIRH, channels 63–48)

eDMA Enable Error Interrupt High
(EDMA_EEIRH, Channels 47–32)

0xFFF4_4014 eDMA Enable Error Interrupt Low
(EDMA_EEIRL, channels 31–16)

eDMA Enable Error Interrupt Low
(EDMA_EEIRL, Channels 15–00)

0xFFF4_4018 eDMA Set Enable
Request

(EDMA_SERQR)

eDMA Clear Enable
Request

(EDMA_CERQR)

eDMA Set Enable
Error Interrupt

(EDMA_SEEIR)

eDMA Clear Enable
Error Interrupt

 (EDMA_CEEIR)

Table 8-1. eDMA memory map (continued)

Offset from
EDMA_BASE

Register Location Size

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 145

0xFFF4_401C eDMA Clear Interrupt
Request

(EDMA_CIRQR)

eDMA Clear
 Error

(EDMA_CER)

eDMA Set Start Bit,
Activate Channel
(EDMA_SSBR)

eDMA Clear Done
Status Bit

(EDMA_CDSBR)

0xFFF4_4020 eDMA Interrupt Request High
(EDMA_IRQRH channels 63–48)

eDMA Interrupt Request High
(EDMA_IRQRH, Channels 47–32)

0xFFF4_4024 eDMA Interrupt Request Low
(EDMA_IRQRL, channels 31–16)

eDMA Interrupt Request Low
(EDMA_IRQRL, Channels 15–00)

0xFFF4_4028 eDMA Error High
(EDMA_ERL, channels 63–48)

eDMA Error High
(EDMA_ERL, Channels 47–32)

0xFFF4_402C eDMA Error Low
(EDMA_ERL, channels 31–16)

eDMA Error Low
(EDMA_ERL, Channels 15–00)

0xFFF4_4030 eDMA Hardware Request Status High
(EDMA_HRSL, channels 63–48)

eDMA Hardware Request Status High
(EDMA_HRSL, Channels 47–32)

0xFFF4_4034 eDMA Hardware Request Status Low
(EDMA_HRSL, channels 31–16)

eDMA Hardware Request Status Low
(EDMA_HRSL, Channels 15–00)

0xFFF4_4038 –
0xFFF4_40FC

Reserved

0xFFF4_4100 eDMA Channel 0
 Priority

(EDMA_CPR0)

eDMA Channel 1
 Priority

(EDMA_CPR1)

eDMA Channel 2
 Priority

(EDMA_CPR2)

eDMA Channel 3
Priority

(EDMA_CPR3)

0xFFF4_4104 eDMA Channel 4
 Priority

(EDMA_CPR4)

eDMA Channel 5
 Priority

(EDMA_CPR5)

eDMA Channel 6
 Priority

(EDMA_CPR6)

eDMA Channel 7
 Priority

EDMA_CPR7)

0xFFF4_4108 eDMA Channel 8
 Priority

(EDMA_CPR8)

eDMA Channel 9
 Priority

(EDMA_CPR9)

eDMA Channel 10
 Priority

(EDMA_CPR10)

eDMA Channel 11
Priority

(EDMA_CPR11)

0xFFF4_410C eDMA Channel 12
 Priority

(EDMA_CPR12)

eDMA Channel 13
 Priority

(EDMA_CPR13)

eDMA Channel 14
 Priority

(EDMA_CPR14)

eDMA Channel 15
 Priority

(EDMA_CPR15)

0xFFF4_4110 eDMA Channel 16
 Priority

(EDMA_CPR16)

eDMA Channel 17
 Priority

(EDMA_CPR17)

eDMA Channel 18
 Priority

(EDMA_CPR18)

eDMA Channel 19
 Priority

(EDMA_CPR19)

0xFFF4_4114 eDMA Channel 20
 Priority

(EDMA_CPR16)

eDMA Channel 21
 Priority

(EDMA_CPR17)

eDMA Channel 22
 Priority

(EDMA_CPR18)

eDMA Channel 23
Priority

(EDMA_CPR19)

0xFFF4_4118 eDMA Channel 24
 Priority

(EDMA_CPR16)

eDMA Channel 25
 Priority

(EDMA_CPR17)

eDMA Channel 26
 Priority

(EDMA_CPR18)

eDMA Channel 27
 Priority

(EDMA_CPR19)

0xFFF4_411C eDMA Channel 28
 Priority

(EDMA_CPR16)

eDMA Channel 29
 Priority

(EDMA_CPR17)

eDMA Channel 30
 Priority

(EDMA_CPR18)

eDMA Channel 31
 Priority

(EDMA_CPR19)

Table 8-2. eDMA 32-bit memory map—graphical view (continued)

Address Register

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

146 Freescale Semiconductor

8.3.2 Register descriptions

This section lists the eDMA registers in address order and describes the registers and their bitfields.

Reading reserved bits in a register returns the value of zero. Writes to reserved bits in a register are ignored.
Reading or writing to a reserved memory location generates a bus error.

0xFFF4_4100 eDMA Channel 32
 Priority

(EDMA_CPR32)

eDMA Channel 33
 Priority

(EDMA_CPR33)

eDMA Channel 34
 Priority

(EDMA_CPR34)

eDMA Channel 35
Priority

(EDMA_CPR35)

0xFFF4_4104 eDMA Channel 36
 Priority

(EDMA_CPR36)

eDMA Channel 37
 Priority

(EDMA_CPR37)

eDMA Channel 38
 Priority

(EDMA_CPR38)

eDMA Channel 39
 Priority

EDMA_CPR39)

0xFFF4_4108 eDMA Channel 40
 Priority

(EDMA_CPR40)

eDMA Channel 41
 Priority

(EDMA_CPR41)

eDMA Channel 42
 Priority

(EDMA_CPR42)

eDMA Channel 43
Priority

(EDMA_CPR43)

0xFFF4_410C eDMA Channel 44
 Priority

(EDMA_CPR44)

eDMA Channel 45
 Priority

(EDMA_CPR45)

eDMA Channel 46
 Priority

(EDMA_CPR46)

eDMA Channel 47
 Priority

(EDMA_CPR47)

0xFFF4_4110 eDMA Channel 48
 Priority

(EDMA_CPR48)

eDMA Channel 49
 Priority

(EDMA_CPR49)

eDMA Channel 50
 Priority

(EDMA_CPR50)

eDMA Channel 51
 Priority

(EDMA_CPR51)

0xFFF4_4114 eDMA Channel 52
 Priority

(EDMA_CPR52)

eDMA Channel 53
 Priority

(EDMA_CPR53)

eDMA Channel 54
 Priority

(EDMA_CPR54)

eDMA Channel 55
Priority

(EDMA_CPR55)

0xFFF4_4118 eDMA Channel 56
 Priority

(EDMA_CPR56)

eDMA Channel 57
 Priority

(EDMA_CPR57)

eDMA Channel 58
 Priority

(EDMA_CPR58)

eDMA Channel 59
 Priority

(EDMA_CPR59)

0xFFF4_411C eDMA Channel 60
 Priority

(EDMA_CPR60)

eDMA Channel 61
 Priority

(EDMA_CPR61)

eDMA Channel 62
 Priority

(EDMA_CPR62)

eDMA Channel 63
 Priority

(EDMA_CPR63)

0xFFF4_5000 –
0xFFF4_51FC

EDMA_TCD00–EDMA_TCD15

0xFFF4_5200 –
0xFFF4_53FC

EDMA_TCD16–EDMA_TCD31

0xFFF4_5400 –
0xFFF4_55FC

EDMA_TCD32–EDMA_TCD47

0xFFF4_5600 –
0xFFF4_57FC

EDMA_TCD48–EDMA_TCD63

0xFFF4_5800 Reserved

Table 8-2. eDMA 32-bit memory map—graphical view (continued)

Address Register

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 147

Many of the control registers have a bit width that matches the number of channels implemented in the
module:

• 64 bits for eDMA (made up of two 32-bit registers: high and low—for example, EDMA_ERQRH
has upper 32 channels of eDMA)

8.3.2.1 eDMA Control Register (EDMA_CR)

The 32-bit EDMA_CR defines the basic operating configuration of the eDMA.

The eDMA arbitrates channel service requests in four (eDMA) groups (0, 1, 2, 3) of 16 channels each:

• Group 0 contains channels 0–15

• Group 1 contains channels 16–31

• Group 2 contains channels 32–47 (eDMA only)

• Group 3 contains channels 48–63 (eDMA only)

Arbitration within a group can be configured to use a fixed priority or a round robin. In fixed-priority
arbitration, the highest priority channel requesting service is selected to execute. The priorities are
assigned by the channel priority registers. See Section 8.3.2.16, eDMA Channel n Priority Registers
(EDMA_CPRn). In round-robin arbitration mode, the channel priorities are ignored and the channels
within each group are cycled through, from channel 15 down to channel 0,without regard to priority.

The group priorities operate in a similar fashion. In group fixed-priority arbitration mode, channel service
requests in the highest priority group are executed first where priority level 3 (eDMA) is the highest and
priority level 0 is the lowest. The group priorities are assigned in the GRPnPRI fields of the eDMA control
register (EDMA_CR). All group priorities must have unique values prior to any channel service requests
occur, otherwise a configuration error is reported. In group round-robin mode, the group priorities are
ignored and the groups are cycled through, from group 3 (eDMA) down to group 0, without regard to
priority.

Minor loop offsets are address offset values added to the final source address (SADDR) or destination
address (DADDR) upon minor loop completion. When minor loop offsets are enabled, the minor loop
offset (MLOFF) is added to the final source address (SADDR) or to the final destination address
(DADDR) or to both addresses prior to the addresses being written back into the TCD. If the major loop
is complete, the minor loop offset is ignored and the major loop address offsets (SLAST and
DLAST_SGA) are used to compute the next EDMA_TCD[SADDR] and EDMA_TCD[DADDR] values.

When minor loop mapping is enabled (EDMA_CR[EMLM] = 1), TCDn word2 is redefined. A portion of
TCDn word2 is used to specify multiple fields: a source enable bit (SMLOE) to specify that the minor loop
offset should be applied to the source address (SADDR) upon minor loop completion, a destination enable
bit (DMLOE) to specify the minor loop offset should be applied to the destination address (DADDR) upon
minor loop completion, and the sign extended minor loop offset value (MLOFF). The same offset value
(MLOFF) is used for both source and destination minor loop offsets.

When either of the minor loop offsets is enabled (SMLOE is set or DMLOE is set), the NBYTES field is
reduced to 10 bits. When both minor loop offsets are disabled (SMLOE is cleared and DMLOE is cleared),
the NBYTES field becomes a 30-bit vector.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

148 Freescale Semiconductor

When minor loop mapping is disabled (EDMA_CR[EMLM] = 0), all 32 bits of TCDn word2 are assigned
to the NBYTES field. See Section 8.3.2.17, Transfer control descriptor (TCD) for more details.

Offset: EDMA_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CX ECX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GRP3PRI GRP2PRI GRP1PRI GRP0PRI EMLM

C
LM

H
A

LT

H
O

E

E
R

G
A

E
R

C
A

E
D

B
G 0

W

Reset 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Figure 8-2. eDMA Control Register (EDMA_CR)

Table 8-3. EDMA_CR field descriptions

Field Description

CX Cancel Transfer
0 Normal operation
1 Cancel the remaining data transfer. Stop the executing channel and force the minor loop to be

finished. The cancel takes effect after the last write of the current read/write sequence. The CX bit
clears itself after the cancel has been honored. This cancel retires the channel normally as if the
minor loop was completed.

ECX Error cancel transfer
0 Normal operation
1 Cancel the remaining data transfer in the same fashion as the CX cancel transfer. Stop the

executing channel and force the minor loop to be finished. The cancel takes effect after the last
write of the current read/write sequence. The ECX bit clears itself after the cancel has been
honored. In addition to cancelling the transfer, the ECX treats the cancel as an error condition;
thus updating the EDMA_ESR register and generating an optional error interrupt. See
Section 8.3.2.2, eDMA Error Status Register (EDMA_ESR).

GRP3PRI Channel group 3 priority
Group 3 priority level when fixed priority group arbitration is enabled.

GRP2PRI Channel group 2 priority
Group 2 priority level when fixed priority group arbitration is enabled.

GRP1PRI Channel group 1 priority
Group 1 priority level when fixed priority group arbitration is enabled.

GRP0PRI Channel group 0 priority
Group 0 priority level when fixed priority group arbitration is enabled.

EMLM Enable minor loop mapping
0 Minor loop mapping disabled. TCD Word 2 is defined as a 32-bit nbytes field.
1 Minor loop mapping enabled. When set, TCDn Word 2 is redefined to include individual enable

fields, an offset field and the NBYTES field. The individual enable fields allow the minor loop offset
to be applied to the source address, the destination address, or both. The NBYTES field is
reduced when either offset is enabled.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 149

8.3.2.2 eDMA Error Status Register (EDMA_ESR)

The EDMA_ESR provides information about the last recorded channel error. Channel errors can be caused
by a configuration error (an illegal setting in the transfer control descriptor or an illegal priority register
setting in fixed-arbitration mode) or an error termination to a bus master read or write cycle.

A configuration error is caused when the starting source or destination address, source or destination
offsets, minor loop byte count, and the transfer size represent an inconsistent state. The addresses and
offsets must be aligned on 0-modulo-transfer_size boundaries, and the minor loop byte count must be a
multiple of the source and destination transfer sizes. All source reads and destination writes must be
configured to the natural boundary of the programmed transfer size respectively.

In fixed-arbitration mode, a configuration error is generated when any two channel priority levels are equal
and any channel is activated. The ERRCHN field is undefined for this type of error. All channel priority
levels must be unique before any service requests are made.

If a scatter-gather operation is enabled on channel completion, a configuration error is reported if the
scatter-gather address (DLAST_SGA) is not aligned on a 32-byte boundary. If minor loop channel linking
is enabled on channel completion, a configuration error is reported when the link is attempted if bit
EDMA_TCD[CITER.E_LINK] is not equal to bit EDMA_TCD[BITER.E_LINK]. All configuration error

CLM Continuous link mode
0 A minor loop channel link made to itself goes through channel arbitration before being activated

again.
1 A minor loop channel link made to itself does not go through channel arbitration before being

activated again. Upon minor loop completion, the channel is active again if that channel has a
minor loop channel link enabled and the link channel is itself. This effectively applies the minor
loop offsets and restarts the next minor loop.

HALT Halt DMA operations
0 Normal operation
1 Stall the start of any new channels. Executing channels are allowed to complete. Channel

execution resumes when the HALT bit is cleared.

HOE Halt on error
0 Normal operation
1 Any error causes the HALT bit to be set. Subsequently, all service requests are ignored until the

HALT bit is cleared.

ERGA Enable round-robin group arbitration
0 Fixed-priority arbitration is used for selection among the groups.
1 Round-robin arbitration is used for selection among the groups.

ERCA Enable Round-Robin Channel Arbitration
0 Fixed-priority arbitration is used for channel selection within each group.
1 Round-robin arbitration is used for channel selection within each group.

EDBG Enable Debug
0 The assertion of the system debug control input is ignored.
1 The assertion of the system debug control input causes the eDMA to stall the start of a new

channel. Executing channels are allowed to complete. Channel execution resumes when either
the system debug control input is negated or the EDBG bit is cleared.

Table 8-3. EDMA_CR field descriptions (continued)

Field Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

150 Freescale Semiconductor

conditions except scatter-gather and minor loop link error are reported as the channel is activated and
assert an error interrupt request if enabled. When properly enabled, a scatter-gather configuration error is
reported when the scatter-gather operation begins at major loop completion. A minor loop channel link
configuration error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is immediately stopped and the
appropriate bus error flag is set. In this case, the state of the channel’s transfer control descriptor is updated
by the DMA engine with the current source address, destination address, and minor loop byte count at the
point of the fault. If a bus error occurs on the last read prior to beginning the write sequence, the write is
executed using the data captured during the bus error. If a bus error occurs on the last write prior to
switching to the next read sequence, the read sequence is executed before the channel is terminated due to
the destination bus error.

A transfer may be cancelled by software via the bit EDMA_CR[CX]. When a cancel transfer request is
recognized, the eDMA engine stops processing the channel. The current read-write sequence is allowed to
finish. If the cancel occurs on the last read-write sequence of a major or minor loop, the cancel request is
discarded and the channel retires normally.

The error cancel transfer is the same as a cancel transfer except the DMAES register is updated with the
cancelled channel number and error cancel bit is set. The TCD of a cancelled channel has the source
address and destination address of the last transfer saved in the TCD. It is the responsibility of the user to
initialize the TCD again should the channel need to be restarted because the aforementioned fields have
been modified by the eDMA engine and no longer represent the original parameters. When a transfer is
cancelled via the error cancel transfer mechanism (setting EDMA_CR[ECX]), the channel number is
loaded into field EDMA_ESR[ERRCHN] and the bits EDMA_ESR[ECX] and EDMA_ESR[VLD] are
set. In addition, an error interrupt may be generated if enabled. Refer to Section 8.3.2.14, eDMA Error
Registers (EDMA_ERH, EDMA_ERL).

The occurrence of any type of error causes the DMA engine to stop the active channel and the appropriate
channel bit in the eDMA error register to be asserted. At the same time, the details of the error condition
are loaded into the EDMA_ESR. The major loop complete indicators, setting the transfer control
descriptor DONE flag and the possible assertion of an interrupt request, are not affected when an error is
detected. After the error status has been updated, the DMA engine continues to operate by servicing the
next appropriate channel. A channel that experiences an error condition is not automatically disabled. If a
channel is terminated by an error and then issues another service request before the error is fixed, that
channel will execute and terminate with the same error condition.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 151

Offset: EDMA_BASE + 0x0004 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VLD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ECX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R GPE CPE ERRCHN SAE SOE DAE DOE NCE SGE SBE DBE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-3. eDMA Error Status Register (EDMA_ESR)

Table 8-4. EDMA_ESR field descriptions

Field Description

VLD Valid Bit
Logical OR of all EDMA_ERL status bits.
0 No EDMA_ER bits are set.
1 At least one EDMA_ER bit is set indicating a valid error exists that has not been cleared.

ECX Transfer canceled
0 No canceled transfers
1 The last recorded entry was a canceled transfer via the error cancel transfer input.

GPE Group-priority error
0 No group-priority error
1 The last recorded error was a configuration error among the group priorities indicating not all

group priorities are unique.

CPE Channel-Priority Error
0 No channel-priority error
1 The last recorded error was a configuration error in the channel priorities within a group,

indicating not all channel priorities within a group are unique.

ERRCHN Error Channel Number or Canceled Channel Number
Channel number of the last recorded error (excluding GPE and CPE errors) or last recorded transfer
that was error cancelled.
Note: Do not rely on the number in the ERRCHN field group for channel-priority errors. Group- and

Channel-priority errors must be resolved by inspection. The application code must interrogate
the priority registers to find groups or channels with duplicate priority level.

SAE Source Address Error
0 No source address configuration error
1 The last recorded error was a configuration error detected in field EDMA_TCD[SADDR],

indicating EDMA_TCD[SADDR] is inconsistent with EDMA_TCD[SSIZE].

SOE Source Offset Error
0 No source offset configuration error
1 The last recorded error was a configuration error detected in field EDMA_TCD[SOFF], indicating

EDMA_TCD[SOFF] is inconsistent with EDMA_TCD[SSIZE].

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

152 Freescale Semiconductor

8.3.2.3 eDMA Enable Request Registers (EDMA_ERQRH, EDMA_ERQRL)

The EDMA_ERQRH and EDMA_ERQRL provide a bitmap for the 32 (or 64 for eDMA) channels to
enable the request signal for each channel. EDMA_ERQRH supports channels 63–32, while
EDMA_ERQRL covers channels 31–0.

The state of any given channel enable is directly affected by writes to these registers; the state is also
affected by writes to the EDMA_SERQR and EDMA_CERQR. The EDMA_CERQR and
EDMA_SERQR are provided so that the request enable for a single channel can be modified without
performing a read-modify-write sequence to the EDMA_ERQRH and EDMA_ERQRL.

Both the eDMA request input signal and this enable request flag must be asserted before a channel’s
hardware service request is accepted. The state of the eDMA enable request flag does not effect a channel
service request made through software or a linked channel request.

DAE Destination Address Error
0 No destination address configuration error
1 The last recorded error was a configuration error detected in field EDMA_TCD[DADDR],

indicating EDMA_TCD[DADDR] is inconsistent with EDMA_TCD[DSIZE].

DOE Destination Offset Error
0 No destination offset configuration error
1 The last recorded error was a configuration error detected in field EDMA_TCD[DOFF], indicating

EDMA_TCD[DOFF] is inconsistent with EDMA_TCD[DSIZE].

NCE NBYTES/CITER Configuration Error
0 No NBYTES/CITER configuration error
1 The last recorded error was a configuration error detected in fields EDMA_TCD[NBYTES] or

EDMA_TCD[CITER], indicating the following conditions exist:
 • EDMA_TCD[NBYTES] is not a multiple of EDMA_TCD[SSIZE] and EDMA_TCD[DSIZE], or
 • EDMA_TCD[CITER] is equal to zero, or
 • EDMA_TCD[CITER.E_LINK] is not equal to EDMA_TCD[BITER.E_LINK].

SGE Scatter-Gather Configuration Error
0 No scatter-gather configuration error
1 The last recorded error was a configuration error detected in field EDMA_TCD[DLAST_SGA],

indicating EDMA_TCD[DLAST_SGA] is not on a 32-byte boundary. This field is checked at the
beginning of a scatter-gather operation after major loop completion if EDMA_TCD[E_SG] is
enabled.

SBE Source Bus Error
0 No source bus error
1 The last recorded error was a bus error on a source read.

DBE Destination Bus Error
0 No destination bus error
1 The last recorded error was a bus error on a destination write.

Table 8-4. EDMA_ESR field descriptions (continued)

Field Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 153

As a given channel completes processing its major iteration count, there is a flag in the transfer control
descriptor that may affect the ending state of the EDMA_ERQR bit for that channel. If bit
EDMA_TCD[D_REQ] is set, then the corresponding EDMA_ERQR bit is cleared after the major loop is
complete, disabling the eDMA hardware request. Otherwise if the D_REQ bit is cleared, the state of the
EDMA_ERQR bit is unaffected.

Address: EDMA_BASE + 0x0008 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
E

R
Q

63

E
R

Q
62

E
R

Q
61

E
R

Q
60

E
R

Q
59

E
R

Q
58

E
R

Q
57

E
R

Q
56

E
R

Q
55

E
R

Q
54

E
R

Q
53

E
R

Q
52

E
R

Q
51

E
R

Q
50

E
R

Q
49

E
R

Q
48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
R

Q
47

E
R

Q
46

E
R

Q
45

E
R

Q
44

E
R

Q
43

E
R

Q
42

E
R

Q
41

E
R

Q
40

E
R

Q
39

E
R

Q
38

E
R

Q
37

E
R

Q
36

E
R

Q
35

E
R

Q
34

E
R

Q
33

E
R

Q
32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-4. eDMA Enable Request High Register (EDMA_ERQRH)

Offset: EDMA_BASE + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
R

Q
31

E
R

Q
30

E
R

Q
29

E
R

Q
28

E
R

Q
27

E
R

Q
26

E
R

Q
25

E
R

Q
24

E
R

Q
23

E
R

Q
22

E
R

Q
21

E
R

Q
20

E
R

Q
19

E
R

Q
18

E
R

Q
17

E
R

Q
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 19 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
R

Q
15

E
R

Q
14

E
R

Q
13

E
R

Q
12

E
R

Q
11

E
R

Q
10

E
R

Q
09

E
R

Q
08

E
R

Q
07

E
R

Q
06

E
R

Q
05

E
R

Q
04

E
R

Q
03

E
R

Q
02

E
R

Q
01

E
R

Q
00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-5. eDMA Enable Request Register (EDMA_ERQRL)

Table 8-5. EDMA_ERQRL field descriptions

Field Description

ERQn Enable eDMA Hardware Service Request n
0 The eDMA request signal for channel n is disabled.
1 The eDMA request signal for channel n is enabled.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

154 Freescale Semiconductor

8.3.2.4 eDMA Enable Error Interrupt Registers (EDMA_EEIRH, EDMA_EEIRL)

The EDMA_EEIRH and EDMA_EEIRL provide a bitmap for the 32 (or 64 for eDMA) channels to enable
the error interrupt signal for each channel. EDMA_EEIRH supports channels 63–32, while
EDMA_EEIRL covers channels 31–0.

The state of any given channel’s error interrupt enable is directly affected by writes to these registers; it is
also affected by writes to the EDMA_SEEIR and EDMA_CEEIR. The EDMA_SEEIR and
EDMA_CEEIR are provided so that the error interrupt enable for a single channel can be modified without
the performing a read-modify-write sequence to the EDMA_EEIRH and EDMA_EEIRL.

Both the eDMA error indicator and this error interrupt enable flag must be asserted before an error
interrupt request for a given channel is asserted.

Address: EDMA_BASE + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
E

I6
3

E
E

I6
2

E
E

I6
1

E
E

I6
0

E
E

I5
9

E
E

I5
8

E
E

I5
7

E
E

I5
6

E
E

I5
5

E
E

I5
4

E
E

I5
3

E
E

I5
2

E
E

I5
1

E
E

I5
0

E
E

I4
9

E
E

I4
8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
E

I4
7

E
E

I4
6

E
E

I4
5

E
E

I4
4

E
E

I4
3

E
E

I4
2

E
E

I4
1

E
E

I4
0

E
E

I3
9

E
E

I3
8

E
E

I3
7

E
E

I3
6

E
E

I3
5

E
E

I3
4

E
E

I3
3

E
E

I3
2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-6. eDMA Enable Error Interrupt High Register (EDMA_EEIRH)

Address: EDMA_BASE + 0x0014 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
E

I3
1

E
E

I3
0

E
E

I2
9

E
E

I2
8

E
E

I2
7

E
E

I2
6

E
E

I2
5

E
E

I2
4

E
E

I2
3

E
E

I2
2

E
E

I2
1

E
E

I2
0

E
E

I1
9

E
E

I1
8

E
E

I1
7

E
E

I1
6

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
E

I1
5

E
E

I1
4

E
E

I1
3

E
E

I1
2

E
E

I1
1

E
E

I1
0

E
E

I0
9

E
E

I0
8

E
E

I0
7

E
E

I0
6

E
E

I0
5

E
E

I0
4

E
E

I0
3

E
E

I0
2

E
E

I0
1

E
E

I0
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-7. eDMA Enable Error Interrupt Low Register (EDMA_EEIRL)

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 155

8.3.2.5 eDMA Set Enable Request Register (EDMA_SERQR)

The EDMA_SERQR provides a simple memory-mapped mechanism to set a given bit in the
EDMA_ERQRH or EDMA_ERQRL to enable the eDMA request for a given channel. The data value on
a register write causes the corresponding bit in the EDMA_ERQRH or EDMA_ERQRL to be set. Setting
bit 1 (SERQ[0]) provides a global set function, forcing the entire contents of EDMA_ERQRH and
EDMA_ERQRL to be asserted. Reads of this register return all zeroes.

If bit 0 is set, the SERQ command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

8.3.2.6 eDMA Clear Enable Request Register (EDMA_CERQR)

The EDMA_CERQR provides a simple memory-mapped mechanism to clear a given bit in the
EDMA_ERQRH or EDMA_ERQRL to disable the DMA request for a given channel. The data value on
a register write causes the corresponding bit in the EDMA_ERQRH or EDMA_ERQRL to be cleared.
Setting bit 1 (CERQ[0]) provides a global clear function, forcing the entire contents of EDMA_ERQRH
and EDMA_ERQRL to be zeroed, disabling all eDMA request inputs. Reads of this register return all
zeroes.

If bit 0 is set, the CERQ command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

Table 8-6. EDMA_EEIRL field descriptions

Field Description

EEIn Enable Error Interrupt n
0 The error signal for channel n does not generate an error interrupt.
1 The assertion of the error signal for channel n generate an error interrupt request.

Offset: EDMA_BASE + 0x0018 Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP SERQ[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 8-8. eDMA Set Enable Request Register (EDMA_SERQR)

Table 8-7. EDMA_SERQR field descriptions

Field Descriptions

0
NOP

No operation
0 Normal operation.
1 No operation, ignore bits 1–7.

1–7
SERQ[0:6]

Set Enable Request
0–32 (64 for eDMA) Set corresponding bit in EDMA_ERQRH or EDMA_ERQRL.
64–127 Set all bits in EDMA_ERQRH and EDMA_ERQRL.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

156 Freescale Semiconductor

8.3.2.7 eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)

The EDMA_SEEIR provides a memory-mapped mechanism to set a given bit in the EDMA_EEIRH or
EDMA_EEIRL to enable the error interrupt for a given channel. The data value on a register write causes
the corresponding bit in the EDMA_EEIRH or EDMA_EEIRL to be set. Setting bit 1 (SEEI[0]) provides
a global set function, forcing the entire contents of EDMA_EEIRH or EDMA_EEIRL to be asserted.
Reads of this register return all zeroes.

If bit 0 is set, the SEEI command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

Offset: EDMA_BASE + 0x0019 Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP CERQ[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 8-9. eDMA Clear Enable Request Register (EDMA_CERQR)

Table 8-8. EDMA_CERQR field descriptions

Field Description

0
NOP

No operation
0 Normal operation
1 No operation, ignore bits 1–7.

1–7
CERQ[0:6]

Clear Enable Request
0–32 (64 for eDMA) Clear corresponding bit in EDMA_ERQRH or EDMA_ERQRL.
64–127 Clear all bits in EDMA_ERQRH and EDMA_ERQRL.

Offset: EDMA_BASE + 0x001A Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP SEEI[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 8-10. eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)

Table 8-9. EDMA_SEEIR field descriptions

Field Description

0
NOP

No operation
0 Normal operation
1 No operation, ignore bits 1–7.

1–7
SEEI[0:6]

Set Enable Error Interrupt
0–32 (64 for eDMA) Set corresponding bit in EDMA_EIRRH or EDMA_EIRRL.
64–127 Set all bits in EDMA_EIRRH or EDMA_EEIRL.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 157

8.3.2.8 eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)

The EDMA_CEEIR provides a memory-mapped mechanism to clear a given bit in the EDMA_EEIRH or
EDMA_EEIRL to disable the error interrupt for a given channel. The data value on a register write causes
the corresponding bit in the EDMA_EEIRH or EDMA_EEIRL to be cleared. Setting bit 1 (CEEI[0])
provides a global clear function, forcing the entire contents of the EDMA_EEIRH or EDMA_EEIRL to
be zeroed, disabling error interrupts for all channels. Reads of this register return all zeroes.

If bit 0 is set, the CEEI command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

8.3.2.9 eDMA Clear Interrupt Request Register (EDMA_CIRQR)

The EDMA_CIRQR provides a memory-mapped mechanism to clear a given bit in the EDMA_IRQRH
or EDMA_IRQRL to disable the interrupt request for a given channel. The given value on a register write
causes the corresponding bit in the EDMA_IRQRH or EDMA_IRQRL to be cleared. Setting bit 1
(CINT[0]) provides a global clear function, forcing the entire contents of the EDMA_IRQRH or
EDMA_IRQRL to be zeroed, disabling all eDMA interrupt requests. Reads of this register return all
zeroes.

If bit 0 is set, the CINT command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

Offset: EDMA_BASE + 0x001B Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP CEEI[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 8-11. eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)

Table 8-10. EDMA_CEEIR field descriptions

Field Description

NOP No operation
0 Normal operation
1 No operation, ignore bits 1-7.

CEEI[0:6] Clear Enable Error Interrupt
0–32 (64 for eDMA) Clear corresponding bit in EDMA_EEIRH or EDMA_EEIRL.
64–127 Clear all bits in EDMA_EEIRH or EDMA_EEIRL.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

158 Freescale Semiconductor

8.3.2.10 eDMA Clear Error Register (EDMA_CER)

The EDMA_CER provides a memory-mapped mechanism to clear a given bit in the EDMA_ERH or
EDMA_ERL to disable the error condition flag for a given channel. The given value on a register write
causes the corresponding bit in the EDMA_ERH or EDMA_ERL to be cleared. Setting bit 1 (CERR[0])
provides a global clear function, forcing the entire contents of the EDMA_ERH or EDMA_ERL to be
zeroed, clearing all channel error indicators. Reads of this register return all zeroes.

If bit 0 is set, the CERR command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

Offset: EDMA_BASE + 0X001C Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP CINT[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 8-12. eDMA Clear Interrupt Request (EDMA_CIRQR)

Table 8-11. EDMA_CIRQR field descriptions

Field Description

NOP No operation
0 Normal operation
1 No operation, ignore bits 1–7.

CINT[0:6] Clear Interrupt Request
0–32 (64 for eDMA) Clear corresponding bit in EDMA_IRQRH or EDMA_IRQRL.
64–127 Clear all bits in EDMA_IRQRH or EDMA_IRQRL.

Offset: EDMA_BASE + 0x001D Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP CERR[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 8-13. eDMA Clear Error Register (EDMA_CER)

Table 8-12. EDMA_CER field descriptions

Field Description

NOP No operation
0 Normal operation
1 No operation, ignore bits 1–7.

CERR[0:6] Clear Error Indicator
0–32 (64 for eDMA) Clear corresponding bit in EDMA_ERH or EDMA_ERL.
64–127 Clear all bits in EDMA_ERH or EDMA_ERL.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 159

8.3.2.11 eDMA Set START Bit Register (EDMA_SSBR)

The EDMA_SSBR provides a memory-mapped mechanism to set the START bit in the TCD of the given
channel. The data value on a register write causes the START bit in the corresponding transfer control
descriptor to be set. Setting bit 1 (SSB[0]) provides a global set function, forcing all START bits to be set.
Reads of this register return all zeroes.

If bit 0 is set, the SSB command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

8.3.2.12 eDMA Clear DONE Status Bit Register (EDMA_CDSBR)

The EDMA_CDSBR provides a memory-mapped mechanism to clear the DONE bit in the TCD of the
given channel. The data value on a register write causes the DONE bit in the corresponding transfer control
descriptor to be cleared. Setting bit 1 (CDSB[0]) provides a global clear function, forcing all DONE bits
to be cleared.

If bit 0 is set, the CDSB command is ignored. This allows multiple byte registers to be written as a 32-bit
word. Reads of this register return all zeroes.

Offset: EDMA_BASE + 0x001E Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP SSB[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 8-14. eDMA Set START Bit Register (EDMA_SSBR)

Table 8-13. EDMA_SSBR field descriptions

Field Description

NOP No operation
0 Normal operation
1 No operation, ignore bits 1–7.

SSB[0:6] Set START Bit (channel service request)
0–32 (64 for eDMA) Set the corresponding channel’s TCD START bit.
64–127 Set all TCD START bits.

Offset: EDMA_BASE + 0x001F Access: User write-only

0 1 2 3 4 5 6 7

R

W NOP CDSB[0:6]

Reset 0 0 0 0 0 0 0 0

Figure 8-15. eDMA Clear DONE Status Bit Register (EDMA_CDSBR)

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

160 Freescale Semiconductor

8.3.2.13 eDMA Interrupt Request Registers (EDMA_IRQRH, EDMA_IRQRL)

The EDMA_IRQRH and EDMA_IRQRL provides a bitmap for the 32 channels signaling the presence of
an interrupt request for each channel. EDMA_IRQRH maps to channels 63–32 and EDMA_IRQRL maps
to channels 31–0.

The DMA engine signals the occurrence of a programmed interrupt on the completion of a data transfer
as defined in the transfer control descriptor by setting the appropriate bit in this register. The outputs of
this register are directly routed to the interrupt controller (INTC). During the execution of the interrupt
service routine associated with any given channel, software must clear the appropriate bit, negating the
interrupt request. Typically, a write to the EDMA_CIRQR in the interrupt service routine is used for this
purpose.

The state of any given channel’s interrupt request is directly affected by writes to this register; it is also
affected by writes to the EDMA_CIRQR. On writes to the EDMA_IRQRH or EDMA_IRQRL, a 1 in any
bit position clears the corresponding channel’s interrupt request. A 0 in any bit position has no effect on
the corresponding channel’s current interrupt status. The EDMA_CIRQR is provided so the interrupt
request for a single channel can be cleared without performing a read-modify-write sequence to the
EDMA_IRQRH and EDMA_IRQRL.

Table 8-14. EDMA_CDSBR field descriptions

Field Description

NOP No operation
0 Normal operation
1 No operation, ignore bits 1–7.

CDSB[0:6] Clear DONE Status Bit
0–32 (64 for eDMA) Clear the corresponding channel’s DONE bit.
64–127 Clear all TCD DONE bits.

Address: EDMA_BASE + 0x0020 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

IN
T

6
3

IN
T

6
2

IN
T

6
1

IN
T

6
0

IN
T

5
9

IN
T

5
8

IN
T

5
7

IN
T

5
6

IN
T

5
5

IN
T

5
4

IN
T

5
3

IN
T

5
2

IN
T

5
1

IN
T

5
0

IN
T

4
9

IN
T

4
8

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

IN
T

4
7

IN
T

4
6

IN
T

4
5

IN
T

4
4

IN
T

4
3

IN
T

4
2

IN
T

4
1

IN
T

4
0

IN
T

3
9

IN
T

3
8

IN
T

3
7

IN
T

3
6

IN
T

3
5

IN
T

3
4

IN
T

3
3

IN
T

3
2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-16. eDMA Interrupt Request High Register (EDMA_IRQRH)

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 161

8.3.2.14 eDMA Error Registers (EDMA_ERH, EDMA_ERL)

Register EDMA_ERH and EDMA_ERL provide a bitmap for the 32 channels signaling the presence of
an error for each channel. EDMA_ERH supports channels 63–32 (for eDMA) and EDMA_ERL maps to
channels 31-0.

The DMA engine signals the occurrence of a error condition by setting the appropriate bit in this register.
The outputs of this register are enabled by the contents of the EDMA_EEIR, then logically summed across
32 (64 for eDMA) channels to form an error interrupt request, which is then routed to the interrupt
controller. During the execution of the interrupt service routine associated with any eDMA errors, it is
software’s responsibility to clear the appropriate bit, negating the error interrupt request. Typically, a write
to the EDMA_CER in the interrupt service routine is used for this purpose. The normal eDMA channel
completion indicators, setting the transfer control descriptor DONE flag and the possible assertion of an
interrupt request, are not affected when an error is detected.

The contents of this register can also be polled and a non-zero value indicates the presence of a channel
error, regardless of the state of the EDMA_EEIR. Bit EDMA_ESR[VLD] is a logical OR of all bits in this
register and it provides a single bit indication of any errors. The state of any given channel’s error
indicators is affected by writes to this register; it is also affected by writes to the EDMA_CER. On writes
to EDMA_ERH or EDMA_ERL, a ‘1’ in any bit position clears the corresponding channel’s error status.
A ‘0’ in any bit position has no effect on the corresponding channel’s current error status. The
EDMA_CER is provided so the error indicator for a single channel can be cleared.

Address: EDMA_BASE + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
IN

T
3

1

IN
T

3
0

IN
T

2
9

IN
T

2
8

IN
T

2
7

IN
T

2
6

IN
T

2
5

IN
T

2
4

IN
T

2
3

IN
T

2
2

IN
T

2
1

IN
T

2
0

IN
T

1
9

IN
T

1
8

IN
T

1
7

IN
T

1
6

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 19 19 20 21 22 23 24 25 26 27 28 29 30 31

R

IN
T

15

IN
T

14

IN
T

13

IN
T

12

IN
T

11

IN
T

10

IN
T

09

IN
T

08

IN
T

07

IN
T

06

IN
T

05

IN
T

04

IN
T

03

IN
T

02

IN
T

01

IN
T

00

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-17. eDMA Interrupt Request Register (EDMA_IRQRL)

Table 8-15. EDMA_IRQRL field descriptions

Field Description

0–31
INTn

eDMA Interrupt Request n
0 The interrupt request for channel n is cleared.
1 The interrupt request for channel n is active.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

162 Freescale Semiconductor

8.3.2.15 DMA Hardware Request Status Registers (EDMA_HRSH, EDMA_HRSL)

Registers EDMA_HRSH and EDMA_HRSL provide a bitmap for the implemented channels (32 or 64) to
show the current hardware request status for each channel. EDMA_HRSH maps to channels 64–32 and
EDMA_HRSL maps to channels 31-00.

Address: EDMA_BASE + 0x0028 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
E

R
R

63

E
R

R
62

E
R

R
61

E
R

R
60

E
R

R
59

E
R

R
58

E
R

R
57

E
R

R
56

E
R

R
55

E
R

R
54

E
R

R
53

E
R

R
52

E
R

R
51

E
R

R
50

E
R

R
49

E
R

R
48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
R

R
4

7

E
R

R
4

6

E
R

R
4

5

E
R

R
4

4

E
R

R
4

3

E
R

R
4

2

E
R

R
4

1

E
R

R
4

0

E
R

R
3

9

E
R

R
3

8

E
R

R
3

7

E
R

R
3

6

E
R

R
3

5

E
R

R
3

4

E
R

R
3

3

E
R

R
3

2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-18. eDMA Error High Register (EDMA_ERH)

Address: EDMA_BASE + 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
R

R
31

E
R

R
30

E
R

R
29

E
R

R
28

E
R

R
27

E
R

R
26

E
R

R
25

E
R

R
24

E
R

R
23

E
R

R
22

E
R

R
21

E
R

R
20

E
R

R
19

E
R

R
18

E
R

R
17

E
R

R
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
R

R
1

5

E
R

R
1

4

E
R

R
1

3

E
R

R
1

2

E
R

R
11

E
R

R
1

0

E
R

R
0

9

E
R

R
0

8

E
R

R
0

7

E
R

R
0

6

E
R

R
0

5

E
R

R
0

4

E
R

R
0

3

E
R

R
0

2

E
R

R
0

1

E
R

R
0

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8-19. eDMA Error Register (EDMA_ERL)

Table 8-16. EDMA_ERL field descriptions

Field Description

0–31
ERRn

eDMA Error n
0 An error in channel n has not occurred.
1 An error in channel n has occurred.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 163

Figure 8-20. EDMA Hardware Request Status Register High (EDMA_HRSH)

Figure 8-21. EDMA Hardware Request Status Register Low (EDMA_HRSL)

8.3.2.16 eDMA Channel n Priority Registers (EDMA_CPRn)

When the fixed-priority channel arbitration mode is enabled (EDMA_CR[ERCA] = 0), the contents of
these registers define the unique priorities associated with each channel. The channel priorities are
evaluated by numeric value; that is, 0 is the lowest priority, 1 is the next higher priority, then 2, 3, etc. If
software modifies channel priority values, then the software must ensure that the channel priorities contain
unique values. Otherwise, a configuration error is reported. The range of the priority value is limited to the

Address: EDMA_BASE + 0x0030 Access: User R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
H

R
S

63

H
R

S
62

H
R

S
61

H
R

S
60

H
R

S
59

H
R

S
58

H
R

S
57

H
R

S
56

H
R

S
55

H
R

S
54

H
R

S
53

H
R

S
52

H
R

S
51

H
R

S
50

H
R

S
49

H
R

S
48

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

H
R

S
4

7

H
R

S
4

6

H
R

S
4

5

H
R

S
4

4

H
R

S
4

3

H
R

S
4

2

H
R

S
4

1

H
R

S
4

0

H
R

S
3

9

H
R

S
3

8

H
R

S
3

7

H
R

S
3

6

H
R

S
3

5

H
R

S
3

4

H
R

S
3

3

H
R

S
3

2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Address: EDMA_BASE + 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

H
R

S
31

H
R

S
30

H
R

S
29

H
R

S
28

H
R

S
27

H
R

S
26

H
R

S
25

H
R

S
24

H
R

S
23

H
R

S
22

H
R

S
21

H
R

S
20

H
R

S
19

H
R

S
18

H
R

S
17

H
R

S
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

H
R

S
1

5

H
R

S
1

4

H
R

S
1

3

H
R

S
1

2

H
R

S
11

H
R

S
1

0

H
R

S
0

9

H
R

S
0

8

H
R

S
0

7

H
R

S
0

6

H
R

S
0

5

H
R

S
0

4

H
R

S
0

3

H
R

S
0

2

H
R

S
0

1

H
R

S
0

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8-17. EDMA_HRSL field descriptions

Field Description

0–31
HRSn

DMA Hardware Request Status
0 A hardware service request for channel n is not present.
1 A hardware service request for channel n is present.
Note: The hardware request status reflects the state of the request as seen by the arbitration logic.

Therefore, this status is affected by bit EDMA_ERQRL[ERQn].

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

164 Freescale Semiconductor

values of 0 through 15. When read, the GRPPRI bits of the EDMA_CPRn register reflect the current
priority level of the group of channels in which the corresponding channel resides. GRPPRI bits are not
affected by writes to the EDMA_CPRn registers. The group priority is assigned in the EDMA_CR. See
Figure 8-2 and Table 8-3 for the EDMA_CR definition.

Channel pre-emption is enabled on a per-channel basis by setting the ECP bit in the EDMA_CPRn register.
Channel pre-emption allows the executing channel’s data transfers to be temporarily suspended in favor
of starting a higher priority channel. After the pre-empting channel has completed all its minor loop data
transfers, the pre-empted channel is restored and resumes execution. After the restored channel completes
one read/write sequence, it is again eligible for pre-emption. If any higher priority channel requests
service, the restored channel is suspended and the higher priority channel is serviced. Nested pre-emption
(attempting to pre-empt a pre-empting channel) is not supported. After a pre-empting channel begins
execution, it cannot be pre-empted. Pre-emption is available only when fixed arbitration is selected for
both group and channel arbitration modes.

A channel’s ability to pre-empt another channel can be disabled by setting EDMA_CPR[DPA]. When a
channel’s pre-empt ability is disabled, that channel cannot suspend a lower priority channel’s data transfer;
regardless of the lower priority channel’s ECP setting. This allows for a pool of low priority, large data
moving channels to be defined. These low priority channels can be configured to not pre-empt each other,
thus preventing a low priority channel from consuming the pre-empt slot normally available a true, high
priority channel.

Address: EDMA_BASE + 0x0100 + n Access: User read/write

0 1 2 3 4 5 6 7

R
ECP DPA

GRPPRI
CHPRI

W

Reset 0 0 0 0 — 1

1 The reset value for the channel priority field, CHPRI[0–3], is equal to the corresponding channel
number for each priority register; that is, EDMA_CPRI0[CHPRI] = 0b0000 and
EDMA_CPR15[CHPRI] = 0b1111.

Figure 8-22. eDMA Channel n Priority Register (EDMA_CPRn)

Table 8-18. EDMA_CPRn field descriptions

Field Description

ECP Enable Channel Pre-emption
0 Channel n cannot be suspended by a higher priority channel’s service request.
1 Channel n can be temporarily suspended by the service request of a higher priority channel.

DPA Disable pre-empt ability
0 Channel n can suspend a lower priority channel.
1 Channel n cannot suspend any channel, regardless of channel priority.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 165

8.3.2.17 Transfer control descriptor (TCD)

Each channel requires a 32-byte transfer control descriptor for defining the desired data movement
operation. The channel descriptors are stored in the local memory in sequential order: channel 0, channel
1,... channel 31 (63 for eDMA). The definitions of the TCD are presented as eight 32-bit values. Table 8-19
is a field list of the basic TCD structure.

Figure 8-23 and Table 8-20 define the fields of the TCDn structure.

GRPPRI[0:1] Channel n current group priority
Group priority assigned to this channel group when fixed-priority arbitration is enabled. These two
bits are read-only; writes are ignored. The reset value for the group priority fields, is equal to the
corresponding channel number for each priority register; that is, EDMA_CPR31[GRPPRI] = 0b01.

CHPRI[0:3] Channel n Arbitration Priority
Channel priority when fixed-priority arbitration is enabled. The reset value for the channel priority
fields CHPRI[0–3], is equal to the corresponding channel number for each priority register; that is,
EDMA_CPR31[CHPRI] = 0b1111.

Table 8-19. TCDn 32-bit memory structure

eDMA offset TCDn field

0x1000+(32 x n)+0x0000 Source address (saddr)

0x1000+(32 x n)+0x0004 Transfer attributes Signed source address offset (soff)

0x1000+(32 x n)+0x0008 Inner minor byte count (nbytes)

0x1000+(32 x n)+0x000C Last source address adjustment (slast)

0x1000+(32 x n)+0x0010 Destination address (daddr)

0x1000+(32 x n)+0x0014 Current major iteration count (citer) Signed destination address offset (doff)

0x1000 (32 x n) 0x0018 Last destination address adjustment / scatter-gather address (dlast_sga)

0x1000+(32 x n)+0x001c Beginning major iteration count (biter) Channel control/status

Table 8-18. EDMA_CPRn field descriptions (continued)

Field Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

166 Freescale Semiconductor

NOTE

The TCD structures for the eDMA channels shown in Figure 8-23 are
implemented in internal SRAM. These structures are not initialized at reset;
therefore, all channel TCD parameters must be initialized by the application
code before activating that channel.

Word
offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0000 SADDR

0x0004 SMOD SSIZE DMOD DSIZE SOFF

0x0008 NBYTES1

1 The fields implemented in Word 2 depend on whether EDMA_CR(EMLM) is set to ‘0’ or ‘1’. Refer to Table 8-3.

0x0008

S
M

LO
E

1

D
M

L
O

E
1

MLOFF or NBYTES1 NBYTES1

0x000C SLAST

0x0010 DADDR

0x0014

C
IT

E
R

.E
_

LI
N

K

CITER or
CITER.LINKCH

CITER DOFF

0x0018 DLAST_SGA

0x001C

B
IT

E
R

.E
_

 L
IN

K

BITER or
BITER.LINKCH

BITER BWC MAJOR LINKCH

D
O

N
E

A
C

T
IV

E

M
A

JO
R

.E
_L

IN
K

E
_S

G

D
_R

E
Q

IN
T

_H
A

LF

IN
T

_
M

A
J

S
TA

R
T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 8-23. TCD structure

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 167

Table 8-20. TCDn field descriptions

Bits /
Word offset

[n:n]
Name Description

0–31 /
0x0 [0:31]

SADDR
[0:31]

Source address
Memory address pointing to the source data.
Word 0x0, bits 0–31.

32–36 /
0x4 [0:4]

SMOD
[0:4]

Source address modulo
0 Source address modulo feature is disabled.
non-0 This value defines a specific address range that is specified to be the

value after SADDR + SOFF calculation is performed or the original
register value. The setting of this field provides the ability to easily
implement a circular data queue. For data queues requiring power-of-2
size bytes, the queue should start at a 0-modulo-size address and the
SMOD field should be set to the appropriate value for the queue, freezing
the desired number of upper address bits. The value programmed into
this field specifies the number of lower address bits that are allowed to
change. For this circular queue application, the SOFF is typically set to
the transfer size to implement post-increment addressing with the SMOD
function constraining the addresses to a 0-modulo-size range.

37–39 /
0x4 [5:7]

SSIZE
[0:2]

Source data transfer size
000 8-bit
001 16-bit
010 32-bit
011 64-bit
100 Reserved
101 32-byte (64-bit, 4 beat, WRAP4 burst)
110 Reserved
111 Reserved
The attempted specification of a reserved encoding causes a configuration
error.

40–44 /
0x4 [8:12]

DMOD
[0:4]

Destination address modulo
See the SMOD[0:5] definition.

45–47 /
0x4 [13:15]

DSIZE
[0:2]

Destination data transfer size
See the SSIZE[0:2] definition.

48–63 /
0x4 [16:31]

SOFF
[0:15]

Source address signed offset
Sign-extended offset applied to the current source address to form the
next-state value as each source read is completed.

64
0x8 [0]

SMLOE
0

Source minor loop offset enable
This flag selects whether the minor loop offset is applied to the source address
upon minor loop completion.

0 The minor loop offset is not applied to the saddr.
1 The minor loop offset is applied to the saddr.

65
0x8 [1]

DMLOE
1

Destination minor loop offset enable
This flag selects whether the minor loop offset is applied to the destination
address upon minor loop completion.

0 The minor loop offset is not applied to the daddr.
1 The minor loop offset is applied to the daddr.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

168 Freescale Semiconductor

66–85
0x8 [2-21]

MLOFF or
NBYTES

[0:19]

Inner “minor” byte transfer count or Minor loop offset
If both SMLOE and DMLOE are cleared, this field is part of the byte transfer
count.

If either SMLOE or DMLOE are set, this field represents a sign-extended offset
applied to the source or destination address to form the next-state value after
the minor loop is completed.

86–95 /
0x8 [22:31]

NBYTES Inner “minor” byte transfer count
Number of bytes to be transferred in each service request of the channel. As a
channel is activated, the contents of the appropriate TCD is loaded into the
eDMA engine, and the appropriate reads and writes performed until the
complete byte transfer count has been transferred. This is an indivisible
operation and cannot be stalled or halted. Once the minor count is exhausted,
the current values of the SADDR and DADDR are written back into the local
memory, the major iteration count is decremented and restored to the local
memory. If the major iteration count is completed, additional processing is
performed.
Note: The NBYTES value of 0x0000_0000 is interpreted as 0x1_0000_0000,

thus specifying a 4 GB transfer.

96–127 /
0xC [0:31]

SLAST
[0:31]

Last source address adjustment
Adjustment value added to the source address at the completion of the outer
major iteration count. This value can be applied to “restore” the source address
to the initial value, or adjust the address to reference the next data structure.

128–159 /
0x10 [0:31]

DADDR
[0:31]

Destination address
Memory address pointing to the destination data.

160 /
0x14 [0]

CITER.E_LINK Enable channel-to-channel linking on minor loop completion
As the channel completes the inner minor loop, this flag enables the linking to
another channel, defined by CITER.LINKCH[0:5]. The link target channel
initiates a channel service request via an internal mechanism that sets the bit
EDMA_TCD[START] of the specified channel. If channel linking is disabled, the
CITER value is extended to 15 bits in place of a link channel number. If the major
loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

Note: This bit must be equal to the BITER.E_LINK bit. Otherwise, a
configuration error is reported.

161–166 /
0x14 [1:6]

CITER
[0:5]
or

CITER.LINKCH
[0:5]

Current major iteration count or link channel number
If channel-to-channel linking is disabled (EDMA_TCD[CITER.E_LINK] = 0),
then
 • No channel-to-channel linking (or chaining) is performed after the inner minor

loop is exhausted. TCD bits [161:175] are used to form a 15-bit CITER field.
Otherwise,
 • After the minor loop is exhausted, the DMA engine initiates a channel service

request at the channel defined by CITER.LINKCH[0:5] by setting that
channel’s EDMA_TCD[START] bit.

Table 8-20. TCDn field descriptions (continued)

Bits /
Word offset

[n:n]
Name Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 169

167–175 /
0x14 [7:15]

CITER
[6:14]

Current major iteration count
This 9 or 15-bit count represents the current major loop count for the channel. It
is decremented each time the minor loop is completed and updated in the
transfer control descriptor memory. After the major iteration count is exhausted,
the channel performs a number of operations (for example, final source and
destination address calculations), optionally generating an interrupt to signal
channel completion before reloading the CITER field from the beginning
iteration count (BITER) field.
Note: When the CITER field is initially loaded by software, it must be set to the

same value as that contained in the BITER field.

Note: If the channel is configured to execute a single service request, the initial
values of BITER and CITER should be 0x0001.

176–191 /
0x14 [16:31]

DOFF
[0:15]

Destination address signed Offset
Sign-extended offset applied to the current destination address to form the
next-state value as each destination write is completed.

192–223 /
0x18 [0:31]

DLAST_SGA
[0:31]

Last destination address adjustment or the memory address for the next transfer
control descriptor to be loaded into this channel (scatter-gather).
If scatter-gather processing for the channel is disabled (EDMA_TCD[E_SG] = 0)
then
 • Adjustment value added to the destination address at the completion of the

outer major iteration count.
This value can be applied to restore the destination address to the initial value,
or adjust the address to reference the next data structure.
Otherwise,
 • This address points to the beginning of a 0-modulo-32 byte region containing

the next transfer control descriptor to be loaded into this channel. This
channel reload is performed as the major iteration count completes. The
scatter-gather address must be 0-modulo-32 byte, otherwise a configuration
error is reported.

224 /
0x1C [0]

BITER.E_LINK Enables channel-to-channel linking on minor loop complete
As the channel completes the inner minor loop, this flag enables the linking to
another channel, defined by BITER.LINKCH[0:5]. The link target channel
initiates a channel service request via an internal mechanism that sets the bit
EDMA_TCD[START] of the specified channel. If channel linking is disabled, the
BITER value is extended to 15 bits in place of a link channel number. If the major
loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.
0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.
Note: When the TCD is first loaded by software, this field must be set equal to

the corresponding CITER field. Otherwise, a configuration error is
reported. As the major iteration count is exhausted, the contents of this
field is reloaded into the CITER field.

Table 8-20. TCDn field descriptions (continued)

Bits /
Word offset

[n:n]
Name Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

170 Freescale Semiconductor

225–230 /
0x1C [1:6]

BITER
[0:5]
or

BITER.LINKCH[0:5
]

Starting major iteration count or link channel number
If channel-to-channel linking is disabled (EDMA_TCD[BITER.E_LINK] = 0),
then
 • No channel-to-channel linking (or chaining) is performed after the inner minor

loop is exhausted. TCD bits [225:239] are used to form a 15-bit BITER field.
Otherwise,
 • After the minor loop is exhausted, the DMA engine initiates a channel service

request at the channel, defined by BITER.LINKCH[0:5], by setting that
channel’s EDMA_TCD[START] bit.

Note: When the TCD is first loaded by software, this field must be set equal to
the corresponding CITER field. Otherwise, a configuration error is
reported. As the major iteration count is exhausted, the contents of this
field is reloaded into the CITER field.

231–239 /
0x1C [7:15]

BITER
[6:14]

Starting major iteration count
As the transfer control descriptor is first loaded by software, this field must be
equal to the value in the CITER field. As the major iteration count is exhausted,
the contents of this field are reloaded into the CITER field.
Note: If the channel is configured to execute a single service request, the initial

values of BITER and CITER should be 0x0001.

240–241 /
0x1C

[16:17]

BWC
[0:1]

Bandwidth control
This two-bit field provides a mechanism to effectively throttle the amount of bus
bandwidth consumed by the eDMA. In general, as the eDMA processes the
inner minor loop, it continuously generates read/write sequences until the minor
count is exhausted. This field forces the eDMA to stall after the completion of
each read/write access to control the bus request bandwidth seen by the system
bus crossbar switch (XBAR).
00 No DMA engine stalls
01 Reserved
10 DMA engine stalls for 4 cycles after each r/w
11 DMA engine stalls for 8 cycles after each r/w

242–247 /
0x1C

[18:23]

MAJOR.LINKCH
[0:5]

Link channel number
If channel-to-channel linking on major loop complete is disabled
(EDMA_TCD[MAJOR.E_LINK] = 0) then,
 • No channel-to-channel linking (or chaining) is performed after the outer major

loop counter is exhausted.
Otherwise
 • After the major loop counter is exhausted, the DMA engine initiates a channel

service request at the channel defined by MAJOR.LINKCH[0:5] by setting
that channel’s EDMA_TCD[START] bit.

248 /
0x1C [24]

DONE Channel done
This flag indicates the eDMA has completed the outer major loop. It is set by the
DMA engine as the CITER count reaches zero; it is cleared by software or
hardware when the channel is activated (when the DMA engine has begun
processing the channel, not when the first data transfer occurs).
Note: This bit must be cleared to write the MAJOR.E_LINK or E_SG bits.

Table 8-20. TCDn field descriptions (continued)

Bits /
Word offset

[n:n]
Name Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 171

249 /
0x1C [25]

ACTIVE Channel active
This flag signals the channel is currently in execution. It is set when channel
service begins, and is cleared by the DMA engine as the inner minor loop
completes or if any error condition is detected.

250 /
0x1C [26]

MAJOR.E_LINK Enable channel-to-channel linking on major loop completion
As the channel completes the outer major loop, this flag enables the linking to
another channel, defined by MAJOR.LINKCH[0:5]. The link target channel
initiates a channel service request via an internal mechanism that sets bit
EDMA_TCD[START] of the specified channel.
Note: To support the dynamic linking coherency model, this field is forced to

zero when written to while the bit EDMA_TCD[DONE] is set.

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

251 /
0x1C [27]

E_SG Enable scatter-gather processing
As the channel completes the outer major loop, this flag enables scatter-gather
processing in the current channel. If enabled, the DMA engine uses
DLAST_SGA as a memory pointer to a 0-modulo-32 address containing a
32-byte data structure which is loaded as the transfer control descriptor into the
local memory.
Note: To support the dynamic scatter-gather coherency model, this field is

forced to zero when written to while the bit EDMA_TCD[DONE] is set.

0 The current channel’s TCD is normal format.
1 The current channel’s TCD specifies a scatter gather format. The

DLAST_SGA field provides a memory pointer to the next TCD to be loaded
into this channel after the outer major loop completes its execution.

252 /
0x1C [28]

D_REQ Disable hardware request
If this flag is set, the eDMA hardware automatically clears the corresponding
EDMA_ERQH or EDMA_ERQL bit when the current major iteration count
reaches zero.
0 The channel’s EDMA_ERQH or EDMA_ERQL bit is not affected.
1 The channel’s EDMA_ERQH or EDMA_ERQL bit is cleared when the outer

major loop is complete.

253 /
0x1C [29]

INT_HALF Enable an interrupt when major counter is half complete
If this flag is set, the channel generates an interrupt request by setting the
appropriate bit in the EDMA_ERQH or EDMA_ERQL when the current major
iteration count reaches the halfway point. Specifically, the comparison
performed by the eDMA engine is (CITER == (BITER >> 1)). This halfway point
interrupt request is provided to support double-buffered (aka ping-pong)
schemes, or other types of data movement where the processor needs an early
indication of the transfer’s progress. CITER = BITER = 1 with INT_HALF
enabled will generate an interrupt as it satisfies the equation (CITER == (BITER
>> 1)) after a single activation.
0 The half-point interrupt is disabled.
1 The half-point interrupt is enabled.

Table 8-20. TCDn field descriptions (continued)

Bits /
Word offset

[n:n]
Name Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

172 Freescale Semiconductor

8.4 Functional description

This section provides an overview of the microarchitecture and functional operation of the eDMA block.

The eDMA module is partitioned into two major modules: the DMA engine and the transfer control
descriptor local memory. The DMA engine is further partitioned into four submodules, which are detailed
below.

• DMA engine

— Address path: This module implements registered versions of two channel transfer control
descriptors: channel x and channel y, and is responsible for all the master bus address
calculations. All the implemented channels provide the same functionality. This hardware
structure allows the data transfers associated with one channel to be pre-empted after the
completion of a read/write sequence if a higher priority channel service request is asserted
while the first channel is active. After a channel is activated, it runs until the minor loop is
completed unless pre-empted by a higher priority channel. This capability provides a
mechanism (optionally enabled by EDMA_CPRn[ECP]) where a large data move operation
can be pre-empted to minimize the time another channel is blocked from execution.

— When another channel is activated, the contents of its transfer control descriptor is read from
the local memory and loaded into the registers of the other address path channel{x,y}. After
the inner minor loop completes execution, the address path hardware writes the new values for
the TCDn.{SADDR, DADDR, CITER} back into the local memory. If the major iteration
count is exhausted, additional processing is performed, including the final address pointer
updates, reloading the TCDn.CITER field, and a possible fetch of the next TCDn from memory
as part of a scatter-gather operation.

— Data path: This module implements the actual bus master read/write datapath. It includes 32
bytes of register storage (matching the maximum transfer size) and the necessary mux logic to
support any required data alignment. The system read data bus is the primary input, and the
system write data bus is the primary output.

254 /
0x1C [30]

INT_MAJ Enable an interrupt when major iteration count completes
If this flag is set, the channel generates an interrupt request by setting the
appropriate bit in the EDMA_ERQH or EDMA_ERQL when the current major
iteration count reaches zero.
0 The end-of-major loop interrupt is disabled.
1 The end-of-major loop interrupt is enabled.

255 /
0x1C [31]

START Channel start
If this flag is set the channel is requesting service.
The eDMA hardware automatically clears this flag after the channel begins
execution.
0 The channel is not explicitly started.
1 The channel is explicitly started via a software initiated service request.

Table 8-20. TCDn field descriptions (continued)

Bits /
Word offset

[n:n]
Name Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 173

— The address and data path modules directly support the two-stage pipelined system bus. The
address path module represents the 1st stage of the bus pipeline (the address phase), while the
data path module implements the second stage of the pipeline (the data phase).

— Program model/channel arbitration: This module implements the first section of eDMA’s
programming model and also the channel arbitration logic. The programming model registers
are connected to the slave bus (not shown). The eDMA peripheral request inputs and eDMA
interrupt request outputs are also connected to this module (via the control logic).

— Control: This module provides all the control functions for the DMA engine. For data transfers
where the source and destination sizes are equal, the DMA engine performs a series of source
read, destination write operations until the number of bytes specified in the inner minor loop
byte count has been moved.

A minor loop interaction is defined as the number of bytes to transfer (nbytes) divided by the
transfer size. Transfer size is defined as:

if (SSIZE < DSIZE)

transfer size = destination transfer size (# of bytes)

else

transfer size = source transfer size (# of bytes)

Minor loop TCD variables are SOFF, SMOD, DOFF, DMOD, NBYTES, SADDR, DADDR,
BWC, ACTIVE, AND START. Major loop TCD variables are DLAST, SLAST, CITER,
BITER, DONE, D_REQ, INT_MAJ, MAJOR_LNKCH, and INT_HALF.

For descriptors where the sizes are not equal, multiple access of the smaller size data are
required for each reference of the larger size. For example, if the source size references 16-bit
data and the destination is 32-bit data, two reads are performed, then one 32-bit write.

• TCD local memory

— Memory controller: This logic implements the required dual-ported controller, handling
accesses from both the DMA engine as well as references from the slave bus. As noted earlier,
in the event of simultaneous accesses, the DMA engine is given priority and the slave
transaction is stalled. The hooks to a BIST controller for the local TCD memory are included
in this module.

— Memory array: The TCD is implemented using a single-ported, synchronous compiled RAM
memory array.

8.4.1 eDMA basic data flow

The eDMA transfers data based on a two-deep, nested flow. The basic flow of a data transfer can be
partitioned into three segments. As shown in Figure 8-24, the first segment involves the channel service
request. In the diagram, this example uses the assertion of the eDMA peripheral request signal to request
service for channel n. Channel service request via software and the TCDn.START bit follows the same
basic flow as an eDMA peripheral request. The eDMA peripheral request input signal is registered
internally and then routed to through the DMA engine, first through the control module, then into the
program model/channel arbitration module. In the next cycle, the channel arbitration is performed using
the fixed-priority or round-robin algorithm. After the arbitration is complete, the activated channel number
is sent through the address path and converted into the required address to access the TCD local memory.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

174 Freescale Semiconductor

Next, the TCD memory is accessed and the required descriptor read from the local memory and loaded
into the DMA engine address path channel{x,y} registers. The TCD memory is organized 64-bits in width
to minimize the time needed to fetch the activated channel’s descriptor and load it into the eDMA engine
address path channel{x,y} registers.

Figure 8-24. eDMA operation, Part 1

In the second part of the basic data flow as shown in Figure 8-25, the modules associated with the data
transfer (address path, data path, and control) sequence through the required source reads and destination
writes to perform the actual data movement. The source reads are initiated and the fetched data is
temporarily stored in the data path module until it is gated onto the system bus during the destination write.
This source read/destination write processing continues until the inner minor byte count has been
transferred. The eDMA done handshake signal is asserted at the end of the minor byte count transfer.

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA peripheral request

S
ys

te
m

 b
us

Data path Control
Address

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn – 1*

eDMA interrupt request

Bus read data

channel arbitration

eDMA done handshake

path

SRAM
Transfer control descriptor

(TCD)

SRAM

*n = 32 (64 for eDMA) channels

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 175

Figure 8-25. eDMA operation, Part 2

After the inner minor byte count has been moved, the final phase of the basic data flow is performed. In
this segment, the address path logic performs the required updates to certain fields in the channel’s TCD;
for example, SADDR, DADDR, CITER. If the outer major iteration count is exhausted, then there are
additional operations performed. These include the final address adjustments and reloading of the BITER
field into the CITER. Additionally, assertion of an optional interrupt request occurs at this time, as does a
possible fetch of a new TCD from memory using the scatter-gather address pointer included in the
descriptor. The updates to the TCD memory and the assertion of an interrupt request are shown in
Figure 8-26.

S
la

ve
 in

te
rf

a
ce

eDMA

eDMA interrupt request

S
ys

te
m

 b
us

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn – 1*

eDMA peripheral

Bus read data

channel arbitration

request

SRAM
Transfer control descriptor

(TCD)

SRAM

Data path Control
Address

path

eDMA done handshake

*n = 32 (64 for eDMA) channels

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

176 Freescale Semiconductor

Figure 8-26. eDMA operation, Part 3

8.5 Initialization / Application information

8.5.1 eDMA initialization

A typical initialization of the eDMA has the following sequence:

1. Write the EDMA_CR if a configuration other than the default is desired.

2. Write the channel priority levels into the EDMA_CPRn registers if a configuration other than the
default is desired.

3. Enable error interrupts in the EDMA_EEIRL and/or EDMA_EEIRH registers if desired.

4. Write the 32-byte TCD for each channel that may request service.

5. Enable any hardware service requests via the EDMA_ERQRH and/or EDMA_ERQRL registers.

6. Request channel service by software (setting bit EDMA_TCD[START]) or by hardware (slave
device asserting its DMA peripheral request signal).

After any channel requests service, a channel is selected for execution based on the arbitration and priority
levels written into the programmer's model. The DMA engine reads the entire TCD, including the primary

S
la

ve
 in

te
rf

a
ce

eDMA

eDMA done

S
ys

te
m

 b
us

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn – 1*

eDMA peripheral

Bus read data

request

SRAM
Transfer control descriptor

(TCD)

SRAM

Data path Address
path

Control

Program model/
channel arbitration

*n = 32 (64 for eDMA) channels

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 177

transfer control parameter shown in Table 8-21, for the selected channel into its internal address path
module. As the TCD is being read, the first transfer is initiated on the system bus unless a configuration
error is detected. Transfers from the source (as defined by the source address, EDMA_TCD[SADDR]) to
the destination (as defined by the destination address, EDMA_TCD.DADDR) continue until the specified
number of bytes (EDMA_TCD[NBYTES]) have been transferred. When the transfer is complete, the
DMA engine's local EDMA_TCD[SADDR], EDMA_TCD.DADDR, and EDMA_TCD.CITER are
written back to the main TCD memory and any minor loop channel linking is performed, if enabled. If the
major loop is exhausted, further post processing is executed; for example, interrupts, major loop channel
linking, and scatter-gather operations, if enabled.

Figure 8-27 shows how each DMA request initiates one minor loop transfer (iteration) without CPU
intervention. DMA arbitration can occur after each minor loop, and one level of minor loop DMA
pre-emption is allowed. The number of minor loops in a major loop is specified by the beginning iteration
count (biter).

Table 8-21. TCD primary control and status fields

TCD field name Description

START Control bit to start channel when using a software initiated DMA service
(Automatically cleared by hardware)

ACTIVE Status bit indicating the channel is currently in execution

DONE Status bit indicating major loop completion (cleared by software when using a
software initiated DMA service)

D_REQ Control bit to disable DMA request at end of major loop completion when using
a hardware-initiated DMA service

BWC Control bits for throttling bandwidth control of a channel

E_SG Control bit to enable scatter-gather feature

INT_HALF Control bit to enable interrupt when major loop is half complete

INT_MAJ Control bit to enable interrupt when major loop completes

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

178 Freescale Semiconductor

Figure 8-27. Example of multiple loop iterations

Figure 8-28 lists the memory array terms and how the TCD settings interrelate.

Figure 8-28. Memory array terms

8.5.2 DMA programming errors

The DMA performs various tests on the transfer control descriptor to verify consistency in the descriptor
data. Most programming errors are reported on a per-channel basis with the exception of two errors:

DMA request

Minor loop 3

Current major loop
iteration count

(CITER)
Example memory array

•
•
•

DMA request

Minor loop 2•
•
•

DMA request

Minor loop 1•
•
•

Major loop

xADDR:
(Starting address)

xSIZE:
(Size of one data

Minor loop
(NBYTES in

minor loop, often
the same value

as xSIZE)

Offset (xOFF): Number of
bytes added to current

address after each transfer
(Often the same value

as xSIZE)

•
Minor loop

Each DMA source (S) and
destination (D) has its own:

• Address (xADDR)
• Size (xSIZE)
• Offset (xOFF)

xLAST: Number of bytes
added to current address

Peripheral queues typically
have size and offset
equal to NBYTES

•
•

after major loop
(typically used to

loop back)

transfer)

•
•
•

•
•
•

Last minor loop

• Modulo (xMOD)
• Last address adjustment
(xLAST) where x = S or D

•
•
•

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 179

group-priority error and channel-priority error, or EDMA_ESR[GPE] and EDMA_ESR[CPE],
respectively.

For all error types other than group- or channel-priority errors, the channel number causing the error is
recorded in the EDMA_ESR. If the error source is not removed before the next activation of the problem
channel, the error is detected and recorded again.

Channel-priority errors are identified within a group after that group has been selected as the active group.
For example, all of the channel priorities in group 1 are unique, but some of the channel priorities in group
0 are the same:

1. The DMA is configured for fixed-group and fixed-channel arbitration modes.

2. Group 1 is the highest priority and all channels are unique in that group.

3. Group 0 is the next highest priority and has two channels with the same priority level.

4. If group 1 has any service requests, those requests are executed.

5. After all of group 1 requests have completed, group 0 becomes the next active group.

6. If group 0 has a service request, then an undefined channel in group 0 is selected and a
channel-priority error will occur.

7. This repeats until the all of group 0 requests have been removed or a higher priority group 1 request
comes in.

In this sequence, for item 2, the DMA acknowledge lines assert only if the selected channel is requesting
service via the DMA peripheral request signal. If interrupts are enabled for all channels, the user receives
an error interrupt, but the channel number for the EDMA_ER and the error interrupt request line are
undetermined because they reflect the undefined channel. A group-priority error is global and any request
in any group causes a group-priority error.

If priority levels are not unique, the highest (channel/group) priority that has an active request is selected,
but the lowest numbered (channel/group) with that priority is selected by arbitration and executed by the
DMA engine. The hardware service request handshake signals, error interrupts, and error reporting are
associated with the selected channel.

8.5.3 DMA request assignments

The assignments between the DMA requests from the modules to the channels of the eDMA are shown in
Table 8-22. The source column is written in C language syntax. The syntax is
module_instance.register[bit].

Table 8-22. DMA request summary for eDMA

DMA request
Channe

l
Source Description

eQADC_FISR0_CFFF0 0 EQADC.FISR0[CFFF0] eQADC Command FIFO 0 Fill Flag

eQADC_FISR0_RFDF0 1 EQADC.FISR0[RFDF0] eQADC Receive FIFO 0 Drain Flag

eQADC_FISR1_CFFF1 2 EQADC.FISR1[CFFF1] eQADC Command FIFO 1 Fill Flag

eQADC_FISR1_RFDF1 3 EQADC.FISR1[RFDF1] eQADC Receive FIFO 1 Drain Flag

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

180 Freescale Semiconductor

eQADC_FISR2_CFFF2 4 EQADC.FISR2[CFFF2] eQADC Command FIFO 2 Fill Flag

eQADC_FISR2_RFDF2 5 EQADC.FISR2[RFDF2] eQADC Receive FIFO 2 Drain Flag

eQADC_FISR3_CFFF3 6 EQADC.FISR3[CFFF3] eQADC Command FIFO 3 Fill Flag

eQADC_FISR3_RFDF3 7 EQADC.FISR3[RFDF3] eQADC Receive FIFO 3 Drain Flag

eQADC_FISR4_CFFF4 8 EQADC.FISR4[CFFF4] eQADC Command FIFO 4 Fill Flag

eQADC_FISR4_RFDF4 9 EQADC.FISR4[RFDF4] eQADC Receive FIFO 4 Drain Flag

eQADC_FISR5_CFFF5 10 EQADC.FISR5[CFFF5] eQADC Command FIFO 5 Fill Flag

eQADC_FISR5_RFDF5 11 EQADC.FISR5[RFDF5] eQADC Receive FIFO 5 Drain Flag

DSPIB_SR_TFFF 12 DSPIB.SR[TFFF] DSPIB Transmit FIFO Fill Flag

DSPIB_SR_RFDF 13 DSPIB.SR[RFDF] DSPIB Receive FIFO Drain Flag

DSPIC_SR_TFFF 14 DSPIC.SR[TFFF] DSPIC Transmit FIFO Fill Flag

DSPIC_SR_RFDF 15 DSPIC.SR[RFDF] DSPIC Receive FIFO Drain Flag

DSPID_SR_TFFF 16 DSPID.SR[TFFF] DSPID Transmit FIFO Fill Flag

DSPID_SR_RFDF 17 DSPID.SR[RFDF] DSPID Receive FIFO Drain Flag

eSCIA_COMBTX 18 ESCIA.SR[TDRE] ||
ESCIA.SR[TC] ||
ESCIA.SR[TXRDY]

eSCIA combined DMA request of the
Transmit Data Register Empty, Transmit
Complete, and LIN Transmit Data
Ready DMA requests

eSCIA_COMBRX 19 ESCIA.SR[RDRF] ||
ESCIA.SR[RXRDY]

eSCIA combined DMA request of the
Receive Data Register Full and LIN
Receive Data Ready DMA requests

eMIOS_GFR_F0 20 EMIOS.GFR[F0] eMIOS channel 0 Flag

eMIOS_GFR_F1 21 EMIOS.GFR[F1] eMIOS channel 1 Flag

eMIOS_GFR_F2 22 EMIOS.GFR[F2] eMIOS channel 2 Flag

eMIOS_GFR_F3 23 EMIOS.GFR[F3] eMIOS channel 3 Flag

eMIOS_GFR_F4 24 EMIOS.GFR[F4] eMIOS channel 4 Flag

eMIOS_GFR_F8 25 EMIOS.GFR[F8] eMIOS channel 8 Flag

eMIOS_GFR_F9 26 EMIOS.GFR[F9] eMIOS channel 9 Flag

eTPU_CDTRSR_A_DTRS0 27 ETPU.CDTRSR_A[DTRS0] eTPUA Channel 0 Data Transfer
Request Status

eTPU_CDTRSR_A_DTRS1 28 ETPU.CDTRSR_A[DTRS1] eTPUA Channel 1 Data Transfer
Request Status

eTPU_CDTRSR_A_DTRS2 29 ETPU.CDTRSR_A[DTRS2] eTPUA Channel 2 Data Transfer
Request Status

eTPU_CDTRSR_A_DTRS1
4

30 ETPU.CDTRSR_A[DTRS14] eTPUA Channel 14 Data Transfer
Request Status

Table 8-22. DMA request summary for eDMA (continued)

DMA request
Channe

l
Source Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 181

eTPU_CDTRSR_A_DTRS1
5

31 ETPU.CDTRSR_A[DTRS15] eTPUA Channel 15 Data Transfer
Request Status

No Request 32 —

No Request 33 —

eSCIB_COMBTX 34 ESCIB.SR[TDRE] ||
ESCIB.SR[TC] ||
ESCIB.SR[TXRDY]

eSCIB combined DMA request of the
Transmit Data Register Empty, Transmit
Complete, and LIN Transmit Data
Ready DMA requests

eSCIB_COMBRX 35 ESCIB.SR[RDRF] ||
ESCIB.SR[RXRDY]

eSCIB combined DMA request of the
Receive Data Register Full and LIN
Receive Data Ready DMA requests

eMIOS_GFR_F6 36 EMIOS.GFR[F6] eMIOS channel 6 Flag

eMIOS_GFR_F7 37 EMIOS.GFR[F7] eMIOS channel 7 Flag

eMIOS_GFR_F10 38 EMIOS.GFR[F10] eMIOS channel 10 Flag

eMIOS_GFR_F11 39 EMIOS.GFR[F11] eMIOS channel 11 Flag

eMIOS_GFR_F16 40 EMIOS.GFR[F16] eMIOS channel 16 Flag

eMIOS_GFR_F17 41 EMIOS.GFR[F17] eMIOS channel 17 Flag

eMIOS_GFR_F18 42 EMIOS.GFR[F18] eMIOS channel 18 Flag

eMIOS_GFR_F19 43 EMIOS.GFR[F19] eMIOS channel 19 Flag

eTPU_CDTRSR_A_DTRS1
2

44 ETPU.CDTRSR_A[DTRS12] eTPUA Channel 12 Data Transfer
Request Status

eTPU_CDTRSR_A_DTRS1
3

45 ETPU.CDTRSR_A[DTRS13] eTPUA Channel 13 Data Transfer
Request Status

eTPU_CDTRSR_A_DTRS2
8

46 ETPU.CDTRSR_A[DTRS28] eTPUA Channel 28 Data Transfer
Request Status

eTPU_CDTRSR_A_DTRS2
9

47 ETPU.CDTRSR_A[DTRS29] eTPUA Channel 29 Data Transfer
Request Status

SIU_EISR_EIF0 48 SIU.SIU_EISR[EIF0] SIU External Interrupt Flag 0

SIU_EISR_EIF1 49 SIU.SIU_EISR[EIF1] SIU External Interrupt Flag 1

SIU_EISR_EIF2 50 SIU.SIU_EISR[EIF2] SIU External Interrupt Flag 2

SIU_EISR_EIF3 51 SIU.SIU_EISR[EIF3] SIU External Interrupt Flag 3

DECFIL_FILL_BUF_A 52 DECFIL_A.DECFILTER_IB[INPBUF] Decimation Filter A Fill Buffer

DECFIL_DRAIN_BUF_A 53 DECFIL_A.DECFILTER_OB[OUTBUF
]

Decimation Filter A Drain Buffer

DECFIL_FILL_BUF_B 54 DECFIL_B.DECFILTER_IB[INPBUF] Decimation Filter B Fill Buffer

DECFIL_DRAIN_BUF_B 55 DECFIL_B.DECFILTER_OB[OUTBUF
]

Decimation Filter B Drain Buffer

Table 8-22. DMA request summary for eDMA (continued)

DMA request
Channe

l
Source Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

182 Freescale Semiconductor

8.5.4 DMA arbitration mode considerations

8.5.4.1 Fixed-group arbitration, fixed-channel arbitration

In this mode, the channel service request from the highest priority channel in the highest priority group is
selected to execute. If the eDMA is programmed so the channels within one group use fixed priorities, and
that group is assigned the highest fixed priority of all groups, it is possible for that group to take all the
bandwidth of the eDMA controller. That is, no other groups can be serviced if there is always at least one
DMA request pending on a channel in the highest priority group when the controller arbitrates the next
DMA request. The advantage of this scenario is that latency can be small for channels that need to be
serviced quickly. pre-emption is available in this scenario only.

8.5.4.2 Round-robin group arbitration, fixed-channel arbitration

When one or more DMA requests arrive from one or more groups, the channel with the highest priority
from a specific group is serviced first. Groups are serviced starting with the highest group number with a
service request and rotating through to the lowest group number containing a service request.

After the channel request is serviced, the group round robin algorithm selects the highest pending request
from the next group in the round-robin sequence. Servicing continues round robin, always servicing the
highest priority channel in the next group in the sequence, or skipping a group if it has no pending requests.

If a channel requests service at a rate that equals or exceeds the round robin service rate, then that channel
is always serviced before lower priority channels in the same group, and the lower priority channels are
never serviced. The advantage of this scenario is that no one group can consume all the eDMA bandwidth.
The highest priority channel selection latency is potentially greater than fixed/fixed arbitration. Excessive
request rates on high-priority channels can prevent the servicing of lower priority channels in the same
group.

8.5.4.3 Round-robin group arbitration, round-robin channel arbitration

Groups are serviced as described in Section 8.5.4.2, Round-robin group arbitration, fixed-channel
arbitration but this time channels are serviced in channel number order. One channel only is serviced from
each requesting group for each round robin pass through the groups.

eSCIC_COMBTX 56 ESCIC.SR[TDRE] ||
ESCIC.SR[TC] ||
ESCIC.SR[TXRDY]

eSCIC combined DMA request of the
Transmit Data Register Empty, Transmit
Complete, and LIN Transmit Data
Ready DMA requests

eSCIC_COMBRX 57 ESCIB.SR[RDRF] ||
ESCIB.SR[RXRDY]

eSCIC combined DMA request of the
Receive Data Register Full and LIN
Receive Data Ready DMA requests

No Request 58-63 —

Table 8-22. DMA request summary for eDMA (continued)

DMA request
Channe

l
Source Description

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 183

Within each group, channels are serviced starting with the highest channel number and rotating through to
the lowest channel number without regard to channel priority levels.

Because channels are serviced in round-robin manner, any channel that generates DMA requests faster
than a combination of the group round-robin service rate and the channel service rate for its group does
not prevent the servicing of other channels in its group. Any DMA requests that are not serviced are simply
lost, but at least one channel gets serviced.

This scenario ensures that all channels are guaranteed service at some point, regardless of the request rates.
However, the potential latency could be high. All channels are treated equally. Priority levels are not used
in round-robin/round-robin mode.

8.5.4.4 Fixed-group arbitration, round-robin channel arbitration

The highest priority group with a request is serviced. Lower priority groups are serviced if no pending
requests exist in the higher priority groups.

Within each group, channels are serviced starting with the highest channel number and rotating through to
the lowest channel number without regard to the channel priority levels assigned within the group.

This scenario could cause the same bandwidth consumption problem as indicated in Section 8.5.4.1,
Fixed-group arbitration, fixed-channel arbitration but all the channels in the highest priority group get
serviced. Service latency is short on the highest priority group, but could potentially get longer and longer
as the group priority decreases.

8.5.5 DMA transfer

8.5.5.1 Single request

To perform a simple transfer of n bytes of data with one activation, set the major loop to ‘1’
(EDMA_TCD[CITER] = EDMA_TCD[BITER] = 1). The data transfer begins after the channel service
request is acknowledged and the channel is selected to execute. After the transfer is complete, bit
EDMA_TCD[DONE] is set and an interrupt is generated if properly enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is
programmed for one iteration of the major loop transferring 16 bytes per iteration. The source memory has
a byte wide memory port located at 0x1000. The destination memory has a word wide port located at
0x2000. The address offsets are programmed in increments to match the size of the transfer; one byte for
the source and four bytes for the destination. The final source and destination addresses are adjusted to
return to their beginning values.

EDMA_TCD[CITER] = EDMA_TCD[BITER] = 1
EDMA_TCD[NBYTES] = 16
EDMA_TCD[SADDR] = 0x1000
EDMA_TCD[SOFF] = 1
EDMA_TCD[SSIZE] = 0
EDMA_TCD[SLAST] = –16
EDMA_TCD[DADDR] = 0x2000

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

184 Freescale Semiconductor

EDMA_TCD[DOFF] = 4
EDMA_TCD[DSIZE] = 2
EDMA_TCD[DLAST_SGA] = –16
EDMA_TCD[INT_MAJ] = 1
EDMA_TCD[START] = 1 (Must be written last after all other fields have been initialized)
All other TCD fields = 0

This would generate the following sequence of events:
1. Slave write to the EDMA_TCD[START] bit requests channel service.
2. The channel is selected by arbitration for servicing.
3. eDMA engine writes: EDMA_TCD[DONE] = 0, EDMA_TCD[START] = 0,

EDMA_TCD[ACTIVE] = 1.
4. eDMA engine reads: channel TCD data from local memory to internal register file.
5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)
b) write_word(0x2000) Æ first iteration of the minor loop
c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)
d) write_word(0x2004) Æ second iteration of the minor loop
e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100A), read_byte(0x100B)
f) write_word(0x2008) Æ third iteration of the minor loop
g) read_byte(0x100C), read_byte(0x100D), read_byte(0x100E), read_byte(0x100F)
h) write_word(0x200C) Æ last iteration of the minor loop Æ major loop complete

6. eDMA engine writes: EDMA_TCD[SADDR] = 0x1000, EDMA_TCD[DADDR] = 0x2000,
EDMA_TCD[CITER] = 1 (EDMA_TCD[BITER]).

7. eDMA engine writes: EDMA_TCD[ACTIVE] = 0, EDMA_TCD[DONE] = 1,
EDMA_IRQRn = 1.

8. The channel retires.

The eDMA goes idle or services the next channel.

8.5.5.2 Multiple requests

The next example is the same as previous, excepting transferring 32 bytes via two hardware requests. The
only fields that change are the major loop iteration count and the final address offsets. The eDMA is
programmed for two iterations of the major loop transferring 16 bytes per iteration. After the channel’s
hardware requests are enabled in the EDMA_ERQR, channel service requests are initiated by the slave
device (ERQR should be set after TCD). Note that EDMA_TCD[START] = 0.

EDMA_TCD[CITER = EDMA_TCD[BITER] = 2
EDMA_TCD[NBYTES] = 16
EDMA_TCD[SADDR] = 0x1000
EDMA_TCD[SOFF] = 1
EDMA_TCD[SSIZE] = 0

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 185

EDMA_TCD[SLAST] = –32
EDMA_TCD[DADDR] = 0x2000
EDMA_TCD[DOFF] = 4
EDMA_TCD[DSIZE] = 2
EDMA_TCD[DLAST_SGA] = –32
EDMA_TCD[INT_MAJ] = 1
EDMA_TCD[START] = 0 (Must be written last after all other fields have been initialized)
All other TCD fields = 0

This generates the following sequence of events:
1. First hardware (eDMA peripheral request) request for channel service.
2. The channel is selected by arbitration for servicing.
3. eDMA engine writes: EDMA_TCD[DONE] = 0, EDMA_TCD[START] = 0,

EDMA_TCD[ACTIVE] = 1.
4. eDMA engine reads: channel TCD data from local memory to internal register file.
5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)
b) write_word(0x2000) Æ first iteration of the minor loop
c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)
d) write_word(0x2004) Æ second iteration of the minor loop
e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100A), read_byte(0x100B)
f) write_word(0x2008) Æ third iteration of the minor loop
g) read_byte(0x100C), read_byte(0x100D), read_byte(0x100E), read_byte(0x100F)
h) write_word(0x200C) Æ last iteration of the minor loop

6. eDMA engine writes: EDMA_TCD[SADDR] = 0x1010, EDMA_TCD[DADDR] = 0x2010,
EDMA_TCD[CITER] = 1.

7. eDMA engine writes: EDMA_TCD[ACTIVE] = 0.
8. The channel retires Æ one iteration of the major loop.

The eDMA goes idle or services the next channel.
9. Second hardware (eDMA peripheral request) requests channel service.
10. The channel is selected by arbitration for servicing.
11. eDMA engine writes: EDMA_TCD[DONE] = 0, EDMA_TCD[START] = 0,

EDMA_TCD[ACTIVE] = 1.
12. eDMA engine reads: channel TCD data from local memory to internal register file.
13. The source to destination transfers are executed as follows:

a) read_byte(0x1010), read_byte(0x1011), read_byte(0x1012), read_byte(0x1013)
b) write_word(0x2010) Æ first iteration of the minor loop
c) read_byte(0x1014), read_byte(0x1015), read_byte(0x1016), read_byte(0x1017)
d) write_word(0x2014) Æ second iteration of the minor loop
e) read_byte(0x1018), read_byte(0x1019), read_byte(0x101A), read_byte(0x101B)

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

186 Freescale Semiconductor

f) write_word(0x2018) Æ third iteration of the minor loop
g) read_byte(0x101C), read_byte(0x101D), read_byte(0x101E), read_byte(0x101F)
h) write_word(0x201C) Æ last iteration of the minor loop Æ major loop complete

14. eDMA engine writes: EDMA_TCD[SADDR] = 0x1000, EDMA_TCD[DADDR] = 0x2000,
EDMA_TCD[CITER] = 2 (EDMA_TCD[BITER]).

15. eDMA engine writes: EDMA_TCD[ACTIVE] = 0, EDMA_TCD[DONE] = 1,
EDMA_IRQRn = 1.

16. The channel retires Æ major loop complete.

The eDMA goes idle or services the next channel.

8.5.5.3 Modulo feature

The modulo feature of the eDMA provides the ability to implement a circular data queue in which the size
of the queue is a power of two. MOD is a 5-bit bitfield for both the source and destination in the TCD and
specifies which lower address bits are allowed to increment from their original value after the
address + offset calculation. All upper address bits remain the same as in the original value. A setting of 0
for this field disables the modulo feature.

Table 8-23 shows how the transfer addresses are specified based on the setting of the MOD field. Here a
circular buffer is created where the address wraps to the original value while the 28 upper address bits
(0x1234567x) retain their original value. In this example the source address is set to 0x12345670, the
offset is set to 4 bytes and the MOD field is set to 4, allowing for a 24 byte (16-byte) size queue.

8.5.6 TCD status

8.5.6.1 Minor loop complete

There are two methods to test for minor loop completion when using software initiated service requests. The first method is to
read the field EDMA_TCD[CITER] and test for a change. Another method may be extracted from the sequence below. The
second method is to test the bit EDMA_TCD[START] and the bit EDMA_TCD[ACTIVE]. The minor loop complete condition is
indicated by both bits reading zero after EDMA_TCD[START] was written to a ‘1’. Polling the
EDMA_TCD[ACTIVE] bit may be inconclusive because the active status may be missed if the channel
execution is short in duration.

Table 8-23. Modulo feature example

Transfer number Address

1 0x12345670

2 0x12345674

3 0x12345678

4 0x1234567C

5 0x12345670

6 0x12345674

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 187

The TCD status bits execute the following sequence for a software activated channel:
1. EDMA_TCD[START] = 1, EDMA_TCD[ACTIVE] = 0, EDMA_TCD[DONE] = 0 (channel

service request via software).
2. EDMA_TCD[START] = 0, EDMA_TCD[ACTIVE] = 1, EDMA_TCD[DONE] = 0 (channel is

executing).
3. EDMA_TCD[START] = 0, EDMA_TCD[ACTIVE] = 0, EDMA_TCD[DONE] = 0 (channel has

completed the minor loop and is idle), or
4. EDMA_TCD[START] = 0, EDMA_TCD[ACTIVE] = 0, EDMA_TCD[DONE] = 1 (channel has

completed the major loop and is idle).

The best method to test for minor loop completion when using hardware initiated service requests is to
read field EDMA_TCD[CITER] and test for a change. The hardware request and acknowledge handshakes
signals are not visible in the programmer’s model.

The TCD status bits execute the following sequence for a hardware activated channel:
1. eDMA peripheral request asserts (channel service request via hardware).
2. EDMA_TCD[START] = 0, EDMA_TCD[ACTIVE] = 1, EDMA_TCD[DONE] = 0 (channel is

executing).
3. EDMA_TCD[START] = 0, EDMA_TCD[ACTIVE] = 0, EDMA_TCD[DONE] = 0 (channel has

completed the minor loop and is idle), or
4. EDMA_TCD[START] = 0, EDMA_TCD[ACTIVE] = 0, EDMA_TCD[DONE] = 1 (channel has

completed the major loop and is idle).

For both activation types, the major loop complete status is explicitly indicated via bit
EDMA_TCD[DONE].

Bit EDMA_TCD[START] is cleared automatically when the channel begins execution, regardless of how
the channel was activated.

8.5.6.2 Active channel TCD reads

The eDMA will read back the true EDMA_TCD[SADDR], EDMA_TCD[DADDR], and
EDMA_TCD[NBYTES] values if read while a channel is executing. The true values of the SADDR,
DADDR, and NBYTES are the values the eDMA engine is currently using in its internal register file and
not the values in the TCD local memory for that channel. The addresses (SADDR and DADDR) and
NBYTES (decrements to zero as the transfer progresses) can give an indication of the progress of the
transfer. All other values are read back from the TCD local memory.

8.5.6.3 Pre-emption status

Pre-emption is available only when fixed arbitration is selected for both group- and channel-arbitration
modes. A pre-emptable situation is one in which a pre-empt-enabled channel is running and a higher
priority request becomes active. When the eDMA engine is not operating in fixed group, fixed-channel
arbitration mode, the determination of the relative priority of the actively running and the outstanding
requests become undefined. Channel and group priorities are treated as equal (or more exactly, constantly
rotating) when round-robin arbitration mode is selected.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

188 Freescale Semiconductor

Bit EDMA_TCD[ACTIVE] for the pre-empted channel remains asserted throughout the pre-emption. The
pre-empted channel is temporarily suspended while the pre-empting channel executes one iteration of the
major loop. Two EDMA_TCD[ACTIVE] bits set at the same time in the overall TCD map indicates a
higher priority channel is actively pre-empting a lower priority channel.

8.5.7 Channel linking

Channel linking (or chaining) is a mechanism in which one channel sets bit EDMA_TCD[START] of
another channel (or itself), thus initiating a service request for that channel. This operation is automatically
performed by the eDMA engine at the conclusion of the major or minor loop when properly enabled.

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of the major
loop). Field EDMA_TCD[CITER.E_LINK] is used to determine whether a minor loop link is requested.
When enabled, the channel link is made after each iteration of the minor loop except for the last. When the
major loop is exhausted, only the major loop channel link fields are used to determine if a channel link
should be made. For example, with the initial fields of:

EDMA_TCD[CITER.E_LINK] = 1
EDMA_TCD[CITER.LINKCH] = 0xC
EDMA_TCD[CITER] value = 0x4
EDMA_TCD[MAJOR.E_LINK] = 1
EDMA_TCD[MAJOR.LINKCH] = 0x7

will execute as:
1. Minor loop done Æ set channel 12 EDMA_TCD[START] bit
2. Minor loop done Æ set channel 12 EDMA_TCD[START] bit
3. Minor loop done Æ set channel 12 EDMA_TCD[START] bit
4. Minor loop done, major loop done Æ set channel 7 EDMA_TCD[START] bit

When minor loop linking is enabled (EDMA_TCD[CITER.E_LINK] = 1), field EDMA_TCD[CITER]
uses a 9-bit vector to form the current iteration count.

When minor loop linking is disabled (EDMA_TCD[CITER.E_LINK] = 0), field EDMA_TCD[CITER]
uses a 15-bit vector to form the current iteration count. The bits associated with field
EDMA_TCD[CITER.LINKCH] are concatenated onto the CITER value to increase the range of the
CITER.

NOTE
After configuration, bit EDMA_TCD[CITER.E_LINK] and bit
EDMA_TCD[BITER.E_LINK] must be equal or a configuration error is
reported. The CITER and BITER vector widths must be equal to calculate
the major loop, halfway done interrupt point.

Table 8-24 summarizes how a DMA channel can link to another DMA channel, that is, use another
channel’s TCD, at the end of a loop.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 189

8.5.8 Dynamic programming

8.5.8.1 Dynamic channel linking

Dynamic channel linking is the process of setting the TCD.major.e_link bit during channel execution. This
bit is read from the TCD local memory at the end of channel execution, thus allowing the user to enable
the feature during channel execution.

Because the user is allowed to change the configuration during execution, a coherency model is needed.
Consider the scenario where the user attempts to execute a dynamic channel link by enabling the
TCD.major.e_link bit at the same time the eDMA engine is retiring the channel. The TCD.major.e_link
would be set in the programmer’s model, but it would be unclear whether the actual link was made before
the channel retired.

The coherency model in Table 8-25 is recommended when executing a dynamic channel link request.

For this request, the TCD local memory controller forces the TCD.major.e_link bit to zero on any writes
to a channel’s TCD.word7 after that channel’s TCD.done bit is set, indicating the major loop is complete.

NOTE

The user must clear the TCD.done bit before writing the TCD.major.e_link
bit. The TCD.done bit is cleared automatically by the eDMA engine after a
channel begins execution.

Table 8-24. Channel linking parameters

Desired link behavior TCD control field name Description

Link at end of minor loop citer.e_link Enable channel-to-channel linking on minor loop completion
(current iteration).

citer.linkch Link channel number when linking at end of minor loop
(current iteration).

Link at end of major loop major.e_link Enable channel-to-channel linking on major loop completion.

major.linkch Link channel number when linking at end of major loop.

Table 8-25. Coherency model for a dynamic channel link request

Step Action

1 Write 1b to the TCD.major.e_link bit.

2 Read back the TCD.major.e_link bit.

3 Test the TCD.major.e_link request status:
 • If TCD.major.e_link = 1b, the dynamic link attempt was successful.
 • If TCD.major.e_link = 0b, the attempted dynamic link did not succeed (the channel was

already retiring).

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

190 Freescale Semiconductor

8.5.8.2 Dynamic scatter/gather

Dynamic scatter/gather is the process of setting the TCD.e_sg bit during channel execution. This bit is read
from the TCD local memory at the end of channel execution, thus allowing the user to enable the feature
during channel execution.

Because the user is allowed to change the configuration during execution, a coherency model is needed.
Consider the scenario where the user attempts to execute a dynamic scatter/gather operation by enabling
the TCD.e_sg bit at the same time the eDMA engine is retiring the channel. The TCD.e_sg would be set
in the programmer’s model, but it would be unclear whether the actual scatter/gather request was honored
before the channel retired.

Two methods for this coherency model are shown in the following subsections. Method 1 has the
advantage of reading the major.linkch field and the e_sg bit with a single read. For both dynamic channel
linking and scatter/gather requests, the TCD local memory controller forces the TCD.major.e_link and
TCD.e_sg bits to zero on any writes to a channel’s TCD.word7 if that channel’s TCD.done bit is set
indicating the major loop is complete.

NOTE

The user must clear the TCD.done bit before writing the TCD.major.e_link
or TCD.e_sg bits. The TCD.done bit is cleared automatically by the eDMA
engine after a channel begins execution.

8.5.8.2.1 Method 1 (channel not using major loop channel linking)

For a channel not using major loop channel linking, the coherency model in Table 8-26 may be used for a
dynamic scatter/gather request.

When the TCD.major.e_link bit is zero, the TCD.major.linkch field is not used by the eDMA. In this case,
the TCD.major.linkch bits may be used for other purposes. This method uses the TCD.major.linkch field
as a TCD indentification (ID).

Table 8-26. Coherency model for method 1

Step Action

1 When the descriptors are built, write a unique TCD ID in the TCD.major.linkch field for each
TCD associated with a channel using dynamic scatter/gather.

2 Write 1b to theTCD.d_req bit.
Note: Should a dynamic scatter/gather attempt fail, setting the d_req bit will prevent a future

hardware activation of this channel. This stops the channel from executing with a
destination address (daddr) that was calculated using a scatter/gather address
(written in the next step) instead of a dlast final offest value.

3 Write theTCD.dlast_sga field with the scatter/gather address.

4 Write 1b to the TCD.e_sg bit.

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 191

8.5.8.2.2 Method 2 (channel using major loop linking)

For a channel using major loop channel linking, the coherency model in Table 8-27 may be used for a
dynamic scatter/gather request. This method uses the TCD.dlast_sga field as a TCD indentification (ID).

5 Read back the 16 bit TCD control/status field.

6 Test the TCD.e_sg request status and TCD.major.linkch value:
 • If e_sg = 1b, the dynamic link attempt was successful.
 • If e_sg = 0b and the major.linkch (ID) did not change, the attempted dynamic link did not

succeed (the channel was already retiring).
 • If e_sg = 0b and the major.linkch (ID) changed, the dynamic link attempt was successful

(the new TCD’s e_sg value cleared the e_sg bit).

Table 8-27. Coherency model for method 2

Step Action

1 Write 1b to theTCD.d_req bit.
Note: Should a dynamic scatter/gather attempt fail, setting the d_req bit will prevent a future

hardware activation of this channel. This stops the channel from executing with a
destination address (daddr) that was calculated using a scatter/gather address
(written in the next step) instead of a dlast final offest value.

2 Write theTCD.dlast_sga field with the scatter/gather address.

3 Write 1b to the TCD.e_sg bit.

4 Read back the TCD.e_sg bit.

5 Test the TCD.e_sg request status:
 • If e_sg = 1b, the dynamic link attempt was successful.
 • If e_sg = 0b, read the 32 bit TCD dlast_sga field.
 • If e_sg = 0b and the dlast_sga did not change, the attempted dynamic link did not

succeed (the channel was already retiring).
 • If e_sg = 0b and the dlast_sga changed, the dynamic link attempt was successful (the

new TCD’s e_sg value cleared the e_sg bit).

Table 8-26. Coherency model for method 1 (continued)

Step Action

Enhanced Direct Memory Access Controller (eDMA)

MPC5644A Microcontroller Reference Manual, Rev. 6

192 Freescale Semiconductor

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 193

Chapter 9
Multi-Layer AHB Crossbar Switch (XBAR)

9.1 Introduction

9.1.1 Overview

This section provides an overview of the multi-layer AHB crossbar switch (XBAR). The purpose of the
XBAR is to concurrently support simultaneous connections between master ports and slave ports. The
XBAR supports a 32-bit address bus width. Only a single data bus width is supported throughout the
design, thus, all master and slave ports have the same data bus width.

The XBAR has five master ports and four slave ports. Figure 9-1 shows a block diagram of the XBAR.

Figure 9-1. XBAR device-specific block diagram

The port mappings are shown in Table 9-1.

Table 9-1. Master/Slave mappings

Module
Port

Physical master ID
Type Logical number

e200z4 core instruction Master M0 0

e200z4 core Load/Store Master M1 0

e200z4 core Nexus Master M1 8

eDMA Master M4 4

FlexRay Interface Master M6 6

EBI1 Master M7 7

Crossbar Switch

Master modules

Slave modules

e200z4
(Data/Nexus) M1

eDMA M4e200z4
(Instruction) M0

EBI M7

Flash S0 EBI/CAL S1 SRAM S2 Peripheral
Bridge S7

FlexRay M6

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

194 Freescale Semiconductor

9.1.2 Features

The XBAR has the ability to gain control of all the slave ports and prevent any masters from making
accesses to the slave ports. This feature is useful for turning off the clocks to the system and ensuring that
no bus activity will be interrupted.

The XBAR can put each slave port into a low power park mode so that the slave port will not dissipate any
power transitioning address, control or data signals when not being actively accessed by a master port.

Each slave port can also support multiple master priority schemes—the user can dynamically change
master priority levels on a slave port by slave port basis.

The XBAR allows concurrent transactions to occur from any master port to any slave port. It is possible
for all master ports and slave ports to be in use at the same time as a result of independent master requests.
If a slave port is simultaneously requested by more than one master port, arbitration logic will select the
higher priority master and grant it ownership of the slave port. All other masters requesting that slave port
will stalled until the higher priority master completes its transactions.

The XBAR has a 32-bit internal address bus and a 64-bit internal data bus.

9.1.3 Limitations

The XBAR routes bus transactions initiated on the master ports to the appropriate slave ports. There is no
provision included to route transactions initiated on the slave ports to other slave ports or to master ports.
Simply put, the slave ports do not support the bus request/bus grant protocol; the XBAR assumes it is the
sole master of each slave port.

9.1.4 General operation

When a master makes an access to the XBAR the access will be immediately taken by the XBAR. If the
targeted slave port of the access is available then the access will be immediately presented on the slave
port. It is possible to make single clock (zero wait state) accesses through the XBAR. If the targeted slave
port of the access is busy or parked on a different master port the requesting master will simply see wait

Flash Memory Slave S0 —

EBI/Calibration Bus2 Slave S1 —

SRAM Slave S2 —

Peripheral Bridge Slave S7 —

1 The EBI (External Bus Interface) is connected as a master but is not implemented with a multi-master
mode so it is, in effect, “parked”. Regardless, it must be configured as with other supported masters.

2 The calibration bus is only available on the calibration package.

Table 9-1. Master/Slave mappings

Module
Port

Physical master ID
Type Logical number

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 195

states inserted until the targeted slave port can service the master’s request. The latency in servicing the
request depends on each master’s priority level and the responding peripheral’s access time.

Since the XBAR appears to be just another slave to the master device, the master device will have no
knowledge of whether or not it actually owns the slave port it is targeting. While the master does not have
control of the slave port it is targeting it will simply be wait stated.

A master is given control of the targeted slave port only after a previous access to a different slave port has
completed, regardless of its priority on the newly targeted slave port. This prevents deadlock from
occurring when a master has an outstanding request to one slave port that has a long response time, has a
pending access to a different slave port, and a lower priority master is also making a request to the same
slave port as the pending access of the higher priority master.

Once the master has control of the slave port it is targeting, the master remains in control of that slave port
until it gives up the slave port by running an IDLE cycle or by leaving that slave port for its next access.
The master could also lose control of the slave port if another higher priority master makes a request to the
slave port; however, if the master is running a locked or fixed length burst transfer it retains control of the
slave port until that transfer is completed.

The XBAR will terminate all master IDLE transfers (as opposed to allowing the termination to come from
one of the slave busses). Additionally, when no master is requesting access to a slave port the XBAR will
drive IDLE transfers onto the slave bus, even though a default master may be granted access to the slave
port.

When a slave bus is being IDLEd by the XBAR it can park the slave port on the master port indicated by
the PARK bits in the SGPCR (Slave General Purpose Control Register). This can be done in an attempt to
save the initial clock of arbitration delay that would otherwise be seen if the master had to arbitrate to gain
control of the slave port. The slave port can also be put into low power park mode in attempt to save power.

9.2 XBAR registers

This section provides information on XBAR registers.

9.2.1 Register summary

There are two registers that reside in each slave port of the XBAR. These registers are IP bus compliant
registers. Read and write transfers both require two IP bus clock cycles. Read and writen operations can
be performed on these registers only in supervisor mode. Additionally, these registers can only be read
from or written to by 32-bit accesses.

The registers are fully decoded and an error response is returned if an unimplemented location is accessed
within the XBAR.

The slave registers also feature a bit, which when written with a 1, will prevent the registers from being
written to again. The registers will still be readable, but future write attempts will have no effect on the
registers and will be terminated with an error response.

The memory map for the XBAR program-visible registers is shown in Table 9-2.

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

196 Freescale Semiconductor

9.2.2 XBAR register descriptions

The following paragraphs provide detailed descriptions of the various XBAR registers.

Refer to Figure 9-2 for the various bit configurations that appear in the register maps.

Table 9-2. XBAR Register Configuration Summary

Address Register Location

XBAR_Base (0xFFF0_4000) MPR0 — Master Priority Register for Slave port 0 on page
9-197

XBAR_Base + 0x004 –
XBAR_Base + 0x00F

Reserved —

XBAR_Base + 0x010 SGPCR0 — General Purpose Control Register for
Slave port 0

on page
9-199

XBAR_Base + 0x014 –
XBAR_Base + 0x0FF

Reserved —

XBAR_Base + 0x100 MPR1 — Master Priority Register for Slave port 1 on page
9-197

XBAR_Base + 0x104 –
XBAR_Base + 0x10F

Reserved —

XBAR_Base + 0x110 SGPCR1 — General Purpose Control Register for
Slave port 1

on page
9-199

XBAR_Base + 0x114 –
XBAR_Base + 0X1FF

Reserved —

XBAR_Base + 0x200 MPR2 — Master Priority Register for Slave port 2 on page
9-197

XBAR_Base + 0x204 –
XBAR_Base + 0x20F

Reserved —

XBAR_Base + 0x210 SGPCR2 — General Purpose Control Register for
Slave port 2

on page
9-199

XBAR_Base + 0x214 –
XBAR_Base + 0X6FF

Reserved —

XBAR_Base + 0x700 MPR7 — Master Priority Register for Slave port 7 on page
9-197

XBAR_Base + 0x704 –
XBAR_Base + 0X70F

Reserved —

XBAR_Base + 0x710 SGPCR7 — General Purpose Control Register for
Slave port 7

on page
9-199

XBAR_Base + 0x714 –
XBAR_Base + 0XF03

Reserved —

Always
reads 1

1 Always
reads 0

0 R/W
bit

BIT1

1 “BIT” refers to a field name in the register. Some fields span multiple bits.

Read-
only bit

BIT1 Write-
only bit

Write 1
to clear

BIT1 Self-clear
bit

0 N/A

BIT1 w1c BIT1

Figure 9-2. Key to Register Fields

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 197

9.2.2.1 Master Priority Register (XBAR_MPRn)

The Master Priority Register (MPR) resides in each slave port and sets the priority of each master port on
a per slave port basis, e.g., MPR0 sets priority for each master port for slave port 0.

MPR0: Address: XBAR_Base (0xFFF0_4000) + 0x0000
MPR1: Address: XBAR_Base (0xFFF0_4000) + 0x0100
MPR2: Address: XBAR_Base (0xFFF0_4000) + 0x0200
MPR7: Address: XBAR_Base (0xFFF0_4000) + 0x0700

Access: Supervisor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 MSTR7 0 MSTR6 0 0 0 0 0 MSTR4

W

Reset 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 MSTR1 0 MSTR0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

= not implemented

Figure 9-3. Master Priority Register (XBAR_MPRn)

Table 9-3. XBAR Master Priority Register Field Descriptions

Field Description

0 Reserved
This bit is reserved for future expansion. It is read as zero and should be written with zero for upward
compatibility.

1:3
MSTR7

Master 7 Priority
These bits set the arbitration priority for master port 7 (EBI) on the associated slave port.

These bits are initialized by hardware reset. The reset value is 111.

000: This master has the highest priority when accessing the slave port.
...
111: This master has the lowest priority when accessing the slave port.

4 Reserved
This bit is reserved for future expansion. It is read as zero and should be written with zero for upward
compatibility.

5:7
MSTR6

Master 6 Priority
These bits set the arbitration priority for master port 6 (FlexRay) on the associated slave port.

These bits are initialized by hardware reset. The reset value is 110.

000: This master has the highest priority when accessing the slave port.
...
111: This master has the lowest priority when accessing the slave port.

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

198 Freescale Semiconductor

8 Reserved
This bit is reserved for future expansion. It is read as zero and should be written with zero for upward
compatibility.

9:11 Reserved
These bits are reserved for future expansion. They are read as zero and should be written with zero for
upward compatibility.

12 Reserved
This bit is reserved for future expansion. It is read as zero and should be written with zero for upward
compatibility.

13:15
MSTR4

Master 4 Priority
These bits set the arbitration priority for master port 4 (eDMA) on the associated slave port.

These bits are initialized by hardware reset. The reset value is 100.

000: This master has the highest priority when accessing the slave port.
...
111: This master has the lowest priority when accessing the slave port.

16 Reserved
This bit is reserved for future expansion. It is read as zero and should be written with zero for upward
compatibility.

17:19 Reserved
These bits are reserved for future expansion. They are read as zero and should be written with zero for
upward compatibility.

20 Reserved
This bit is reserved for future expansion. It is read as zero and should be written with zero for upward
compatibility.

21:23 Reserved
These bits are reserved for future expansion. They are read as zero and should be written with zero for
upward compatibility.

24 Reserved
This bit is reserved for future expansion. It is read as zero and should be written with zero for upward
compatibility.

25:27
MSTR1

Master 1 Priority
These bits set the arbitration priority for master port 1 (e200z4 core load/store bus and e200z4 core
Nexus) on the associated slave port.

These bits are initialized by hardware reset. The reset value is 001.

000: This master has the highest priority when accessing the slave port.
...
111: This master has the lowest priority when accessing the slave port.

28 Reserved
This bit is reserved for future expansion. It is read as zero and should be written with zero for upward
compatibility.

Table 9-3. XBAR Master Priority Register Field Descriptions (continued)

Field Description

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 199

The Master Priority Register can only be accessed in supervisor mode with 32-bit accesses. Once the RO
(Read Only) bit has been set in the slave General Purpose Control Register the Master Priority Register
can only be read from, attempts to write to it will have no effect on the MPR and result in an error response.

NOTE

No two available master ports may be programmed with the same priority
level. Attempts to program two or more available masters with the same
priority level will result in an error response and the MPR will not be
updated.

9.2.2.2 Slave General Purpose Control Register (XBAR_SGPCRn)

The Slave General Purpose Control Register (SGPCR) controls several features of each slave port.

The Read Only (RO) bit will prevent any registers associated with this slave port from being written to
once set. This bit may be written with 0 as many times as the user desires, but once it is written to a 1 only
a reset condition will allow it to be written again.

The PCTL bits determine how the slave port will park when no master is actively making a request. The
available options are to park on the master defined by the PARK bits, park on the last master to use the
slave port, or go into a low power park mode which will force all the outputs of the slave port to inactive
states when no master is requesting an access. The low power park feature can result in an overall power
savings if a the slave port is not saturated; however, it will force an extra clock of latency whenever any
master tries to access it when it is not in use because it will not be parked on any master.

The PARK bits determine which master the slave will park on when no master is making an active request.
Please use caution to only select master ports that are actually present in the design. If the user programs
the PARK bits to a master not present in the current design implementation undefined behavior will result.

NOTE

The SGPCR can only be accessed in supervisor mode with 32-bit accesses.
Once the RO (Read Only) bit has been set in the SGPCR the SGPCR can
only be read, attempts to write to it will have no effect on the SGPCR and
result in an error response.

29:31
MSTR0

Master 0 Priority
These bits set the arbitration priority for master port 0 (e200z4 core instruction bus) on the associated
slave port.

These bits are initialized by hardware reset. The reset value is 000

000: This master has the highest priority when accessing the slave port.
...
111: This master has the lowest priority when accessing the slave port.

Table 9-3. XBAR Master Priority Register Field Descriptions (continued)

Field Description

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

200 Freescale Semiconductor

SGPCR0: Address: XBAR_Base + 0X0010 + 0x0000 (0xFFF0_4010)
SGPCR1: Address: XBAR_Base + 0X0010 + 0x0100 (0xFFF0_4110)
SGPCR2: Address: XBAR_Base + 0X0010 + 0x0200 (0xFFF0_4210)
SGPCR7: Address: XBAR_Base + 0X0010 + 0x0700 (0xFFF0_4710)

Access: Supervisor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

R
O

0 0 0 0 0 0 0

H
P

E
7

H
P

E
6 0

H
P

E
4 0 0

H
P

E
1

H
P

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
ARB

0 0
PCTL

0
PARK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= not implemented

Figure 9-4. Slave General Purpose Control Register (XBAR_SGPCRn)

Table 9-4. XBAR Slave General Purpose Control Register Field Descriptions

Field Description

0
RO

Read Only
This bit is used to force all of a slave port’s registers to be read only. Once written to 1 it can only be
cleared by hardware reset.

This bit is initialized by hardware reset. The reset value is 0.

0: All this slave port’s registers can be written.
1: All this slave port’s registers are read only and cannot be written (attempted writes have no effect and
result in an error response).

1:7 Reserved
These bits are reserved for future expansion. They read as zero and should be written with zero for
upward compatibility.

8:15
HPEx

High Priority Enable
These bits are used to enable the mX_high_priority inputs for the respective master.

These bits are initialized by hardware reset. The reset value is 0.

0: The mX_high_priority input is disabled on this slave port
1: The mX_high_priority input is enabled on this slave port.

16:21 Reserved
These bits are reserved for future expansion. They are read as zero and should be written with zero for
upward compatibility.

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 201

9.2.3 Coherency

Since the content of the registers has a real time effect on the operation of the XBAR it is important for the
user to understand that any register modifications take effect as soon as the register is written. The values
of the registers do not track with slave port related AHB accesses but instead track only with IP bus
accesses.

22:23
ARB

Arbitration Mode
These bits are used to select the arbitration policy for the slave port.

These bits are initialized by hardware reset. The reset value is 00.

00: Fixed Priority
01: Round Robin (rotating) Priority
10: Reserved
11: Reserved

24:25 Reserved
These bits are reserved for future expansion. They are read as zero and should be written with zero for
upward compatibility.

26:27
PCTL

Parking Control
These bits determine the parking control used by this slave port.

These bits are initialized by hardware reset. The reset value is 00.

00: When no master is making a request the arbiter will park the slave port on the master port defined
by the PARK bit field.
01: When no master is making a request the arbiter will park the slave port on the last master to be in
control of the slave port.
10: When no master is making a request the arbiter will park the slave port on no master and will drive
all outputs to a constant safe state.
11: Reserved

28 Reserved
This bit is reserved for future expansion. It is read as zero and should be written with zero for upward
compatibility.

29:31
PARK

PARK
These bits are used to determine which master port this slave port parks on when no masters are
actively making requests and the PCTL bits are set to 00.

These bits are initialized by hardware reset. The reset value is 000.

000: Park on Master Port 0 (e200z448n3 core instruction)
001: Park on Master Port 1 (e200z448n3 core Load/Store)
010: Reserved
011: Reserved
100: Park on Master Port 4 (eDMA)
101: Reserved
110: Park on Master Port 6 (FlexRay)
111: Park on Master Port 7 (EBI)

Table 9-4. XBAR Slave General Purpose Control Register Field Descriptions (continued)

Field Description

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

202 Freescale Semiconductor

9.3 Function

This section describes in more detail the functionality of the XBAR.

9.3.1 Arbitration

The XBAR supports two arbitration schemes: a simple fixed-priority comparison algorithm and a simple
round-robin fairness algorithm. The arbitration scheme is independently programmable for each slave
port.

9.3.1.1 Fixed priority operation

When operating in fixed-priority mode, each master is assigned a unique priority level in the MPR (Master
Priority Register). If two masters both request access to a slave port the master with the highest priority in
the selected priority register will gain control over the slave port.

Any time a master makes a request to a slave port the slave port checks to see if the new requesting master’s
priority level is higher than that of the master that currently has control over the slave port (unless the slave
port is in a parked state). The slave port does an arbitration check at every clock edge to ensure that the
proper master (if any) has control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently has control of
the slave port the new requesting master will be granted control over the slave port at the next clock edge.
The exception to this rule is if the master that currently has control over the slave port is running a fixed
length burst transfer or a locked transfer. In this case the new requesting master will have to wait until the
end of the burst transfer or locked transfer before it will be granted control of the slave port. If the master
is running an undefined length burst transfer the new requesting master must wait until an arbitration point
for the undefined length burst transfer before it will be granted control of the slave port. Arbitration points
for an undefined length burst are defined in the MGPCR for each master.

If the new requesting master’s priority level is lower than that of the master that currently has control of
the slave port the new requesting master will be forced to wait until the master that currently has control
of the slave port either runs an IDLE cycle or runs a non IDLE cycle to a location other than the current
slave port.

9.3.1.2 Round-Robin priority operation

When operating in round-robin mode, each master is assigned a relative priority based on the master
number.This relative priority is compared to the ID of the last master to perform a transfer on the slave bus.
The highest priority requesting master will become owner of the slave bus as the next transfer boundary
(accounting for locked and fixed-length burst transfers). Priority is based on how far ahead the ID of the
requesting master is to the ID of the last master (ID is defined by master port number).

Once granted access to a slave port, a master may perform as many transfers as desired to that port until
another master makes a request to the same slave port. The next master in line will be granted access to
the slave port if the current master has no pending access request.

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 203

As an example of arbitration in round-robin mode, assume the XBAR is implemented with master ports 0,
1, 4 and 5. If the last master of the slave port was master 1, and master 0, 4 and 5 make simultaneous
requests, they will be serviced in the order 4, 5 and then 0.

Parking may still be used in a round-robin mode, but will not affect the round-robin pointer unless the
parked master actually performs a transfer. Handoff occurs to the next master in line after one cycle of
arbitration. If the slave port is put into low power park mode the round-robin pointer is reset to point at
master port 0, giving it the highest priority.

9.3.1.3 Parking

If no master is currently requesting the slave port, the slave port is parked. The slave port parks in one of
three places, indicated by the value of the PCTL field in the XBAR_SGPCR.

• If park-on-specific master mode is selected, the slave port parks on the master designated by the
PARK field. When the master accesses the slave port again, a one clock arbitration penalty is
incurred only for an access request made by another master port to the slave port. No other
arbitration penalties are incurred. All other masters pay a one clock penalty.

• If park-on-last (POL) mode is selected, then the slave port parks on the last master to access it,
passing that master’s signals through to the slave bus. When the master accesses the slave port
again, no other arbitration penalties are incurred except that a one clock arbitration penalty is
incurred for each access request to the slave port made by another master port. All other masters
pay a one clock penalty.

• If the low-power-park (LPP) mode is selected, then the slave port enters low-power park mode. It
is not under control by any master and does not transmit any master signals to the slave bus. All
slave bus activity halts because all slave bus signals are not toggling. This saves power if the slave
port is not used for some time. However, when a master does make a request to a slave port parked
in low-power-park, a one clock arbitration delay is incurred to get ownership of the slave port.

9.3.2 Priority assignment

Each master port needs to be assigned a unique 3-bit priority level. If an attempt is made to program
multiple master ports with the same priority level within a register (MPR) the XBAR will respond with an
error and the registers will not be updated.

Multi-Layer AHB Crossbar Switch (XBAR)

MPC5644A Microcontroller Reference Manual, Rev. 6

204 Freescale Semiconductor

Peripheral Bridge (PBRIDGE)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 205

Chapter 10
Peripheral Bridge (PBRIDGE)
The Peripheral Bridge (PBRIDGE) provides an interface between the system crossbar switch bus and the
lower-bandwidth peripheral bus.

10.1 PBRIDGE features

The PBRIDGE:

• Is only meant for slave peripherals

• Supports 32-bit peripherals (byte, halfword, and word reads and write are supported to each)

• Supports a pair of accesses for 64-bit fetches

10.2 PBRIDGE modes of operation

The PBRIDGE has only one operating mode.

10.3 PBRIDGE block diagram

The PBRIDGE is the interface between the system bus interface and on-chip peripherals as shown in
Figure 10-1.

Figure 10-1. PBRIDGE interface

O
ff-

pl
at

fo
rm

 IP
S

Peripheral O
n-

pl
at

fo
rm

 IP
S

(PBRIDGE0)

Bridge B

A
M

B
A

 A
H

B

Crossbar Switch

Peripheral Bridge (PBRIDGE)

MPC5644A Microcontroller Reference Manual, Rev. 6

206 Freescale Semiconductor

10.4 PBRIDGE signal description

The PBRIDGE has no external signals.

10.5 PBRIDGE functional description

The PBRIDGE functions as a protocol translator. Support is provided for generating a pair of 32-bit slave
bus instruction accesses (not data accesses) when targeted by a 64-bit system bus access.

Accesses which fall within the address space of the PBRIDGE are decoded to provide individual module
selects for peripheral devices.

10.5.1 Read cycles

Two clock read accesses are possible with the PBRIDGE when the requested access size is 32-bits or
smaller, and is not misaligned across a 32-bit boundary. If the requested instruction access size is 64-bits,
then a minimum of three clocks are required to complete the access. Misaligned read accesses are not
supported. 64-bit data reads (not instruction) are not supported.

10.5.2 Write cycles

Three clock write accesses are possible with the PBRIDGE when the requested access size is 32-bits or
smaller, and is not misaligned across a 32-bit boundary. Misaligned writes that do not cross a 32-bit
boundary are supported. 64-bit data writes (not instruction) are not supported.

10.6 Memory map and register description

10.6.1 Memory map

Each register in the PBRIDGE module has a size of 32 bits. The registers are listed in Table 10-1 . The
memory map organization is shown in Table 10-2. The organizational hierarchy is as follows:

• The module has multiple registers with the same register name (MPCR, PACR, OPACR), each at
a different address offset.

• Each register has multiple similarly-named fields, each with a different number.

• Each field has subfields as defined elsewhere in this section.

Accesses to registers or register fields marked as reserved will return zeros on reads, and will be ignored
on writes.

Table 10-1. PBRIDGE registers

Offset from PBRIDGE_BASE
(0xFFF0_0000)

Register Location

0x0000–0x00071 Master Privilege Control Registers (MPCR) on page
10-208

0x0008–0x001F Reserved

Peripheral Bridge (PBRIDGE)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 207

0x0020–0x003F1 Peripheral Access Control Registers (PACR) on page
10-209

0x0040–0x006F1 Off-Platform Peripheral Access Control Registers
(OPACR)

on page
10-210

0x0070–0x3FFF Reserved

1 This memory range contains reserved areas. See Table 10-2.

Table 10-2. PBRIDGE memory map

Address
offset

Register
name

Bit numbers

0–3 4–7 8–11 12–15 16–19 20–23 24–27 28–31

0x0000 MPCR MPCR0 Reserved MPCR4 Reserved MPCR6 MPCR7

0x0004 MPCR8 Reserved

0x0020 PACR Reserved PACR1 Reserved PACR4 Reserved

0x0024 Reserved PACR14 PACR15

0x0028 PACR16 PACR17 PACR18 Reserved

0x002C Reserved

0x0040 OPACR OPACR0 Reserved OPACR2 OPACR3 Reserved OPACR5 OPACR6 OPACR7

0x0044 Reserved OPACR1
2

OPACR1
3

OPACR1
4

Reserved

0x0048 OPACR1
6

OPACR1
7

OPACR1
8

Reserved

0x004C OPACR2
4

Reserved OPACR2
7

Reserved OPACR3
1

0x0050 Reserved

0x0054 Reserved

0x0058 Reserved

0x005C Reserved OPACR5
8

Reserved

0x0060 OPACR6
4

OPACR6
5

OPACR6
6

OPACR6
7

OPACR6
8

Reserved OPACR7
1

0x0064 OPACR7
2

Reserved OPACR7
9

0x0068 OPACR8
0

OPACR8
1

OPACR8
2

OPACR8
3

OPACR8
4

Reserved

0x006C Reserved OPACR9
2

Reserved

Table 10-1. PBRIDGE registers (continued)

Offset from PBRIDGE_BASE
(0xFFF0_0000)

Register Location

Peripheral Bridge (PBRIDGE)

MPC5644A Microcontroller Reference Manual, Rev. 6

208 Freescale Semiconductor

10.6.2 Register descriptions

10.6.2.1 Master privilege control registers (MPCR)

Each MPCR register contains one or more 4-bit fields, called MPCRn, as shown in Table 10-2. Each of
these fields defines the access privilege level associated with bus master n in the platform as well as
specifies whether write accesses from this master are bufferable. The registers provide one field per bus
master. See the “Logical master IDs” section in the XBAR chapter for a list of master numbers and names.

Each MPCRn field has the structure described in Figure 10-2 and Table 10-3.

Figure 10-2. MPCRn field structure

0 1 2 3

R 0 MTR MTW MPL

W

Reset 0 1 1 1

Table 10-3. MPCRn field structure descriptions

Subfield Description

MTR Master Trusted for Reads
This bit determines whether the master is trusted for read accesses.
0 This master is not trusted for read accesses.
1 This master is trusted for read accesses.

MTW Master Trusted for Writes
This bit determines whether the master is trusted for write accesses.
0 This master is not trusted for write accesses.
1 This master is trusted for write accesses.

MPL Master Privilege Level
This bit determines how the privilege level of the master is determined.
0 Accesses from this master are forced to user-mode.
1 Accesses from this master are not forced to user-mode.

Table 10-4. MPCR register fields

Register Master name Reset value

MPCR 0 z4 core (instruction + load/store) 0b0111, meaning
MTR = 1
MTW = 1
MPL = 1

MPCR 4 DMA

MPCR 6 FlexRay

MPCR 7 EBI

MPCR 8 z4 core Nexus

Peripheral Bridge (PBRIDGE)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 209

10.6.2.2 Peripheral access control registers (PACR)

Each PACR register contains one or more 4-bit fields, called PACRn, as shown in Table 10-2. Each of
these fields defines the access levels supported by the associated module. The lists of modules and their
corresponding numbers are shown in Table 10-6.

Each PACRn field has the structure described in Figure 10-3 and Table 10-5.

Figure 10-3. PACRn field structure

0 1 2 3

R 0 SP WP TP

W

Reset 0 1 0 0

Table 10-5. PACRn field structure descriptions

Subfield Description

SP Supervisor Protect
This bit determines whether the peripheral requires supervisor privilege level for access.
0 This peripheral does not require supervisor privilege level for accesses.
1 This peripheral requires supervisor privilege level for accesses. The MPCRx[MPL] control bit for

the master must be set. If not, the access is terminated with an error response and no peripheral
access is initiated on the IPS bus.

WP Write Protect
This bit determines whether the peripheral allows write accesses.
0 This peripheral allows write accesses.
1 This peripheral is write protected. If a write access is attempted, the access is terminated with an

error response and no peripheral access is initiated on the IPS bus.

TP Trusted Protect
This bit determines whether the peripheral allows accesses from an untrusted master.
0 Accesses from an untrusted master are allowed.
1 Accesses from an untrusted master are not allowed. If an access is attempted by an untrusted

master, the access is terminated with an error response and no peripheral access is initiated on the
IPS bus.

Table 10-6. Peripheral Access Control Register (PACR) fields

Register Peripheral Reset value

PACR 1 Crossbar 0100b, meaning
SP = 1
WP = 0
TP = 0

PACR 4 MPU

PACR 14 SWT

PACR 15 STM

PACR 16 ECSM

PACR 17 DMA

PACR 18 Interrupt controller

Peripheral Bridge (PBRIDGE)

MPC5644A Microcontroller Reference Manual, Rev. 6

210 Freescale Semiconductor

10.6.2.3 Off-platform peripheral access control registers (OPACR)

The OPACR defines the access levels supported by the associated module. Each OPACR has a format
identical to the PACR described in Section 10.6.2.2, Peripheral access control registers (PACR).

The lists of off-platform peripheral registers and their corresponding modules are listed in Table 10-7.

Table 10-7. Off-platform Peripheral Access Control Register (OPACR) fields

Field Peripheral Reset value

OPACR 0 eQADC 0100b, meaning
SP = 1
WP = 0
TP = 0

OPACR 2 Decimation filter A

OPACR 3 Decimation filter B

OPACR 5 DSPI B

OPACR 6 DSPI C

OPACR 7 DSPI D

OPACR 12 eSCI A

OPACR 13 eSCI B

OPACR 14 eSCI C

OPACR 16 FlexCAN A

OPACR 17 FlexCAN B

OPACR 18 FlexCAN C

OPACR 24 FlexRay

OPACR 27 System Information Module

OPACR 31 BAM

OPACR 58 CRC

Peripheral Bridge (PBRIDGE)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 211

OPACR 64 FM PLL 0100b, meaning
SP = 1
WP = 0
TP = 0

OPACR 65 EBI

OPACR 66 Flash module A

OPACR 67 Flash module B

OPACR 68 SIU

OPACR 71 DTS

OPACR 72 eMIOS

OPACR 79 PMC

OPACR 80 eTPU2

OPACR 81 Reaction module

OPACR 82 eTPU parameter RAM

OPACR 83 eTPU parameter RAM mirror

OPACR 84 eTPU code RAM

OPACR 92 PIT

Table 10-7. Off-platform Peripheral Access Control Register (OPACR) fields (continued)

Field Peripheral Reset value

Peripheral Bridge (PBRIDGE)

MPC5644A Microcontroller Reference Manual, Rev. 6

212 Freescale Semiconductor

General-Purpose Static RAM (SRAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 213

Chapter 11
General-Purpose Static RAM (SRAM)

11.1 Introduction

The MPC5644A includes 192 KB of general-purpose SRAM. The first 32 KB of SRAM is powered by its
own power supply pin during standby operation.

11.2 Features

The SRAM controller includes these features:

• Supports read/write accesses mapped to the SRAM memory from any master

• 32-KB block powered by separate supply for standby operation

• Byte, halfword, word and doubleword addressable

• 7-bit ECC

11.3 Modes of operation

11.3.1 Normal (Functional) mode

Allows reads and writes of the SRAM memory arrays.

11.3.2 Standby mode

Preserves contents of the standby portion of the memory when the 1.2 V (VDD) power drops below the
level of the standby power supply voltage. There are two possible supplies for standby: 1.0 V directly from
the VSTBY pin and 2 – 5 volts (also on the VSTBY pin), which enables a standby regulator.

VSTBY pad needs an external RC to slower the ramp to atleast 100 us to prevent a false ESD trigger.

Updates to the standby portion of the SRAM are inhibited during system reset or during Standby Mode.

11.4 Block diagram

The SRAM block diagram is shown in Figure 11-1.

Figure 11-1. SRAM Block Diagram

SRAM
160 KB VSTBY

32 KB

VDD

Standby Switch

General-Purpose Static RAM (SRAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

214 Freescale Semiconductor

11.5 External signal description

The external signal for SRAM is the VSTBY RAM power supply. If the standby feature of the SRAM is
not used, tie the VSTBY pin to VSS.

11.6 Register memory map

The SRAM occupies 192 KB of memory starting at the base address as shown in Table 11-1.

The internal SRAM has no registers. Registers for the SRAM ECC are located in the ECSM. See
Chapter 18, Error Correction Status Module (ECSM).

NOTE

The ECSM module contains the register MUDCR that enables SRAM to be
configured with an additional wait state. This is required when the CPU is
configured to operate at its maximum frequency. See Section 18.4.3,
Miscellaneous User-Defined Control Register (ECSM_MUDCR), for
details.

11.7 Functional description

ECC checks are performed during the read portion of an SRAM ECC read/write (R/W) operation, and
ECC calculations are performed during the write portion of a read/write (R/W) operation. Because the
ECC bits can contain random data after the device is powered on, you must initialize the SRAM by
executing 32-bit write instructions to the entire SRAM. For more information, see Section 11.9,
Initialization and application information.

For software compatibility with other members of the MPC5500 and MPC5600 families, 64-bit writes can
be used to initialize the ECC. This initializes the ECC bits of two 32-bit words at a time.

11.8 SRAm ecc mechanism

The SRAM ECC detects the following conditions and produces the following results:

• Detects and corrects all 1-bit errors

• Detects and flags all 2-bit errors as non-correctable errors

SRAM does not detect all errors greater than 2 bits. Internal SRAM writes are done on byte boundaries:

• 1 byte (0:7 bits)

• 2 bytes (0:15 bits)

• 4 bytes or 1 word (0:31 bits)

Table 11-1. SRAM memory map

Address Register Name Register Description Size

Base (0x4000_0000) — SRAM powered by VSTBY 32 KB

Base + 0x8000 — 160-KB RAM 160 KB

General-Purpose Static RAM (SRAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 215

If the entire 32 data bits are written to SRAM, no read operation is performed and the ECC is calculated
across the 32 bits of data. The 7-bit ECC is appended to the data segment and written to SRAM. If the write
operation is less than the entire 32-bit data width (1- or 2-byte segment), the following occurs:

1. The ECC mechanism checks the entire 32 bits of data for errors, detecting and either correcting or
flagging errors.

2. The write data bytes (1- or 2-byte segment) are merged with the corrected 32 bits on the data bus.

3. The ECC is then calculated on the resulting 32 bits formed in the previous step.

4. The 7-bit ECC result is appended to the 32 bits from the data, and the 39-bit value is then written
to SRAM.

11.8.1 Access timing

The system bus is a two stage pipelined bus, which makes the timing of any access dependent on the access
during the previous clock. Table 11-2 shows the wait states for accesses, current is the access being
measured, previous is the RAM access during the previous clock.

11.8.2 Reset effects on SRAM accesses

If a reset event asserts during a read or write operation to SRAM, the completion of that access depends
on the cycle at which the reset occurs. Data read from or written to SRAM before the reset event occurred
is retained, and no other address locations are accessed or changed.

Table 11-2. Number of wait states required for RAM operation

Current operation Previous operation Number of wait states

Read

Idle 01 / 12

1 Applies if additional SRAM read wait state in ECSM_MUDCR is disabled
2 Applies if additional SRAM read wait state in ECSM_MUDCR is enabled

Read 01/ 12

32 or 64-bit write 01 / 12

8 or 16-bit write 11 / 22

32 or 64-bit write

Idle 0

Read 0

32 or 64-bit write 0

8 or 16-bit write 1

8 or 16-bit write

Idle 0

Read 0

32 or 64-bit write 0

8 or 16-bit write 1

General-Purpose Static RAM (SRAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

216 Freescale Semiconductor

If the system SRAM is cached, cache lines can retain indeterminate data that is not written to memory
unless the region is set for write-through mode.

NOTE

Standby memory can contain the previous data values if a reset occurs while
cache is running in copy back mode.

11.9 Initialization and application information

To use the SRAM, the ECC must check all bits that require initialization after power on. Use either a 32-bit
or 64-bit cache-inhibited write to each SRAM location to initialize the SRAM array as part of the
application initialization code. All writes must specify an even number of registers performed on 32-bit or
64-bit word-aligned boundaries respectively. If the write is not the entire 32 bits (8 or 16 bits), a
read/modify/write operation is generated that checks the ECC value upon the read. See Section 11.8,
SRAm ecc mechanism.

NOTE

You must initialize SRAM, even if the application does not use ECC
reporting.

11.9.1 Example code

To initialize SRAM correctly, use a store multiple word (stmw) instruction to implement 64-bit writes to
all SRAM locations. The stmw instruction concatenates two 32-bit registers to implement a single 64-bit
write. To ensure the writes are 64 bits, specify an even number of registers and write on 64-bit
word-aligned boundaries.

The following example code illustrates the use of the stmw instruction to initialize the SRAM ECC bits.
init_RAM:
lis r11,0x4000 # base address of the SRAM, 64-bit word aligned
ori r11,r11,0 # not needed for this address but could be for others
li r12,1536 # loop counter to get all of SRAM;

192*1024/4 bytes/32 GPRs =1536
mtctr r12
init_ram_loop:
stmw r0,0(r11) # write all 32 GPRs to SRAM
addi r11,r11,128 # inc the ram ptr; 32 GPRs * 4 bytes = 128
bdnz init_ram_loop # loop for 192K of SRAM
blr # done

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 217

Chapter 12
Flash memory

12.1 Introduction

This section presents information about the following components on this device:

• The flash memory blocks

• The platform flash memory controller

The primary function of the flash memory module is to serve as electrically programmable and erasable
non-volatile memory. The NVM memory can be used for instruction and data storage. The block is a
non-volatile solid-state silicon memory device consisting of blocks of single-transistor storage elements,
an electrical means for selectively adding (programming) and removing (erasing) charge from these
elements, and a means of selectively sensing (reading) the charge stored in these elements. The flash is
addressable by word (32 bits) and page (128 bits).

There are two flash array blocks (Flash_A and Flash_B). Within each flash block are two functional units:
the flash core (FC) and the memory interface (MI).

The FC is composed of arrayed non-volatile storage elements, sense amplifiers, row selects, column
selects, charge pumps, and redundancy logic. The arrayed storage elements in the FC are subdivided into
physically separate units referred to as blocks.

The MI contains the registers and logic which control the operation of the FC. The MI is also the interface
to the platform flash bus interface unit (PFBIU).

The flash array’s core has three address spaces: low-address space, mid-address space, and high-address
space (see Figure 12-1).

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

218 Freescale Semiconductor

Figure 12-1. Flash segmentation

12.1.1 Block diagram

Figure 12-2 shows a block diagram of the flash memory module. The FBIU is addressed through the
system bus while the flash control and status registers are addressed through the slave (peripheral) bus.

Low-address space

High-address space

Mid-address space

1 x 256 KB

1 x 256 KB

1 x 256 KB

8 x 16 KB + 2 x 64 KB

2 x 128 KB

1 x 256 KB

Flash_B array blocksFlash_A array blocks

1 x 256 KB1 x 256 KB

1 x 256 KB1 x 256 KB3 MB

256 KB

256 KB

128 bits wide 128 bits wide

(256 bits wide)

Low-address space

Mid-address space
256 KB

256 KB

(128 bits wide)

(128 bits wide)

(128 bits wide)

(128 bits wide)

1 x 256 KB1 x 256 KB

1 x 256 KB1 x 256 KB

1 x 256 KB1 x 256 KB

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 219

Figure 12-2. Flash system block diagram

12.1.2 Features

The flash memory module has these major features:

• Support for a 64-bit data bus for instruction fetch

• Support for a 32-bit data bus for CPU loads and DMA access. Byte, halfword, word and
doubleword reads are supported. Only aligned word and doubleword writes are supported.

• Configurable read buffering and line prefetch support. Device flash has 2 sets of 4 line read
buffers—1 set for the 128-bit wide low- and medium-address space and 1 set for the 256-bit wide
high address space.

Flash bus
interface

unit
(FBIU)

Flash memory

Flash_A memory module

Flash core

Control/status
registers

interface
(MI)

VFLASH_AVSS VDD

Slave
bus

System
bus

Note: VPP is the only externally visible power supply that is necessary for the programming and erasing
of the flash array (see Section 12.2, External signal description).

Flash memory

Flash_B memory module

Flash core

Control/status
registers

interface
(MI)

Slave
bus

(XBAR)

VFLASH_BVSS VDD

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

220 Freescale Semiconductor

• Hardware and software configurable1 read and write access protections on a per-master basis

• Interface to the flash array controller is pipelined with a depth of 1, allowing overlapped accesses
to proceed in parallel for interleaved or pipelined flash array designs.

• Configurable access timing allowing use in a wide range of system frequencies.

• Multiple-mapping support and mapping-based block access timing (0–31 additional cycles)
allowing use for emulation of other memory types

• Software programmable block program/erase restriction control for low, mid and high address
spaces

• Erase of selected block(s)

• Read page size of 128 bits (low/mid-address space) and 256 bits (for high-address space)

• ECC with single-bit correction, double-bit detection

• Minimum program size is 2 consecutive 32 bit words, aligned on a 0-modulo-8 byte address, due
to ECC.

• Embedded hardware program and erase algorithm

• Read-while-write with multiple partitions

• Erase suspend, program suspend and erase-suspended program

• Automotive flash which meets automotive endurance and reliability requirements

• Shadow information stored in non-volatile shadow block

• Independent program/erase of the shadow block

12.1.3 Modes of operation

12.1.3.1 Flash User mode

User mode is the default operating mode of the flash module. In this mode, it is possible to read and write,
program and erase the flash module.

12.2 External signal description

VFLASH is the only externally visible power supply that is necessary for programming and erasing the flash
array. The other flash supplies are tied to the appropriate supply pads in the package.

12.3 Memory map and registers

This section provides a detailed description of all flash memory registers.

1. Software executing from flash must not write to registers that control flash behavior, e.g., wait state settings or prefetch
enable/disable. Doing so can cause data corruption. On MPC5644A devices these registers include BIUCR, BIUAPR, and
BIUCR2.Further, flash configuration registers should be written only with 32-bit write operations to avoid any issues associated
with register “incoherency” caused by bit fields spanning smaller size (8- and 16-bit) boundaries.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 221

12.3.1 Module memory map

The flash memory map is shown in Table 12-1. The addresses are given as an offset to the flash memory
base address.

There are no program-visible registers that physically reside in the flash. The flash controller contains the
registers to control and configure the flash (see Table 12-3). Reference these registers only with 32-bit
accesses.

Table 12-1. Flash memory map

Offset from FLASH_BASE
(0x0000_0000)

Use Block Partition
Data width

(bits)
Block size
(Kbytes)

0x0000_0000 Low-address space (Flash A) L0 1 128 16

0x0000_4000 L1 128 16

0x0000_8000 L2 128 16

0x0000_C000 L3 128 16

0x0001_0000 L4 2 128 16

0x0001_4000 L5 128 16

0x0001_8000 L6 128 16

0x0001_C000 L7 128 16

0x0002_0000 L8 3 128 64

0x0003_0000 L9 128 64

0x0004_0000 Mid-address space (Flash A) M0 4 128 128

0x0006_0000 M1 128 128

0x0008_0000 Low-address space (Flash B) L0 5 128 256

0x000C_0000 Mid-address space (Flash B) M0 128 256

0x0010_0000 High-address space H0 6 256 512

0x0018_0000 H1 256 512

0x0020_0000 H2 7 256 512

0x0028_0000 H3 256 512

0x0030_0000 H4 8 256 512

0x0038_0000 H5 256 512

0x0040_0000 Reserved

0x00EF_C000 Shadow row (Flash B) S0 All1

1 For read-while-write operations, the shadow row behaves as if it is in all partitions.

128 16

0x00F0_0000 Reserved

0x00FF_C000 Shadow row (Flash A) S1 All1 128 16

0x0100_0000 Reserved

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

222 Freescale Semiconductor

Table 12-2. Flash Shadow block mapping

Offset from FLASH_BASE
(0x0000_0000)

Use

0x00FF_C000 – 0x00FF_FDD7 General use

0x00FF_FDD8 Serial passcode (0xFEED_FACE_CAFE_BEEF)

0x00FF_FDE0 Censorship control word (0x55AA_55AA)

0x00FF_FDE4 General use

0x00FF_FDE8 LMLR reset configuration (0x0010_0000)

0x00FF_FDEC General use

0x00FF_FDF0 HLR reset configuration (0x0FFF_FFFF)

0x00FF_FDF4 General use

0x00FF_FDF8 SLMLR reset configuration (0x000F_FFFF)

0x00FF_FDFD General use

0x00FF_FE10 NVUSR0

0x00FF_FE14 – 0x00FF_FFFF General use

Table 12-3. Flash configuration register memory map

Offset from
FLASH_x_

REGS_BASE1
Register Location

0x0000 MCR—Module configuration register on page
12-223

0x0004 LMLR—Low-/mid-address space block lock register on page
12-228

0x0008 HLR—High-address space block lock register on page
12-229

0x000C SLMLR—Secondary low/mid-address space block lock register on page
12-230

0x0010 LMSR—Low-/mid-address space block select register on page
12-231

0x0014 HSR—High-address space block select register on page
12-232

0x0018 AR—Address register on page
12-233

0x001C BIUCR2—Bus interface unit configuration register on page
12-234

0x0020 BIUAPR2—Bus interface unit access protection register on page
12-237

0x0024 BIUCR22—Bus interface unit configuration register 2 on page
12-238

0x0028 – 0x0038 Reserved

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 223

12.3.2 Register descriptions

This section lists the flash memory registers in address order and describes the registers and their bitfields.

12.3.2.1 Module Configuration Register (MCR)

0x003C FLASH_x_UT0—User Test 0 Register on page
12-238

0x0040 FLASH_x_UT1—User Test 1 Register on page
12-240

0x0044 FLASH_x_UT2—User Test 2 Register on page
12-241

0x0048 UMISR0—User Multiple Input Signature Register 0 on page
12-241

0x004C UMISR1—User Multiple Input Signature Register 1 on page
12-241

0x0050 UMISR2—User Multiple Input Signature Register 2 on page
12-241

0x0054 UMISR3—User Multiple Input Signature Register 3 on page
12-241

0x0058 UMISR4—User Multiple Input Signature Register 4 on page
12-241

0x005C – 0x3FFF Reserved

1 FLASH_A_REGS_BASE = 0xC3F8_8000
FLASH_B_REGS_BASE = 0xC3F8_C000

2 Register is only accessible via Flash A. Treat as “Reserved” in Flash B.

Table 12-3. Flash configuration register memory map (continued)

Offset from
FLASH_x_

REGS_BASE1
Register Location

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

224 Freescale Semiconductor

Offset 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 SIZE 0 LAS 0 0 0 MAS

W

Reset 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
EER RWE SBC 0

P
E

A
S

D
O

N
E

PEG 0 0 0 0
PGM

P
S

U
S

ERS

E
S

U
S

EHV

W w1c w1c w1c

Reset 0 0 0 0 0 0/1 1 0 0 0 0 0 0 0 0 0

Figure 12-3. Module Configuration Register (MCR)

Table 12-4. MCR field description

Field Description

SIZE[2:0] Array Space Size
The value of the SIZE field is dependent upon the size of the flash module. SIZE is read only.
000: 128 KB (Only LAS option for this size is LAS = 2, and consists of two 16 KB and two 48 KB blocks,

128 KB of LAS available, and no MAS or HAS available)
001: 256 KB (Only LAS option for this size is LAS = 1, and LAS = 2, no MAS or HAS available)
010: 512 KB (Any LAS or MAS option is available, no HAS available)
011: 1.0 MB (256 KB of LAS, 256 KB of MAS, and 512 KB of HAS)
100: 1.5 MB (256 KB of LAS, 256 KB of MAS, and 1 MB of HAS)
101: 2.0 MB (256 KB of LAS, 256 KB of MAS, and 1.5 MB of HAS)
110: Reserved
111: Reserved

LAS[2:0] Low-Address Space
The value of the LAS field corresponds to the configuration of the Low-Address Space. LAS is read only.
000: One 256 KB block
001: Two 128 KB blocks
010: Four 16 KB, four 48 KB blocks
011: Reserved
100: Eight 16 KB, two 64 KB blocks
101: Reserved
110: Two 16 KB, two 48 KB, two 64 KB blocks
111: Reserved

MAS Mid-Address Space
The value of the MAS field corresponds to the configuration of the Mid-Address Space. MAS is read only.
0: Two 128 KB blocks
1: One 256 KB block (Only available if LAS = 0)

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 225

EER ECC Event Error
EER provides information on previous reads. If a double bit detection occurred, the EER bit is set to a 1.
This bit must then be cleared, or a reset must occur before this bit returns to a 0 state. This bit may not be
set by the user. In the event of a single bit detection and correction, this bit is not be set. If EER is not set,
or remains 0, this indicates that all previous reads (from the last reset, or clearing of EER) are correct.
Since this bit is an error flag, it must be cleared to a 0 by writing a 1 to the register location. A write of 0
has no effect.
0: Reads are occurring normally.
1: An ECC Error occurred during a previous read.

RWE Read While Write Event Error
RWE provides information on previous RWW reads. If a Read While Write error occurs, this bit is set to 1.
This bit must then be cleared, or a reset must occur before this bit returns to a 0 state. This bit may not be
written to a 1 by the user. If RWE is not set, or remains 0, this indicates that all previous RWW reads (from
the last reset, or clearing of RWE) are correct. Since this bit is an error flag, it must be cleared to a 0 by
writing a 1 to the register location. A write of 0 has no effect.
0: Reads are occurring normally.
1: A Read While Write Error occurred during a previous read.

SBC Single Bit Correction
SBC provides information on previous reads provided the UT0[SPCE] is set. If a single bit correction
occurred, the SBC bit is set to a 1. This bit must then be cleared, or a reset must occur before this bit
returns to a 0 state. If SBC is not set, or remains 0, this indicates that all previous reads (from the last
reset, or clearing of SBC) did not require a correction. Since this bit is an error flag, it must be cleared to
a 0 by writing a 1 to the register location. A write of 0 has no effect.
0: Reads are occurring without corrections.
1: A Single Bit Correction occurred during a previous read.

PEAS Program/Erase Access Space
PEAS is used to indicate which space is valid for program and erase operations, either main array space
or shadow space. PEAS = 0 indicates that the main address space is active for all FC program and erase
operations. PEAS = 1 indicates the shadow address space is active for program/erase. The value in
PEAS is captured and held when the shadow block is enabled with the first interlock write done for
program or erase operations. The value of PEAS is retained between sampling events (that is, subsequent
first interlock writes). The value in PEAS may be changed during erase-suspended program, and reverts
back to its’ original state once the erase-suspended program is completed. PEAS is read only.
0: Shadow address space is disabled for program/erase and main address space enabled.
1: Shadow address space is enabled for program/erase and main address space disabled.

DONE State Machine Status
DONE indicates if the flash module is performing a high voltage operation. DONE is set to a 1 on
termination of the flash module reset. DONE is read only. DONE is cleared within a 0 to 1 transition of EHV
which initiates a high voltage operation. DONE is cleared of resuming a suspended operation. DONE is
set to a 1 at the end of program and erase high voltage sequences. DONE is set to a 1 within a 1 to 0
transition of EHV which aborts a high voltage operation.
0: Flash is executing a high voltage operation.
1: Flash is not executing a high voltage operation.

Table 12-4. MCR field description (continued)

Field Description

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

226 Freescale Semiconductor

PEG Program/Erase Good
The PEG bit indicates the completion status of the last flash program or erase sequence for which high
voltage operations were initiated. The value of PEG is updated automatically during the program and
erase high voltage operations. Aborting a program/erase high voltage operation causes PEG to be
cleared, indicating the sequence failed. PEG is set to a 1 when the module is reset. PEG is read only.
The value of PEG is valid only when PGM = 1 and/or ERS = 1 and after DONE transitions from 0 to 1 due
to an abort or the completion of a program/erase operation. PEG is valid until PGM/ERS makes a 1 to 0
transition or EHV makes a 0 to 1 transition. The value in PEG is not valid after a 0 to 1 transition of DONE
caused by PSUS or ESUS being set to logic 1. If PGM and ERS are both 1 when DONE makes a qualifying
0 to 1 transition the value of PEG indicates the completion status of the PGM sequence. This happens in
an erase-suspended program operation.
0: Program or erase operation failed
1: Program or erase operation successful

Note: If program or erases are attempted on blocks that are locked, the response from flash is PEG = 1,
indicating that the operation was successful, and the contents of the block are properly protected
from the program or erase operation.

PGM Program
PGM is used to set up flash for a program operation. A 0 to 1 transition of PGM initiates a program
sequence. A 1 to 0 transition of PGM ends the program sequence. PGM can be set only under one of the
following conditions:
 • User mode read (ERS is low and UTE is low)
 • Erase suspend (ERS and ESUS are 1) with EHV low
PGM can be cleared by the user only when PSUS and EHV are low and DONE is high. PGM is cleared
on reset.
0: Flash is not executing a program sequence.
1: Flash is executing a program sequence.

Note: In an erase-suspended program, programming Flash locations in blocks which were being operated
on in the erase may corrupt FC data. This should be avoided due to reliability implications.

PSUS Program Suspend
PSUS is used to indicate the flash module is in program suspend or in the process of entering a suspend
state. The module is in program suspend when PSUS = 1 and DONE = 1. PSUS can be set high only
when PGM and EHV are high. A 0 to 1 transition of PSUS starts the sequence which sets DONE and
places the flash module in program suspend. The module enters suspend within this transition.
PSUS can be cleared only when DONE and EHV are high. A 1 to 0 transition of PSUS with EHV = 1 starts
the sequence which clears DONE and returns the flash module to program. The module cannot exit
program suspend and clear DONE while EHV is low. PSUS is cleared on reset.
0: Program sequence is not suspended.
1: Program sequence is suspended.

ERS Erase
ERS is used to set up flash for an erase operation. A 0 to 1 transition of ERS initiates an erase sequence.
A 1 to 0 transition of ERS ends the erase sequence. ERS can only be set only in user mode read (PGM
is low and UTE is low). ERS can be cleared by the user only when ESUS and EHV are low and DONE is
high. ERS is cleared on reset.
0: Flash is not executing an erase sequence.
1: Flash is executing an erase sequence.

Table 12-4. MCR field description (continued)

Field Description

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 227

12.3.2.1.1 MCR simultaneous register writes

A number of MCR bits are protected against write when another bit, or set of bits, is in a specific state.
These write locks are covered on a bit by bit basis in the preceding section. The write locks detailed in the
previous section do not consider the effects of trying to write two or more bits simultaneously. The effects
of writing bits simultaneously which put the module in an illegal state are detailed here.

The flash module does not allow the user to write bits simultaneously which put the device into an illegal
state. This is implemented through a priority mechanism among the bits. The bit changing priorities are
detailed in Table 12-5.

ESUS Erase Suspend
ESUS is used to indicate that the flash module is in erase suspend or in the process of entering a suspend
state. The module is in erase suspend when ESUS = 1 and DONE = 1. ESUS can be set high only when
ERS and EHV are high and PGM is low. A 0 to 1 transition of ESUS starts the sequence which sets DONE
and places the flash in erase suspend. The flash module enters suspend within this transition.
ESUS can be cleared only when DONE and EHV are high and PGM is low. A 1 to 0 transition of ESUS
with EHV = 1 starts the sequence which clears DONE and returns the module to erase. The flash module
cannot exit erase suspend and clear DONE while EHV is low. ESUS is cleared on reset.
0: Erase sequence is not suspended.
1: Erase sequence is suspended.

EHV Enable High Voltage
The EHV bit enables the flash module for a high voltage program/erase operation. EHV is cleared on
reset. EHV must be set after an interlock write to start a program/erase sequence. EHV may be set,
initiating a program/erase, after an interlock under one of the following conditions:
 • Erase (ERS = 1, ESUS = 0)
 • Program (ERS = 0, ESUS = 0, PGM = 1, PSUS = 0)
 • Erase-suspended program (ERS = 1, ESUS = 1, PGM = 1, PSUS = 0)
If a program operation is to be initiated while an erase is suspended the user must clear EHV while in
erase suspend before setting PGM.
In normal operation, a 1 to 0 transition of EHV with DONE high, PSUS and ESUS low terminates the
current program/erase high voltage operation.
When an operation is aborted, there is a 1 to 0 transition of EHV with DONE low and the suspend bit for
the current program/erase sequence low. An abort causes the value of PEG to be cleared, indicating a
failed program/erase; address locations being operated on by the aborted operation contain indeterminate
data after an abort.
A suspended operation cannot be aborted. EHV may be written during suspend. EHV must be high for the
flash module to exit suspend. EHV may not be written after a suspend bit is set high and before DONE
transitions high. EHV may not be set low after the current suspend bit is set low and before DONE
transitions low.
0: Flash is not enabled to perform a high voltage operation.
1: Flash is enabled to perform a high voltage operation.

Note: Aborting a high voltage operation leaves FC addresses in an indeterminate data state. This may
be recovered by executing an erase on the affected blocks.

Table 12-5. MCR bit set/clear priority levels

Priority level MCR bit(s)

1 ERS

2 PGM

Table 12-4. MCR field description (continued)

Field Description

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

228 Freescale Semiconductor

If the user attempts to write two or more MCR bits simultaneously then only the bit with the lowest priority
level is written. Setting two bits with the same priority level is prevented by existing write locks or do not
put the flash in an illegal state.

For example, setting ERS and PGM simultaneously results in only ERS being set. Attempting to clear
EHV while setting PSUS results in EHV being cleared, while PSUS is unaffected.

12.3.2.2 Low/Mid-Address Space Block Lock Register (LMLR)

The Low/Mid-Address Space Block Lock Register (LMLR) provides a means to protect blocks from being
modified. These bits, along with the SLLOCK bits in the SLMLR, determine if the block is locked from
program or erase. An “OR” of LMLR and SLMLR determines the final lock status.

NOTE

A reset value of 1* in Figure 12-4 indicates that the reset value of these
registers is determined by Flash values in the shadow block. An erased
shadow block causes the reset value to be 1.

3 EHV

4 ESUS, PSUS

Offset 0x0004 Access: User read/write

R LME 0 0 0 0 0 0 0 0 0 0 SLOCK 0 0 MLOCK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 X 0 0 X X

R 0 0 0 0 0 0 LLOCK

W

Reset 0 0 0 0 0 0 1* 1* 1* 1* 1* 1* 1* 1* 1* 1*

= Unimplemented or Reserved

Figure 12-4. Low/Mid-Address Space Block Lock Register (LMLR)

Table 12-6. LMLR field descriptions

Field Description

LME Low/Mid-Address Lock Enable
The LME bit is used to enable the Lock fields (SLOCK, MLOCK and LLOCK) to be set or cleared by
register writes. LME is a status bit only, and may not be written or cleared, and the reset value is 0. The
method to set LME is to write a password, and if the password matches, LME is set to reflect the status
of enabled, and is enabled until a reset operation occurs. For LME, the password 0xA1A1_1111 must
be written to the LMLR.
0: Low/Mid-Address Locks are disabled, and can not be modified.
1: Low/Mid-Address Locks are enabled to be written.

Table 12-5. MCR bit set/clear priority levels

Priority level MCR bit(s)

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 229

12.3.2.3 High-Address Space Block Lock Register (HLR)

The High-Address Space Block Lock Register (HLR) provides a means to protect blocks from being
modified.

NOTE

A reset value of 1* in Figure 12-5 indicates that the reset value of these
registers is determined by Flash values in the shadow block. An erased
shadow block causes the reset value to be 1.

SLOCK Shadow Lock
This SLOCK bit is used to lock the shadow block from programs and erases.
1: Shadow block is locked for program and erase.
0: Shadow block is available to receive program and erase pulses.

SLOCK is not writable once an interlock write is completed until MCR[DONE] is set at the completion
of the requested operation. Likewise, SLOCK is not writable if a high voltage operation is suspended.
SLOCK is also not writeable during UTest operations, when AIE is high.
Upon reset, information from the shadow block is loaded into SLOCK. The SLOCK bit may be written
as a register. Reset causes the bits to go back to their shadow block value. The default value of the
SLOCK bit (assuming erased shadow location) is locked.
SLOCK is not writable unless LME is high.

MLOCK[1:0] Mid-Address Space Block Lock
A value of 1 in a bit of the lock register signifies that the corresponding block is locked for program and
erase. A value of 0 in the lock register signifies that the corresponding block is available to receive
program and erase pulses. The block numbering for Mid-Address Space starts with MLOCK[0] and
continues until all blocks are accounted.
The lock register is not writable once an interlock write is completed until MCR[DONE] is set at the
completion of the requested operation. Likewise, the lock register is not writable if a high voltage
operation is suspended. MLOCK is also not writeable during UTest operations, when AIE is high.
Upon reset, information from the shadow block is loaded into the block registers. The LOCK bits may
be written as a register. Reset causes the bits to go back to their shadow block value. The default
value of the LOCK bits (assuming erased shadow location) is locked.
In the event that blocks are not present (due to configuration or total memory size), the LOCK bits
default to be locked, and are not writable. The reset value is always 1 (independent of the shadow
block), and register writes have no effect.
MLOCK is not writable unless LME is high.

LLOCK[9:0] Low-Address Space Block Lock
A value of 1 in a bit of the lock register signifies that the corresponding block is locked for program and
erase. A value of 0 in the lock register signifies that the corresponding block is available to receive
program and erase pulses. The block numbering for Low-Address Space starts with LLOCK[0] and
continues until all blocks are accounted.
For more details on LLOCK, please see MLOCK field description.
LLOCK is not writable unless LME is high.

Table 12-6. LMLR field descriptions (continued)

Field Description

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

230 Freescale Semiconductor

T

12.3.2.4 Secondary Low/Mid-Address Space Block Lock Register (SLMLR)

The Secondary Low/Mid-Address Space Block Lock Register (SLMLR) provides an alternative means to
protect blocks from being modified. This has the effect of creating a “tiered” locking scheme to enable
different flash users to provide different default locking on blocks. These bits, along with the LLOCK bits
in the LMLR, determine if the block is locked from program or erase. An “OR” of LMLR and SLMLR
determine the final lock status.

NOTE

A reset value of 1* in Figure 12-6 indicates that the reset value of these
registers is determined by Flash values in the shadow block. An erased
shadow block causes the reset value to be 1.

Offset 0x0008 Access: User read/write

R HBE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0 0 HBLOCK

W

Reset 0 0 0 0 0 0 0 0 0 0 1* 1* 1* 1* 1* 1*

= Unimplemented or Reserved

Figure 12-5. High-Address Space Block Lock Register (HLR)

Table 12-7. HLR field descriptions

Field Description

HBE High-Address Lock Enable
This bit is used to enable the Lock registers (HBLOCK) to be set or cleared by register writes. This
bit is a status bit only, and may not be written or cleared, and the reset value is 0. The method
to set this bit is to provide a password, and if the password matches, the HBE bit is set to reflect
the status of enabled, and is enabled until a reset operation occurs. For HBE, the password
B2B2_2222h must be written to the HLR.
0: High-Address Locks are disabled, and can not be modified.
1: High-Address Locks are enabled to be written.

HBLOCK[5:0] High-Address Space Block Lock
HBLOCK has the same characteristics as LLOCK. Please see this description for more
information. The block numbering for High-Address Space starts with HBLOCK[0] and continues
until all blocks are accounted.
HBLOCK is not writable unless HBE is high.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 231

12.3.2.5 Low/Mid-Address Space Block Select Register (LMSR)

The Low/Mid-Address Space Block Select Register (LMSR) provides a means to select blocks to be
operated on during erase.

Offset 0x000C Access: User read/write

R SLE 0 0 0 0 0 0 0 0 0 0

S
S

LO
C

K

0 0 SMLOCK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1* 0 0 1* 1*

R 0 0 0 0 0 0 SLLOCK

W

Reset 0 0 0 0 0 0 1* 1* 1* 1* 1* 1* 1* 1* 1* 1*

= Unimplemented or Reserved

Figure 12-6. Secondary Low/Mid-Address Space Block Lock Register (SLMLR)

Table 12-8. SLMLR field descriptions

Field Description

SLE Secondary Low/Mid-Address Lock Enable
The SLE bit is used to enable the Lock fields (SSLOCK, SMLOCK, and SLLOCK) to be set or cleared
by register writes. SLE is a status bit only, and may not be written or cleared, and the reset value is
0. The method to set SLE is to provide a password, and if the password matches, SLE is set to
reflect the status of enabled, and is enabled until a reset operation occurs. For SLE, the password
0xC3C3_3333 must be written to the SLMLR.
0: Secondary Low/Mid-Address Locks are disabled, and can not be modified.
1: Secondary Low/Mid-Address Locks are enabled to be written.

SSLOCK Secondary Shadow Lock
The SSLOCK bit is an alternative method that may be used to lock the shadow block from programs
and erases. SSLOCK has the same description as SLOCK. SSLOCK is not writable unless SLE is
high.

SMLOCK[1:0] Secondary Mid-Address Block Lock
The SMLOCK field is an alternative method that may be used to lock the Mid-Address Space blocks
from programs and erases. SMLOCK has the same description as MLOCK. SMLOCK is not writable
unless SLE is high.

SLLOCK[9:0] Secondary Low-Address Block Lock
The SLLOCK field is an alternative method that may be used to lock the Low-Address Space blocks
from programs and erases. SLLOCK has the same description as LLOCK. SLLOCK is not writable
unless SLE is high.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

232 Freescale Semiconductor

12.3.2.6 High-Address Space Block Select Register (HSR)

The High-Address Space Block Select Register (HSR) provides a means to select blocks to be operated on
during erase.

Offset 0x0010 Access: User read/write

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MSEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 LSEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-7. Low/Mid-Address Space Block Select Register (LMSR)

Table 12-9. LMSR field descriptions

Field Description

MSEL[1:0] Mid-Address Space Block Select
A value of 1 in the select register signifies that the block is selected for erase. A value of 0 in the select
register signifies that the block is not selected. The reset value for the select registers is 0, or unselected.
The blocks must be selected (or unselected) before doing an erase interlock write as part of the erase
sequence. The select register is not writable once an interlock write is completed until MCR[DONE] is
set at the completion of the requested operation, or if a high voltage operation is suspended. MSEL is
also not writable during UTest operations, when AIE is high.
In the event that blocks are not present (due to configuration or total memory size), the corresponding
select bits default to unselected, and are not writable. The reset value is always 0, and register writes
have no effect.

LSEL[9:0] Low-Address Space Block Select
A value of 1 in the select register signifies that the block is selected for erase. A value of 0 in the select
register signifies that the block is not selected. The reset value for the select registers is 0, or unselected.
The blocks must be selected (or unselected) before doing an erase interlock write as part of the erase
sequence. The select register is not writable once an interlock write is completed until MCR[DONE] is
set at the completion of the requested operation, or if a high voltage operation is suspended. LSEL is
also not writable during UTest operations, when AIE is high.
In the event that blocks are not present (due to configuration or total memory size), the corresponding
select bits default to unselected, and are not writable. The reset value is always 0, and register writes
have no effect.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 233

12.3.2.7 Address Register (AR)

The Address register (AR) provides the first failing address in the event module failures (ECC or
PGM/Erase state machine)

Offset 0x0014 Access: User read/write

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0 0 HSEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-8. High-Address Space Block Select Register (HSR)

Table 12-10. HSR field descriptions

Field Description

HSEL[26:31] High-Address Space Block Select
High-Address Block Select has the same characteristics as LSEL.

Offset 0x0018 Access: User read/write

R SAD 0 0 0 0 0 0 0 0 0 0 0 0 0 ADDR[14-13]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R ADDR[12-0] 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-9. Address Register (AR)

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

234 Freescale Semiconductor

12.3.2.8 Bus Interface Unit Configuration Register (BIUCR)

The Bus Interface Unit Configuration Register (BIUCR) is used to specify operation of the dual-flash
controller.

Table 12-11. AR field descriptions

Field Description

SAD Shadow Address
The SAD bit qualifies the address captured during an ECC Event Error, Single Bit Correction, or State
Machine operation.
The SAD register is not writable.
0: Address Captured is from Main Array Space.
1: Address Captured is from Shadow Array Space.

ADDR[14:0] Address
The ADDR field provides the first failing address in the event of ECC event error (MCR[EER] set), single
bit correction (MCR[SBC] set), as well as providing the address of a failure that may have occurred in
a state machine operation (MCR[PEG] cleared). ECC event errors take priority over single bit
corrections, which take priority over state machine errors. This is especially valuable in the event of a
RWW operation, where the read senses an ECC error or single bit correction, and the state machine
fails simultaneously. This address is always a Double Word address that selects 64 bits.
The ADDR field is writable, and can be used in the UTEST ECC Logic Check. If the ECC logic check
is enabled (UT0[EIE] = 1) then the AR will not update for ECC event error, single bit correction or state
machine errors.
If MCR[EER] or MCR[SBC] are set, the AR is locked from writing. MCR[PEG] does not affect the
writability of the ADDR field.

Offset: FLASH_REGS_BASE + 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0

M
6P

F
E 0

M
4P

F
E 0 0

M
1P

F
E

M
0P

F
E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
APC WWSC RWSC

0

D
P

F
E

N 0

IF
P

F
E

N 0
PFLIM

B
F

E
N

W

Reset 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Figure 12-10. Bus Interface Unit Configuration Register (BIUCR)

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 235

Table 12-12. BIUCR field descriptions

Field Description

MnPFE Master n prefetch enable
These bits are used to control whether prefetching may be triggered based on the master ID of a
requesting master. These bits are cleared by hardware reset.
0: No prefetching may be triggered by this master
1: Prefetching may be triggered by this master
Note: These bits refer to the master ID, not the master port number, as shown in the following:

APC Address Pipelining Control
This field is used to control the number of cycles between pipelined access requests.
It must be set to a value corresponding to the operating frequency of the PFLASH1. Higher operating
frequencies require non-zero settings for this field for proper flash operation. This field is set to 0b111
by hardware reset.

000: Accesses may be pipelined back-to-back
001: Access requests require one additional hold cycle
010: Access requests require two additional hold cycles
...
110: Access requests require six additional hold cycles
111: No address pipelining
Note: The settings for APC and RWSC should be the same.

WWSC Write Wait State Control
This field is used to control the number of wait-states to be added to the best-case flash array access
time for writes. The best-case flash array access time for writes is two cycles. This field must be set to
a value corresponding to the operating frequency of the PFLASH1. Higher operating frequencies
require non-zero settings for this field for proper flash operation. This field is set to 0b11 by hardware
reset.

00: No additional wait-states are added
01: One additional wait-state is added
10: Two additional wait-states are added
11: Three additional wait-states are added

Master ID Module

0 z4 Core Instruction

1 z4 Core Load/Store

4 eDMA

6 FlexRay

7 External Bus Interface (EBI)

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

236 Freescale Semiconductor

RWSC Read Wait State Control
This field is used to control the number of wait-states to be added to the best-case flash array access
time for reads. The best-case flash array access time for reads is one cycle. This field must be set to
a value corresponding to the operating frequency of the PFLASH and the actual read access time of
the PFLASH1. Higher operating frequencies require non-zero settings for this field for proper flash
operation.

This field is set to 0b111 by hardware reset.
000: No additional wait-states are added
001: One additional wait-state is added
...
111: Seven additional wait-states are added
Note: The settings for APC and RWSC should be the same.

DPFEN Data Prefetch Enable
This field enables or disables prefetching initiated by a data read access. This field is cleared by
hardware reset.
0: No prefetching is triggered by a data read access
1: Prefetching may be triggered by any data read access

IPFEN Instruction Prefetch Enable
This bit enables or disables prefetching initiated by an instruction read access. This field is cleared by
hardware reset.
0: No prefetching is triggered by an instruction read access
1: Prefetching may be triggered by any instruction read access

PFLIM PFLASH Prefetch Limit
This field controls the prefetch algorithm used by the PFLASH prefetch controller. This field defines a
limit on the maximum number of sequential prefetches which will be attempted between buffer misses.
In all situations when enabled, only a single prefetch is initiated on each buffer miss or hit. This field is
cleared by hardware reset.
00: No prefetching or buffering is performed.
01: The referenced line is prefetched on a buffer miss, that is, prefetch on miss.
1x: The referenced line is prefetched on a buffer miss, or the next sequential line is prefetched on a

buffer hit (if not already present), that is, prefetch on miss or hit.

BFEN PFLASH Line Read Buffers Enable
This bit enables or disables line read buffer hits. It is also used to invalidate the buffers. This bit is
cleared by hardware reset.
0: The line read buffers are disabled from satisfying read requests, and all buffer valid bits are cleared.
1: The line read buffers are enabled to satisfy read requests on hits. Buffer valid bits may be set when

the buffers are successfully filled.

1 Valid settings are specified in the device data sheet.

Table 12-12. BIUCR field descriptions (continued)

Field Description

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 237

12.3.2.9 Bus Interface Unit Access Protection Register (BIUAPR)

Offset: FLASH_REGS_BASE + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0
M6AP

0 0
M4AP

0 0 0 0
M1AP M0AP

W

Reset 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Figure 12-11. Bus Interface Unit Access Protection Register (BIUAPR)

Table 12-13. BIUAPR field descriptions

Field Description

MnAP Master n Access Protection
These fields are used to control whether read and write accesses to the flash are allowed based on
the master ID of a requesting master.

00: No accesses may be performed by this master
01: Only read accesses may be performed by this master
10: Only write accesses may be performed by this master
11: Both read and write accesses may be performed by this master
Note: These bits refer to the master ID, not the master port number, as shown in the following:

Master ID Module

0 z4 Core Instruction

1 z4 Core Load/Store

4 eDMA

6 FlexRay

7 External Bus Interface (EBI)

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

238 Freescale Semiconductor

12.3.2.10 Bus Interface Unit Configuration Register 2 (BIUCR2)

12.3.2.11 User Test 0 (UT0) Register

The User Test 0 (UT0) Register provides a means to control UTest. The UTest mode gives the users of the
flash module the ability to perform test features on the flash. This register is only writable when the flash
is put into UTest mode by writing a passcode.

Offset: FLASH_REGS_BASE + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
LBCFG

1 1 1 1 1 1 1 1 1 1 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 12-12. Bus Interface Unit Configuration Register 2 (BIUCR2)

Table 12-14. BIUCR2 field descriptions

Field Description

LBCFG Line Buffer Configuration
This field controls the configuration of all the line buffers in the PFLASH controller. The buffers can
be organized as a “pool” of available resources, or with a fixed partition between instruction and data
buffers.

In all cases, when a buffer miss occurs, it is allocated to the least-recently-used buffer within the
group and the just-fetched entry then marked as most-recently-used. If the flash access is for the
next-sequential line, the buffer is not marked as most-recently-used until the given address produces
a buffer hit.

This field is initialized by hardware reset to the value contained in address 0x7e00 of the shadow
block of the flash array. An erased or unprogrammed flash sets this field to 0b11.

This field controls the configuration of both the 4 x 128 and 4 x 256 line buffers.

00: All four buffers are available for any flash access, that is, there is no partitioning of the buffers
based on the access type.

01: Reserved
10: The buffers are partitioned into two groups with buffers 0 and 1 allocated for instruction fetches

and buffers 2 and 3 for data accesses.
11: The buffers are partitioned into two groups with buffers 0,1,2 allocated for instruction fetches and

buffer 3 for data accesses.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 239

Offset: FLASH_REGS_BASE + 0x003C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
UTE

S
C

B
E 0 0 0 0 0 0

DSI
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 EA 0
MRE MRV EIE AIS AIE

AID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 12-13. User Test 0 (UT0) Register

Table 12-15. UT0 field descriptions

Field Description

UTE UTest Enable
This status bit gives indication when UTest is enabled. All bits in UT0, UT1, UT2, UMISR0, UMISR1,
UMISR2, UMISR3, and UMISR4 are locked when this bit is 0. This bit is not writable to a 1, but may be
cleared. The reset value is 0. The method to set this bit is to provide a password, and if the password
matches, the UTE bit is set to reflect the status of enabled, and is enabled until it is cleared by a register
write. The UTE password will only be accepted if MCR[PGM] = 0 and MCR [ERS] = 0 (program and
erase are not being requested). UTE can only be cleared if UT0[AID] = 1, UT0[AIE] and UT0[EIE] = 0.
While clearing UTE, writes to set AIE or set EIE will be ignored. For UTE, the password 0xF9F9_9999
must be written to the UT0 register.

SCBE Single Bit Correction Enable
SBC enables Single Bit Correction results to be observed in MCR[SBC]. Also is used as an enable for
interrupt signals created by the c90fl module. ECC corrections that occur when SBCE is cleared will
not be logged.
0: Single Bit Corrections observation is disabled.
1: Single Bit Correction observation is enabled.

DSI Data Syndrome Input
These bits enable checks of ECC logic by allowing check bits to be input into the ECC logic and then
read out by doing array reads or array integrity checks. The DSI[7:0] correspond to the 8 ECC check
bits on a double word.

EA ECC Algorithm. EA is a status bit that provides information about the ECC algorithm used within the
Flash. Either a modified
Hamming code is used, or a modified Hsiao code is used.
0: Default ECC Algorithm, modified Hamming algorithm.
1: Optional/Alternative ECC Algorithm, modified Hsiao algorithm.

MRE Margin Read Enable
MRE combined with MRV enables Factory Margin Reads to be done. Margin reads are only active
during Array Integrity Checks. Normal user reads are not affected by MRE. MRE is not writable if AID
is low.
0: Margin reads are not enabled.
1: Margin reads are enabled during Array Integrity Checks.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

240 Freescale Semiconductor

12.3.2.12 User Test 1 (UT1) Register

The User Test 1 (UT1) Register provides added controllability to UTest.

MRV Margin Read Value
MRV selects the margin level that is being checked. Margin can be checked to an erased level
(MRV = 1) or to a programmed level (MRV = 0). In order for this value to be valid, MRE must also be
set. MRV is not writable if AID is low.
0: Zero’s margin reads are requested.
1: One’s margin reads are requested.

EIE ECC Data Input Enable
EIE enables the input registers (DSI and DAI) to be the source of data for the array. This is useful in
the ECC logic check. If this bit is set, data read through a BIU read request will be from the DSI and
DAI registers when an address match is achieved to the AR. EIE is not simultaneously writable to a 1
as UTI is being cleared to a 0.
0: Data read is from the flash array.
1: Data read is from the DSI and DAI registers.

AIS Array Integrity Sequence
AIS determines the address sequence to be used during array integrity checks. The default sequence
(AIS = 0) is meant to replicate sequences normal “user” code follows, and thoroughly checks the read
propagation paths. This sequence is proprietary. The alternative sequence (AIS = 1) is just logically
sequential.
It should be noted that the time to run a sequential sequence is significantly shorter than the time to run
the proprietary sequence. If MRE is set, AIS has no effect.
0: Array integrity sequence is proprietary sequence.
1: Array integrity sequence is sequential.

AIE Array Integrity Enable
AIE set to one starts the array integrity check done on all selected and unlocked blocks. The address
sequence selected is determined by bit AIS, and the MISR (UMISR0 through UMISR4) can be checked
after the operation is complete, to determine if a correct signature is obtained. Once an Array Integrity
operation is requested (AIE = 1), it may be terminated by clearing AIE if the operation has finished
(AID = 1) or aborted by clearing AIE if the operation is ongoing (AID = 0). AIE is not simultaneously
writable to a 1 as UTI is being cleared to a 0.
0: Array integrity checks are not enabled.
1: Array integrity checks are enabled.

AID Array Integrity Done
AID is cleared upon an Array integrity check being enabled (to signify the operation is ongoing). Once
completed, AID is set to indicate that the array integrity check is complete. At this time the MISR
(UMISR registers) can be checked. AID can not be written, and is status only.
0: Array integrity check is ongoing.
1: Array integrity check is done.

Table 12-15. UT0 field descriptions (continued)

Field Description

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 241

12.3.2.13 User Test 2 (UT2) Register

12.3.2.14 User Multiple Input Signature Register [0:4] (UMISRn)

The User Multiple Input Signature Registers (UMISRn) provide a means to evaluate array integrity.

Offset: FLASH_REGS_BASE + 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-14. User Test 1 (UT1) Register

Table 12-16. UT1 field descriptions

Field Description

DAI
[31:0] Data Array Input

These bits enable checks of ECC logic by allowing data bits to be input into the ECC logic and then
read out by doing array reads or array integrity checks. The DAI[31:0] correspond to the 32 Array bits
representing Word 0 of the double word selected in the AR.

Offset: FLASH_REGS_BASE + 0x0044 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-15. User Test 2 (UT2) Register

Table 12-17. UT2 field descriptions

Field Description

DAI
[63:32] Data Array Input

These bits enable checks of ECC logic by allowing data bits to be input into the ECC logic and then
read out by doing array reads or array integrity checks. The DAI[63:32] correspond to the 32 Array
bits representing Word 1of the double word selected in the AR.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

242 Freescale Semiconductor

Offset: FLASH_REGS_BASE + 0x0048 Access: User read/write

R MS[031-016]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R MS[015-000]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-16. User Multiple Input Signature Register 0 (UMISR0)

Offset: FLASH_REGS_BASE + 0x004C Access: User read/write

R MS[063-048]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R MS[047-032]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-17. User Multiple Input Signature Register 1 (UMISR1)

Offset: FLASH_REGS_BASE + 0x0050 Access: User read/write

R MS[095-080]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R MS[079-064]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-18. User Multiple Input Signature Register 2 (UMISR2)

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 243

Offset: FLASH_REGS_BASE + 0x0054 Access: User read/write

R MS[127-112]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R MS[111-096]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-19. User Multiple Input Signature Register 3 (UMISR3)

Offset: FLASH_REGS_BASE + 0x0058 Access: User read/write

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R MS[143-128]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 12-20. User Multiple Input Signature Register 4 (UMISR4)

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

244 Freescale Semiconductor

Table 12-18. UMISRn field descriptions

Field Description

MS Multiple Input Signature Register bits
The MS bitfields accumulate a signature from an array integrity event. The MISR captures all data fields,
as well as ECC fields, and the read transfer error signal. The MISR can be seeded to any value by writing
the UMISR registers.

The UMISR provides a means to calculate an MISR during Array Integrity operations.

The MISR can be represented by the following polynomial:
x145 + x6 + x5 + x1 + 1

The MISR is calculated by taking the previous MISR value and then “exclusive ORing” the new data. In
addition the most significant bit (in this case it is MISR[144]), is then “exclusive ORed” into input of
MISR[6], MISR[5], MISR[1], and MISR[0]. The result of the “exclusive OR” is shifted left on each read.

The MISR is used in Array Integrity operations.
If during address sequencing, reads extend into an invalid address location (i.e., greater than the
maximum address for a given array size) or locked/unselected blocks, reads are still executed to the array,
but the results from the array read are not deterministic. In this instance, the signature is not recalculated
and the previous value is retained.

After running the user-test-mode margin read (also referenced as factory margin read) sequence on the
C90fl flash module, the MISR registers cannot be written such that the next user-test-mode margin read
sequence cannot seed the MISRs as desired. This will cause the generated MISRs to be unexpected for
the next user margin read sequences, in case customers want to run the user margin read more than once.

To be able to write the MISR registers:
1) Assert reset after each user margin read sequence so that MISRs can be written again.
2) Do a dummy program to a locked block after user margin read.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 245

12.4 Functional description

12.4.1 Flash User Mode

In user mode the flash module can be read and written (register writes and interlock writes), programmed
or erased. The following subsections define all actions that can be performed in user mode.

12.4.2 Flash Read and Write

The default state of the flash module is read. The main and shadow address space can be read only in the
read state. The module configuration register (MCR) is always available for read. The flash module enters
the read state on reset. The flash module is in the read state under three sets of conditions:

• The read state is active when PGM = 1 or ERS = 1 in the MCR and high-voltage operation is
ongoing (read while write).

NOTE

Reads done to the partition(s) being operated on (either erased or
programmed) will result in an error and the RWE bit in the MCR will be set.

• The read state is active when PGM = 1 and PSUS = 1 in the MCR (program suspend).

• The read state is active when ERS = 1 and ESUS = 1 and PGM = 0 in the MCR (erase suspend).

NOTE

FC reads are done through the BIU. In many cases the BIU will do page
buffering to allow sequential reads to be done with higher performance. This
can create a data coherency issue that must be handled with software. Data
coherency can be an issue after a program, erase, or shadow row operations.

In flash user mode, registers can be written. Array can be written to do interlock writes.

Array reads attempted to invalid locations will result in indeterminate data. Invalid locations occur when
addressing is done to blocks that do not exist in non 2n array sizes.

Interlock writes attempted to invalid locations (due to blocks that do not exist in non 2n array sizes), will
result in an interlock occurring, but attempts to program or erase these blocks will not occur since they are
forced to be locked.

12.4.3 Read While Write (RWW)

The flash core is divided into partitions. Partitions always comprise two or more blocks. Partitions are used
to determine read-while-write (RWW) groupings. While a write (program or erase) is being done within a
given partition, a read can be simultaneously executed to any other partition. Partitions are listed in
Table 12-1. Each partition in high address space comprises two 128 KB blocks. The shadow block has
unique RWW restrictions described in Section 12.4.7, Flash shadow block.

The FC is also divided into blocks to implement independent erase or program protection. The shadow
block exists outside the normal address space and is programmed, erased, and read independently of the

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

246 Freescale Semiconductor

other blocks. The shadow block is included to support systems that require NVM for security or system
initialization information.

A software mechanism is provided to independently lock or unlock each block in high-, mid-, and
low-address space against program and erase. Two hardware locks are also provided to enable/disable the
FC for program/erase. See Section 12.4.5.1, Software Locking, for more information.

12.4.4 UTest Mode

UTest mode is a mode that customers can put the flash module in to do specific tests to check the integrity
of the Flash module.

12.4.4.1 Array Integrity Self Check

Array Integrity is checked using a pre-defined address sequence (based on UT0[AIS]), and this operation
is executed on selected blocks. The data to be read is customer specific, thus a customer can provide user
code into the flash and the correct MISR value is calculated. The customer is free to provide any random
or non-random code, and a valid MISR signature is calculated. Once the operations is completed, the
results of the reads can be checking by reading the MISR value, to determine if an incorrect read, or ECC
detection was noted. Array integrity is controlled by the system clock (IPG), and it is required that the Read
Wait States and Address Pipelined control registers in the BIU be set to match the user defined frequency
being used.

NOTE

While Array Integrity is being executed, flash memory array accesses
through the BIU should not be requested.

The Array Integrity Check consists of the following sequence of events:

1. Enable UTest mode.

2. Select the block, or blocks to receive array integrity check by writing ones to the appropriate
registers in LMS or HBS registers.

NOTE

Locked Blocks can be tested with Array Integrity if selected in LMS and
HBS.

NOTE

It is not possible to do UTest operations on the shadow block.

3. If desired, Set the UT0[AIS] bit to 1 for sequential addressing only.

NOTE

For normal integrity checks of the flash memory, sequential addressing is
recommended.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 247

If it is required to more fully check the read path (in a diagnostic mode), it
is recommend that AIS be left at 0, to use the address sequence that checks
the read path more fully, and examine read transitions. This sequence takes
more time.

4. Seed the MISR UMISR0 through UMISR4 with desired values.

5. Set the UT0[AIE] bit.

a) If desired, the Array Integrity operation may be aborted prior to UT0[AID] going high. This
may be done by clearing the UT0[AIE] bit and then continuing to the next step. It should be
noted that in the event of an aborted array integrity check the MISR registers will contain a
signature for the portion of the operation that was completed prior to the abort, and will not be
deterministic. Prior to doing another array integrity operation, the UMISR0, UMISR1,
UMISR2, and UMISR3 registers may need to be initialized to the desired seed value by doing
register writes.

6. Wait until the UT0[AID] bit goes high.

7. Read values in the MISR registers (UMISR0 through UMISR4) to ensure correct signature.

8. Write a logic 0 to the UT0[AIE] bit.

12.4.4.2 Factory Margin Read

Factory Margin Read must be done following “Initial Factory Conditions”. One Factory Margin Read is
allowed per erase.

Factory Margin Read may be done to selected and unlocked blocks by combining UT0[MRE] and
UT0[MRV] with the Array Integrity check. If UT0[MRE] is set, UT0[AIS] has no affect, and the reads
will be done sequentially.

The data to be read is customer specific, thus a customer can provide user code into the flash and the
correct MISR value is calculated. The customer is free to provide any random or non-random code, and a
valid MISR signature is calculated. Once the operations is completed, the results of the reads can be
checking by reading the MISR value. Factory Margin Read is a self timed event, and is independent of
system clocks, or wait states selected. Margin ECC corrections or detections are not done during the
Factory Margin Read test:

1. Enable UTest mode.

2. Select the block, or blocks to be receive margin read check by writing ones to the appropriate
registers in LMS or HBS/EHS registers. Make sure that selected blocks are also unlocked.

NOTE

It is not possible to do UTest operations on the shadow block.

NOTE

It is possible to do User Mode array reads during the Factory Margin Read
test, if desired, but the partition rules for Read While Write used during
program and erase are in effect during Factory Margin Reads.

3. Set the UT0[MRE] bit.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

248 Freescale Semiconductor

4. Set the UT0[MRV] bit to desired value depending on it is desired to do One’s Margin or Zero’s
Margin.

5. Seed the MISR UMISR0 thru UMISR4 with desired values.

6. Set the UT0[AIE] bit.

a) If desired, the Margin Read operation may be aborted prior to UT0[AID] going high. This may
be done by clearing the UT0[AIE] bit and then continuing to the next step. It should be noted
that in the event of an aborted Margin Read check the MISR registers will contain a signature
for the portion of the operation that was completed prior to the abort, and will not be
deterministic.

7. Wait until the UT0[AID] bit goes high.

8. Read values in the MISR registers (UMISR0 through UMISR4) to ensure correct signature.

9. Write a logic 0 to the UT0[AIE] bit.

NOTE

If it is desired to do two or more margin reads, and it is desired to re-seed
the MISR, a reset must be done between operations. If the subsequent
margin reads can be done with the previously calculated MISR value, then
a reset is not required.

12.4.4.3 ECC Logic Check

ECC logic can be checked by providing data to be read in the UT0[DSI], UT1[DAI] and/or UT2[DAI]
registers. Then array reads can be done, ensuring expected results. The ECC Logic Check consists of the
following sequence of events:

1. Enable UTest mode.

2. Write UT0[EIE] to 1.

3. Write UT0[DSI], UT1[DAI] and/or UT2[DAI] bits to provide data and check bit values to be read.
Single or Double bit detections/corrections can be simulated by properly choosing Data and Check
Bit combinations.

4. Write double word address to receive the data inputted in step 3 into the ADR register.

5. Reads can now be done through the BIU in a Read Request type fashion. In the event of a BIU read
requested from an address that matches the address in the ADR register, expected data, and
corrections or detections should be observed based on data written into the UT0[DSI], UT1[DAI]
and/or UT2[DAI] registers. MCR[EER] and MCR[SBCSBC] can be checked to evaluate the status
of reads done.

NOTE

In the event of an ECC error or Single Bit Correction, during the ECC Logic
Check (UTO[EIE] high), the ADR register will not be loaded, and the
address tagged to receive the UT0[DSI], UT1[DAI] and/or UT2[DAI]
values will be persevered.

6. Once completed, clear the UT0[EIE] bit to 0.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 249

12.4.5 Flash Programming

Programming changes the value stored in an array bit from logic 1 to logic 0 only. Programming cannot
change a stored logic 0 to a logic 1. Addresses in locked/disabled blocks cannot be programmed. The user
can program the values in any or all of four words within a page in a single program sequence. Word
addresses are selected using bits 3:2 of the page-bound word.

Whenever a program operation occurs, ECC bits are programmed. ECC is handled on a 64-bit boundary.
Thus, if only one word in any given 64-bit ECC segment is programmed, the adjoining word (in that
segment) should not be programmed because ECC calculation has already completed for that 64-bit
segment. Attempts to program the adjoining word will probably result in an operation failure. It is
recommended that all programming operations be from 64 bits to 128 bits, and be 64-bit aligned. The
programming operation should completely fill selected ECC segments within the page.

The program operation consists of the following sequence of events:

1. Change the value in the MCR[PGM] bit from a 0 to a 1.

NOTE

Ensure the block that contains the address to be programmed is unlocked.
See Section 12.3.2.2, Low/Mid-Address Space Block Lock Register
(LMLR), Section 12.3.2.3, High-Address Space Block Lock Register
(HLR), and Section 12.3.2.4, Secondary Low/Mid-Address Space Block
Lock Register (SLMLR), for more information.

2. Write the first address to be programmed in the flash module with the program data. This write is
referred to as a program data interlock write. An interlock write may be either be an aligned word
or doubleword.

3. If more than one word or doubleword is to be programmed, write each additional address in the
page with data to be programmed. This is referred to as a program data write. All unwritten data
words default to 0xFFFF_FFFF.

4. Write a logic 1 to the MCR[EHV] bit to start the internal program sequence or skip to step 9 to
terminate.

5. Wait until the MCR[DONE] bit goes high.

6. Confirm MCR[PEG] = 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more addresses are to be programmed, return to step 2.

9. Write a logic 0 to the MCR[PGM] bit to terminate the program sequence.

The program sequence is presented graphically in Figure 12-21. The program suspend operation detailed
in Figure 12-21 is discussed in Section 12.4.5.1.1, Flash Program Suspend/Resume.

The first write after a program is initiated determines the page address to be programmed. Program may
be initiated with the 0 to 1 transition of the MCR[PGM] bit or by clearing the MCR[EHV] bit at the end
of a previous program. This first write is referred to as an interlock write. If the program is not an
erase-suspended program, the interlock write determines if the shadow or normal array space will be
programmed and causes MCR[PEAS] to be set/cleared.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

250 Freescale Semiconductor

In the case of an erase-suspended program, the value in MCR[PEAS], is retained from the erase.

An interlock write must be performed before setting MCR[EHV]. The user may terminate a program
sequence by clearing MCR[PGM] prior to setting MCR[EHV].

If multiple writes are done to the same location the data for the last write is used in programming.

While MCR[DONE] is low, MCR[EHV] is high, and MCR[PSUS] is low, the user may clear MCR[EHV],
resulting in a program abort. A program abort forces the module to step 8 of the program sequence. An
aborted program will result in MCR[PEG] being set low, indicating a failed operation. The data space
being operated on before the abort will contain indeterminate data. The user may not abort a program
sequence while in program suspend.

CAUTION

Aborting a program operation will leave the flash core addresses being
programmed in an indeterminate data state. This may be recovered by
executing an erase on the affected blocks.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 251

Figure 12-21. Program Sequence

Erase suspendUser mode read state

Write MCR

PGM = 1

Program write

Step 1

Step 2

Step 3

Write MCR

EHV = 1

High voltage active

Access MCR

DONE

Step 4

WRITE
PSUS = 1

Read MCR
DONE = 1

Program suspend

PGM = 0 User mode read state

PEG = 0

Read MCR

DONE = 1

DONE = 0
Write MCR

PSUS = 0
EHV = 1

Abort
WRITE

EHV = 0

Step 5

Step 6

PEG
Success
PEG = 1

Write MCR

Failure
PEG = 0

Step 7

EHV = 0

PGM
more words

Step 8

?

No

Yes

Write MCR

PGM = 0

User mode read state

Step 9

Go to Step 2

Note: PEG will remain valid under this
condition until EHV is set high or
PGM is cleared.

Note: PSUS cannot be cleared while
EHV = 0. PSUS and EHV cannot
both be changed in a single
write operation.

PEG valid period

Last write
?

Yes

No

ESUS
?

0 1

Erase suspend

or erase suspend

?

value
?

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

252 Freescale Semiconductor

12.4.5.1 Software Locking

A software mechanism is provided to independently lock/unlock each high-, mid-, and low-address space
against program and erase.

Software locking is done through the LMLR (low/mid-address space block lock register), SLMLR
(secondary low/mid-address space block lock register), or HLR (high-address space block lock register).
These can be written through register writes and read through register reads.

When the program/erase operations are enabled through hardware, software locks are enforced through
doing register writes.

12.4.5.1.1 Flash Program Suspend/Resume

The program sequence may be suspended to allow read access to the flash core. It is not possible to erase
or program during a program suspend. Interlock writes should not be attempted during program suspend.

A program suspend can be initiated by changing the value of the MCR[PSUS] bit from a 0 to a 1.
MCR[PSUS] can be set high at any time when MCR[PGM] and MCR[EHV] are high. A 0 to 1 transition
of MCR[PSUS] causes the flash module to start the sequence to enter program suspend, which is a read
state. The module is not suspended until MCR[DONE] = 1. At this time flash core reads may be attempted.
After it is suspended, the flash core may be read only. Reads to the blocks being programmed/erased return
indeterminate data.

The program sequence is resumed by writing a logic 0 to MCR[PSUS]. MCR[EHV] must be set to a 1
before clearing MCR[PSUS] to resume operation. When the operation resumes, the flash module
continues the program sequence from one of a set of predefined points. This may extend the time required
for the program operation.

12.4.6 Flash Erase

Erase changes the value stored in all bits of the selected block(s) to logic 1. An erase sequence operates on
any combination of blocks in the Low, Mid or High Address Space, or the shadow block. The erase
sequence is fully automated within the flash. The user only needs to select the blocks to be erased and
initiate the erase sequence. Locked/disabled blocks cannot be erased. If multiple blocks are selected for
erase during an erase sequence, the blocks are erased sequentially starting with the lowest numbered block
and terminating with the highest. The erase sequence consists of the following sequence of events:

The erase sequence consists of the following sequence of events:

1. Change the value in the MCR[ERS] bit from 0 to a 1.

2. Select the block, or blocks, to be erased by writing 1s to the appropriate bits in LMSR or HSR. If
the shadow row is to be erased, this step may be skipped, and LMSR and HSR are ignored. For
shadow row erase, see Section 12.4.7, Flash shadow block, for more information.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 253

NOTE

Lock and select are independent. If a block is selected and locked, no erase
will occur. See Section 12.3.2.2, Low/Mid-Address Space Block Lock
Register (LMLR), Section 12.3.2.3, High-Address Space Block Lock
Register (HLR), and Section 12.3.2.4, Secondary Low/Mid-Address Space
Block Lock Register (SLMLR), for more information.

3. Write to any address in flash. This is referred to as an erase interlock write. The interlock write
causes the values of SOC specific shadow enable to be captured and causing MCR[PEAS] to be
set/cleared.

4. Write a logic 1 to the MCR[EHV] bit to start an internal erase sequence or skip to step 9 to
terminate.

5. Wait until the MCR[DONE] bit goes high.

6. Confirm MCR[PEG] = 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more blocks are to be erased, return to step 2.

9. Write a logic 0 to the MCR[ERS] bit to terminate the erase.

The erase sequence is presented graphically in Figure 12-22. The erase suspend operation detailed in
Figure 12-22 is discussed in Section 12.4.6.1, Flash erase suspend/resume.
After setting MCR[ERS], one write, referred to as an interlock write, must be performed before MCR[EHV] can be set to a 1. This
interlock causes the values of SOC specific shadow enable to be captured. Data words written during erase sequence interlock
writes are ignored. The user may terminate the erase sequence by clearing MCR[ERS] before setting MCR[EHV].

An erase operation may be aborted by clearing MCR[EHV] assuming MCR[DONE] is low, MCR[EHV]
is high, and MCR[ESUS] is low. An erase abort forces the module to step 8 of the erase sequence. An
aborted erase results in MCR[PEG] being set low, indicating a failed operation. The blocks being operated
on before the abort contain indeterminate data. The user may not abort an erase sequence while in erase
suspend.

WARNING

Aborting an erase operation will leave the flash core blocks being erased in
an indeterminate data state. This may be recovered by executing an erase on
the affected blocks.

12.4.6.1 Flash erase suspend/resume

The erase sequence may be suspended to allow read access to the FC. The erase sequence may also be
suspended to program (erase-suspended program) the FC. A program started during erase suspend can in
turn be suspended. Only one erase suspend and one program suspend are allowed at a time during an
operation. It is not possible to erase during an erase suspend, or program during a program suspend. During
suspend, all reads to FC locations targeted for program and blocks targeted for erase return indeterminate
data. Programming locations in blocks targeted for erase during erase-suspended program may result in
corrupted data. Read While Write may also be used to read the array during an erase sequence providing
the read is to a partition not selected for erase.
An erase suspend can be initiated by changing the value of the MCR[ESUS] bit from a 0 to a 1.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

254 Freescale Semiconductor

MCR[ESUS] can be set to a 1 at any time when MCR[ERS] and MCR[EHV] are high and MCR[PGM] is low. A 0 to 1 transition
of MCR[ESUS] causes the module to start the sequence which places it in erase suspend. The user must wait until MCR[DONE]
= 1 before the module is suspended and further actions are attempted. MCR[DONE] goes high no more than Tesus after
MCR[ESUS] is set to a 1. Once suspended, the array may be read or a program sequence may be initiated (erase-suspended
program). Before initiating a program sequence the user must first clear MCR[EHV]. If a program sequence is initiated the values
of SOC specific shadow enable is recaptured. Once the erase-suspended program is completed, the value of PEAS is returned
to its “erase” value. FC reads while MCR[ESUS] = 1 from the blocks being erased return indeterminate data.

The erase sequence is resumed by writing a logic 0 to MCR[ESUS]. MCR[EHV] must be set to a 1 and
MCR[PGM] must be cleared (in the event of an erase suspended program) before MCR[ESUS] can be
cleared to resume the operation. The module continues the erase sequence from one of a set of predefined
points. This may extend the time required for the erase operation.

WARNING

Repeated suspends at a high frequency may result in the operation timing
out, and the flash module will respond by completing the operation with a
fail code (MCR[PEG] = 0), or the operation not able to finish
(MCR[DONE] = 1 during Erase operation). The minimum time between
erase suspends to ensure this does not occur is Tesrt.

WARNING

In an erase-suspended program, programming flash locations in blocks
which were being operated on in the erase may corrupt flash core data.

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 255

Figure 12-22. Erase sequence

12.4.7 Flash shadow block

The flash shadow block is a memory-mapped block in the flash memory map. Program and erase of the
shadow block are enabled when MCR[PEAS] = 1 only. After the user has begun an erase operation on the
shadow block, the operation cannot be suspended to program the main address space and vice-versa. The
user must terminate the shadow erase operation to program or erase the main address space.

User mode read state

Write MCR

ERS = 1

Select blocks

Erase interlock write

Step 1

Step 2

Step 3

Write MCR

EHV = 1

High voltage active

Access MCR

DONE
?

Step 4

WRITE
ESUS = 1

Read MCR
DONE = 1

Erase suspend

ERS = 0
User mode read state

PEG = 0

Read MCR

DONE = 1

DONE = 0
Write MCR

ESUS = 0
EHV = 1

Abort
WRITE

EHV = 0

Step 5

Step 6

PEG
?

Success
PEG = 1

Write MCR

Failure
PEG = 0

Step 7

EHV = 0

Erase
more blocks

Step 8

?

No

Yes

Write MCR

ERS = 0

User mode read state

Step 9

EHV = 0

Write MCR

PGM = 1

Program, Step 2

Go to Step 2

Note: PEG will remain valid under this
condition until EHV is set high or
ERS is cleared.

Note: ESUS cannot be cleared while
EHV = 0. ESUS and EHV cannot
be changed in a single
write operation.

PEG Valid Period

Flash memory

MPC5644A Microcontroller Reference Manual, Rev. 6

256 Freescale Semiconductor

NOTE

If an erase of user space is requested, and a suspend is done with attempts
to erase suspend program shadow space, this attempted program will be
directed to user space as dictated by the state of MCR[PEAS]. Likewise an
attempted erase suspended program of user space, while the shadow space
is being erased, will be directed to shadow space as dictated by the state of
MCR[PEAS].

The shadow block cannot use the RWW feature. After an operation is started in the shadow block, a read
cannot be done to the shadow block, or any other block. Likewise, after an operation is started in a block
in low-/mid-/high-address space, a read cannot be done in the shadow block.

The shadow block contains information about how the lock registers are reset. The first and second words
can be used for reset configuration words. All other words can be used for user-defined functions or other
configuration words.

The shadow block may be locked/unlocked against program or erase by using the LMLR or SLMLR
discussed in Section 12.3.2, Register descriptions.

Programming the shadow row has similar restrictions to programming the array in terms of how ECC is
calculated. See Section 12.4.5, Flash Programming for more information. Only one program is allowed per
64-bit ECC segment between erases. Erase of the shadow row is done similarly as an array erase. See
Section 12.4.6, Flash Erase for more information.

12.4.8 Flash reset

A reset is the highest priority operation for the flash and terminates all other operations.

The flash uses reset to initialize register and status bits to their default reset values. If the flash is executing
a program or erase operation and a reset is issued, the operation will be aborted and the flash will disable
the high voltage logic without damage to the high-voltage circuits. Reset aborts all operations and forces
the flash into user mode ready to receive accesses.

After reset is negated, register accesses can be performed, although it should be noted that registers that
require updating from shadow information, or other inputs, cannot read updated values until flash exits
reset.

12.4.9 DMA requests

The flash has no DMA requests.

12.4.10 Interrupt requests

The flash has no interrupt requests.

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 257

Chapter 13
Memory Protection Unit (MPU)

13.1 Introduction

The memory protection unit (MPU) provides hardware access control for all memory references generated
in a device. Using preprogrammed region descriptors that define memory spaces and their associated
access rights, the MPU concurrently monitors all system bus transactions and evaluates the
appropriateness of each transfer. Memory references with sufficient access control rights are allowed to
complete, but references that are not mapped to any region descriptor or have insufficient rights are
terminated with a protection error response.

The MPU implements a set of program-visible region descriptors that monitor all system bus addresses.
The result is a hardware structure with a two-dimensional connection matrix, where the region descriptors
represent one dimension and the individual system bus addresses and attributes are the second dimension.

13.1.1 Features

The MPU has these major features:

• Support for 16 memory region descriptors, each 128 bits in size

— Specification of start and end addresses provide granularity for region sizes from 32 bytes to
4 GB

— MPU is invalid at reset, thus no access restrictions are enforced

— 2 types of access control definitions: processor core bus master supports the traditional {read,
write, execute} permissions with independent definitions for supervisor and user mode
accesses; the remaining non-core bus masters (eDMA, FlexRay, and EBI1) support {read,
write} attributes

— Automatic hardware maintenance of the region descriptor valid bit removes issues associated
with maintaining a coherent image of the descriptor

— Alternate memory view of the access control word for each descriptor provides an efficient
mechanism to dynamically alter the access rights of a descriptor only

— For overlapping region descriptors, priority is given to permission granting over access
denying as this approach provides more flexibility to system software

• Support for two XBAR slave port connections (SRAM and PBRIDGE)

— For each connected XBAR slave port (SRAM and PBRIDGE), MPU hardware monitors every
port access using the preprogrammed memory region descriptors

— An access protection error is detected if a memory reference does not hit in any memory region
or the reference is flagged as illegal in all memory regions where it does hit. In the event of an
access error, the XBAR reference is terminated with an error response and the MPU inhibits
the bus cycle being sent to the targeted slave device

— 64-bit error registers, one for each XBAR slave port, capture the last faulting address,
attributes, and detail information

1. EBI not available on all packages and is not available, as a master, for customer.

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

258 Freescale Semiconductor

13.1.2 Modes of operation

The MPU does not support any special modes of operation.

13.2 MPU-to-XBAR slave port mapping

In some of the register field descriptions, references are made to “slave ports”. This is not referring to the
slave ports of the XBAR—it refers instead to the slave ports of the MPU. The mapping is as follows:

13.3 Signal description

The MPU does not include any external signals.

13.4 Memory map and registers

This section provides a detailed description of all MPU registers.

13.4.1 Module memory map

The MPU memory map is shown in Table 13-2. The address of each register is given as an offset to the
MPU base address. Registers are listed in address order, identified by complete name and mnemonic, and
list the type of accesses allowed.

The MPU registers can be referenced using 32-bit (word) accesses only. Attempted references using
different access sizes, to undefined (reserved) addresses, or with a non-supported access type (for example,
a write to a read-only register or a read of a write-only register) generate an error termination.

Table 13-1. MPU-to-XBAR slave port mapping

MPU Slave Port XBAR Slave Port Description

0 2 Device SRAM

1 7 Device Peripheral Bridge (PBRIDGE)

Table 13-2. MPU Memory Map

Offset from
MPU_BASE

(0xFFF1_0000)
Register Location

0x0000 MPU_CESR — MPU control/error status register on page
13-261

0x0004–0x000F Reserved

0x0010 MPU_EAR0 — MPU error address register, slave port 0 on page
13-262

0x0014 MPU_EDR0 — MPU error detail register, slave port 0 on page
13-263

0x0018 MPU_EAR1 — MPU error address register, slave port 1 on page
13-262

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 259

0x001C MPU_EDR1 — MPU error detail register, slave port 1 on page
13-263

0x0020 Reserved

0x0024 Reserved

0x0028–0x03FF Reserved

0x0400 MPU_RGD0 — MPU region descriptor 0 on page
13-264

0x0410 MPU_RGD1 — MPU region descriptor 1 on page
13-264

0x0420 MPU_RGD2 — MPU region descriptor 2 on page
13-264

0x0430 MPU_RGD3 — MPU region descriptor 3 on page
13-264

0x0440 MPU_RGD4 — MPU region descriptor 4 on page
13-264

0x0450 MPU_RGD5 — MPU region descriptor 5 on page
13-264

0x0460 MPU_RGD6 — MPU region descriptor 6 on page
13-264

0x0470 MPU_RGD7 — MPU region descriptor 7 on page
13-264

0x0480 MPU_RGD8 — MPU region descriptor 8 on page
13-264

0x0490 MPU_RGD9 — MPU region descriptor 9 on page
13-264

0x04A0 MPU_RGD10 — MPU region descriptor 10 on page
13-264

0x04B0 MPU_RGD11 — MPU region descriptor 11 on page
13-264

0x04C0 MPU_RGD12 — MPU region descriptor 12 on page
13-264

0x04D0 MPU_RGD13 — MPU region descriptor 13 on page
13-264

0x04E0 MPU_RGD14 — MPU region descriptor 14 on page
13-264

0x04F0 MPU_RGD15 — MPU region descriptor 15 on page
13-264

0x00500–0x07FF Reserved

Table 13-2. MPU Memory Map (continued)

Offset from
MPU_BASE

(0xFFF1_0000)
Register Location

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

260 Freescale Semiconductor

13.4.2 Register descriptions

This section lists the MPU registers in address order and describes the registers and their bitfields.

0x0800 MPU_RGDAAC0 — MPU RGD alternate access control 0 on page
13-269

0x0804 MPU_RGDAAC1 — MPU RGD alternate access control 1 on page
13-269

0x0808 MPU_RGDAAC2 — MPU RGD alternate access control 2 on page
13-269

0x080C MPU_RGDAAC3 — MPU RGD alternate access control 3 on page
13-269

0x0810 MPU_RGDAAC4 — MPU RGD alternate access control 4 on page
13-269

0x0814 MPU_RGDAAC5 — MPU RGD alternate access control 5 on page
13-269

0x0818 MPU_RGDAAC6 — MPU RGD alternate access control 6 on page
13-269

0x081C MPU_RGDAAC7 — MPU RGD alternate access control 7 on page
13-269

0x0820 MPU_RGDAAC8 — MPU RGD alternate access control 8 on page
13-269

0x0824 MPU_RGDAAC9 — MPU RGD alternate access control 9 on page
13-269

0x0828 MPU_RGDAAC10 — MPU RGD alternate access control 10 on page
13-269

0x082C MPU_RGDAAC11 — MPU RGD alternate access control 11 on page
13-269

0x0830 MPU_RGDAAC12 — MPU RGD alternate access control 12 on page
13-269

0x0834 MPU_RGDAAC13 — MPU RGD alternate access control 13 on page
13-269

0x0838 MPU_RGDAAC14 — MPU RGD alternate access control 14 on page
13-269

0x083C MPU_RGDAAC15 — MPU RGD alternate access control 15 on page
13-269

0x0840–0x3FFF Reserved

Table 13-2. MPU Memory Map (continued)

Offset from
MPU_BASE

(0xFFF1_0000)
Register Location

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 261

NOTE

The programming model can only be referenced using 32-bit (word)
accesses. Attempted references using different access sizes, to undefined
(reserved) addresses, or with a non-supported access type (for example, a
write to a read-only register or a read of a write-only register) generate a bus
error termination.

13.4.2.1 MPU Control/Error Status Register (MPU_CESR)

The MPU_CESR provides one byte of error status and three bytes of configuration information. A global
MPU enable/disable bit is also included in this register.

Address: MPU_BASE (0xFFF1_0000) + 0x0000 Access: Supervisor

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SPERR[0:7]1

1 Each SPERR bit can be cleared by writing a one to the bit location.

HRL

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R NSP NRGD
VLD

W

Reset 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

= not implemented

Figure 13-1. MPU Control/Error Status Register (MPU_CESR)

Table 13-3. MPU_CESR field descriptions

Field Description

0–7
SPERR

Slave Port n1 Error, where the slave port number matches the bit number

Each bit in this read-only field represents a flag maintained by the MPU for signaling the presence of a
captured error contained in the MPU_EARn and MPU_EDRn registers. The individual bit is set when the
hardware detects an error and records the faulting address and attributes. It is cleared when the
corresponding bit is written to a logical one. If another error is captured at the exact same cycle as a write
of a logical one, this flag remains set. A find-first-one instruction (or equivalent) can be used to detect the
presence of a captured error.
0 The corresponding MPU_EARn/MPU_EDRn registers do not contain an unread captured error
1 The corresponding MPU_EARn/MPU_EDRn registers do contain an unread captured error

Note: Bit 0 indicates an SRAM access protection error and bit 1 a peripheral bridge protection error.

12–15
HRL

Hardware Revision Level

This 4-bit read-only field specifies the MPU’s hardware and definition revision level. It can be read by
software to determine the functional definition of the module. This field reads as 0 on MPC5644A.

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

262 Freescale Semiconductor

13.4.2.2 MPU Error Address Register, Slave Port 0 to 1 (MPU_EARn)

When the MPU detects an access error on slave port n1, the 32-bit reference address is captured in this
read-only register and the corresponding bit in the MPU_CESR[SPERR] field is set. Additional
information about the faulting access is captured in the corresponding MPU_EDRn register at the same
time.

16–19
NSP

Number of Slave Ports

This 4-bit read-only field specifies the number of slave ports [1–8] connected to the MPU.

This field reads as 0b0010 on the MPC5644A at reset, indicating two slaves.

20–23
NRGD

Number of Region Descriptors

This 4-bit read-only field specifies the number of region descriptors implemented in the MPU. The defined
encodings include:
0000 8 region descriptors
0010 16 region descriptors

This field reads as 0b0010 on the MPC5644A

31
VLD

Valid

This bit provides a global enable/disable for the MPU.
0 The MPU is disabled
1 The MPU is enabled

While the MPU is disabled, all accesses from all bus masters are allowed.

1 See Table 13-1 in Section 13.2, MPU-to-XBAR slave port mapping, for MPU slave port details.

1. See Table 13-1 in Section 13.2, MPU-to-XBAR slave port mapping, for MPU slave port details.

Address: MPU_BASE (0xFFF1_0000) + 0x0010 (MPU_EAR0)
MPU_BASE (0xFFF1_0000) + 0x0018 (MPU_EAR1)

Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EADDR[31:16]

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EADDR[16:0]

W

Reset – – – – – – – – – – – – – – – –

= not implemented

Figure 13-2. MPU Error Address Register, Slave Port n (MPU_EARn)

Table 13-3. MPU_CESR field descriptions (continued)

Field Description

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 263

13.4.2.3 MPU Error Detail Register, Slave Port 0 to 1 (MPU_EDRn)

When the MPU detects an access error on slave port n1, 32 bits of error detail are captured in this read-only
register and the corresponding bit in the MPU_CESR[SPERR] field is set. Information on the faulting
address is captured in the corresponding MPU_EARn register at the same time. A read of the MPU_EDRn
register clears the corresponding bit in the MPU_CESR[SPERR] field.

Table 13-4. MPU_EARn field descriptions

Field Description

0–31
EADDR

Error Address

This read-only field is the reference address from slave port n that generated the access error.

1. See Table 13-1 in Section 13.2, MPU-to-XBAR slave port mapping, for MPU slave port details.

Address: MPU_BASE (0xFFF1_0000) + 0x00014 (MPU_EDR0)
MPU_BASE (0xFFF1_0000) + 0x001C (MPU_EDR1)

Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EACD

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EPID EMN EATTR ERW

W

Reset – – – – – – – – – – – – – – – –

= not implemented

Figure 13-3. MPU Error Detail Register, Slave Port n (MPU_EDRn)

Table 13-5. MPU_EDRn field descriptions

Field Description

0–15
EACD

Error Access Control Detail

This 16-bit read-only field implements one bit per region descriptor and is an indication of the region
descriptor hit logically-ANDed with the access error indication. The MPU performs a
reference-by-reference evaluation to determine the presence/absence of an access error. When an error
is detected, the hit-qualified access control vector is captured in this field.

If the MPU_EDRn register contains a captured error and the EACD field is all zeroes, this signals an
access that did not hit in any region descriptor. All non-zero EACD values signal references that hit in a
region descriptor(s), but failed due to a protection error as defined by the specific set bits.

16–23
EPID

Error Process Identification

This 8-bit read-only field records the process identifier of the faulting reference. The process identifier is
typically driven by processor cores only; for other bus masters, this field is cleared.

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

264 Freescale Semiconductor

13.4.2.4 MPU Region Descriptor n (MPU_RGDn)

Each 128-bit (16-byte) region descriptor specifies a given memory space and the access attributes
associated with that space. The descriptor definition is fundamental to the operation of the MPU.

The region descriptors are organized sequentially in the MPU’s programming model and each of the four
32-bit words are detailed in the subsequent sections.

13.4.2.4.1 MPU Region Descriptor n, Word 0 (MPU_RGDn.Word0)

The first word of the MPU region descriptor defines the 0-modulo-32 byte start address of the memory
region. Writes to this word clear the region descriptor’s valid bit.

24–27
EMN

Error Master Number

This 4-bit read-only field records the logical master number of the faulting reference. This field is used to
determine the bus master that generated the access error.

28–30
EATTR

Error Attributes

This 3-bit read-only field records attribute information about the faulting reference. The supported
encodings are defined as:
000 User mode, instruction access
001 User mode, data access
010 Supervisor mode, instruction access
011 Supervisor mode, data access

All other encodings are reserved. For non-core bus masters, the access attribute information is typically
wired to supervisor, data (0b011).

31
ERW

Error Read/Write

This 1-bit read-only field signals the access type (read, write) of the faulting reference.
0 Read
1 Write

Address: MPU_BASE (0xFFF1_0000) + (16*n) + 0x0 (MPU_RGDn.Word0) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SRTADDR[26:11]

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SRTADDR[10:0]

W

Reset – – – – – – – – – – – 0 0 0 0 0

= not implemented

Figure 13-4. MPU Region Descriptor n, Word 0 Register (MPU_RGDn.Word0)

Table 13-5. MPU_EDRn field descriptions (continued)

Field Description

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 265

13.4.2.4.2 MPU Region Descriptor n, Word 1 (MPU_RGDn.Word1)

The second word of the MPU region descriptor defines the 31-modulo-32 byte end address of the memory
region. Writes to this word clear the region descriptor’s valid bit.

13.4.2.4.3 MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2)

The third word of the MPU region descriptor defines the access control rights of the memory region. The
access control privileges are dependent on two broad classifications of bus masters. Bus masters 0–3 are
typically reserved for processor cores. The corresponding access control is a 6-bit field defining separate
privilege rights for user and supervisor mode accesses as well as the optional inclusion of a process
identification field within the definition. Bus masters 4–7 are typically reserved for data movement
engines and their capabilities are limited to separate read and write permissions. For these fields, the bus
master number refers to the physical master ID defined in Table 9-1 in Chapter 9, Multi-Layer AHB
Crossbar Switch (XBAR).

Table 13-6. MPU_RGDn Word 0 field description

Field Description

0–26
SRTADD

R

Start Address

This field defines the most significant bits of the 0-modulo-32 byte start address of the memory region.

Address: MPU_BASE (0xFFF1_0000) + (16*n) + 0x4 (MPU_RGDn.Word1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ENDADDR[26:11]

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ENDADDR[10:0]

W

Reset – – – – – – – – – – – 1 1 1 1 1

= not implemented

Figure 13-5. MPU Region Descriptor n, Word 1 Register (MPU_RGDn.Word1)

Table 13-7. MPU_RGDn Word 1 field description

Field Description

0–26
ENDADD

R

End Address

This field defines the most significant bits of the 31-modulo-32 byte end address of the memory region.
There are no hardware checks to verify that ENDADDR > SRTADDR; the software must properly load
these region descriptor fields.

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

266 Freescale Semiconductor

NOTE

For the processor privilege rights, there are three flags associated with this
function: {read, write, execute}. In this context, these flags follow the
traditional definition:

Read (r) permission refers to the ability to access the referenced memory
address using an operand (data) fetch.

Write (w) permission refers to the ability to update the referenced memory
address using a store (data) instruction.

Execute (x) permission refers to the ability to read the referenced memory
address using an instruction fetch.

Writes to this word clear the region descriptor’s valid bit. Because it is also expected that system software
may adjust only the access controls within a region descriptor (MPU_RGDn.Word2) as different tasks
execute, an alternate programming view of this 32-bit entity is provided. If only the access controls are
being updated, this operation should be performed by writing to MPU_RGDAACn (alternate access
control n) as stores to these locations do not affect the descriptor’s valid bit.

The MPU operates on the following masters:

• M0: e200z4 core

• M4: eDMA

• M6: FlexRay

• M7: EBI

Address: MPU_BASE (0xFFF1_0000) + 0x400 + (16*n) + 0x8 (MPU_RGDn.Word2) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
7R

E

M
7W

E

M
6R

E

M
6W

E

M
4R

E

M
4W

E

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
0

P
E

M0SM
M0UM

W r w x

Reset – – – – – – – – – – – – – – – –

= not implemented

Refer to Table 9-1, in the XBAR chapter, to see the Master ID assignments.

Figure 13-6. MPU Region Descriptor n, Word 2 Register (MPU_RGDn.Word2)

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 267

13.4.2.4.4 MPU Region Descriptor n, Word 3 (MPU_RGDn.Word3)

The fourth word of the MPU region descriptor contains the optional process identifier and mask, plus the
region descriptor’s valid bit.

Table 13-8. MPU_RGDn Word 2 field description

Field Description

6
M7RE

Bus Master ID 7 (EBI) Read Enable

If set, this flag allows bus master ID 7 to perform read operations. If cleared, any attempted read by bus
master ID 4 terminates with an access error and the read is not performed.

Note: Bus Master 7 (EBI) is available for Factory Test only.

7
M7WE

Bus Master ID 7 (EBI) Write Enable

If set, this flag allows bus master ID 7 to perform write operations. If cleared, any attempted write by bus
master ID 7 terminates with an access error and the write is not performed.

Note: Bus Master 7 (EBI) is available for Factory Test only.

6
M6RE

Bus Master ID 6 (FlexRay) Read Enable

If set, this flag allows bus master ID 6 to perform read operations. If cleared, any attempted read by bus
master ID 6 terminates with an access error and the read is not performed.

7
M6WE

Bus Master ID 6 (FlexRay) Write Enable

If set, this flag allows bus master ID 6 to perform write operations. If cleared, any attempted write by bus
master ID 6 terminates with an access error and the write is not performed.

6
M4RE

Bus Master ID 4 (eDMA) Read Enable

If set, this flag allows bus master ID 4 to perform read operations. If cleared, any attempted read by bus
master ID 4 terminates with an access error and the read is not performed.

7
M4WE

Bus Master ID 4 (eDMA) Write Enable

If set, this flag allows bus master ID 4 to perform write operations. If cleared, any attempted write by bus
master ID 4 terminates with an access error and the write is not performed.

bits 8–25 Reserved

26
M0PE

Bus Master ID 0 (Core) Process Identifier Enable. If set, this flag specifies that the process identifier and
mask defined in MPU_RGDn.Word3 are to be included in the region hit evaluation. If cleared, the region
hit evaluation does not include the process identifier.

27–28
M0SM

Bus Master ID 0 (Core) Supervisor Mode Access Control

This 2-bit field defines the access controls for bus master ID 0 when operating in supervisor mode. The
M0SM field is defined as:
00 r, w, x = read, write and execute allowed
01 r, –, x = read and execute allowed, but no write
10 r, w, – = read and write allowed, but no execute
11 Same access controls as that defined by M0UM for user mode

29–31
M0UM

Bus Master ID 0 (Core) User Mode Access Control
This 3-bit field defines the access controls for bus master ID 0 when operating in user mode. The M0UM
field consists of three independent bits, enabling read, write, and execute permissions: {r, w, x}. If set, the
bit allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

268 Freescale Semiconductor

Because the region descriptor is a 128-bit entity, there are potential coherency issues as this structure is
being updated because multiple writes are required to update the entire descriptor. Accordingly, the MPU
hardware assists in the operation of the descriptor valid bit to prevent incoherent region descriptors from
generating spurious access errors. In particular, it is expected that a complete update of a region descriptor
is typically done with sequential writes to MPU_RGDn.Word0, then MPU_RGDn.Word1, ... and
MPU_RGDn.Word3. The MPU hardware automatically clears the valid bit on any writes to words {0,1,2}
of the descriptor. Writes to this word set/clear the valid bit in a normal manner.

Because it is also expected that system software may adjust the access controls within a region descriptor
(MPU_RGDn.Word2) only as different tasks execute, an alternate programming view of this 32-bit entity
is provided. If only the access controls are being updated, this operation must be performed by writing to
MPU_RGDAACn (alternate access control n) as stores to these locations do not affect the descriptor’s
valid bit.

Address: MPU_BASE (0xFFF1_0000) + 0x400 + (16*n) + 0xc (MPU_RGDn.Word3) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PID PIDMASK

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VLD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= not implemented

Figure 13-7. MPU Region Descriptor n, Word 3 Register (MPU_RGDn.Word3)

Table 13-9. MPU_RGDn Word 3 field description

Field Description

0–7
PID

Process Identifier
This 8-bit field specifies that the optional process identifier is to be included in the determination of
whether the current access hits in the region descriptor. This field is combined with the PIDMASK and
included in the region hit determination if MPU_RGDn.Word2[MxPE] is set.

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 269

13.4.2.5 MPU Region Descriptor Alternate Access Control n (MPU_RGDAACn)

As noted in Section 13.4.2.4.3, MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2), it is expected
that because system software may adjust the access controls within a region descriptor
(MPU_RGDn.Word2) only as different tasks execute, an alternate programming view of this 32-bit entity
is desired. If only the access controls are being updated, this operation should be performed by writing to
MPU_RGDAACn (alternate access control n) as stores to these locations do not affect the descriptor’s
valid bit.

The memory address therefore provides an alternate location for updating MPU_RGDn.Word2.

Because the MPU_RGDAACn register is another memory mapping for MPU_RGDn.Word2, the field
definitions shown in Table 13-10 are identical to those presented in Table 13-8.

8–15
PIDMAS

K

Process Identifier Mask
This 8-bit field provides a masking capability so that multiple process identifiers can be included as part
of the region hit determination. If a bit in the PIDMASK is set, the corresponding bit of the PID is ignored
in the comparison. This field is combined with the PID and included in the region hit determination if
MPU_RGDn.Word2[MxPE] is set. For more information on the handling of the PID and PIDMASK, see
Section 13.5.1.1, Access Evaluation—Hit Determination.

31
VLD

Valid
This bit signals the region descriptor is valid. Any write to MPU_RGDn.Word{0,1,2} clears this bit, but a
write to MPU_RGDn.Word3 sets or clears this bit depending on bit 31 of the write operand.
0 Region descriptor is invalid
1 Region descriptor is valid

Address: MPU_BASE (0xFFF1_0000) + 0x800 + (4*n) (MPU_RGDAACn) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
7

R
E

M
7W

E

M
6

R
E

M
6W

E 0 0

M
4

R
E

M
4W

E 0 0 0 0 0 0 0 0

W

Reset – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

M
0P

E

M0SM
M0UM

W r w x

Reset – – – – – – – – – – – – – – – –

= not implemented

Figure 13-8. MPU RGD Alternate Access Control n (MPU_RGDAACn)

Table 13-9. MPU_RGDn Word 3 field description (continued)

Field Description

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

270 Freescale Semiconductor

Table 13-10. MPU_RGDAACn field descriptions

Field Description

6
M7RE

Bus Master ID 7 (EBI) Read Enable

If set, this flag allows bus master ID 7 to perform read operations. If cleared, any attempted read by bus
master ID 4 terminates with an access error and the read is not performed.

Note: Bus Master 7 (EBI) is available for Factory Test only.

7
M7WE

Bus Master ID 7 (EBI) Write Enable

If set, this flag allows bus master ID 7 to perform write operations. If cleared, any attempted write by bus
master ID 7 terminates with an access error and the write is not performed.

Note: Bus Master 7 (EBI) is available for Factory Test only.

6
M6RE

Bus Master ID 6 (FlexRay) Read Enable

If set, this flag allows bus master ID 6 to perform read operations. If cleared, any attempted read by bus
master ID 6 terminates with an access error and the read is not performed.

7
M6WE

Bus Master ID 6 (FlexRay) Write Enable

If set, this flag allows bus master ID 6 to perform write operations. If cleared, any attempted write by bus
master ID 6 terminates with an access error and the write is not performed.

bits 4–5 Reserved

Note: These bits must never be set.

6
M4RE

Bus Master ID 4 Read Enable

If set, this flag allows bus master ID 4 to perform read operations. If cleared, any attempted read by bus
master ID 4 terminates with an access error and the read is not performed.

7
M4WE

Bus Master 4 Write Enable
If set, this flag allows bus master 4 to perform write operations. If cleared, any attempted write by bus
master 4 terminates with an access error and the write is not performed.

bits 8–25 Reserved

26
M0PE

Bus Master 0 Process Identifier Enable
If set, this flag specifies that the process identifier and mask (defined in MPU_RGDn.Word3) are to be
included in the region hit evaluation. If cleared, then the region hit evaluation does not include the process
identifier.

27–28
M0SM

Bus Master 0 Supervisor Mode Access Control
This 2-bit field defines the access controls for bus master 0 when operating in supervisor mode. The
M0SM field is defined as:
00 r, w, x = read, write and execute allowed
01 r, –, x = read and execute allowed, but no write
10 r, w, – = read and write allowed, but no execute
11 Same access controls as that defined by M0UM for user mode

29–31
M0UM

Bus Master 0 User Mode Access Control
This 3-bit field defines the access controls for bus master 0 when operating in user mode. The M0UM
field consists of three independent bits, enabling read, write, and execute permissions: {r, w, x}. If set, the
bit allows the given access type to occur; if cleared, an attempted access of that mode may be terminated
with an access error (if not allowed by any other descriptor) and the access not performed.

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 271

13.5 Functional Description

In this section, the functional operation of the MPU is detailed. In particular, subsequent sections discuss
the operation of the access evaluation macro as well as the handling of error-terminated XBAR bus cycles.

13.5.1 Access Evaluation

As discussed, the basic operation of the MPU is performed in the access evaluation macro, a hardware
structure replicated in the two-dimensional connection matrix. The access evaluation macro inputs the
XBAR system bus address and the contents of a region descriptor (RGDn) and performs two major
functions: region hit determination and detection of an access protection violation.

13.5.1.1 Access Evaluation—Hit Determination

To determine if the current XBAR reference hits in the given region, two magnitude comparators are used
with the region’s start and end addresses. There are no hardware checks to verify that the region end
address is greater than or equal to the region start address. The software must properly load appropriate
values into these fields of the region descriptor.

In addition to the comparison of the XBAR reference address versus the region descriptor’s start and end
addresses, the optional process identifier is examined against the region descriptor’s PID and PIDMASK
fields. For XBAR bus masters that do not output a process identifier, the MPU forces the PID term to be
asserted.

13.5.1.2 Access Evaluation—Privilege Violation Determination

While the access evaluation macro is making the region hit determination, the logic is also evaluating if
the current access is allowed by the permissions defined in the region descriptor. Using the XBAR
supervisor/user mode signals, a set of permissions is generated from the appropriate fields in the region
descriptor. The protection violation logic evaluates the access against the effective permissions.

The access evaluation macro then uses the hit and permission signals to determine if the current access is
allowed and the MPU_EDRn (error detail register) is updated in the event of an error.

13.5.2 XBAR Error Terminations

For each XBAR slave port being monitored, the MPU tests any access for permission violations as above.
If a violation occurs, the MPU terminates the bus cycle and reports a protection error for three conditions:

1. If the access does not hit in any region descriptor, a protection error is reported.

2. If the access hits in a single region descriptor and that region signals a protection violation, a
protection error is reported.

3. If the access hits in multiple (overlapping) regions and all regions signal protection violations, then
a protection error is reported.

The third condition reflects that priority is given to permission granting over access denying for
overlapping regions as this approach provides more flexibility to system software in region descriptor

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

272 Freescale Semiconductor

assignments. For an example of the use of overlapping region descriptors, see Section 13.7, Application
Information.

When the MPU causes a termination error to occur, the effect on the system depends on the bus master
requesting the access. If the error was caused by a core access, a machine check is taken. If the error was
caused by an eDMA access, an eDMA source or destination error occurs in the eDMA controller, which
can be enabled to provide an interrupt request through the INTC. If the error was caused by a FlexRay
access, a controller host interface (CHI) illegal system memory access error occurs in the FlexRay
controller, which can be enabled to provide an interrupt request to the INTC.

13.6 Initialization Information

The reset state of MPU_CESR[VLD] disables the entire module. While the MPU is disabled, all accesses
from all bus masters are allowed. This state also minimizes the power dissipation of the MPU. The power
dissipation of each access evaluation macro is minimized when the associated region descriptor is marked
as invalid or when MPU_CESR[VLD] = 0.

Typically the appropriate number of region descriptors (MPU_RGDn) are loaded at system startup,
including the setting of the MPU_RGDn.Word3[VLD] bits, before MPU_CESR[VLD] is set, enabling the
module. This approach allows all the loaded region descriptors to be enabled simultaneously. Once the
MPU is enabled, if a memory reference does not hit in any region descriptor, the attempted access is
terminated with an error.

13.7 Application Information

In an application’s system, interfacing with the MPU can generally be classified into the following
activities:

1. Creation of a new memory region requires loading the appropriate region descriptor into an
available register location. When a new descriptor is loaded into a RGDn, it would typically be
performed using four 32-bit word writes. As discussed in Section 13.4.2.4.4, MPU Region
Descriptor n, Word 3 (MPU_RGDn.Word3), the hardware assists in the maintenance of the valid
bit, so if this approach is followed, there are no coherency issues associated with the multi-cycle
descriptor writes. Deletion/removal of an existing memory region is performed by clearing
MPU_RGDn.Word3[VLD].

2. If only the access rights for an existing region descriptor need to change, a 32-bit write to the
alternate version of the access control word (MPU_RGDAACn) would typically be performed.
Writes to the region descriptor using this alternate access control location do not affect the valid
bit, so there are, by definition, no coherency issues involved with the update. The access rights
associated with the memory region switch instantaneously to the new value as the IPS write
completes.

3. If the region’s start and end addresses are to be changed, this would typically be performed by
writing a minimum of three words of the region descriptor: MPU_RGDn.Word{0,1,3}, where the
writes to Word0 and Word1 redefine the start and end addresses respectively and the write to
Word3 re-enables the region descriptor valid bit. In many situations, all four words of the region
descriptor would be rewritten.

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 273

4. Typically, references to the MPU’s programming model would be restricted to supervisor mode
accesses from a specific processor(s), so a region descriptor would be specifically allocated for this
purpose with attempted accesses from other masters or while in user mode terminated with an error.

5. When the MPU detects an access error, the current XBAR bus cycle is terminated with an error
response and information on the faulting reference captured in the MPU_EARn and MPU_EDRn
registers. The error-terminated XBAR bus cycle typically initiates some type of error response in
the originating bus master. For example, a processor core may respond with a bus error exception,
while a data movement bus master may respond with an error interrupt. In any event, the processor
can retrieve the captured error address and detail information simply be reading the
MPU_E{A,D}Rn registers. Information on which error registers contain captured fault data is
signaled by MPU_CESR[SPERR].

6. Finally, consider the use of overlapping region descriptors. Application of overlapping regions can
reduce the number of descriptors required for a given set of access controls. In the overlapping
memory space, the protection rights of the corresponding region descriptors are logically summed
together (the boolean OR operator). In the following example of a dual-core system, there are four
bus masters: the two processors (CP0, CP1) and two DMA engines (eDMA, a traditional data
movement engine transferring data between RAM and peripherals, and FlexRay, a second engine
transferring data to/from the RAM only). Consider the region descriptor assignments shown in
Table 13-11:

In this example, there are eight descriptors used to span nine regions in the three main spaces of
the system memory map (flash, RAM, and IPS peripheral space). Each region indicates the specific
permissions for each of the four bus masters and this definition provides an appropriate set of
shared, private and executable memory spaces.

Of particular interest are the two overlapping spaces: region descriptors 2 and 3, and 3 and 4.

The space defined by RGD2 with no overlap is a private data and stack area that provides
read/write access to CP0 only. The overlapping space between RGD2 and RGD3 defines a shared
data space for passing data from CP0 to CP1 and the access controls are defined by the logical OR
of the two region descriptors. Thus, CP0 has (r w – | r – –) = (r w –) permissions, while CP1 has

Table 13-11. Overlapping region descriptor example

Region description RGDn CP0 CP1 eDMA FlexRay
Memory

map space

CP0 Code 0 r w x r – – – – – –
Flash

CP1 Code 1 r – – r w x – – – –

CP0 Data & Stack 2 r w – – – – – – – –

RAM

CP0 –> CP1 Shared Data
3

r – – r – – – – – –

CP1 –> CP0 Shared Data

CP0 Data & Stack 4 – – – r w – – – ––

Shared DMA Data 5 r w – r w – r w r w

MPU 6 r w – r w – – – – –
IPS

Peripherals 7 r w – r w – r w – –

Memory Protection Unit (MPU)

MPC5644A Microcontroller Reference Manual, Rev. 6

274 Freescale Semiconductor

(– – – | r – –) = (r – –) permission in this space. Both DMA engines are excluded from this shared
processor data region. The overlapping spaces between RGD3 and RGD4 defines another shared
data space, this one for passing data from CP1 to CP0. For this overlapping space, CP0 has
(r – – | – – –) = (r – –) permission, while CP1 has (r w – | r – –) = (r w –) permission. The
non-overlapped space of RGD4 defines a private data and stack area for CP1 only.

The space defined by RGD5 is a shared data region, accessible by all four bus masters. Finally, the
slave peripheral space mapped onto the peripheral bus is partitioned into two regions: one (RGD6)
containing the MPU’s programming model accessible only to the two processor cores, and the
remaining peripheral region (RGD7) accessible to both processors and the traditional eDMA
master.

This example is intended to show one possible application of the capabilities of the memory
protection unit in a typical system.

WARNING

Program code occupies the end of the MPU region (#0) in which core
instruction accesses are allowed. The address region immediately
afterwards is protected by the MPU (region #1) from instruction fetches by
the core (or any PID=1 access).

If the last instruction in the MPU region #0 space is a branch which the core
takes while the core attempts to fetch instructions via instruction cache line
fill from the MPU region #1 the MPU asserts a bus error (a PID=1
executable access into a region which only allows read/write accesses from
PID=2). The core immediately takes the exception as a 'machine check'.

In this case, modify the 'machine check' exception handler to expect this
behavior.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 275

Chapter 14
External Bus Interface (EBI)

14.1 Information Specific to This Device

This section presents device-specific parameterization and customization information not specifically
referenced in the remainder of this chapter.

14.1.1 Device-Specific Features

• 3.3 V operation

• 24-bit address bus (2 most significant signals multiplexed with 2 chip selects)

• The MPC5644A MCU has only 16 data bus signals pinned out. The data bus can be multiplexed
with the address bus to have a 32-bit data width mode.

• Memory controller with support for various memory types:

— Asynchronous/legacy flash and SRAM

• Bus monitor

— User selectable

— Programmable timeout period (with 8 external bus clock resolution)

• Configurable wait states (via chip selects)

• Three chip-select (Cal_CS[0], Cal_CS[2:3]) signals (Multiplexed with 2 most significant address
signals) for the calibration bus. 4 chip selects for EBI

• Configurable bus speed modes

— system frequency

— 1/2 of system frequency

— 1/4 of system frequency

• Optional automatic CLKOUT gating to save power and reduce EMI

• Selectable drive strengths; 10 pF, 20 pF, 30 pF, 50 pF

• Note that the MPC5644A EBI implementation doesn’t support external arbitration

• Burst is supported in MPC5644A MCU only by the External Bus interface (not by the calibration
interface)

14.1.2 Unsupported Features

• External arbitration

14.2 Introduction

The External Bus Interface (EBI) provides an on-board interface for mapping external memory to the
MPC5644A microcontroller. The EBI includes a memory controller that generates interface signals to

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

276 Freescale Semiconductor

support a variety of external memory types, including Single Data Rate (SDR) burst mode flash, SRAM,
and asynchronous memories.

14.2.1 Overview

On the MPC5644A microcontroller, the EBI supports two sets of external signals: the EBI bus signals and
the calibration bus signals. They are very similar in function but have different purposes.

The calibration bus is a powerful development feature that enables system designers to interface dual-port
SRAM with a system under development. This gives the system the capability of loading engine
calibration data into SRAM instead of flash memory, making reprogramming the calibration data
considerably faster and avoids the necessity of having to reconfigure pins each time calibration data is
changed.

NOTE

The calibration signals are only available on the calibration package. It is a
very useful development feature but not used in production systems.

Figure 14-1 shows an overview of the EBI, including the calibration signals. Each external memory
component used is mapped to its own addressing region. Each region is separately programmable with
region address and bus configuration information.

Available bus configurations include 16-bit, 16-bit multiplexed and 32-bit multiplexed. In the multiplexed
modes. address and data signals are multiplexed on the same pins.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 277

Figure 14-1. External Bus Interface with Calibration Bus

Calibration EBI Controls

Region 0
Controls

External
Memory

0

Region 2
Controls

External
Memory

2

Region 3
Controls

External
Memory

3

Cal_ADDR[13:30]
Cal_DATA[0:31]

CLKOUT

Cal_WE[2:3]/BE[2:3]

Cal_TS

Cal_WE[0:1]
Cal_RD_WR

Cal_OE

Cal_CS0

Cal_CS3
Cal_CS2

CS0

CS2
CS1

CS3

External
Memory

1

External
Memory

2

External
Memory

3

External
Memory

0

ADDR[13:30]
DATA[0:31]

CLKOUT

WE[0:1]/BE[0:1]

TS

WE[0:3]

RD_WR

OE

BDIP

Region 0
Controls

Region 2
Controls

Region 3
Controls

Region 0
Controls

System EBI Controls

ALE

ALE

TA

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

278 Freescale Semiconductor

14.2.2 Features

NOTE

This list is a superset list of all possible features the EBI supports. Refer to
Section 14.1, Information Specific to This Device, for details on specifics
for a particular device due to package limitations.

• 32-Bit Address bus with transfer size indication (only 24-29 available on pins)

• 32-Bit Data bus (16-bit Data Bus Mode also supported)

• Multiplexed Address on Data pins (single master)

• Memory controller with support for various memory types:

— synchronous burst SDR flash and SRAM

— asynchronous/legacy flash and SRAM

• Burst support (wrapped only)

• Bus monitor

• Port size configuration per chip select (16 or 32 bits)

• Configurable wait states

• Configurable internal or external transfer acknowledge (TA) per chip select

• Support for Dynamic Calibration with up to 4 chip-selects

• Four Write/Byte Enable (WE[0:3]/BE[0:3]) signals

• Slower-speed clock modes

• Stop and Module Disable Modes for power savings

• Optional automatic CLKOUT gating to save power and reduce EMI

• Misaligned access support (for chip-select accesses only)

• Compatible with MPC5xx external bus (with some limitations)

14.2.3 Modes of operation

The mode of the EBI is determined by the MDIS, EXTM, and AD_MUX bits in the EBI_MCR. See
Section 14.4.1.1, EBI Module Configuration Register (EBI_MCR) for details. Slower-speed modes,
Debug Mode, Stop Mode, and Factory Test Mode are modes that the MCU may enter, in parallel to the
EBI being configured in one of its block-specific modes.

14.2.3.1 Single master mode

In Single Master Mode, the EBI responds to internal requests matching one of its regions, but ignores all
externally-initiated bus requests. The MCU is the only master allowed to initiate transactions on the
external bus in this mode; therefore, it acts as a parked master and does not have to arbitrate for the bus
before starting each cycle. Single Master Mode is entered when EXTM=0 and MDIS=0 in the EBI_MCR.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 279

14.2.3.2 Module disable mode

The Module Disable Mode is used for MCU power management. The clock to the non-memory mapped
logic in the EBI can be stopped while in Module Disable Mode. Internal master requests made to the
external bus in Module Disable Mode are terminated with transfer error. Module Disable Mode is entered
when MDIS=1 in the EBI_MCR.

14.2.3.3 Stop mode

When a request is made to enter Stop Mode (controlled in device logic outside EBI), the EBI block
completes any pending bus transactions and acknowledges the stop request. After the acknowledgement,
the system clock input may be shut off by the clock driver on the MCU. While the clocks are shut off, the
EBI is not accessible. While in stop mode, accesses to the EBI from the internal master will terminate with
transfer error.

14.2.3.4 Slower-speed modes

In slower-speed modes, the external CLKOUT frequency is divided (by 2, 3, etc.) compared with that of
the internal system bus. The EBI behavior remains dictated by the mode of the EBI, except that it drives
and samples signals at the CLKOUT frequency rather than the internal system frequency. This mode is
selected by writing a clock control register in a block outside of the EBI. Refer to the device-specific
documentation to see which slower-speed modes are available for a particular MCU (1/2, 1/3, etc.).

14.2.3.5 16-Bit data bus mode

For MCUs that have only 16 data bus signals pinned out, or for systems where the use of a different
multiplexed function (e.g. GPIO) is desired on 16 of the 32 data pins, the EBI supports a 16-bit Data Bus
Mode. In this mode, only 16 data signals are used by the EBI. The user can select which 16 data signals
are used (DATA[0:15] or DATA[16:31]) by writing the D16_31 bit in the EBI_MCR.

For EBI-mastered accesses, the operation in 16-bit Data Bus Mode (DBM=1, PS=x) is similar to a
chip-select access to a 16-bit port in 32-bit Data Bus Mode (DBM=0, PS=1), except for the case of a
non-chip-select access of exactly 32-bit size.

EBI-mastered non-chip-select accesses of exactly 32-bit size are supported via a two (16-bit) beat burst
for both reads and writes. See Section 14.5.2.9, Non-chip-select burst in 16-bit data bus mode.
Non-chip-select transfers of non-32-bit size are supported in standard non-burst fashion.

16-bit Data Bus Mode is entered when DBM=1 in the EBI_MCR. Some MCUs may have DBM=1 by
default out of reset. See the device-specific documentation for the DBM and D16_31 reset values.

14.2.3.6 Multiplexed address on data bus mode

This mode covers several cases aimed at reducing pin count on MCU and external components. In this
mode, the DATA pins will drive (for internal master cycles) the address value on the first clock of the cycle
(while TS is asserted).The memory controller supports per-chip-select selection of multiplexing
address/data through the BRx[AD_MUX] bit.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

280 Freescale Semiconductor

Address on Data bus multiplexing also supports the 16-bit data bus mode (MCR[DBM]=1) and 16-bit
memories (ORx[PS]=1). The user can select which 16 data signals are used (DATA[0:15] or
DATA[16:31]) by writing the D16_31 bit in the EBI_MCR. For either setting of D16_31, the 16 LSBs of
external address (ADDR[16:31]) are driven onto the selected 16 DATA pins. If additional address lines are
required to interface to the memory, then non-muxed address pins are sometimes (see note below) required
to complete the address space (e.g. ADDR[8:15] are commonly present as non-muxed address pins).

NOTE

The EBI also drives the unused 16 DATA signals with the MSBs of the
external address, zero-padded in front (e.g. when D16_31 bit is set for a
device with 24 ADDR pins, the EBI drives (0b00000000,ADDR[8:15]) on
DATA[0:15]. This allows the device to optionally use DATA[8:15] for the
upper 8 external address lines instead of requiring separate non-muxed
ADDR[8:15] pins. This is relevant primarily for devices that support both
32-bit and 16-bit A/D muxed operation, so therefore have DATA[0:31] pins
present on the device, and in that case are not required to have separate
ADDR pins.

For more details (e.g. timing diagrams), see Section 14.5.2.12, Address data multiplexing.

14.2.3.7 Debug mode

When the MCU is in Debug Mode, the EBI behavior is unaffected and remains dictated by the mode of
the EBI.

14.2.3.8 Mode summary table

Table 14-1 summarizes pin usage by EBI mode.

Table 14-1. Typical pin usage across supported EBI modes

Pin

EBI Usage Mode

16-bit
non-muxed1

PCR[PA
]

16-bit muxed2 PCR[PA] 32-bit muxed3 PCR[PA
]

0:3 CS[0:3],
ADDR[8:11] or
GPIO[0:3] as
rqd.4

— CS[0:3],
ADDR[8:11] or
GPIO[0:3] as rqd.4

— CS[0:3] or
GPIO[0:3] as rqd.4

—

8 ADDR[12] 0b001 ADDR[12] 0b001 GPIO[8]5 0b000

9:10 ADDR[13:14] 0b001 ADDR[13:14] 0b001 WE[2:3] 0b100

11 ADDR[15] 0b001 ADDR[15] 0b001 GPIO[11]5 0b000

12:27 ADDR[16:31] 0b001 GPIO[12:27] or
FlexRay usage5

0b000 /
0b010

DATA[16:31] /
ADDR[16:31]6

0b100

28:43 DATA[0:15] 0b001 DATA[0:15] /
ADDR[16:31]

0b001 DATA[0:15] /
ADDR[0:15]6

0b001

62 RD_WR 0b001 RD_WR 00b01 RD_WR 0b001

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 281

14.3 External signal description

14.3.1 Overview

Table 14-2 lists the external pins used by the EBI. Not all signals listed here are available external to the
chip.

63 BDIP 0b001 BDIP 0b001 BDIP 0b001

64 WE[0]/BE[0] 0b001 WE[0]/BE[0] 0b001 WE[0]/BE[0] 0b001

65 WE[1]/BE[1] 0b001 WE[1]/BE[1] 0b001 WE[1]/BE[1] 0b001

68 OE 0b001 OE 0b001 OE 0b001

69 TS 0b001 ALE 0b010 ALE 0b010

70 TA 0b001 TS 0b010 TS 0b010

1 16-bit non-multiplexed mode supported for EBI configured with EBI_MCR[D16_31]=0, and
respective BRx/CAL_BRx[AD_MUX]=0. Pin multiplexing does not support 16-bit non multiplexed
mode for EBI configured with EBI_MCR[D16_31]=1.

2 16 bit multiplexed mode shown for EBI configured with EBI_MCR[D16_31]=0, and respective
BRx/CAL_BRx[AD_MUX]=1. This is the optimal 16 bit mux mode, as it allows access to FlexRay
signals on unused EBI signals. Operation also possible with EBI_MCR[D16_31]=1, using
DATA[16:31] signals for EBI and leaving DATA[0:15] balls available for GPIO use.

3 32-bit multiplexed mode shown for EBI configured with EBI_MCR[D16_31]=0, and respective
BRx/CAL_BRx[AD_MUX]=1.

4 Pin functionality chosen dependent on required addressing range and chip select availability.
5 Pin function/s not required to support EBI in this usage mode.
6 Data/address dynamically multiplexed internally by EBI, not SIU pin muxing.

Table 14-2. Signal Properties

Name I/O Type Function Pull1

ADDR[3:31] I/O Address bus —

BDIP Output Burst Data in Progress Up

CLKOUT2 Output Clockout —

CAL_CS[0:3] Output Calibration Chip Selects Up

DATA[0:31] I/O Data bus3 —

OE Output Output Enable Up

RD_WR I/O Read_Write Up

TA I/O Transfer Acknowledge Up

TS I/O Transfer Start Up

Table 14-1. Typical pin usage across supported EBI modes (continued)

Pin

EBI Usage Mode

16-bit
non-muxed1

PCR[PA
]

16-bit muxed2 PCR[PA] 32-bit muxed3 PCR[PA
]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

282 Freescale Semiconductor

14.3.2 Detailed signal descriptions

NOTE

This section lists the superset of signals for the EBI. Refer to Section 14.1,
Information Specific to This Device, for device-specific package limitations
and possible signal renaming.

14.3.2.1 ADDR [3:31] — Address lines 3-31

The ADDR[3:31] signals specify the physical address of the bus transaction.

The 29 address lines correspond to bits 3-31 of the EBI’s 32-bit internal address bus.

14.3.2.2 BDIP — Burst data in progress

BDIP is asserted to indicate that the master is requesting another data beat following the current one.

This signal is driven by the EBI on all EBI-mastered external burst cycles, but is only sampled by burst
mode memories that have a corresponding pin. See Section 14.5.2.5, Burst transfer.

14.3.2.3 CLKOUT — Clockout

CLKOUT is a general-purpose clock output signal to connect to the clock input of SDR external memories
and in some cases to the input clock of another MCU in multi-master configurations.

14.3.2.4 CAL_CS [0:3] — Calibration chip selects 0-3

CAL_CSx is asserted by the master to indicate that this transaction is targeted for a particular memory
bank on the Calibration external bus.

The calibration chip selects are driven only by the EBI. External master accesses on the Calibration bus
are not supported. In all other aspects, the calibration chip-selects behave exactly as the primary
chip-selects. See Section 14.5.1.3, Memory Controller with Support for Various Memory Types for details
on chip-select operation.

14.3.2.5 DATA [0:31] — Data lines 0-31

The DATA[0:31] signals contain the data to be transferred for the current transaction.

WE[0:3]/BE[0:3] Output Write/Byte Enables Up

1 This column shows which signals require a weak pullup or pulldown. The EBI block does not
contain these pullup/pulldown devices within the block. They are assumed to be in another module
of the MCU (e.g. pads module).

2 The CLKOUT signal is driven by the System Clock Block outside the EBI.
3 In Address/Data multiplexing modes, Data will also show the address during the address phase.

Table 14-2. Signal Properties (continued)

Name I/O Type Function Pull1

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 283

DATA[0:31] is driven by the EBI when it owns the external bus and it initiates a write transaction to an
external device.DATA[0:31] is driven by an external device during a read transaction from the EBI.For
8-bit and 16-bit transactions, the byte lanes not selected for the transfer do not supply valid data.

DATA[0:31] is driven by the EBI in the address phase with the ADDR value if the Address on Data
multiplexing mode is enabled. See Section 14.2.3.6, Multiplexed address on data bus mode, for details.

In 16-bit Data Bus Mode, (or for chip-select accesses to a 16-bit port), only DATA[0:15] or DATA[16:31]
are used by the EBI, depending on the setting of the D16_31 bit in the EBI_MCR. See Section 14.2.3.5,
16-Bit data bus mode.

14.3.2.6 OE — Output Enable

OE is used to indicate when an external memory is permitted to drive back read data. External memories
must have their data output buffers off when OE is negated. OE is only asserted for chip-select accesses.

For read cycles, OE is asserted one clock after TS assertion and held until the termination of the transfer.
For write cycles, OE is negated throughout the cycle.

14.3.2.7 RD_WR — Read / Write

RD_WR indicates whether the current transaction is a read access or a write access.

RD_WR is driven in the same clock as the assertion of TS and valid address, and is kept valid until the
cycle is terminated.

14.3.2.8 TA — Transfer Acknowledge

TA is asserted to indicate that the slave has received the data (and completed the access) for a write cycle,
or returned data for a read cycle. If the transaction is a burst read, TA is asserted for each one of the
transaction beats. For write transactions, TA is only asserted once at access completion, even if more than
one write data beat is transferred.

TA is driven by the EBI when the access is controlled by the chip selects (and SETA=0). Otherwise, TA is
driven by the slave device to which the current transaction was addressed.

See Section 14.5.2.8, Termination signals protocol for more details.

14.3.2.9 TS — Transfer Start

TS is asserted by the current bus owner to indicate the start of a transaction on the external bus.

TS is only asserted for the first clock cycle of the transaction, and is negated in the successive clock cycles
until the end of the transaction.

14.3.2.10 WE [0:3] / BE [0:3] — Write/Byte Enables 0-3

Write enables are used to enable program operations to a particular memory. These signals can also be used
as byte enables for read and write operation by setting the WEBS bit in the appropriate Base Register.
WE[0:3]/BE[0:3] are only asserted for chip-select accesses.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

284 Freescale Semiconductor

For chip-select accesses to a 16-bit port, only WE[0:1]/BE[0:1] are used by the EBI, regardless of which
half of the DATA bus is selected via the D16_31 bit in the EBI_MCR.

See Section 14.5.1.10, Four Write/Byte Enable (WE/BE) Signals for more details on WE[0:3]/BE[0:3]
functionality.

14.3.3 Signal output buffer enable logic by mode

Table 14-3 describes how the EBI drives its output buffer enable (OBE) signals. These are internal signals
from the EBI to device logic outside the EBI, that determine when the EBI strongly drives values on pins.
When the OBE for an EBI signal is asserted (1), the EBI strongly drives the value on that pin. When the
OBE is negated (0), the EBI does not drive the signal, and the value is determined by internal or external
pullups/pulldowns, and/or device logic outside EBI block. The logic in Table 14-3 can be overwritten by
device logic, so see the device-specific documentation for any exceptions to the logic below.

14.4 Memory map/Register definition

Table 14-4 shows the EBI registers.

Table 14-3. Signal Output Buffer Enable Logic by Mode1

1 The values in this table only indicate when signals are strongly driven, not the logic value on the pin itself.

Signal

OBE Value by Mode (1=strongly driven, 0=not driven by EBI)

Module Disable Mode2

(EXTM=X, MDIS=1)

2 This assumes that the clock to the EBI is shut off when MDIS=1. This is an optional device feature. If the clocks are
left running to EBI even when MDIS=1, then the EBI OBE behavior is as if in Single Master Mode (though EBI
accesses are not supported in this scenario).

Single Master Mode
(EXTM=0, MDIS=0)

ADDR[3:31] 0 1

BDIP 0 1

CAL_CS[0:3] 0 1

DATA[0:31] 0 Only 1 during write access or on Address
phase when Addr/Data muxing is enabled.

OE 0 1

RD_WR 0 1

TA 0 Only 1 during chip-select (or
cal-chip-select) SETA=0 access

TS 0 1

WE[0:3]/BE[0:3] 0 1

Table 14-4. EBI Address Map

Address Use

EBI_BASE (0xC3F8_4000) EBI Module Configuration Register (EBI_MCR)

EBI_BASE+0x4 Reserved

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 285

14.4.1 Register Descriptions

NOTE

Other than the exceptions noted below, EBI registers must not be written
while a transaction to the EBI (from internal master) is in progress (or within
2 CLKOUT cycles after a transaction has just completed, to allow internal
state machines to go IDLE). In those cases, the behavior is undefined.

Exceptions that can be written while an EBI transaction is in progress:

- All bits in EBI_TESR

See Section 14.6.1, Booting from external memory for related application
information.

EBI_BASE+0x8 EBI Transfer Error Status Register (EBI_TESR)

EBI_BASE+0xC EBI Bus Monitor Control Register (EBI_BMCR)

EBI_BASE+0x10 EBI Base Register Bank 0 (EBI_BR0)

EBI_BASE+0x14 EBI Option Register Bank 0 (EBI_OR0)

EBI_BASE+0x18 EBI Base Register Bank 1 (EBI_BR1)

EBI_BASE+0x1C EBI Option Register Bank 1 (EBI_OR1)

EBI_BASE+0x20 EBI Base Register Bank 2 (EBI_BR2)

EBI_BASE+0x24 EBI Option Register Bank 2 (EBI_OR2)

EBI_BASE+0x28 EBI Base Register Bank 3 (EBI_BR3)

EBI_BASE+0x2C EBI Option Register Bank 3 (EBI_OR3)

 EBI_BASE+0x30 –
EBI_BASE+0x3C

Reserved

EBI_BASE+0x40 EBI Calibration Base Register Bank 0 (EBI_CAL_BR0)

EBI_BASE+0x44 EBI Calibration Option Register Bank 0 (EBI_CAL_OR0)

EBI_BASE+0x48 EBI Calibration Base Register Bank 1 (EBI_CAL_BR1)

EBI_BASE+0x4C EBI Calibration Option Register Bank 1 (EBI_CAL_OR1)

EBI_BASE+0x50 EBI Calibration Base Register Bank 2 (EBI_CAL_BR2)

EBI_BASE+0x54 EBI Calibration Option Register Bank 2 (EBI_CAL_OR2)

EBI_BASE+0x58 EBI Calibration Base Register Bank 3 (EBI_CAL_BR3)

EBI_BASE+0x5C EBI Calibration Option Register Bank 3 (EBI_CAL_OR3)

Table 14-4. EBI Address Map (continued)

Address Use

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

286 Freescale Semiconductor

14.4.1.1 EBI Module Configuration Register (EBI_MCR)

Figure 14-2. EBI Module Configuration Register (EBI_MCR)

The EBI Module Configuration Register contains bits which configure various attributes associated with
EBI operation.

EBI_BASE+0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

A
C

G
E

0 0 0 0 0 0 0 0

M
D

IS

0 0 0

D
16

_
31

A
D

_M
U

X

D
B

MW

RESET: 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Table 14-5. EBI Module Configuration Register (EBI_MCR) Field Descriptions

Name Description

16
ACGE

ACGE - Automatic CLKOUT Gating Enable

The ACGE bit enables the EBI feature of turning off CLKOUT (holding it high) during idle periods
in-between external bus accesses.

1: Automatic CLKOUT Gating is enabled
0: Automatic CLKOUT Gating is disabled

25
MDIS

MDIS — Module Disable Mode

The MDIS bit controls an internal EBI “enable clk” signal which can be used (if MCU logic supports)
to control the clocks to the EBI. The MDIS bit allows the clock to be stopped to the non-memory
mapped logic in the EBI, effectively putting the EBI in a software controlled power-saving state. See
Section 14.2.3.2, Module disable mode for more information. No external bus accesses can be
performed when the EBI is in Module Disable Mode (MDIS=1).

1: Module Disable Mode is active (negate “enable clk” signal)
0: Module Disable Mode is inactive (assert “enable clk” signal)

29
D16_31

D16_31 — Data Bus 16_31 Select

The D16_31 bit controls whether the EBI uses the DATA[0:15] or DATA[16:31] signals, when in
16-bit Data Bus Mode (DBM=1) or for chip-select accesses to a 16-bit port (PS=1). For systems
using A/D muxing with a 16-bit port, it is recommended to set D16_31 to 1.

1: DATA[16:31] signals are used for 16-bit port accesses
0: DATA[0:15] signals are used for 16-bit port accesses

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 287

30
AD_MUX

AD_MUX — Address on Data Bus Multiplexing Mode

The AD_MUX bit controls whether non-chip-select accesses have the address driven on the data
bus in the address phase of a cycle.

1: Address on Data Multiplexing Mode is used for non-CS accesses.
0: Only Data on data pins for non-CS accesses.

31
DBM

DBM — Data Bus Mode

The DBM bit controls whether the EBI is in 32-bit or 16-bit Data Bus Mode.

1: 16-bit Data Bus Mode is used
0: 32-bit Data Bus Mode is used

Table 14-5. EBI Module Configuration Register (EBI_MCR) Field Descriptions

Name Description

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

288 Freescale Semiconductor

14.4.1.2 EBI Transfer Error Status Register (EBI_TESR)

Figure 14-3. EBI Transfer Error Status Register (EBI_TESR)

The EBI Transfer Error Status Register contains a bit for each type of transfer error on the external bus. A
bit set to logic 1 indicates what type of transfer error occurred since the last time the bits were cleared.
Each bit can be cleared by reset or by writing a 1 to it. Writing a 0 has no effect.

This register may not be writable in Module Disable Mode due to the use of power saving clock modes,
e.g., a bus error can be generated on a timeout.

EBI_BASE+0x8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BMTF

W
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 14-6. EBI Transfer Error Status Register (EBI_TESR) Field Descriptions

Name Description

31
BMTF

BMTF — Bus Monitor Timeout Flag

This bit is set if the cycle was terminated by a bus monitor timeout.

1: Bus monitor timeout occurred
0: No error

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 289

14.4.1.3 EBI Bus Monitor Control Register (EBI_BMCR)

The EBI Bus Monitor Control Register controls the timeout period of the bus monitor and whether it is
enabled or disabled.

Figure 14-4. EBI Bus Monitor Control Register (EBI_BMCR)

EBI_BASE+0xC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R BMT BME 0 0 0 0 0 0 0
W

RESET: 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 14-7. EBI Bus Monitor Control Register (EBI_BMCR) Field Descriptions

Name Description

16-23
BMT

BMT —Bus Monitor Timing

This field defines the timeout period, in 8 external bus clock resolution, for the Bus Monitor. See
Section 14.5.1.5, Bus Monitor for more details on bus monitor operation.
Timeout Period = (2 + (8 * BMT)) / external bus clock frequency.

24
BME

BME —Bus Monitor Enable

This bit controls whether the bus monitor is enabled for internal to external bus cycles. The BME bit
is ignored (treated as 0) for chip-select accesses with internal TA (SETA=0).

1: Enable bus monitor (for external TA accesses only)
0: Disable bus monitor

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

290 Freescale Semiconductor

14.4.1.4 EBI Base Registers (EBI_BR0-EBI_BR3, EBI_CAL_BR0-3)

The EBI Base Registers are used to define the base address and other attributes for the corresponding chip
select.

Figure 14-5. EBI Base Registers (EBI_BR0-EBI_BR3, EBI_CAL_BR0-3)

EBI_BASE+0x10, EBI_BASE+0x18, EBI_BASE+0x20, EBI_BASE+0x28,
EBI_BASE+0x40, EBI_BASE+0x48, EBI_BASE+0x50, EBI_BASE+0x58

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R BA
W

RESET:1

1 Some upper bits of the BA field may be tied to a fixed value, in which case the reset value is this fixed value
and not zero. Refer to Section 14.1, Information Specific to This Device, to see which bits this applies to, if any.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

B
A

0 0 0 PS 0 0 0

A
D

_
M

U
X

B
L

W
E

B
S

T
B

D
IP

0

S
E

TA B
I VW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

= Unimplemented or Reserved

Table 14-8. EBI Base Registers (EBI_BR0-EBI_BR3, EBI_CAL_BR0-3) Field Descriptions

Name Description

0-16
BA

BA — Base Address
These bits are compared to the corresponding unmasked address signals among ADDR[0:16] of
the internal address bus to determine if a memory bank controlled by the memory controller is being
accessed by an internal bus master.

Note: An MCU may have some of the upper bits of the BA field tied to a fixed value internally in
order to restrict the address range of the EBI for that MCU. Refer to the device-specific
documentation to see which bits are tied off, if any, for a particular MCU. Tied-off bits can be
read but not written. These bits are ignored by the EBI during the chip-select address
comparison. However, the internal bridge of the MCU most likely requires that the chip-select
banks be located in memory regions corresponding to the fixed values chosen.

20
PS

PS — The PS bit determines the data bus width of transactions to this chip-select bank.

Note: In the case where the DBM bit in EBI_MCR is set for 16-bit Data Bus Mode, the PS bit value
is ignored and is always treated as a ’1’ (16-bit port).

1: 16-bit port
0: 32-bit port

24
AD_MUX

AD_MUX — Address on Data Bus Multiplexing

The AD_MUX bit controls whether accesses for this chip select have the address driven on the data
bus in the address phase of a cycle

1: Address on Data Multiplexing Mode is enabled for this chip select.
0: Address on Data Multiplexing Mode is disabled for this chip select.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 291

25
BL

BL — Burst Length1

The BL bit determines the amount of data transferred in a burst for this chip select, measured in
32-bit words. The number of beats in a burst is automatically determined by the EBI to be 4, 8, or
16 according to the Port Size (PS bit) so that the burst fetches the number of words chosen by BL.
For internal AMBA data bus width of 32-bits, the BL bit is ignored (treated as 1).

Note: The EBI does NOT support a 2-word external burst length. This means that neither a 4-beat
burst to a 16-bit external memory (nor a 2-beat burst to 32-bit external memory) are
supported.

26
WEBS

WEBS — Write Enable / Byte Select

This bit controls the functionality of the WE[0:3]/BE[0:3] signals.

1: The WE[0:3]/BE[0:3] signals function as BE[0:3]
0: The WE[0:3]/BE[0:3] signals function as WE[0:3]

27
TBDIP

TBDIP — Toggle Burst Data in Progress

This bit determines how long the BDIP signal is asserted for each data beat in a burst cycle. See
Section 14.5.2.5.1, TBDIP effect on burst transfer for details.

1: Only assert BDIP (BSCY+1) external cycles before expecting subsequent burst data beats
0: Assert BDIP throughout the burst cycle, regardless of wait state configuration

29
SETA

SETA — Select External Transfer Acknowledge

The SETA bit controls whether accesses for this chip select will terminate (end transfer without
error) based on externally asserted TA or internally asserted TA. SETA should only be set when the
BI bit is 1 as well, since burst accesses with SETA=1 are not supported. Setting SETA=1 causes the
BI bit to be ignored (treated as 1, burst inhibited).

1: Transfer Acknowledge (TA) is an input to the EBI, data phase will be terminated by an external
device
0: Transfer Acknowledge (TA) is an output from the EBI, data phase will be terminated by the EBI

Table 14-8. EBI Base Registers (EBI_BR0-EBI_BR3, EBI_CAL_BR0-3) Field Descriptions (continued)

Name Description

Value
Burst

Length1

1 Total amount of data fetched in a burst transfer.

PS # Beats in Burst2

2 Number of external data beats used in external burst transfer. The
size of each beat is determined by PS value.

03

3 An 8-word burst length is only supported for device’s using 64-bit
AMBA data bus width to EBI.

8-word4

4 A word always refers to 32-bits of data, regardless of PS.

0 (32-bit) 8

1 (16-bit) 16

1 4-word 0 (32-bit) 4

1 (16-bit) 8

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

292 Freescale Semiconductor

30
BI

BI — Burst Inhibit1

This bit determines whether or not burst read accesses are allowed for this chip-select bank. The
BI bit is ignored (treated as 1) for chip-select accesses with external TA (SETA=1).

1: Disable burst accesses for this bank. This is the default value out of reset (or when SETA=1).
0: Enable burst accesses for this bank

31
V

V — Valid bit

The user writes this bit to indicate that the contents of this Base Register and Option Register pair
are valid. The appropriate CS signal does not assert unless the corresponding V-bit is set.

1: This bank is valid
0: This bank is not valid

1 CAL_BR0-3 registers do not support burst operation.

Table 14-8. EBI Base Registers (EBI_BR0-EBI_BR3, EBI_CAL_BR0-3) Field Descriptions (continued)

Name Description

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 293

14.4.1.5 EBI Option Registers (EBI_OR0-EBI_OR3, EBI_CAL_OR0-3)

The EBI Option Registers are used to define the address mask and other attributes for the corresponding
chip select.

Figure 14-6. EBI Option Registers (EBI_OR0-EBI_OR3, EBI_CAL_OR0-3)

EBI_BASE+0x14, EBI_BASE+0x1C, EBI_BASE+0x24, EBI_BASE+0x2C,
EBI_BASE+0x44, EBI_BASE+0x4C, EBI_BASE+0x54, EBI_BASE+0x5C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R AM
W

RESET:1

1 Some upper bits of the AM field may be tied to a fixed value, in which case the reset value is this fixed value and not zero.
Refer to Section 14.1, Information Specific to This Device, to see which bits this applies to, if any.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R AM 0 0 0 0 0 0 0 SCY 0 BSCY 0
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 14-9. EBI Option Registers (EBI_OR0-EBI_OR3, EBI_CAL_OR0-3) Field Descriptions

Name Description

0-16
AM

AM — Address Mask

This field allows masking of any corresponding bits in the associated Base Register. Masking the
address independently allows external devices of different size address ranges to be used. Any
clear bit masks the corresponding address bit. Any set bit causes the corresponding address bit to
be used in comparison with the address pins. Address mask bits can be set or cleared in any order
in the field, allowing a resource to reside in more than one area of the address map. This field can
be read or written at any time.

Note: An MCU may have some of the upper bits of the AM field tied to a fixed value internally in
order to restrict the address range of the EBI for that MCU. See the corresponding Note for
the Base Register BA field for more details. Refer to the device-specific documentation to see
which bits are tied off, if any, for a particular MCU. Tied-off bits can be read but not written.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

294 Freescale Semiconductor

24-27
SCY

SCY — Cycle length in clocks

This field represents the number of wait states (external cycles) inserted after the address phase in
the single transfer case, or in the first beat of a burst, when the memory controller handles the
external memory access. Values range from 0 to 15. This is the main parameter for determining the
length of the cycle. These bits are ignored when SETA=1.

The total cycle length for the first beat (including the TS cycle) = (2+SCY) external clock cycles.
See Section 14.6.3.1, Example wait state calculation for related application information.

29-30
BSCY

BSCY — Burst beats length in clocks1

This field determines the number of wait states (external cycles) inserted in all burst beats except
the first, when the memory controller starts handling the external memory access and thus is using
SCY[0:3] to determine the length of the first beat. These bits are ignored when SETA=1.

The total memory access length for each beat is (1 + BSCY) external clock cycles.
The total cycle length (including the TS cycle) = (2+SCY) + (#beats2-1) * (BSCY+1).

1 CAL_BR0-3 registers do not support burst operation.
2 #beats is the number of beats (4,8,16) determined by BL and PS bits in Base Register.

Table 14-9. EBI Option Registers (EBI_OR0-EBI_OR3, EBI_CAL_OR0-3) Field Descriptions

Name Description

Value Meaning

00 0-clock cycle wait states (1 clock per data beat)

01 1-clock cycle wait states (2 clocks per data beat)

10 2-clock cycle wait states (3 clocks per data beat)

11 3-clock cycle wait states (4 clocks per data beat)

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 295

14.5 Functional Description

14.5.1 External Bus Interface Features

14.5.1.1 32-Bit Data Bus (16-bit Data Bus Mode also supported)

The entire 32-bit data bus is available for external memory accesses. There is also a 16-bit Data Bus Mode
available via the DBM bit in EBI_MCR. See Section 14.2.3.5, 16-Bit data bus mode.

14.5.1.2 Multiplexed Address on Data Pins (single master)

When this mode is enabled, the address shows up on the data pins during the address phase of the cycle.
This mode can be enabled separately for non-chip-select accesses and per chip-select access. See
Section 14.2.3.6, Multiplexed address on data bus mode.

14.5.1.3 Memory Controller with Support for Various Memory Types

The EBI contains a memory controller that supports a variety of memory types, including synchronous
burst mode flash and SRAM, and asynchronous/legacy flash and SRAM with a compatible interface.

Each CS bank is configured via its own pair of Base and Option Registers. Each time an internal to external
bus cycle access is requested, the internal address is compared with the base address of each valid Base
Register (with 17 bits having mask). See Figure 14-7. If a match is found, the attributes defined for this
bank in its BR and OR are used to control the memory access. If a match is found in more than one bank,
the lowest bank matched handles the memory access (e.g., bank 0 is selected over bank 1).

A match on a valid calibration chip-select register overrides a match on any non-calibration chip-select
register, with CAL_CS0 having the highest priority. Thus the full priority of the chip-selects is:
CAL_CS0,...,CAL_CS3,CS0,...,CS3.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

296 Freescale Semiconductor

Figure 14-7. Bank Base Address & Match Structure

When a match is found on one of the chip-select banks, all its attributes (from the appropriate Base and
Option Registers) are selected for the functional operation of the external memory access, such as:

• Number of wait states for a single memory access, and for any beat in a burst access

• Burst enable

• Port size for the external accessed device

See Section 14.4.1.4, EBI Base Registers (EBI_BR0-EBI_BR3, EBI_CAL_BR0-3) and Section 14.4.1.5,
EBI Option Registers (EBI_OR0-EBI_OR3, EBI_CAL_OR0-3) for a full description of all chip-select
attributes.

When no match is found on any of the chip-select banks, the default transfer attributes shown in
Table 14-10 are used.

Table 14-10. Default Attributes for Non-Chip-Select Transfers

CS Attribute Default Value Comment

PS 0 32-bit port size

BL 0 burst length is don’t care since burst is disabled

WEBS 0 write enables

TBDIP 0 don’t care since burst is disabled

BI 1 burst inhibited

SCY 0 don’t care since external TA is used

BSCY 0 don’t care since external TA is used

AD_MUX 0 Address on Data multiplexing

SETA 1 Select external TA to terminate access

 AM
[0]

 AM
[1]

 AM
[2]

 AM
[3]

 AM
[4]

 AM
[5][16][15][1] [4][3][2]

 BA

[0]

comp comp comp comp comp comp comp

AM[0:16]
A[0:16]

Base Address Address Mask

Match

 BA BA BA BA BA BA AM AM
[6] [16]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 297

14.5.1.4 Burst Support (wrapped only)

The EBI supports burst read accesses of external burstable memory. To enable bursts to a particular
memory region, clear the BI (Burst Inhibit) bit in the appropriate Base Register. External burst lengths of
4 and 8 words are supported. Burst length is configured for each chip select by using the BL bit in the
appropriate Base Register. See Section 14.5.2.5, Burst transfer for more details on burst operation.

In 16-bit data bus mode (DBM=1 in EBI_MCR), a special 2-beat burst case is supported for reads and
writes for 32-bit non-chip-select accesses only. This is to allow 32-bit coherent accesses to another MCU.
See Section 14.5.2.9, Non-chip-select burst in 16-bit data bus mode.

Bursting of accesses that are not controlled by the chip selects is not supported for any other case besides
the special case of 32-bit accesses in 16-bit data bus mode.

Burst writes are not supported for any other case besides the special case of 32-bit non-chip-select writes
in 16-bit data bus mode. Internal requests to write >32 bits (such as a cache line) externally are broken up
into separate 32-bit or 16-bit external transactions according to the port size. See Section 14.5.2.6, Small
accesses (Small port size and short burst length) for more detail on these cases.

14.5.1.5 Bus Monitor

When enabled (via the BME bit in the EBI_BMCR), the bus monitor detects when no TA assertion is
received within a maximum timeout period for external TA accesses. The timeout for the bus monitor is
specified by the BMT field in the EBI_BMCR. Each time a timeout error occurs, the BMTF bit is set in
the EBI_TESR. The timeout period is measured in external bus (CLKOUT) cycles. Thus the effective
real-time period is multiplied (by 2, 3, etc.) when a slower-speed mode is used, even though the BMT field
itself is unchanged.

14.5.1.6 Port Size Configuration per Chip Select (16 or 32 bits)

The EBI supports memories with data widths of 16 or 32 bits. The port size for a particular chip select is
configured by writing the PS bit in the corresponding Base Register.

14.5.1.7 Configurable Wait States

From 0 to 15 wait states can be programmed for any cycle that the memory controller generates, via the
SCY bits in the appropriate Option Register. From 0 to 3 wait states between burst beats can be
programmed using the BSCY bits in the appropriate Option Register.

14.5.1.8 Configurable internal or external TA per chip select

Each chip select can be configured (via the SETA bit) to have TA driven internally (by the EBI), or
externally (by an external device). See Section 14.4.1.4, EBI Base Registers (EBI_BR0-EBI_BR3,
EBI_CAL_BR0-3)” for more details on SETA bit usage.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

298 Freescale Semiconductor

14.5.1.9 Support for Dynamic Calibration with up to 4 chip-selects

The EBI contains 4 calibration chip select signals, controlling 4 independent memory banks on an optional
2nd external bus for calibration. See Section 14.5.2.10, Calibration bus operation” for more details on
using the calibration bus.

14.5.1.10 Four Write/Byte Enable (WE/BE) Signals

The functionality of the WE[0:3]/BE[0:3] signals depends on the value of the WEBS bit in the
corresponding Base Register. Setting WEBS to 1 configures these pins as BE[0:3], while resetting it to 0
configures them as WE[0:3]. WE[0:3] are asserted only during write accesses, while BE[0:3] is asserted
for both read and write accesses. The timing of the WE[0:3]/BE[0:3] signals remains the same in either
case.

The upper Write/Byte Enable (WE0/BE0) indicates that the upper eight bits of the data bus (DATA[0:7])
contain valid data during a write/read cycle. The upper middle Write/Byte Enable (WE1/BE1) indicates
that the upper middle eight bits of the data bus (DATA[8:15]) contain valid data during a write/read cycle.
The lower middle Write/Byte Enable (WE2/BE2) indicates that the lower middle eight bits of the data bus
(DATA[16:23]) contain valid data during a write/read cycle. The lower Write/Byte Enable (WE3/BE3)
indicates that the lower eight bits of the data bus (DATA[24:31]) contain valid data during a write/read
cycle.

NOTE

The exception to the preceding WE/BE description is that for 16-bit port
transfers (DBM=1 or PS=1), only the WE[0:1]/BE[0:1] signals are used,
regardless of whether DATA[0:15] or DATA[16:31] are selected (via the
D16_31 bit in the EBI_MCR). This means for the case where DATA[16:31]
are selected, that WE0 indicates that DATA[16:23] contains valid data, and
WE1 indicates that DATA[24:31] contains valid data.

The Write/Byte Enable lines affected in a transaction for a 32-bit port (PS = 0) and a 16-bit port (PS=1)
are shown in Table 14-11. Only Big Endian byte ordering is supported by the EBI.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 299

14.5.1.11 Slower-Speed Clock Modes

For memories that cannot run with a full-speed external bus, the EBI supports slower-speed clock modes.
Refer to Section 14.2.3.4, Slower-speed modes for more details on this feature. The timing diagrams for
slower-speed modes are identical to those for full-speed mode, except that the frequency of CLKOUT is
reduced.

14.5.1.12 Stop and Module Disable Modes for Power Savings

See Section 14.2.3, Modes of operation for a description of the power saving modes.

14.5.1.13 Optional Automatic CLKOUT Gating

The EBI has the ability to hold the external CLKOUT pin high when the EBI’s internal master state
machine is idle and no requests are pending. The EBI outputs a signal to the pads logic in the MCU to
disable CLKOUT. This feature is disabled out of reset, and can be enabled or disabled by the ACGE bit in
the EBI_MCR.

NOTE

 This feature must be disabled for multi-master systems. In those cases, one
master is getting its clock source from the other master and needs it to stay
valid continuously.

Table 14-11. Write/Byte Enable Signals Function 1

1 This table applies to aligned internal master transfers only. In the case of a misaligned
internal master transfer that is split into multiple aligned external transfers, not all of the
write enables X’d in the table will necessarily assert. See Section 14.5.2.11, Misaligned
access support.

Transfer
Size

Address 32-Bit Port Size 16-Bit Port Size2

2 Also applies when DBM=1 for 16-bit data bus mode.

A30 A31
WE0/
BE0

WE1/
BE1

WE2/
BE2

WE3/
BE3

WE0/
BE0

WE1/
BE1

WE2/
BE2

WE3/
BE3

Byte 0 0 X X

0 1 X X

1 0 X X

1 1 X X

16-bit 0 0 X X X X

1 0 X X X X

32-bit 0 0 X X X X X3

3 This case consists of two 16-bit external transactions, but for both transactions the
WE[0:1]/BE[0:1] signals are the only WE/BE signals affected.

X3

Burst 0 0 X X X X X X

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

300 Freescale Semiconductor

14.5.1.14 Misaligned access support

The EBI has limited misaligned access support. Misaligned non-burst chip-select transfers from internal
masters are supported. The EBI aligns the accesses when it sends them out to the external bus (splitting
them into multiple aligned accesses if necessary), so that external devices are not required to support
misaligned accesses. Burst accesses (internal master) must match the internal bus size (64-bit aligned). See
Section 14.5.2.11, Misaligned access support” for more details.

14.5.1.15 Compatible with MPC5xx External Bus (with some limitations)

The EBI is compatible with the external bus of the MPC5xx parts, meaning that it supports most devices
supported by the MPC5xx family of parts. However, there are some differences between this EBI and that
of the MPC5xx parts that the user needs to be aware of before assuming that an MPC5xx-compatible
device works with this EBI. See Section 14.6.6, Summary of Differences from MPC5xx, for details.

NOTE

Due to testing and complexity concerns, multi-master (or master/slave)
operation between an eSys MCU and MPC5xx is not guaranteed.

14.5.2 External bus operations

The following sections provide a functional description of the external bus, the bus cycles provided for
data transfer operations, and error conditions.

14.5.2.1 External clocking

The CLKOUT signal sets the frequency of operation for the bus interface directly. Internally, the MCU
uses a phase-locked loop (PLL) circuit to generate a master clock for all of the MCU circuitry (including
the EBI) which is phase-locked to the CLKOUT signal. In general, all signals for the EBI are specified
with respect to the rising-edge of the CLKOUT signal, and they are guaranteed to be sampled as inputs or
changed as outputs with respect to that edge.

14.5.2.2 Reset

Upon detection of internal reset assertion, the EBI immediately ends all transactions (abruptly, not through
normal termination protocol), and ignores any transaction requests that take place while reset is asserted.

14.5.2.3 Basic transfer protocol

The basic transfer protocol defines the sequence of actions that must occur on the external bus to perform
a complete bus transaction. A simplified scheme of the basic transfer protocol is shown in Figure 14-8.

Figure 14-8. Basic Transfer Protocol

ARBITRATION ADDRESS TRANSFER DATA TRANSFER TERMINATION

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 301

The arbitration phase is where bus ownership is requested and granted. This phase is not needed in Single
Master Mode because the EBI is the permanent bus owner in this mode.

The address transfer phase specifies the address for the transaction and the transfer attributes that describe
the transaction. The signals related to the address transfer phase are TS, ADDR (or DATA if Address/Data
multiplexing is used), CS[0:3], RD_WR, and BDIP. The address and its related signals (with the exception
of TS, BDIP) are driven on the bus with the assertion of the TS signal, and kept valid until the bus master
receives TA asserted (the EBI holds them one cycle beyond TA for writes and external TA accesses). Note
that for writes with internal TA, RD_WR is not held one cycle past TA.

The data transfer phase performs the transfer of data, from master to slave (in write cycles) or from slave
to master (on read cycles), if any is to be transferred. The data phase may transfer a single beat of data (1-4
bytes) for non-burst operations or a 2-beat (special DBM=1 case only), 4-beat, 8-beat, or 16-beat burst of
data (2 or 4 bytes per beat depending on port Size) when burst is enabled. On a write cycle, the master must
not drive write data until after the address transfer phase is complete. This is to avoid electrical contentions
when switching between drivers. The master must start driving write data one cycle after the address
transfer cycle. The master can stop driving the data bus as soon as it samples the TA line asserted on the
rising edge of CLKOUT. To facilitate asynchronous write support, the EBI keeps driving valid write data
on the data bus until 1 clock after the rising edge where RD_WR and WE are negated (for chip-select
accesses only). See Figure 14-14 for an example of write timing. On a read cycle, the master accepts the
data bus contents as valid on the rising edge of the CLKOUT in which the TA signal is sampled asserted.
See Figure 14-10 for an example of read timing.

The termination phase is where the cycle is terminated by the assertion of either TA (normal termination)
or TEA (termination with error). Termination is discussed in detail in Section 14.5.2.8, Termination signals
protocol.

NOTE

In the timing diagrams in this document, asynchronous relationships
between signals that switch in the same CLKOUT cycle are not guaranteed.
For example, in Figure 14-14, WE and write DATA change during the same
CLKOUT cycle. There is no guarantee that DATA will be stable before WE
assertion. External devices should not be latching write DATA on WE
assertion, but instead must use a signal edge that takes place in a later
CLKOUT cycle, such as WE negation.

14.5.2.4 Single beat transfer

The flow and timing diagrams in this section assume that the EBI is configured in Single Master Mode.
Therefore, arbitration is not needed and is not shown in these diagrams.

14.5.2.4.1 Single beat read flow

The handshakes for a single beat read cycle are illustrated in the following flow and timing diagrams.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

302 Freescale Semiconductor

Figure 14-9. Basic Flow Diagram of a Single Beat Read Cycle

MASTER (EBI) SLAVE

asserts transfer start (TS)

drives address and attributes

receives address

drives data

asserts transfer acknowledge (TA)

receives data

CS access & !SETA?
yes

no

asserts transfer acknowledge (TA)

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 303

Figure 14-10. Single Beat 32-bit Read Cycle, CS Access, Zero Wait States

Figure 14-11. Single Beat 32-bit Read Cycle, CS Access, One Wait State

DATA is valid

CLKOUT

ADDR[3:31]

TS

TA

RD_WR

BDIP

OE

CS[n]

DATA[0:31]

Wait state

DATA is valid

CLKOUT

ADDR[3:31]

TS

TA

RD_WR

BDIP

OE

CS[n]

DATA[0:31]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

304 Freescale Semiconductor

Figure 14-12. Single Beat 32-bit Read Cycle, Non-CS Access, Zero Wait States

14.5.2.4.2 Single beat write flow

The handshakes for a single beat write cycle are illustrated in the following flow and timing diagrams.

DATA is valid

The EBI drives address and control signals an extra cycle because it uses a latched
version of the external TA (1 cycle delayed) to terminate the cycle.

*

*

CLKOUT

ADDR[3:31]

TS

TA(input)

RD_WR

BDIP

OE

CS[n]

DATA[0:31]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 305

Figure 14-13. Basic Flow Diagram of a Single Beat Write Cycle

MASTER SLAVE

asserts transfer start (TS)

drives address and attributes

receives address

drives data

asserts transfer acknowledge (TA)

stops driving data

CS access & ! SETA?
yes

no

asserts transfer acknowledge (TA)

receives data

waits 1 clock

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

306 Freescale Semiconductor

Figure 14-14. Single Beat 32-bit Write Cycle, CS Access, Zero Wait States

Figure 14-15. Single Beat 32-bit Write Cycle, CS Access, One Wait State

DATA is valid

CLKOUT

ADDR[3:31]

TS

TA

RD_WR

BDIP

CS[n]

DATA[0:31]

WE[0:3]

Wait state

DATA is valid

CLKOUT

ADDR[3:31]

TS

TA

RD_WR

BDIP

CS[n]

DATA[0:31]

WE[0:3]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 307

Figure 14-16. Single Beat 32-bit Write Cycle, Non-CS Access, Zero Wait States

14.5.2.4.3 Back-to-Back accesses

Due to internal bus protocol, one dead cycle is necessary between back-to-back external bus accesses that
are not part of a set of small accesses (see Section 14.5.2.6, Small accesses (Small port size and short burst
length) for small access timing). A dead cycle refers to a cycle between the TA of a previous transfer and
the TS of the next transfer.

NOTE

In some cases, CS remains asserted during this dead cycle, such as the cases
of back-to-back writes or read-after-write to the same chip-select. See
Figure 14-20 and Figure 14-21.

Besides this dead cycle, in most cases, back-to-back accesses on the external bus do not cause any change
in the timing from that shown in the previous diagrams, and the two transactions are independent of each
other. The only exceptions to this are listed below:

• Back-to-back accesses where the first access ends with an externally-driven TA or TEA. In these
cases, an extra cycle is required between the end of the first access and the TS assertion of the
second access. See Section 14.5.2.8, Termination signals protocol for more details.

The following diagrams show a few examples of back-to-back accesses on the external bus.

DATA is valid

CLKOUT

ADDR[3:31]

TS

TA (Input)

RD_WR

BDIP

CS[n]

DATA is valid

The EBI drives address and control signals an extra cycle because it uses a latched
version of the external TA (1 cycle delayed) to terminate the cycle.

*

*

DATA[0:31]

WE[0:3]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

308 Freescale Semiconductor

Figure 14-17. Back-to-Back 32-bit Reads to the Same CS Bank

Figure 14-18. Back-to-Back 32-bit Reads to Different CS Banks

DATA is valid DATA is valid

CLKOUT

ADDR[3:31]

TS

TA

RD_WR

BDIP

OE

CS[n]

DATA[0:31]

DATA is valid

CLKOUT

ADDR[3:31]

TS

TA

RD_WR

BDIP

OE

CS[y]

DATA is valid
CS[n]

DATA[0:31]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 309

Figure 14-19. Write After Read to the Same CS Bank

ADDR[3:31]

TS

DATA[0:31]

TA

RD_WR

DATA is valid

BDIP

WE

CSx

DATA is valid

CLKOUT

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

310 Freescale Semiconductor

Figure 14-20. Back-to-Back 32-bit Writes to the Same CS Bank

CLKOUT

ADDR[3:31]

TS

TA

RD_WR

BDIP

WE

CS[n]

DATA is valid DATA is valid

DATA[0:31]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 311

Figure 14-21. Read After Write to the Same CS Bank

14.5.2.5 Burst transfer

The EBI supports wrapping 32-byte critical-doubleword-first burst transfers. Bursting is supported only
for internally-requested cache-line size (32-byte) read accesses to external devices that use the chip
selects1.

ADDR[3:31]

TS

DATA[0:31]

TA

RD_WR

DATA is valid

BDIP

WE

CSx

DATA is valid

CLKOUT

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

312 Freescale Semiconductor

Accesses to devices operating without a chip select are always single beat. If an internal request to the EBI
indicates a size of less than 32 bytes, the request is fulfilled by running one or more single-beat external
transfers, not by an external burst transfer.

An 8-word wrapping burst reads eight 32-bit words by supplying a starting address that points to one of
the words (doubleword aligned) and requiring the memory device to sequentially drive each word on the
data bus. The selected slave device must internally increment ADDR[27:29] (also ADDR30 in the case of
a 16-bit port size device) of the supplied address for each transfer, until the address reaches an 8-word
boundary, and then wrap the address to the beginning of the 8-word boundary. The address and transfer
attributes supplied by the EBI remain stable during the transfers. Termination of each beat transfer occurs
by the EBI asserting TA (SETA=1 is not supported for burst transfers). The EBI requires that addresses be
aligned to a doubleword boundary on all burst cycles.

Table 14-12 shows the burst order of beats returned for an 8-word burst to a 32-bit port.

The general case of burst transfers assumes that the external memory has 32-bit port size and 8-word burst
length. The EBI can also burst from 16-bit port size memories, taking twice as many external beats to fetch
the data as compared to a 32-bit port with the same burst length. The EBI can also burst from 16-bit or
32-bit memories that have a 4-word burst length (BL=1 in the appropriate Base Register). In this case, two
external 4-word burst transfers (wrapping on 4-word boundary) are performed to fulfill the internal 8-word
request1. This operation is considered atomic by the EBI, so the EBI does not allow other unrelated master
accesses or bus arbitration to intervene between the transfers. For more details and a timing diagram, see
Section 14.5.2.6.3, Small access example #3: 32-byte read to 32-bit port with BL=1.

During burst cycles, the BDIP (Burst Data In Progress) signal is used to indicate the duration of the burst
data. During the data phase of a burst read cycle, the EBI receives data from the addressed slave. If the
EBI needs more than one data, it asserts the BDIP signal. Upon receiving the data prior to the last data, the
EBI negates BDIP. Thus, the slave stops driving new data after it receives the negation of BDIP on the
rising edge of the clock. Some slave devices have their burst length and timing configurable internally and
thus may not support connecting to a BDIP pin. In this case, BDIP is driven by the EBI normally, but the
output is ignored by the memory and the burst data behavior is determined by the internal configuration
of the EBI and slave device. When the TBDIP bit is set in the appropriate Base Register, the timing for
BDIP is altered. See Section 14.5.2.5.1, TBDIP effect on burst transfer for this timing.

Since burst writes are not supported by the EBI2, the EBI negates BDIP during write cycles.
1. Except for the special case of a 32-bit non-chip-select access in 16-bit data bus mode. See Section 14.5.2.9,

Non-chip-select burst in 16-bit data bus mode.

Table 14-12. Wrap Bursts Order

Burst Starting Address
ADDR[27:28]

Burst Order
(Assuming 32-bit Port Size)

00 word0  word1  word2  word3 word4  word5  word6 word7

01 word2  word3  word4  word5  word6 word7 word0 word1

10 word4  word5  word6 word7 word0  word1 word2 word3

11 word6  word7 word0  word1  word2  word3  word4 word5

1. This case (of 2 external burst transfers being required) applies only to AMBA data bus width of 64 bits.

2. Except for the special case of a 32-bit non-chip-select access in 16-bit data bus mode. See Section 14.5.2.9,
Non-chip-select burst in 16-bit data bus mode.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 313

Figure 14-22. Basic Flow Diagram of a Burst Read Cycle

MASTER SLAVE

asserts transfer start (TS)

drives address and attributes

receives address

drives data

asserts transfer acknowledge (TA)

next to last data beat?

yes

no

negate BDIP

receive last data

drives last data

receives data

assert BDIP

asserts transfer acknowledge (TA)

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

314 Freescale Semiconductor

Figure 14-23. Burst 32-bit Read Cycle, Zero Wait States

Figure 14-24. Burst 32-bit Read Cycle, One Initial Wait State

14.5.2.5.1 TBDIP effect on burst transfer

Some memories require different timing on the BDIP signal than the default to run burst cycles. Using the
default value of TBDIP=0 in the appropriate EBI Base Register results in BDIP being asserted (SCY+1)
cycles after the address transfer phase, and being held asserted throughout the cycle regardless of the wait

CLKOUT

ADDR[3:31]

BDIP

TA

RD_WR

TS

OE

CS[n]

Expects more data

ADDR[29:31] = 000

DATA is valid

DATA[0:31]

Wait state

CLKOUT

ADDR[3:31]

BDIP

TA

RD_WR

TS

OE

CS[n]

Expects more data

ADDR[29:31] = 000

DATA is valid

DATA[0:31]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 315

states between beats (BSCY). Figure 14-25 shows an example of the TBDIP=0 timing for a 4-beat burst
with BSCY=1.

Figure 14-25. Burst 32-bit Read Cycle, One Wait State between Beats, TBDIP=0

When using TBDIP=1, the BDIP behavior changes to toggle between every beat when BSCY is a non-zero
value. Figure 14-26 shows an example of the TBDIP=1 timing for the same 4-beat burst shown in
Figure 14-25.

CLKOUT

TS

DATA[0:31]

BDIP

Wait State

CSx

OE

DATA is valid

Expects more data

ADDR[3:31]

RD_WR

TSIZ[0:1] 00

ADDR[29:31] = 000

Wait State Wait State Wait State

TA

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

316 Freescale Semiconductor

Figure 14-26. Burst 32-bit Read Cycle, One Wait State between Beats, TBDIP=1

14.5.2.6 Small accesses (Small port size and short burst length)

In this context, a small access refers to an access whose burst length and port size (BL, PS bits in Base
Register for chip-select access or default burst disabled, 32-bit port for non-chip-select access) are such
that the number of bytes requested by the internal master cannot all be fetched (or written) in one external
transaction. If this is the case, the EBI initiates multiple transactions until all the requested data is
transferred. It should be noted that all the transactions initiated to complete the data transfer are considered
as an atomic transaction, so the EBI does not allow other unrelated master accesses to intervene between
the transfers.

Table 14-13 shows all the combinations of burst length, port size, and requested byte count that cause the
EBI to run multiple external transactions to fulfill the request.

Table 14-13. Small Access Cases

Byte Count
Requested by internal

master
Burst Length Port Size

External Accesses
to Fulfill Request

Non-Burstable Chip-Select Banks (BI=1) or Non-Chip-Select Access

4 1 beat 16-bit 2/11

8 1 beat 32-bit 2

8 1 beat 16-bit 4

162 1 beat 32-bit 4

162 1 beat 16-bit 8

323 1 beat 32-bit 8

323 1 beat 16-bit 16

Burstable Chip-Select Banks (BI=0)

DATA is valid

Wait state
Wait state

CLKOUT

ADDR[3:31]

BDIP

TA

RD_WR

TS

OE

CS[n]

Expects more data

ADDR[29:31] = 000

Wait state Wait state

DATA[0:31]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 317

In most cases, the timing for small accesses is the same as for normal single-beat and burst accesses, except
that multiple back-to-back external transfers are executed for each internal request. These transfers have
no additional dead cycles in-between that are not present for back-to-back stand-alone transfers except for
the case of writes with an internal request size of > 64 bits, discussed in Section 14.5.2.6.2, Small access
example #2: 32-byte write with external TA.

The following sections show a few examples of small accesses. The timing for the remaining cases in
Table 14-13 can be extrapolated from these and the other timing diagrams in this document.

14.5.2.6.1 Small access example #1: 32-bit write to 16-bit port

Figure 14-27 shows an example of a 32-bit write to a 16-bit port, requiring two 16-bit external transactions.

Figure 14-27. Single Beat 32-bit Write Cycle, 16-bit Port Size, Basic Timing

14.5.2.6.2 Small access example #2: 32-byte write with external TA

Figure 14-28 shows an example of a 32-byte write to a non-chip-select device using external TA, requiring
eight 32-bit external transactions. Note that due to the use of external TA, RD_WR does not toggle

323 4 words 16-bit (8 beats), 32-bit
(4 beats)

2

1 In 32-bit data bus mode (DBM=0 in EBI_MCR), two accesses are performed. In 16-bit data bus mode
(DBM=1), one 2-beat burst access is performed and this is not considered a “small access” case.
See Section 14.5.2.9, Non-chip-select burst in 16-bit data bus mode for this special DBM=1 case.

2 Only supported for case of 32-bit internal AMBA data bus.
3 Only supported for case of 64-bit internal AMBA data bus.

Table 14-13. Small Access Cases (continued)

Byte Count
Requested by internal

master
Burst Length Port Size

External Accesses
to Fulfill Request

DATA is validDATA is valid

CLKOUT

ADDR[3:31]

TS

TA

RD_WR

BDIP

WE

CS[n]

A A + 2

ABCDXXXX EFGHXXXXDATA[0:31]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

318 Freescale Semiconductor

between the accesses unless that access is the end of a 64-bit boundary. In this case, an extra cycle is
required between TA and the next TS in order to get the next 64-bits of write data internally and RD_WR
negates during this extra cycle.

Figure 14-28. 32-Byte Write Cycle with External TA, Basic Timing

14.5.2.6.3 Small access example #3: 32-byte read to 32-bit port with BL=1

Figure 14-29 shows an example of a 32-byte read to a 32-bit burst enabled port with burst length of 4
words, requiring two 16-byte external transactions. For this case, the address for the 2nd 4-word burst
access is calculated by adding 0x10 to the lower 5 bits of the 1st address (no carry), and then masking out
the lower 4 bits to fix them at zero.

Table 14-14. Examples of 4-word Burst Addresses

1st Address
Lower 5 bits of 1st Address +

0x10 (no carry)
Final 2nd Address (After
Masking Lower 4 Bits)

0x000 0x10 0x10

0x008 0x18 0x10

0x010 0x00 0x00

0x018 0x08 0x00

0x020 0x30 0x30

0x028 0x38 0x30

0x030 0x20 0x20

0x038 0x28 0x20

DATA is validDATA is valid

CLKOUT

ADDR[3:31]

TS

TA

RD_WR

BDIP

WE

CS[n]

A A + 4 A + 8 A + 0xc

DATA is valid

This extra cycle is required after accesses 2, 4, and 6 to get the next 64-bits of internal write data.*
Four more external accesses (not shown) are required to complete the internal 32-byte request.
The timing of these is the same as accesses 1-4 shown in this diagram.

**

1 2 3 4***

DATA[0:31]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 319

Figure 14-29. 32-Byte Read with B-T-B 16-Byte Bursts to 32-bit Port, Zero Wait States

14.5.2.6.4 Small access example #4: 64-bit read to 16-bit Port

Figure 14-30 shows an example of a 64-bit read to a 16-bit port, requiring four 16-bit external transactions.

Expects more data

CLKOUT

ADDR[3:31]

BDIP

TA

RD_WR

TS

OE

CS[n]

ADDR[29:31] = 000

DATA is valid

ADDR[28:31] = 0000

DATA is valid

DATA[0:31]

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

320 Freescale Semiconductor

Figure 14-30. Single Beat 64-bit Read Cycle, 16-bit Port Size, Basic Timing

14.5.2.7 Size, alignment and packaging on transfers

Table 14-15 shows the allowed sizes that an internal master can request from the EBI. The behavior of the
EBI for request sizes not shown below is undefined. No error signal is asserted for these erroneous cases.

Table 14-15. Transaction Sizes Supported by EBI

Bytes (internal master) # Bytes (external master)

1 1

ADDR[3:31]

TS

*DATA[0:15]

TA

RD_WR

BDIP

WE

CSx

CLKOUT

A A+2

ABCD

DATA is valid

* Or DATA[16:31], based on D16_31 bit in EBI_MCR.

A+4 A+6

EFGH IJKL MNOP

DATA is valid DATA is valid DATA is valid

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 321

Even though misaligned non-burst transfers from internal masters are supported, the EBI naturally aligns
the accesses when it sends them out to the external bus, splitting them into multiple aligned accesses if
necessary. See Section 14.5.2.11, Misaligned access support , for these cases.

Natural alignment for the EBI means:

• Byte access can have any address

• 16-bit access, address bit 31 must be 0

• 32-bit access, address bits 30–31 must be 0

• For burst accesses of any size, address bits 29–31 must be 0

The EBI never generates a misaligned external access, so a multi-master system with two e200-based
MCUs can never have a misaligned external access from one to the other. In the erroneous case that an
externally-initiated misaligned access does occur, the EBI errors the access (by asserting TEA externally)
and does not initiate the access on the internal bus.

The EBI requires that the portion of the data bus used for a transfer to/from a particular port size be fixed.
A 32-bit port must reside on data bus bits 0–31,and a 16-bit port must reside on bits 0–15.

In the following figures and tables the following convention is adopted:

• The most significant byte of a 32-bit operand is OP0, and OP3 is the least significant byte.

• The two bytes of a 16-bit operand are OP0 (most significant) and OP1, or OP2 (most significant)
and OP3, depending on the address of the access.

• The single byte of a byte-length operand is OP0, OP1, OP2, or OP3, depending on the address of
the access.

This can be seen in Figure 14-31.

2 2

4 4

31

8

322

1 Some misaligned access cases may result in 3-byte writes. These
cases are treated as power-of-2 sized requests by the EBI, using
WE_BE[0:3] to make sure only the appropriate 3 bytes get written.

2 Only supported for case of 64-bit internal AMBA data bus.

Table 14-15. Transaction Sizes Supported by EBI (continued)

Bytes (internal master) # Bytes (external master)

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

322 Freescale Semiconductor

Figure 14-31. Internal Operand Representation

Figure 14-32 shows the device connections on the DATA[0:31] bus.

Figure 14-32. Interface to Different Port Size Devices

Table 14-16 lists the bytes required on the data bus for read cycles. The bytes indicated as ‘—’ are not
required during that read cycle.

Table 14-17 lists the patterns of the data transfer for write cycles when accesses are initiated by the MCU.
The bytes indicated as ‘—’ are not driven during that write cycle.

OP0 OP1 OP2

0 31

32-BIT

16-BIT

BYTE

OP0

OP1

OP2

OP3

OP0 OP1

OP2 OP3

OP3

0 31

32-bit port sizeOP0 OP1 OP2 OP3

OP0 OP1

OP2 OP3

OP0 OP1 OP2 OP3

16-bit port size

DATA[0:7] DATA[8:15] DATA[16:23] DATA[24:31]

Interface

Output

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 323

14.5.2.8 Termination signals protocol

The termination signals protocol was defined in order to avoid electrical contention on lines that can be
driven by various sources. In order to do that, a slave must not drive signals associated with the data
transfer until the address phase is completed and it recognizes the address as its own. The slave must
disconnect from signals immediately after it acknowledges the cycle and not later than the termination of
the next address phase cycle.

For EBI-mastered non-chip-select accesses, the EBI requires assertion of TA from an external device to
signal that the bus cycle is complete. The EBI uses a latched version of TA (1 cycle delayed) for these
accesses to help make timing at high frequencies. This results in the EBI driving the address and control
signals 1 cycle longer than required, as seen in Figure 14-33. However, the DATA does not need to be held
1 cycle longer by the slave, because the EBI latches DATA every cycle during non-chip-select accesses.

Table 14-16. Data Bus Requirements for Read Cycles

Transfer
Size

Address 32-Bit Port Size 16-Bit Port Size1

A30 A31 D0:D7 D8:D15 D16:D23 D24:D31 D0:D72 D8:D153

Byte 0 0 OP0 — — — OP0 —

0 1 — OP1 — — — OP1

1 0 — — OP2 — OP2 —

1 1 — — — OP3 — OP3

16-bit 0 0 OP0 OP1 — — OP0 OP1

1 0 — — OP2 OP3 OP2 OP3

32-bit 0 0 OP0 OP1 OP2 OP3 OP0/OP24 OP1/OP3
1 Also applies when DBM=1 for 16-bit data bus mode.
2 For address/data muxed transfers, DATA[16:23] are used externally, not DATA[0:7].
3 For address/data muxed transfers, DATA[24:31] are used externally, not DATA[8:15].
4 This case consists of two 16-bit external transactions, the first fetching OP0 and OP1, the second

fetching OP2 and OP3.

Table 14-17. Data Bus Contents for Write Cycles

Transfer
Size

Address 32-Bit Port Size 16-Bit Port Size1

A30 A31 D0:D7 D8:D15 D16:D23 D24:D31 D0:D72 D8:D153

Byte 0 0 OP0 — — — OP0 —

0 1 — OP1 - — — OP1

1 0 — — OP2 — OP2 —

1 1 — — — OP3 — OP3

16-bit 0 0 OP0 OP1 — — OP0 OP1

1 0 — — OP2 OP3 OP2 OP3

32-bit 0 0 OP0 OP1 OP2 OP3 OP0/OP24 OP1/OP3
1 Also applies when DBM=1 for 16-bit data bus mode.
2 For address/data muxed transfers, DATA[16:23] are used externally, not DATA[0:7].
3 For address/data muxed transfers, DATA[24:31] are used externally, not DATA[8:15].
4 This case consists of two 16-bit external transactions, the first writing OP0 and OP1, the second

writing OP2 and OP3.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

324 Freescale Semiconductor

During these accesses, the EBI does not drive the TA signal, leaving it up to an external device (or weak
internal pullup) to drive TA.

For EBI-mastered chip-select accesses, when the SETA bit is 0, the EBI drives TA the entire cycle,
asserting according to internal wait state counters to terminate the cycle. When the SETA bit is 1, the EBI
samples the TA for the entire cycle. During idle periods on the external bus, the EBI drives TA negated as
long as it is granted the bus; when it no longer owns the bus, it lets go of TA.

If no device responds by asserting TA within the programmed timeout period (BMT in EBI_BMCR) after
the EBI initiates the bus cycle, the internal Bus Monitor (if enabled) asserts TEA to terminate the cycle.
An external device may also drive TEA when it detects an error on an external transaction. TEA assertion
causes the cycle to terminate and the processor to enter exception processing for the error condition. To
properly control termination of a bus cycle for a bus error with external circuitry, TEA must be asserted at
the same time or before (external) TA is asserted. TEA must be negated before the second rising edge after
it was sampled asserted in order to avoid the detection of an error for the following bus cycle initiated.
TEA is only driven by the EBI during the cycle where the EBI is asserting TEA and the cycle immediately
following this assertion (for fast negation). During all other cycles, the EBI relies on a weak internal pullup
to hold TEA negated. This allows an external device to assert TEA when it needs to indicate an error.
External devices must follow the same protocol as the EBI, only driving TEA during the assertion cycle
and 1 cycle afterwards for negation.

When TEA is asserted from an external source, the EBI uses a latched version of TEA (1 cycle delayed)
to help make timing at high frequencies. This means that for any accesses where the EBI drives TA
(chip-select accesses with SETA=0), a TEA assertion that occurs 1 cycle before or during the last TA of
the access could be ignored by the EBI, since it will have completed the access internally before it detects
the latched TEA assertion. This means that non-burst chip-select accesses with no wait states (SCY=0)
cannot be reliably terminated by external TEA. If external error termination is required for such a device,
the EBI must be configured for SCY>=1.

NOTE

For the cases discussed above where TEA “could be ignored”, this is not
guaranteed. For some small access cases (which always use chip-select and
internally-driven TA), a TEA that occurs 1 cycle before or during the TA
cycle or for SCY=0 may in fact lead to terminating the cycle with error.
However, proper error termination is not guaranteed for these cases, so TEA
must always be asserted at least 2 cycles before an internally-driven TA
cycle for proper error termination.

External TEA assertion that occurs during the same cycle that TS is asserted by the EBI is always treated
as an error (terminating the access) regardless of SCY.

Table 14-18 summarizes how the EBI recognizes the termination signals provided from an external device.

Table 14-18. Termination Signals Protocol

TEA1 TA1 Action

Negated Negated No Termination

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 325

Figure 14-33 shows an example of the termination signals protocol for back-to-back reads to two different
slave devices who properly “take turns” driving the termination signals. This assumes a system using slave
devices that drive termination signals.

Figure 14-33. Termination Signals Protocol Timing Diagram

14.5.2.9 Non-chip-select burst in 16-bit data bus mode

The timing diagrams in this section apply only to the special case of a non-chip-select 32-bit access in
16-bit data bus mode (DBM=1 in EBI_MCR).

For this case, a special 2-beat burst protocol is used for reads and writes, so that a slave device (using the
same EBI) can internally generate one 32-bit read or write access (thus 32-bit coherent), as opposed to two
separate 16-bit accesses.

Asserted X Transfer Error Termination

Negated Asserted Normal Transfer Termination

1 Latched version (1 cycle delayed) used for externally
driven TEA and TA.

Table 14-18. Termination Signals Protocol (continued)

TEA1 TA1 Action

The EBI drives address and control signals an extra cycle because it uses a latched version of TA*

This is the earliest that the EBI can start another transfer, in the case of continuing a set of small accesses.
For all other cases, an extra cycle is needed before the EBI can start another TS.

**

CLKOUT

BB

TS

DATA[0:31]

TA, TEA

ADDR[3:31]

RD_WR

Slave 1 Slave 2* *

**

(1 cycle delayed) to terminate the cycle. An external master is not required to do this.

Slave 1
negates

acknowledge
signals and

turns off

Slave 2
negates

acknowledge
signals and

turns off

Slave 2
allowed to

drive
acknowledge

signals

Slave 1
allowed to

drive
acknowledge

signals

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

326 Freescale Semiconductor

NOTE

If the device does not support multi-master systems, the original intent of
this protocol does not apply. However, this 2-beat burst protocol can also
occur in a single-master system, if a non-chip-select 32-bit access to a 16-bit
port is performed.

Figure 14-34 shows a 32-bit (and non-chip-select in a single-master system) read from an external master
in 16-bit data bus mode.

Figure 14-35 shows a 32-bit (and non-chip-select in a single-master system) write from an external master
in 16-bit data bus mode.

Figure 14-34. 32-bit Read from MCU with DBM=1

CLKOUT

RD_WR

BDIP

ADDR[3:31]

DATA[0:15]

TS (output)

Minimum
2 wait states DATA is valid

TA (input)

DATA is valid

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 327

Figure 14-35. 32-bit Write to MCU with DBM=1

14.5.2.10 Calibration bus operation

Some devices with this EBI have a second external bus, intended for calibration use. This bus consists of
a second set of the same signals present on the Primary external bus, except that arbitration, (and optionally
other signals also) are excluded. Both busses can be supported with one EBI block, by using the calibration
chip-selects to steer accesses to the calibration bus instead of the primary external bus.

Since the calibration bus has no arbitration signals, the arbitration on the primary bus controls accesses on
the calibration bus as well, and no external master accesses can be performed on the calibration bus.
Accesses cannot be performed in parallel on both external busses. However, back-to-back accesses can
switch from one bus to the other, as determined by the type of chip-select each address matches.

The timing diagrams and protocol for the calibration bus is identical to the primary bus, except that some
signals are missing on the calibration bus. See the device-specific documentation for the calibration bus
signal list for a particular MCU.

There is an inherent dead cycle between a calibration chip-select access and a non-calibration access
(chip-select or non-chip-select), just like the one between accesses to two different non-calibration
chip-selects (described in Section 14.5.2.4.3, Back-to-Back accesses).

Figure 14-36 shows an example of a non-calibration chip-select read access followed by a calibration
chip-select read access. Note that this figure is identical to Figure 14-18, except the CSy is replaced by
CAL_CSy. Timing for other cases on calibration bus can similarly be derived from other figures in this
document (by replacing CS with CAL_CS).

DATA is valid

CLKOUT

RD_WR

BDIP

ADDR[3:31]

DATA[0:15]

TS (output)

Minimum
3 wait states

TA (input)

DATA is valid

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

328 Freescale Semiconductor

Figure 14-36. Back-to-Back 32-bit Reads to CS, CAL_CS Banks

14.5.2.11 Misaligned access support

This section describes all the misaligned cases supported by the EBI. These cases are a subset of the full
set of cases allowed by the AMBA AHB V6 specification. The EBI works under the assumption that all
internal masters on the device do not produce any misaligned access cases (to the EBI) other than the ones
below.

CLKOUT

ADDR[3:31]

TS

DATA[0:31]

TA

RD_WR

DATA is valid

BDIP

OE

CSx

DATA is valid

CAL_CSy

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 329

14.5.2.11.1 Misaligned access support (64 bit AMBA)

Table 14-19 shows all the misaligned access cases supported by the EBI (using a 64-bit AMBA
implementation), as seen on the internal master AMBA bus. All other misaligned cases are not supported.
If an unsupported misaligned access to the EBI is attempted (such as non-chip-select or burst misaligned
access), the EBI errors the access on the internal bus and does not start the access (nor assert TEA)
externally.

Table 14-20 shows which external transfers are generated by the EBI for the misaligned access cases in
Table 14-19, for each port size.

Table 14-19. Misalignment Cases Supported by a 64 bit AMBA EBI (internal bus)

No.1

1 Misaligned case number. Only transfers where HUNALIGN=1 are numbered as misaligned cases.

Program Size and
byte offset

Address
[29:31]2

2 Address on internal master AHB bus, not necessarily address on external ADDR pins.

Data Bus Byte Strobes3

3 Internal byte strobe signals on AHB bus. Shown with Big-Endian byte ordering in this table, even though
internal master AHB bus uses Little-Endian byte-ordering (EBI flips order internally).

HSIZE4

4 Internal signal on AHB bus; 00=8-bits, 01=16 bits, 10=32 bits, 11=64-bits. HSIZE is driven according to the
smallest aligned container that contains all the requested bytes. This results in extra EBI external transfers in
some cases.

HUNALIGN5

5 Internal signal on AHB bus that indicates that this transfer is misaligned (when 1).

1 Half @0x1,0x9 001 0110_0000 10 1

2 Half @0x3,0xB 011 0001_1000 11 1

3 Half @0x5,0xD 101 0000_0110 10 1

4
-

Half @0x7, 0xF
(2 AHB transfers)

111
000

0000_0001
1000_0000

016

00

6 For this case, the EBI internally treats HSIZE as 00 (1-byte access).

1
0

5 Word @0x1,0x9 001 0111_1000 11 1

6 Word @0x2,0xA 010 0011_1100 11 1

7 Word @0x3,0xB 011 0001_1110 11 1

8
-

Word @0x5,0xD
(2 AHB transfers)

101
000

0000_0111
1000_0000

10
00

1
0

9
-

Word @0x6, 0xE
(2 AHB transfers)

110
000

0000_0011
1100_0000

107

01

7 For this case, the EBI internally treats HSIZE as 01 (2-byte access).

1
0

10
11

Word @0x7,0xF
(2 AHB transfers)

111
000

0000_0001
1110_0000

106

10
1
1

12
-

Doubleword
@0x4,0x8

 (2 AHB transfers)

100
000

0000_1111
1111_0000

118

10

8 For this case, the EBI internally treats HSIZE as 10 (4-byte access).

1
0

13
-

Doubleword
@0x2,0xA

(2 AHB transfers)

010
000

0011_1111
1100_0000

11
01

1
0

14
15

Doubleword
0x6,0xE

 (2 AHB transfers)

110
000

0000_0011
1111_1100

117

11
1
1

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

330 Freescale Semiconductor

The number of external transfers for each internal AHB master request is determined by the HSIZE value
for that request relative to the port size. For example, a half-word write to @011 (misaligned case #2) with
16-bit port size results in 4 external 16-bit transfers because the HSIZE is 64-bits. For cases where two or
more external transfers are required for one internal transfer request, these external accesses are considered
part of a “small access” set, as described in Section 14.5.2.6, Small accesses (Small port size and short
burst length).

Since all transfers are aligned on the external bus, normal timing diagrams and protocol apply.

Table 14-20. Misalignment Cases Supported by a 64 bit AMBA EBI (external bus)

No.1 PS2 Program Size
and byte offset

ADDR[29:31]3 WE_BE[0:3]4

1 0 Half @0x1,0x9 000 1001

1 000
010

1011
0111

2 0 Half @0x3,0xB 000
100

1110
0111

1 010
100

1011
0111

3 0 Half @0x5,0xD 100 1001

1 100
110

1011
0111

4 0 Half @0x7,0xF
(2 AHB

transfers)

1115 1110

- 000 0111

4 1 110 1011

- 000 0111

5 0 Word @0x1,0x9 000
100

1000
0111

1 000
010
100

1011
0011
0111

6 0 Word @0x2,0xA 000
100

1100
0011

1 010
100

0011
0011

7 0 Word @0x3,0xB 000
100

1110
0001

1 010
100
110

1011
0011
0111

8 0 Word @0x5,0xD
(2 AHB

transfers)

100 1000

- 000 0111

8 1 100
110

1011
0011

- 000 0111

9 0 Word @0x6,0xE
(2 AHB

transfers)

1106 1100

- 000 0011

9 1 1106 0011

- 000 0011

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 331

14.5.2.12 Address data multiplexing

Address/Data multiplexing enables the design of a system with reduced pin count. In such a system,
multiplexed address/data functions (on DATA pins) are used, instead of having separate address and data
pins. Compared to the normal EBI specification (e.g. 24 address pins+32 data pins), only 32 data pins are
required. Compared to a 16-bit bus implementation, only 24 pins are required (e.g. ADDR[8:15] +
ADDR[16:31]/DATA[16:31]).

When performing a small access read, as described in Section 14.5.2.6, Small accesses (Small port size
and short burst length), with A/D multiplexing enabled for this access, the EBI inserts an idle clock cycle

10 0 Word @0x7,0xF
(2 AHB

transfers)

1115 1110

11 000 0001

10 1 1115 1011

11 000
010

0011
0111

12 0 Doubleword
@0x4,0xC

 (2 AHB
transfers)

1007 0000

- 000 0000

12 1 1007

110
0011
0011

- 000
010

0011
0011

13 0 Doubleword
@0x2,0xA

 (2 AHB
transfers)

000
100

1100
0000

- 000 0011

13 1 010
100
110

0011
0011
0011

- 000 0011

14 0 Doubleword
@0x6,0xE

 (2 AHB
transfers)

1106 1100

15 000
100

0000
0011

14 1 1106 0011

15 000
010
100

0011
0011
0011

1 Misaligned case number, from Table 14-19.
2 Port size; 0=32 bits, 1=16 bits.
3 External ADDR pins, not necessarily the address on internal master

AHB bus.
4 External WE_BE pins. Note that these pins have negative polarity,

opposite of the internal byte strobes in Table 14-19.
5 Treated as 1-byte access.
6 Treated as 2-byte access.
7 Treated as 4-byte access.

Table 14-20. Misalignment Cases Supported by a 64 bit AMBA EBI (external bus) (continued)

No.1 PS2 Program Size
and byte offset

ADDR[29:31]3 WE_BE[0:3]4

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

332 Freescale Semiconductor

with OE negated and CS asserted, to allow for the memory to three-state the bus prior to the EBI driving
the address on the next clock. This clock gap already exists (for other reasons) for non-small-access
transfers, so no additional clock gap is inserted for those cases. See Figure 14-37 for an example of a small
access read with A/D multiplexing enabled.

In general, timing diagrams in A/D multiplexing mode are very similar to other diagrams in this document
(including support for Burst accesses), except for the behavior of the ADDR and DATA busses, which can
be seen in Figure 14-37.

Figure 14-37. Small access (32-bit read to 16-bit port) on Address/Data multiplexed bus

CLKOUT

*ADDR[3:31]

TS

**DATA[16:31]

TA

RD_WR

DATA is valid

BDIP

OE

CSx

DATA is valid

Addr Addr+0x2

Addr Addr+0x2

Clock Gap

* While the EBI drives all of ADDR[3:31] to valid address, typically only ADDR[3:15] (or less) are used in the
system, as DATA[16:31] (or DATA[0:15]) would be used for address and data on an external muxed device.

** Or DATA[0:15], based on D16_31 bit in EBI_MCR.

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 333

14.6 Initialization/Application information

14.6.1 Booting from external memory

The EBI block does not support booting directly to external memory (i.e. fetching the first instruction after
reset externally). One common method for an MCU to resemble an external boot with this EBI is to use
an internal Boot Assist Module on the MCU, which fetches the first instruction internally and configures
EBI registers before branching to an external address to “boot” externally. Refer to the device-specific
documentation to see how/if external boot is supported for a particular MCU.

If code in external memory needs to write EBI registers, this must be done in a way that avoids modifying
EBI registers while external accesses are being performed, such as the following method:

• Copy the code that is doing the register writes (plus a return branch) to internal SRAM

• Branch to internal SRAM to run this code, ending with a branch back to external flash

14.6.2 Running with SDR (Single Data Rate) burst memories

This includes FLASH and SRAM memories with a compatible burst interface. BDIP is required only for
some SDR memories. Figure 14-38 shows a block diagram of an MCU connected to a 32-bit SDR burst
memory.

Figure 14-38. MCU Connected to SDR Burst Memory

Refer to Figure 14-23 for an example of the timing of a typical Burst Read operation to an SDR burst
memory. Refer to Figure 14-14 for an example of the timing of a typical Single Write operation to SDR
memory.

CLKOUT CK

ADDR[3:29] A[0:21]

CECS0

DATA[0:31] D[0:31]

TS

BDIP

WE0/BE0

ADV

BAA*

WE**

OEOE

MCU

* May or may not be connected, depending on the memory used.

SDR Burstable

 Flash or SRAM

** Flash memories typically use one WE signal as shown, RAMs use 2 or 4 (16-bit or 32-bit)

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

334 Freescale Semiconductor

14.6.3 Running with asynchronous memories

The EBI also supports asychronous memories. In this case, the CLKOUT, TS, and BDIP pins are not used
by the memory and bursting is not supported. However, the EBI still drives these outputs, and always
drives and latches all signals at posedge CLKOUT (i.e., there is no “asynchronous mode” for the EBI).
The data timing is controlled by setting the SCY bits in the appropriate Option Register to the proper
number of wait states to work with the access time of the asynchronous memory, just as done for a
synchronous memory.

14.6.3.1 Example wait state calculation

This example applies to any chip-select memory, synchronous or asynchronous.

As an example, say we have a memory with 50ns access time, and we are running the external bus at
66 MHz (CLKOUT period: 15.2 ns). Assume the input data spec for the MCU is 4 ns.

number of wait states = (access time) / (CLKOUT period) + (0 or 1) (depending on setup time)

50/15.2 = 3 with 4.4 ns remaining (so we need at least 3 wait states, now check setup time)

15.2-4.4=10.8 ns (this is the achieved input data setup time)

Since actual input setup (10.8 ns) is greater than the input setup spec (4.0ns), 3 wait states is sufficient. If
the actual input setup was less than 4.0ns, we would have to use 4 wait states instead.

14.6.3.2 Timing and connections for asynchronous memories

The connections to an asynchronous memory are the same as for a synchronous memory, except that the
CLKOUT, TS, and BDIP signals are not used. Figure 14-39 shows a block diagram of an MCU connected
to an asynchronous memory.

Figure 14-39. MCU Connected to Asynchronous Memory

Figure 14-40 shows a timing diagram of a read operation to a 16-bit asynchronous memory using 3 wait
states.

ADDR[9:30] A[0:21]

Asynchronous
CECS0

Memory

DATA[0:15] D[0:15]

WE*

OEOE

MCU

WE0/BE0

* Flash memories typically use one WE signal as shown, RAMs use 2 or 4 (16-bit or 32-bit)

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 335

Figure 14-41 shows a timing diagram of a write operation to a 16-bit asynchronous memory using 3 wait
states.

Figure 14-40. Read Operation to Asynchronous Memory, Three Initial Wait States

CLKOUT

ADDR[3:31]

TS

DATA[0:31]

TA

3 Wait States

CSx

OE

WE[0:1]

DATA is valid

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

336 Freescale Semiconductor

Figure 14-41. Write Operation to Asynchronous Memory, Three Initial Wait States

14.6.4 Connecting an mcu to multiple memories

The MCU can be connected to more than one memory at a time.

Figure 14-42 shows an example of how two memories could be connected to one MCU.

CLKOUT

ADDR[3:31]

TS

DATA[0:31]

TA

3 Wait States

CSx

WE[0:1]

OE
DATA is valid

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 337

Figure 14-42. MCU Connected to Multiple Memories

14.6.5 EBI operation with reduced Pinout MCUs

Some MCUs with this EBI may not have all the pins described in this document pinned out for a particular
package. Some of the most common pins to be removed are DATA[16:31] and arbitration pins (BB, BG,

ADDR[3:29]

CS0

DATA[0:31]

TS

OE

MCU

CS1

CK

A[0:21]

CE SDR Memory

D[0:31]

ADV

WE**

OE

CK

A[0:21]

SDR MemoryCE

D[0:31]

ADV

WE**

OE

CLKOUT

WE0/BE0

BDIP

BAA*

* May or may not be connected, depending on the memory used.

WE1/BE1

BAA*

** Flash memories typically use one WE signal as shown, RAMs use 2 or 4 (16-bit or 32-bit)

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

338 Freescale Semiconductor

BR). This section describes how to configure dual-MCU systems for each of those scenarios, as well as
describing limitations to EBI operation when other pins are missing (TA, TEA, BDIP). More than one
section may apply if the applicable pins are not present on one or both MCUs.

14.6.5.1 Connecting 16-bit MCU to 32-bit MCU (Master/Master or Master/Slave)

This scenario is straightforward. Simply connect DATA[0:15] between both MCUs, and configure both for
16-bit Data Bus Mode operation (DBM=1 in EBI_MCR). Note that 32-bit external memories are not
supported in this scenario.

14.6.5.2 Transfer size with no TSIZ pins (Master/Master or Master/Slave)

Since there are no TSIZ pins to communicate transfer size from master MCU to slave MCU, the internal
SIZE field of the EBI_MCR must be used on the slave MCU (by setting SIZEN=1 in slave’s EBI_MCR).
Anytime the master MCU needs to read or write the slave MCU with a different transfer size than the
current value of the slave’s SIZE field, the master MCU must first write the slave’s SIZE field with the
correct size for the subsequent transaction.

14.6.5.3 No Transfer Acknowledge (TA) Pin

If an MCU has no TA pin available, this restricts the MCU to chip-select accesses only (no MCU->MCU
transfers are possible). Non-chip-select accesses have no way for the EBI to know which cycle to latch the
data. The EBI has no built-in protection to prevent non-chip-select accesses in this scenario; it is up to the
user to make certain they set up chip-selects and external memories correctly to ensure all external
accesses fall in a valid chip-select region.

14.6.5.4 No Transfer Error (TEA) Pin

If an MCU has no TEA pin available, this eliminates the feature of terminating an access with TEA. This
means if an access times out in the EBI bus monitor, the EBI (master) will still terminate the access early,
but there will be no external visibility of this termination, so the slave device might end up driving data
much later, when a subsequent access is already underway. Therefore, the EBI bus monitor should be
disabled when no TEA pin exists.

14.6.5.5 No Burst Data in Progress (BDIP) Pin

If an MCU has no BDIP pin available, this eliminates burst support only if the burstable memory being
used requires BDIP to burst. Many external memories use a self-timed configurable burst mechanism that
does not require a dynamic burst indicator. Check the applicable external memory specification to see if
BDIP is required in your system.

14.6.6 Summary of Differences from MPC5xx

Below is a summary list of the significant differences between this EBI and that of the MPC5xx parts.

• No memory controller support for external masters

— must configure each master in multi-master system to drive its own chip selects

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 339

— rationale: save complexity, no requirement for this feature

• Burst mechanism updated to be compatible with e200z core with 32-byte cache line

— rationale: required for performance and compatibility with e200z core

• Removed these variable timing attributes from Option Register:

— CSNT, ACS, TRLX, EHTR

— rationale: reduces tester edgesets and complexity, no clear requirements for these features

• Removed reservation support on external bus

— rationale: reservation not supported on internal bus, useless to support on external

• Removed Address Type (AT), Write-Protect (WP), and dual-mapping features

— rationale: these functions can be replicated by Memory Management Unit (MMU) in e200z
core

• Removed support for 8-bit ports

— rationale: reduces complexity and not required

• Removed boot chip-select operation

— rationale: on-chip Boot Assist Module (BAM) handles boot (and configuration of EBI
registers)

• Open drain mode and pullup resistors no longer required for multi-master systems, extra cycle
needed to switch between masters

— rationale: saves customer hassle for multi-master system setup, at negligible performance cost

• Address decoding for external master accesses uses 4-bit code to determine internal slave instead
of straight address decode

— rationale: needed for compatibility with internal bridge address decoding and memory map

• Removed support for 3-master systems

— rationale: very difficult to manage with internal bridge address decoding method and keep
memory maps unique; not an essential feature to justify complexity of supporting

• Removed LBDIP Base Register bit, now late BDIP assertion is default behavior

— rationale: unaware of any memories that require BDIP to assert earlier than LBDIP timing, so
reduce number of CS control bits and complexity

• Modified arbitration protocol to require extra cycles when switching between masters

— rationale: could not use exact Oak protocol and make timing for full-speed operation; adding
dead cycles to protocol allows bus to run full-speed in external master mode and makes this
feature not limit overall EBI frequency

• Modified TSIZ[0:1] functionality to only indicate size of current transfer, not give information on
ensuing transfers that may be part of the same atomic sequence

— rationale: simpler and more intuitive functionality, no clear requirement for anything else

• Added support for 32-bit coherent read & write non-chip-select accesses in 16-bit data bus mode

— rationale: some internal registers must be accessed all 32 bits at once to function as expected

• Added misaligned access support

— rationale: some eSys cores require use of misaligned accesses for optimum performance

External Bus Interface (EBI)

MPC5644A Microcontroller Reference Manual, Rev. 6

340 Freescale Semiconductor

• Added calibration access support

— rationale: support related device logic added to multiple eSys devices’s, requested customer
feature

• Added support for larger external address bus (up to 29 bits)

— rationale: support larger external memory sizes

• Added support for address/data multiplexing

— rationale: new feature to reduce minimum pin count

• Added support for using either half of data bus for 16-bit port transfers

— rationale: helps A/D muxed usability, while maintaining backwards compatibility

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 341

Chapter 15
Interrupt Controller (INTC)

15.1 Information specific to this device

This section presents device-specific parameterization and customization information not specifically
referenced in the remainder of this chapter.

15.1.1 Device-specific features

• 279 peripheral interrupts

• 199 reserved interrupts

• 8 software interrupts

15.2 Introduction

This chapter describes the interrupt controller (INTC), which schedules interrupt requests (IRQs) from
software and internal peripherals to the e200z4 core. The INTC provides interrupt prioritization and
preemption, interrupt masking, interrupt priority elevation, and protocol support.

Interrupts implemented by the MCU are defined in the e200z4 Power Architecture® Core Reference
Manual, available on www.freescale.com.

15.2.1 Block diagram

Figure 15-1 shows the details of the interrupt controller.

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

342 Freescale Semiconductor

Figure 15-1. INTC Block Diagram

15.2.2 Overview

Interrupt functionality for the device is handled between the e200z4 core and the interrupt controller. The
CPU core has 19 exception sources, each of which can interrupt the core. One exception source is from
the interrupt controller (INTC). The INTC provides priority-based scheduling of interrupt requests and
supports programmable preemption. This scheduling scheme is suitable for statically scheduled hard
real-time systems. The INTC is optimized for a large number of interrupt requests.

Table 15-1 displays the interrupt sources and the number of interrupts available for each module;
Figure 15-2 shows a general diagram of INTC software vector mode.

Table 15-1. Interrupt sources available

Interrupt Source (IRQs)
Number of

Interrupts Available

Software 8

Watchdog 0

SRAM error correction 1

Flash error correction 1

End-of-
interrupt
register

Software
set clear
interrupt
registers

Flag bits

Priority
select

registers

8

Peripheral
interrupt

requests1 n1 Priority
arbitrator

n1
Highest
priority

interrupt
requests

n1 Request
selector

Lowest
vector

interrupt
request

n1 Vector
encoder

Interrupt
vector

9

x 4-bits

Interrupt
acknowledge

register

Interrupt
vector

9

Hardware
vector
enable

Vector table
entry size

1

Module
configuration

register

1

Highest priority4

Priority
comparator

New
4

Current

4

priorityCurrent
priority
register

priority

4

Popped

4

priority

Pushed
priority

Priority
LIFO

Slave
interface
for reads

and writes

1Push/update/acknowledge

1Pop

Slave
bus

signals

1Interrupt acknowledge

1Update interrupt vector

1

Interrupt
request to
processor

Memory-mapped registers

Logic not memory-mapped

1 Although N (largest addressable IRQ vector number) = 485, this does not indicate the total number of interrupts
available on this device. The total number of available interrupts on this device is 486: 279 peripheral IRQs,
8 software-configurable IRQs, and 199 reserved.

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 343

Figure 15-2. INTC software vector mode

Two modes are available to determine the vector for the interrupt request source:

• Software vector mode

• Hardware vector mode

In software vector mode, as shown in Figure 15-2, the e200z4 branches to a common interrupt exception
handler whose location is determined by an address derived from special purpose registers IVPR and
IVOR4. The interrupt exception handler reads the INTC_IACKR to determine the vector of the interrupt
request source. Typical program flow for software vector mode is shown in Figure 15-3.

eDMA 66

FMPLL 2

External IRQ input pins (SIU) 6

eMIOS 24

eTPU engine A 33

eQADC 31

DSPI 15

eSCI 3

FlexCAN 63

FlexRay 8

STM 5

Decimation Filter 3

System (PIT, RTI, PMC, etc) 6

Table 15-1. Interrupt sources available (continued)

Interrupt Source (IRQs)
Number of

Interrupts Available

IRQs Interrupt
controller

(INTC)

External interrupt
exception request e200z4

core

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

344 Freescale Semiconductor

Figure 15-3. Program Flow–Software Vector Mode

N is the largest vector number (485) with the greatest hexadecimal address (IVPR + 0x1D90) that is
available in the interrupt memory map for this device. As memory blocks throughout the total memory
map are used for other purposes, the maximum vector number does not indicate the total number of
available interrupt sources for this device.

The total number of entries in the interrupt memory map on this device is 486: 279 peripheral IRQs, 8
software configurable IRQs, and 199 reserved.

In hardware vector mode, the core branches to an interrupt exception handler unique for each interrupt
request source. Typical program flow for hardware vector mode is shown in Figure 15-4.

Figure 15-4. Program Flow–Hardware Vector Mode

The INTC supports a hardware vector mode that reduces the time between assertion of an interrupt and
execution of the service routine. It also provides 16 priorities so that lower priority ISRs do not delay the
execution of higher priority ISRs. The priority assigned to each interrupt source is programmable in the
range 0 to 15, with 0 being the lowest and 15 being the highest priority.

ISRISR 0 address ISR 0

ISRISR 1

•••

ISRISR n

•••

ISRISR N

ISR n address

ISR N address

ISR 1 address

•••

•••

Prolog
(Including

using IACKR
to get vector

then bl ISR_n

Epilog

IVPR + IVOR4IRQ[n]
taken IACKR

Data Table
AddressInstructionsAddress

VTBA

of Addresses

Prologb handler 0 handler 0

ISR

•••

•••

ISR

•••

•••

Instructions
NOTE:

‘b ISR_n’ is technically

Epilog

Prolog

Epilog

ISR

Prolog

Epilog

handler n

handler N

b handler 1

•••

b handler 2

•••

b handler n

b handler N

IVPR + 0x0000

IVPR + 0x0010

IVPR + 0x0020

IVPR + n [0x0010]

Refer to definition of N

IRQ[n]
taken

Address

part of the handler.

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 345

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC
supports the Priority Ceiling Protocol (PCP) for coherent accesses. By providing a modifiable priority
mask, the priority level can be raised temporarily so that no task can preempt another task that shares the
same resource.

Multiple processors can assert interrupt requests to each other through software configurable interrupt
requests, i.e., by using application software to assert an interrupt request. These same software
configurable interrupt requests also can be used to break the work involved in servicing an interrupt
request into a high priority portion and a low priority portion. The high priority portion is initiated by a
peripheral interrupt request, but the ISR can assert a software configurable interrupt request to finish the
servicing in a low priority ISR.

15.2.3 Features

Features include the following:

• Total number of interrupt vectors is 486, of which:

— 279 are peripheral interrupt vectors

— 8 are software configurable sources

— 199 are reserved sources

• 9-bit unique vector for each interrupt request source in hardware vector mode.

• Each interrupt source can be programmed to one of 16 priorities.

• Preemption.

— Preemptive prioritized interrupt requests to processor.

— ISR at a higher priority preempts ISRs or tasks at lower priorities.

— Automatic pushing or popping of preempted priority to or from a LIFO.

— Ability to modify the ISR or task priority. Modifying the priority can be used to implement the
PCP for accessing shared resources.

• Low latency–three clocks from receipt of interrupt request from peripheral to interrupt request to
processor.

15.2.4 Modes of operation

The interrupt controller has two handshaking modes with the processor: software vector mode and
hardware vector mode. The state of the hardware vector enable bit, INTC_MCR[HVEN], determines
which mode is used.

In debug mode, the interrupt controller operation is identical to its normal operation of software vector
mode or hardware vector mode.

15.2.4.1 Software vector mode

In the software vector mode, there is a common interrupt exception handler address that is calculated by
hardware as shown in Figure 15-5. The upper half of the interrupt vector prefix register (IVPR) is added
to the offset contained in the external input interrupt vector offset register (IVOR4).

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

346 Freescale Semiconductor

NOTE

Since bits IVOR4[28:31] are not part of the offset value, the vector offset
must be located on a quad-word (16-byte) aligned location in memory.

In the software vector mode, the interrupt exception handler software must read the INTC interrupt
acknowledge register (INTC_IACKR) to obtain the vector number and base address of the handler
associated with the corresponding peripheral or software interrupt request. The INTC_IACKR register
contains a 21-bit or 20-bit address for a vector table base address (VTBA). The address is then used to
branch to the corresponding routine for that peripheral or software interrupt source.

Figure 15-5. Software Vector Mode: Interrupt Exception Handler Address Calculation

Reading the INTC_IACKR acknowledges the INTC’s interrupt request and negates the interrupt request
to the processor. The interrupt request to the processor does not clear if a higher priority interrupt request
arrives. Even in this case, INTVEC does not update to the higher priority request until the lower priority
interrupt request is acknowledged by reading the INTC_IACKR. The reading also pushes the PRI value
in the INTC current priority register (INTC_CPR) to the LIFO and updates PRI in the INTC_CPR with
the priority of the interrupt request. The INTC_CPR masks any peripheral or software configurable
interrupt request at the same or lower priority of the current value of the PRI field in INTC_CPR from
generating an interrupt request to the processor.

The interrupt exception handler must write to the end-of-interrupt register (INTC_EOIR) to complete the
operation (assuming the source of the interrupt has been cleared). Writing to the INTC_EOIR ends the
servicing of the interrupt request. The INTC’s LIFO is popped into the INTC_CPR's PRI field by writing
to the INTC_EOIR, and the size of a write does not affect the operation of the write. Those values and sizes
written to this register neither update the INTC_EOIR contents nor affect whether the LIFO pops. For
possible future compatibility, write four bytes of all 0s to the INTC_EOIR. The timing relationship
between popping the LIFO and disabling recognition of external input has no restriction. The writes can
happen in either order.

However, disabling recognition of the external input before popping the LIFO eases the calculation of the
maximum stack depth at the cost of postponing the servicing of the next interrupt request.

3116150
IVPR

31282716150
+ IVOR4

31282716150

0x00

0x00

OFFSET

OFFSETPREFIX

0x0000

PREFIX

= Interrupt exception

0x0000

handler address

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 347

15.2.4.2 Hardware vector mode

In hardware vector mode, the interrupt exception handler address is specific to the peripheral or software
configurable interrupt source rather than being common to all of them. No IVOR is used. The interrupt
exception handler address is calculated by hardware as shown in Figure 15-6. The upper half of the
interrupt vector prefix register (IVPR) is added to an offset, which corresponds to the peripheral or
software interrupt source that caused the interrupt request. The offset matches the value in the Interrupt
Vector field, INTC_IACKR[INTVEC]. Each interrupt exception handler address is aligned on a four-word
(16-byte) boundary. IVOR4 is not used in this mode, and software does not need to read INTC_IACKR to
get the interrupt vector number.

Figure 15-6. Hardware Vector Mode: Interrupt Exception Handler Address Calculation

The processor negates INTC’s interrupt request when automatically acknowledging the interrupt request.
However, the interrupt request to the processor do not negate if a higher priority interrupt request arrives.
Even in this case, the interrupt vector number does not update to the higher priority request until the lower
priority request is acknowledged by the processor.

The assertion of the interrupt acknowledge signal pushes the PRI value in the INTC_CPR onto the LIFO
and updates PRI in the INTC_CPR with the new priority.

15.3 External signal description

The INTC does not have any direct external MCU signals. However, there are 15 external pins that can be
configured in the SIU as external interrupt request input pins. When configured for an external interrupt
request function, an interrupt on that pin sets an external interrupt flag. These flags cause one of five
peripheral interrupt requests to the interrupt controller.

For more information on external interrupts, the pins used, and how to configure them:

• Refer to the Signals chapter for a list and number of the external interrupt pins.

• Refer to the SIU chapter for more information on how to configure these pins.

15.4 Memory map and register definition

Table 15-2 is the INTC memory map.

3116150
IVPR

312827161500

+ Hardware vector

150

0b0000INTC_IACKR[INTVEC]

PREFIX

0x0000

PREFIX

18

0b000

19

0x0000

31282716

0b0000IRQ SPECIFIC OFFSET

18

0b000

1916

= Interrupt exception
handler address

mode offset

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

348 Freescale Semiconductor

15.4.1 Register descriptions

Except INTC_SSCIn and INTC_PSRn registers, all registers are 32-bits wide. Any combination of
accessing the 4 bytes of a register with a single access is supported, provided that the access does not cross
the register boundary. These supported accesses include types and sizes of 8 bits, aligned 16 bits, and
aligned 32 bits.

Although INTC_SSCIn and INTC_PSRn are 8-bits wide, they can be accessed with a single 16-bit or
32-bit access, provided that the access does not cross a 32-bit boundary.

In the software vector mode, the side effects of a read of the INTC interrupt acknowledge register
(INTC_IACKR) are the same regardless of the size of the read. In either software or hardware vector
mode, the size of a write to the INTC end-of-interrupt register (INTC_EOIR) does not affect the operation
of the write.

Table 15-2. INTC Memory Map

Address Register Name Register Description Bits

Base (0xFFF4_8000) INTC_MCR INTC module configuration register 32

Base + 0x0004 — Reserved —

Base + 0x0008 INTC_CPR INTC current priority register 32

Base + 0x000C — Reserved —

Base + 0x0010 INTC_IACKR INTC interrupt acknowledge register 1

1 When the HVEN bit in the INTC_MCR is asserted, a read of the INTC_IACKR has no side effects.

32

Base + 0x0014 — Reserved —

Base + 0x0018 INTC_EOIR INTC end-of-interrupt register 32

Base + 0x001C — Reserved —

Base + 0x0020 INTC_SSCIR0 INTC software set/clear interrupt register 0 8

Base + 0x0021 INTC_SSCIR1 INTC software set/clear interrupt register 1 8

Base + 0x0022 INTC_SSCIR2 INTC software set/clear interrupt register 2 8

Base + 0x0023 INTC_SSCIR3 INTC software set/clear interrupt register 3 8

Base + 0x0024 INTC_SSCIR4 INTC software set/clear interrupt register 4 8

Base + 0x0025 INTC_SSCIR5 INTC software set/clear interrupt register 5 8

Base + 0x0026 INTC_SSCIR6 INTC software set/clear interrupt register 6 8

Base + 0x0027 INTC_SSCIR7 INTC software set/clear interrupt register 7 8

Base + (0x0028–0x003F) — Reserved —

Base + (0x0040–0x01A7) INTC_PSRn INTC priority select registers 2 0–485

2 The PRI fields are “Reserved” for peripheral interrupt requests whose vectors are labeled as Reserved in Table 15-7.

8

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 349

15.4.1.1 INTC Module Configuration Register (INTC_MCR)

The INTC_MCR is used to configure options of the INTC.

Figure 15-7. INTC Module Configuration Register (INTC_MCR)

15.4.1.2 INTC Current Priority Register (INTC_CPR)

The INTC_CPR masks any peripheral or software configurable interrupt request set at the same or lower
priority as the current value of the INTC_CPR[PRI] field from generating an interrupt request to the
processor. When the INTC interrupt acknowledge register (INTC_IACKR) is read in the software vector
mode or the interrupt acknowledge signal from the processor is asserted in the hardware vector mode, the
value of PRI is pushed onto the LIFO, and PRI is updated with the priority of the preempting interrupt
request. When the INTC end-of-interrupt register (INTC_EOIR) is written, the LIFO is popped into the
INTC_CPR’s PRI field.

The masking priority can be raised or lowered by writing to the PRI field, supporting the PCP. Refer to
Section 15.6.5, Priority ceiling protocol.

Address: Base + 0x0000 (INTC_MCR Access: R/W
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0

V
T

E
S 0 0 0 0

H
V

E
N

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 15-3. INTC_MCR Field Descriptions

Field Description

0–25 Reserved, must be cleared.

26
VTES

Vector table entry size. Controls the number of ‘0’s to the right of INTVEC in Section 15.4.1.3, INTC
Interrupt Acknowledge Register (INTC_IACKR). If the contents of INTC_IACKR are used as an address
of an entry in a vector table as in software vector mode, then the number of rightmost ‘0’s determines the
size of each vector table entry.
VTES impacts software vector mode operation but also affects the INTC_IACKR[INTVEC] position in both
hardware vector mode and software vector mode.
0 4 bytes (Normal expected use)
1 8 bytes

27–30 Reserved, must be cleared.

31
HVEN

Hardware vector enable. Controls whether the INTC is in hardware vector mode or software vector mode.
Refer to Section 15.2.4, Modes of operation”, for the details of the handshaking with the processor in each
mode.
0 Software vector mode
1 Hardware vector mode

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

350 Freescale Semiconductor

NOTE

On some Power Architecture MCUs, a store to raise the PRI field which
closely precedes an access to a shared resource can result in a non-coherent
access to that resource unless an mbar or msync followed by an isync
sequence of instructions is executed between the accesses. An mbar or
msync instruction is also necessary after accessing the resource but before
lowering the PRI field. Refer to Section 15.6.5.2, Ensuring coherency.

Figure 15-8. INTC Current Priority Register (INTC_CPR)

15.4.1.3 INTC Interrupt Acknowledge Register (INTC_IACKR)

The INTC_IACKR provides a value that can be used to load the address of an ISR from a vector table. The
vector table can be composed of addresses of the ISRs specific to their respective interrupt vectors.

In software vector mode, reading the INTC_IACKR acknowledges the INTC's interrupt request. Refer to
Section 15.2.4.1, Software vector mode, for a detailed description of the effect on the interrupt request to
the processor. The reading also pushes the PRI value in the INTC current priority register (INTC_CPR)
onto the LIFO and updates PRI in the INTC_CPR with the priority of the interrupt request. The side effect
from the reads in software vector mode, that is, the effect on the interrupt request to the processor, the
current priority, and the LIFO, are the same regardless of the size of the read

Reading the INTC_IACKR does not have side effects in hardware vector mode.

Address: Base + 0x0008 (INTC_CPR) Access: R/W
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0 0 PRI
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

= Unimplemented or Reserved

Table 15-4. INTC_CPR Field Descriptions

Field Description

0–27 Reserved, must be cleared.

28–31
PRI

Priority. PRI is the priority of the currently executing ISR according to the field values defined below.
1111 Priority 15 (highest)
1110 Priority 14
...
0001 Priority 1
0000 Priority 0 (lowest)

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 351

NOTE

The INTC_IACKR must not be read speculatively while in software vector
mode. Therefore, for future compatibility, the TLB entry covering the
INTC_IACKR must be configured to be guarded.

In software vector mode, the INTC_IACKR must be read before setting
MSR[EE]. No synchronization instruction is needed after reading the
INTC_IACKR and before setting MSR[EE].

However, the time for the processor to recognize the assertion or negation
of the external input to it is not defined by the book E architecture and can
be greater than 0. Therefore, insert instructions between the reading of the
INTC_IACKR and the setting of MSR[EE] that consumes at least two
processor clock cycles. This length of time allows the interrupt request
negation to propagate through the processor before MSR[EE] is set.

Figure 15-9. INTC Interrupt Acknowledge Register (INTC_IACKR)—INTC_MCR[VTES] = 0

Figure 15-10. INTC Interrupt Acknowledge Register (INTC_IACKR)—INTC_MCR[VTES] = 1

Address: Base + 0x0010 (INTC_IACKR) Access: R/W
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VTBA (most significant 16 bits)
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R VTBA (least significant 5 bits) INTVEC1

1 When the VTES bit in the INTC Module Configuration Register (INTC_MCR) is asserted, INTVEC is shifted to the
left one bit. Bit 29 is read as a ‘0’. VTBA is narrowed to 20 bits in width.

0 0
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Address: Base + 0x0010 (INTC_IACKR) Access: R/W
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VTBA (most significant 16 bits)
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R VTBA (least significant 4

bits)
INTVEC1

1 When the VTES bit in the INTC Module Configuration Register (INTC_MCR) is asserted, INTVEC is shifted to the
left one bit. Bit 29 is read as a ‘0’. VTBA1 is narrowed to 20 bits in width.

0 0 0

W
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

352 Freescale Semiconductor

15.4.1.4 INTC End-of-Interrupt Register (INTC_EOIR)

Writing to the INTC_EOIR signals the end of the servicing of the interrupt request. When the INTC_EOIR
is written, the priority last pushed on the LIFO is popped into INTC_CPR. The values and size of data
written to the INTC_EOIR are ignored. The values and sizes written to this register neither update the
INTC_EOIR contents nor affect whether the LIFO pops. For possible future compatibility, write four bytes
of all 0’s to the INTC_EOIR.

Reading the INTC_EOIR has no effect on the LIFO.

Figure 15-11. INTC End-of-Interrupt Register (INTC_EOIR)

15.4.1.5 INTC Software Set/Clear Interrupt Registers INTC_SSCIR0_3 —
INTC_SSCIR4_7)

The INTC_SSCIRn supports the setting or clearing of software configurable interrupt requests. These
registers contain eight independent sets of bits to set and clear a corresponding flag bit by software. With
the exception of being set by software, this flag bit behaves the same as a flag bit set within a peripheral.
This flag bit generates an interrupt request within the INTC just like a peripheral interrupt request. Writing
a 1 to SETn leaves SETn unchanged at 0 but sets CLRn. Writing a 0 to SETn has no effect. CLRn is the
flag bit. Writing a 1 to CLRn clears it. Writing a 0 to CLRn has no effect. If a 1 is written to a pair SETn
and CLRn bits at the same time, CLRn is asserted, regardless of whether CLRn was asserted before the
write.

Table 15-5. INTC_IACKR Field Descriptions

Field Description

0–20 or
0–19
VTBA

Vector table base address. Can be the base address of a vector table of addresses of ISRs. The VTBA
only uses the left-most 20 bits when the VTES bit in INTC_MCR is asserted.

21–29 or
20–28

INTVEC

Interrupt vector. Vector of peripheral or software-configurable interrupt requests that caused the interrupt
request to the processor. When the interrupt request to the processor asserts, the INTVEC is updated,
whether the INTC is in software or hardware vector mode.
Note: If INTC_MCR[VTES] = 1, then the INTVEC field is shifted left one position to bits 20–28. VTBA is

then shortened by one bit to bits 0–19.

30–31 or
29–31

Reserved, must be cleared.

Address: Base + 0x0018 (INTC_EOIR) Access: W/O
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 353

Although INTC_SSCIn is 8 bits wide, it can be accessed with a single 16-bit or 32-bit access, provided
that the access does not cross a 32-bit boundary.

Figure 15-12. INTC Software Set/Clear Interrupt Register (INTC_SSCIRn)

15.4.1.6 INTC Priority Select Registers (INTC_PSR0–485)

The INTC_PSRn allows you to select a priority for each interrupt request source (peripheral IRQs or
software configurable IRQs). Each priority select register (INTC_PSRn) is assigned to the IRQ source
vector with the same number. For example, the software configurable IRQs 0–7 are assigned vectors 0–7,
and their priorities are configured in INTC_PSR0–INTC_PSR7, respectively. The peripheral interrupt
requests are assigned vectors 8–485 and their priorities are configured in priority select registers
INTC_PSR8 through INTC_PSR485, respectively.

Although INTC_PSRn is 8-bits wide, you can use a single 16-bit or 32-bit access, provided that it does not
cross a 32-bit boundary.

NOTE

Do not modify the PRIn field in INTC_PSRn when the IRQ is asserted.

Address: Base + 0x0020 + n (INTC_SSCIRn); n = 0–7 Access: R/W
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 CLR0 0 0 0 0 0 0 0 CLR1

W SET0 SET1

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 CLR2 0 0 0 0 0 0 0 CLR3

W SET2 SET3

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 15-6. INTC_SSCIRn Field Descriptions

Field Description

0–5 Reserved, must be cleared.

6
SETn

Set flag bits. Writing a 1 sets the corresponding CLRn bit. Writing a 0 has no effect. Each SETn is always
read as a 0.

7
CLRn

Clear flag bits. CLRn is the flag bit. Writing a 1 to CLRn clears it provided that a 1 is not written
simultaneously to its corresponding SETn bit. Writing a 0 to CLRn has no effect.
0 Interrupt request not pending within INTC.
1 Interrupt request pending within INTC.

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

354 Freescale Semiconductor

Figure 15-13. INTC Priority Select Register 0–3 (INTC_PSR0_3)

Figure 15-14. INTC Priority Select Register 482–485 (INTC_PSR482_485)

15.5 Functional description

15.5.1 Interrupt request sources

The INTC has two types of interrupt requests, peripheral and software configurable. The assignments
between the interrupt requests from the modules to the vectors for input to the e200z4 are shown in
Table 15-8. The Hardware Vector Mode Offset column lists the IRQ-specific offsets when using hardware
vector mode. The Source column shows the C language syntax for the register bit label:
module_register[bit]. Interrupt requests from the same module location are ORed together. The individual

Address: Base + 0x0010 (INTC_IACKR) Access: R/W
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 PRI0 0 0 0 0 PRI1
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 PRI2 0 0 0 0 PRI3
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Address: Base + 0x0040 + n (INTC_PSRn); n = 0–485 Access: R/W
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 PRI482 0 0 0 0 PRI483
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 PRI484 0 0 0 0 PRI485
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 15-7. INTC_PSRn Field Descriptions

Field Description

0–3 Reserved, must be cleared.

4–7
PRIn

Priority select. Selects the priority for corresponding interrupt request.
1111 Priority 15 (highest)
1110 Priority 14
...
0001 Priority 1
0000 Priority 0 (lowest)

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 355

interrupt priorities are selected in INTC_PSRn, where the priority select register is assigned according to
the vector number.

Table 15-8. Interrupt Request Sources

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Software

0x0000 0 INTC_SSCIR0[CLR0] INTC software settable Clear flag 0

0x0010 1 INTC_SSCIR1[CLR1] INTC software settable Clear flag 1

0x0020 2 INTC_SSCIR2[CLR2] INTC software settable Clear flag 2

0x0030 3 INTC_SSCIR3[CLR3] INTC software settable Clear flag 3

0x0040 4 INTC_SSCIR4[CLR4] INTC software settable Clear flag 4

0x0050 5 INTC_SSCIR5[CLR5] INTC software settable Clear flag 5

0x0060 6 INTC_SSCIR6[CLR6] INTC software settable Clear flag 6

0x0070 7 INTC_SSCIR7[CLR7] INTC software settable Clear flag 7

ECC

0x0080 8 Reserved —

0x0090 9 ECSM_ESR[RNCE]
ECSM_ESR[FNCE]

ECSM combined interrupt requests:
Internal SRAM Non-Correctable Error and Flash

Non-Correctable Error

eDMAC

0x00A0 10 EDMA_ERL[ERR31:ERR0] eDMA channel Error flags 31–0

0x00B0 11 EDMA_IRQRL[INT00] eDMA channel Interrupt 0

0x00C0 12 EDMA_IRQRL[INT01] eDMA channel Interrupt 1

0x00D0 13 EDMA_IRQRL[INT02] eDMA channel Interrupt 2

0x00E0 14 EDMA_IRQRL[INT03] eDMA channel Interrupt 3

0x00F0 15 EDMA_IRQRL[INT04] eDMA channel Interrupt 4

0x0100 16 EDMA_IRQRL[INT05] eDMA channel Interrupt 5

0x0110 17 EDMA_IRQRL[INT06] eDMA channel Interrupt 6

0x0120 18 EDMA_IRQRL[INT07] eDMA channel Interrupt 7

0x0130 19 EDMA_IRQRL[INT08] eDMA channel Interrupt 8

0x0140 20 EDMA_IRQRL[INT09] eDMA channel Interrupt 9

0x0150 21 EDMA_IRQRL[INT10] eDMA channel Interrupt 10

0x0160 22 EDMA_IRQRL[INT11] eDMA channel Interrupt 11

0x0170 23 EDMA_IRQRL[INT12] eDMA channel Interrupt 12

0x0180 24 EDMA_IRQRL[INT13] eDMA channel Interrupt 13

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

356 Freescale Semiconductor

0x0190 25 EDMA_IRQRL[INT14] eDMA channel Interrupt 14

0x01A0 26 EDMA_IRQRL[INT15] eDMA channel Interrupt 15

0x01B0 27 EDMA_IRQRL[INT16] eDMA channel Interrupt 16

0x01C0 28 EDMA_IRQRL[INT17] eDMA channel Interrupt 17

0x01D0 29 EDMA_IRQRL[INT18] eDMA channel Interrupt 18

0x01E0 30 EDMA_IRQRL[INT19] eDMA channel Interrupt 19

0x01F0 31 EDMA_IRQRL[INT20] eDMA channel Interrupt 20

0x0200 32 EDMA_IRQRL[INT21] eDMA channel Interrupt 21

0x0210 33 EDMA_IRQRL[INT22] eDMA channel Interrupt 22

0x0220 34 EDMA_IRQRL[INT23] eDMA channel Interrupt 23

0x0230 35 EDMA_IRQRL[INT24] eDMA channel Interrupt 24

0x0240 36 EDMA_IRQRL[INT25] eDMA channel Interrupt 25

0x0250 37 EDMA_IRQRL[INT26] eDMA channel Interrupt 26

0x0260 38 EDMA_IRQRL[INT27] eDMA channel Interrupt 27

0x0270 39 EDMA_IRQRL[INT28] eDMA channel Interrupt 28

0x0280 40 EDMA_IRQRL[INT29] eDMA channel Interrupt 29

0x0290 41 EDMA_IRQRL[INT30] eDMA channel Interrupt 30

0x02A0 42 EDMA_IRQRL[INT31] eDMA channel Interrupt 31

PLL

0x02B0 43 FMPLL_SYNSR[LOCF] FMPLL Loss of Clock Flag

0x02C0 44 FMPLL_SYNSR[LOLF] FMPLL Loss of Lock Flag

SIU

0x02D0 45 SIU_OSR[OVF15:OVF0] SIU combined overrun interrupt requests of the
external interrupt Overrun Flags

0x02E0 46 SIU_EIISR[EIF0] SIU External Interrupt Flag 0

0x02F0 47 SIU_EIISR[EIF1] SIU External Interrupt Flag 1

0x0300 48 SIU_EIISR[EIF2] SIU External Interrupt Flag 2

0x0310 49 SIU_EIISR[EIF3] SIU External Interrupt Flag 3

0x0320 50 SIU_EIISR[EIF15:EIF4] SIU External Interrupt Flags 15–4

eMIOS

0x0330 51 EMIOS_GFR[F0] eMIOS channel 0 Flag

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 357

0x0340 52 EMIOS_GFR[F1] eMIOS channel 1 Flag

0x0350 53 EMIOS_GFR[F2] eMIOS channel 2 Flag

0x0360 54 EMIOS_GFR[F3] eMIOS channel 3 Flag

0x0370 55 EMIOS_GFR[F4] eMIOS channel 4 Flag

0x0380 56 EMIOS_GFR[F5] eMIOS channel 5 Flag

0x0390 57 EMIOS_GFR[F6] eMIOS channel 6 Flag

0x03A0 58 EMIOS_GFR[F7] eMIOS channel 7 Flag

0x03B0 59 EMIOS_GFR[F8] eMIOS channel 8 Flag

0x03C0 60 EMIOS_GFR[F9] eMIOS channel 9 Flag

0x03D0 61 EMIOS_GFR[F10] eMIOS channel 10 Flag

0x03E0 62 EMIOS_GFR[F11] eMIOS channel 11 Flag

0x03F0 63 EMIOS_GFR[F12] eMIOS channel 12 Flag

0x0400 64 EMIOS_GFR[F13] eMIOS channel 13 Flag

0x0410 65 EMIOS_GFR[F14] eMIOS channel 14 Flag

0x0420 66 EMIOS_GFR[F15] eMIOS channel 15 Flag

eTPU_A

0x0430 67 ETPU_MCR[MGEA]
ETPU_MCR[MGEB]
ETPU_MCR[ILFA]
ETPU_MCR[ILFB]

ETPU_MCR[SCMMISF]

eTPU Global Exception

0x0440 68 ETPU_CISR_A[CIS0] eTPU Engine A Channel 0 Interrupt Status

0x0450 69 ETPU_CISR_A[CIS1] eTPU Engine A Channel 1 Interrupt Status

0x0460 70 ETPU_CISR_A[CIS2] eTPU Engine A Channel 2 Interrupt Status

0x0470 71 ETPU_CISR_A[CIS3] eTPU Engine A Channel 3 Interrupt Status

0x0480 72 ETPU_CISR_A[CIS4] eTPU Engine A Channel 4 Interrupt Status

0x0490 73 ETPU_CISR_A[CIS5] eTPU Engine A Channel 5 Interrupt Status

0x04A0 74 ETPU_CISR_A[CIS6] eTPU Engine A Channel 6 Interrupt Status

0x04B0 75 ETPU_CISR_A[CIS7] eTPU Engine A Channel 7 Interrupt Status

0x04C0 76 ETPU_CISR_A[CIS8] eTPU Engine A Channel 8 Interrupt Status

0x04D0 77 ETPU_CISR_A[CIS9] eTPU Engine A Channel 9 Interrupt Status

0x04E0 78 ETPU_CISR_A[CIS10] eTPU Engine A Channel 10 Interrupt Status

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

358 Freescale Semiconductor

0x04F0 79 ETPU_CISR_A[CIS11] eTPU Engine A Channel 11 Interrupt Status

0x0500 80 ETPU_CISR_A[CIS12] eTPU Engine A Channel 12 Interrupt Status

0x0510 81 ETPU_CISR_A[CIS13] eTPU Engine A Channel 13 Interrupt Status

0x0520 82 ETPU_CISR_A[CIS14] eTPU Engine A Channel 14 Interrupt Status

0x0530 83 ETPU_CISR_A[CIS15] eTPU Engine A Channel 15 Interrupt Status

0x0540 84 ETPU_CISR_A[CIS16] eTPU Engine A Channel 16 Interrupt Status

0x0550 85 ETPU_CISR_A[CIS17] eTPU Engine A Channel 17 Interrupt Status

0x0560 86 ETPU_CISR_A[CIS18] eTPU Engine A Channel 18 Interrupt Status

0x0570 87 ETPU_CISR_A[CIS19] eTPU Engine A Channel 19 Interrupt Status

0x0580 88 ETPU_CISR_A[CIS20] eTPU Engine A Channel 20 Interrupt Status

0x0590 89 ETPU_CISR_A[CIS21] eTPU Engine A Channel 21 Interrupt Status

0x05A0 90 ETPU_CISR_A[CIS22] eTPU Engine A Channel 22 Interrupt Status

0x05B0 91 ETPU_CISR_A[CIS23] eTPU Engine A Channel 23 Interrupt Status

0x05C0 92 ETPU_CISR_A[CIS24] eTPU Engine A Channel 24 Interrupt Status

0x05D0 93 ETPU_CISR_A[CIS25] eTPU Engine A Channel 25 Interrupt Status

0x05E0 94 ETPU_CISR_A[CIS26] eTPU Engine A Channel 26 Interrupt Status

0x05F0 95 ETPU_CISR_A[CIS27] eTPU Engine A Channel 27 Interrupt Status

0x0600 96 ETPU_CISR_A[CIS28] eTPU Engine A Channel 28 Interrupt Status

0x0610 97 ETPU_CISR_A[CIS29] eTPU Engine A Channel 29 Interrupt Status

0x0620 98 ETPU_CISR_A[CIS30] eTPU Engine A Channel 30 Interrupt Status

0x0630 99 ETPU_CISR_A[CIS31] eTPU Engine A Channel 31 Interrupt Status

eQADC

0x0640 100 EQADC_FISRx[TORF]
EQADC_FISRx[RFOF]
EQADC_FISRx[CFUF]

eQADC combined overrun interrupt request s
from all of the FIFOs:

Trigger Overrun, Receive FIFO Overflow, and
command FIFO Underflow

0x0650 101 EQADC_FISR0[NCF] eQADC command FIFO 0 Non-Coherency Flag

0x0660 102 EQADC_FISR0[PF] eQADC command FIFO 0 Pause Flag

0x0670 103 EQADC_FISR0[EOQF] eQADC command FIFO 0 command queue End of
Queue Flag

0x0680 104 EQADC_FISR0[CFFF] eQADC Command FIFO 0 Fill Flag

0x0690 105 EQADC_FISR0[RFDF] eQADC Receive FIFO 0 Drain Flag

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 359

0x06A0 106 EQADC_FISR1[NCF] eQADC command FIFO 1 Non-Coherency Flag

0x06B0 107 EQADC_FISR1[PF] eQADC command FIFO 1 Pause Flag

0x06C0 108 EQADC_FISR1[EOQF] eQADC command FIFO 1 command queue End of
Queue Flag

0x06D0 109 EQADC_FISR1[CFFF] eQADC Command FIFO 1 Fill Flag

0x06E0 110 EQADC_FISR1[RFDF] eQADC Receive FIFO 1 Drain Flag

0x06F0 111 EQADC_FISR2[NCF] eQADC command FIFO 2 Non-Coherency Flag

0x0700 112 EQADC_FISR2[PF] eQADC command FIFO 2 Pause Flag

0x0710 113 EQADC_FISR2[EOQF] eQADC command FIFO 2 command queue End of
Queue Flag

0x0720 114 EQADC_FISR2[CFFF] eQADC Command FIFO 2 Fill Flag

0x0730 115 EQADC_FISR2[RFDF] eQADC Receive FIFO 2 Drain Flag

0x0740 116 EQADC_FISR3[NCF] eQADC command FIFO 3 Non-Coherency Flag

0x0750 117 EQADC_FISR3[PF] eQADC command FIFO 3 Pause Flag

0x0760 118 EQADC_FISR3[EOQF] eQADC command FIFO 3 command queue End of
Queue Flag

0x0770 119 EQADC_FISR3[CFFF] eQADC Command FIFO 3 Fill Flag

0x0780 120 EQADC_FISR3[RFDF] eQADC Receive FIFO 3 Drain Flag

0x0790 121 EQADC_FISR4[NCF] eQADC command FIFO 4 Non-Coherency Flag

0x07A0 122 EQADC_FISR4[PF] eQADC command FIFO 4 Pause Flag

0x07B0 123 EQADC_FISR4[EOQF] eQADC command FIFO 4 command queue End of
Queue Flag

0x07C0 124 EQADC_FISR4[CFFF] eQADC Command FIFO 4 Fill Flag

0x07D0 125 EQADC_FISR4[RFDF] eQADC Receive FIFO 4 Drain Flag

0x07E0 126 EQADC_FISR5[NCF] eQADC command FIFO 5 Non-Coherency Flag

0x07F0 127 EQADC_FISR5[PF] eQADC command FIFO 5 Pause Flag

0x0800 128 EQADC_FISR5[EOQF] eQADC command FIFO 5 command queue End of
Queue Flag

0x0810 129 EQADC_FISR5[CFFF] eQADC Command FIFO 5 Fill Flag

0x0820 130 EQADC_FISR5[RFDF] eQADC Receive FIFO 5 Drain Flag

DSPI

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

360 Freescale Semiconductor

0x0830 131 DSPI_BSR[TFUF]
DSPI_BSR[RFOF]
DSPI_BSR[SPEF]
DSPI_BSR[DPEF]

DSPI_B combined overrun interrupt requests:
Transmit FIFO Underflow and Receive FIFO

Overflow, SPI and DSI parity error

0x0840 132 DSPI_BSR[EOQF] DSPI_B transmit FIFO End of Queue Flag

0x0850 133 DSPI_BSR[TFFF] DSPI_B Transmit FIFO Fill Flag

0x0860 134 DSPI_BSR[TCF] DSPI_B Transfer Complete Flag

0x0870 135 DSPI_BSR[RFDF]
DSPI_BSR[DDIF]

DSPI_B Receive FIFO Drain Flag
DSPI_B DSI Data Interrupt

0x0880 136 DSPI_CSR[TFUF]
DSPI_CSR[RFOF]
DSPI_CSR[SPEF]
DSPI_CSR[DPEF]

DSPI_C combined overrun interrupt requests:
Transmit FIFO Underflow and Receive FIFO

Overflow , SPI and DSI parity error

0x0890 137 DSPI_CSR[EOQF] DSPI_C transmit FIFO End of Queue Flag

0x08A0 138 DSPI_CSR[TFFF] DSPI_C Transmit FIFO Fill Flag

0x08B0 139 DSPI_CSR[TCF] DSPI_C Transfer Complete Flag

0x08C0 140 DSPI_CSR[RFDF]
DSPI_CSR[DDIF]

DSPI_C Receive FIFO Drain Flag

0x08D0 141 DSPI_DSR[TFUF]
DSPI_DSR[RFOF]
DSPI_DSR[SPEF]
DSPI_DSR[DPEF]

DSPI_D combined overrun interrupt requests:
Transmit FIFO Underflow and Receive FIFO

Overflow, SPI and DSI parity error

0x08E0 142 DSPI_DSR[EOQF] DSPI_D transmit FIFO End of Queue Flag

0x08F0 143 DSPI_DSR[TFFF] DSPI_D Transmit FIFO Fill Flag

0x0900 144 DSPI_DSR[TCF] DSPI_D Transfer Complete Flag

0x0910 145 DSPI_DSR[RFDF]
DSPI_DSR[DDIF]

DSPI_D Receive FIFO Drain Flag

eSCI

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 361

0x0920 146 ESCIA_SR[TDRE]
 ESCIA_SR[TC]

 ESCIA_SR[RDRF]
 ESCIA_SR[IDLE]
 ESCIA_SR[OR]
ESCIA_SR[NF]
ESCIA_SR[FE]
ESCIA_SR[PF]

 ESCIA_SR[BERR]
 ESCIA_SR[RXRDY]
 ESCIA_SR[TXRDY]
 ESCIA_SR[LWAKE]

 ESCIA_SR[STO]
 ESCIA_SR[PBERR]
 ESCIA_SR[CERR]

 ESCIA_SR[CKERR]
 ESCIA_SR[FRC]

 ESCIA_SR[OVFL]

 • Transmit Data Register Empty, Transmit
Complete, Receive Data Register Full, Idle line,
Overrun, Noise Flag, Framing Error Flag, and
Parity Error Flag interrupt requests, SCI Status
Register 2 Bit Error interrupt request, LIN
Status Register 1 Receive Data Ready,
Transmit Data Ready, Received LIN Wakeup
Signal, Slave TimeOut, Physical Bus Error,
CRC Error, Checksum Error, Frame Complete
interrupts requests, and LIN Status Register 2
Receive Register Overflow

 • Combined Interrupt Requests of ESCI Module
A

0x0930 147 GIFER[LRNE]
GIFER[DRNE]

FlexRay LRAM non corrected error
FlexRay DRAM non corrected error

0x0940 148 GIFER[LRCE]
GIFER[DRCE]

FlexRay LRAM corrected error
FlexRay DRAM corrected error

0x0950 149 ESCIB_SR[TDRE]
ESCIB_SR[TC]

ESCIB_SR[RDRF]
ESCIB_SR[IDLE]
ESCIB_SR[OR]
ESCIB_SR[NF]
ESCIB_SR[FE]
ESCIB_SR[PF]

ESCIB_SR[BERR]
ESCIB_SR[RXRDY]
ESCIB_SR[TXRDY]
ESCIB_SR[LWAKE]

ESCIB_SR[STO]
ESCIB_SR[PBERR]
ESCIB_SR[CERR]

ESCIB_SR[CKERR]
ESCIB_SR[FRC]

ESCIB_SR[OVFL]

Combined Interrupt Requests of ESCI Module B:
Transmit Data Register Empty, Transmit

Complete, Receive Data Register Full, Idle line,
Overrun, Noise Flag, Framing Error Flag, and
Parity Error Flag interrupt requests, SCI Status

Register 2 Bit Error interrupt request, LIN Status
Register 1 Receive Data Ready, Transmit Data

Ready, Received LIN Wakeup Signal, Slave
TimeOut, Physical Bus Error, CRC Error,

Checksum Error, Frame Complete interrupts
requests, and LIN Status Register 2 Receive

Register Overflow

0x0960 150 Reserved Reserved

0x0970 151 Reserved Reserved

FlexCAN_A and FlexCAN_C

0x0980 152 CANA_ESR[BOFF_INT] FLEXCAN_A Bus off Interrupt

0x0990 153 CANA_ESR[ERR_INT] FLEXCAN_A Error Interrupt

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

362 Freescale Semiconductor

0x09A0 154 CAN_A.IPI_INT_WAKEIN FLEXCAN_A wake up Interrupt

0x09B0 155 CANA_IFRL[BUF0] FLEXCAN_A Buffer 0 Interrupt

0x09C0 156 CANA_IFRL[BUF1] FLEXCAN_A Buffer 1 Interrupt

0x09D0 157 CANA_IFRL[BUF2] FLEXCAN_A Buffer 2 Interrupt

0x09E0 158 CANA_IFRL[BUF3] FLEXCAN_A Buffer 3 Interrupt

0x09F0 159 CANA_IFRL[BUF4] FLEXCAN_A Buffer 4 Interrupt

0x0A00 160 CANA_IFRL[BUF5] FLEXCAN_A Buffer 5 Interrupt

0x0A10 161 CANA_IFRL[BUF6] FLEXCAN_A Buffer 6 Interrupt

0x0A20 162 CANA_IFRL[BUF7] FLEXCAN_A Buffer 7 Interrupt

0x0A30 163 CANA_IFRL[BUF8] FLEXCAN_A Buffer 8 Interrupt

0x0A40 164 CANA_IFRL[BUF9] FLEXCAN_A Buffer 9 Interrupt

0x0A50 165 CANA_IFRL[BUF10] FLEXCAN_A Buffer 10 Interrupt

0x0A60 166 CANA_IFRL[BUF11] FLEXCAN_A Buffer 11 Interrupt

0x0A70 167 CANA_IFRL[BUF12] FLEXCAN_A Buffer 12 Interrupt

0x0A80 168 CANA_IFRL[BUF13] FLEXCAN_A Buffer 13 Interrupt

0x0A90 169 CANA_IFRL[BUF14] FLEXCAN_A Buffer 14 Interrupt

0x0AA0 170 CANA_IFRL[BUF15] FLEXCAN_A Buffer 15 Interrupt

0x0AB0 171 CANA_IFRL[BUF31I:BUF16] FLEXCAN_A Buffers 31–16 Interrupts

0x0AC0 172 CANA_IFRH[BUF63I:BUF32] FLEXCAN_A Buffers 63–32 Interrupts

0x0AD0 173 CANC_ESR[BOFF_INT] FLEXCAN_C Bus off Interrupt

0x0AE0 174 CANC_ESR[ERR_INT] FLEXCAN_C Error Interrupt

0x0AF0 175 CAN_C.IPI_INT_WAKEIN FLEXCAN_C wake up Interrupt

0x0B00 176 CANC_IFRL[BUF0] FLEXCAN_C Buffer 0 Interrupt

0x0B10 177 CANC_IFRL[BUF1] FLEXCAN_C Buffer 1 Interrupt

0x0B20 178 CANC_IFRL[BUF2] FLEXCAN_C Buffer 2 Interrupt

0x0B30 179 CANC_IFRL[BUF3] FLEXCAN_C Buffer 3 Interrupt

0x0B40 180 CANC_IFRL[BUF4] FLEXCAN_C Buffer 4 Interrupt

0x0B50 181 CANC_IFRL[BUF5] FLEXCAN_C Buffer 5 Interrupt

0x0B60 182 CANC_IFRL[BUF6] FLEXCAN_C Buffer 6 Interrupt

0x0B70 183 CANC_IFRL[BUF7] FLEXCAN_C Buffer 7 Interrupt

0x0B80 184 CANC_IFRL[BUF8] FLEXCAN_C Buffer 8 Interrupt

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 363

0x0B90 185 CANC_IFRL[BUF9] FLEXCAN_C Buffer 9 Interrupt

0x0BA0 186 CANC_IFRL[BUF10] FLEXCAN_C Buffer 10 Interrupt

0x0BB0 187 CANC_IFRL[BUF11] FLEXCAN_C Buffer 11 Interrupt

0x0BC0 188 CANC_IFRL[BUF12] FLEXCAN_C Buffer 12 Interrupt

0x0BD0 189 CANC_IFRL[BUF13] FLEXCAN_C Buffer 13 Interrupt

0x0BE0 190 CANC_IFRL[BUF14] FLEXCAN_C Buffer 14 Interrupt

0x0BF0 191 CANC_IFRL[BUF15] FLEXCAN_C Buffer 15 Interrupt

0x0C00 192 CANC_IFRL[BUF31:BUF16] FLEXCAN_C Buffers 31–16 Interrupts

0x0C10 193 CANC_IFRH[BUF63:BUF32] FLEXCAN_C Buffers 63–32 Interrupts

0x0C20 194—
196

Reserved Reserved

0x0C50 197 DECFIL_A_In Decimation A input (Fill)

0x0C60 198 DECFIL_A_Out Decimation A output (Drain)

0x0C70 199 DECFIL_A_Err Decimation A Error

0x0C80 200 STM0 STM[0]

0x0C90 201 STM1_or_STM2_or_STM3 STM[1:3]

eMIOS

0x0CA0 202 EMIOS_GFR[F16] eMIOS channel 16 Flag

0x0CB0 203 EMIOS_GFR[F17] eMIOS channel 17 Flag

0x0CC0 204 EMIOS_GFR[F18] eMIOS channel 18 Flag

0x0CD0 205 EMIOS_GFR[F19] eMIOS channel 19 Flag

0x0CE0 206 EMIOS_GFR[F20] eMIOS channel 20 Flag

0x0CF0 207 EMIOS_GFR[F21] eMIOS channel 21 Flag

0x0D00 208 EMIOS_GFR[F22] eMIOS channel 22 Flag

0x0D10 209 EMIOS_GFR[F23] eMIOS channel 23 Flag

eDMA

0x0D20 210 EDMA_ERRH[ERR63:ERR32] eDMA channel Error flags 63–32

0x0D30 211 EDMA_IRQRH[INT32] eDMA channel Interrupt 32

0x0D40 212 EDMA_IRQRH[INT33] eDMA channel Interrupt 33

0x0D50 213 EDMA_IRQRH[INT34] eDMA channel Interrupt 34

0x0D60 214 EDMA_IRQRH[INT35] eDMA channel Interrupt 35

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

364 Freescale Semiconductor

0x0D70 215 EDMA_IRQRH[INT36] eDMA channel Interrupt 36

0x0D80 216 EDMA_IRQRH[INT37] eDMA channel Interrupt 37

0x0D90 217 EDMA_IRQRH[INT38] eDMA channel Interrupt 38

0x0DA0 218 EDMA_IRQRH[INT39] eDMA channel Interrupt 39

0x0DB0 219 EDMA_IRQRH[INT40] eDMA channel Interrupt 40

0x0DC0 220 EDMA_IRQRH[INT41] eDMA channel Interrupt 41

0x0DD0 221 EDMA_IRQRH[INT42] eDMA channel Interrupt 42

0x0DE0 222 EDMA_IRQRH[INT43] eDMA channel Interrupt 43

0x0DF0 223 EDMA_IRQRH[INT44] eDMA channel Interrupt 44

0x0E00 224 EDMA_IRQRH[INT45] eDMA channel Interrupt 45

0x0E10 225 EDMA_IRQRH[INT46] eDMA channel Interrupt 46

0x0E20 226 EDMA_IRQRH[INT47] eDMA channel Interrupt 47

0x0E30 227 EDMA_IRQRH[INT48] eDMA channel Interrupt 48

0x0E40 228 EDMA_IRQRH[INT49] eDMA channel Interrupt 49

0x0E50 229 EDMA_IRQRH[INT50] eDMA channel Interrupt 50

0x0E60 230 EDMA_IRQRH[INT51] eDMA channel Interrupt 51

0x0E70 231 EDMA_IRQRH[INT52] eDMA channel Interrupt 52

0x0E80 232 EDMA_IRQRH[INT53] eDMA channel Interrupt 53

0x0E90 233 EDMA_IRQRH[INT54] eDMA channel Interrupt 54

0x0EA0 234 EDMA_IRQRH[INT55] eDMA channel Interrupt 55

0x0EB0 235 EDMA_IRQRH[INT56] eDMA channel Interrupt 56

0x0EC0 236 EDMA_IRQRH[INT57] eDMA channel Interrupt 57

0x0ED0 237 EDMA_IRQRH[INT58] eDMA channel Interrupt 58

0x0EE0 238 EDMA_IRQRH[INT59] eDMA channel Interrupt 59

0x0EF0 239 EDMA_IRQRH[INT60] eDMA channel Interrupt 60

0x0F00 240 EDMA_IRQRH[INT61] eDMA channel Interrupt 61

0x0F10 241 EDMA_IRQRH[INT62] eDMA channel Interrupt 62

0x0F20 242 EDMA_IRQRH[INT63] eDMA channel Interrupt 63

0x0F30 243–279 Reserved Reserved

FlexCAN_B

0x1180 280 CANB_ESR[BOFF_INT] FLEXCAN_B Bus off Interrupt

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 365

0x1190 281 CANB_ESR[ERR_INT] FLEXCAN_B Error Interrupt

0x11A0 282 CANB.IPI_INT_WAKEIN FLEXCAN_B wake up Interrupt

0x11B0 283 CANB_IFRL[BUF0] FLEXCAN_B Buffer 0 Interrupt

0x11C0 284 CANB_IFRL[BUF1] FLEXCAN_B Buffer 1 Interrupt

0x11D0 285 CANB_IFRL[BUF2] FLEXCAN_B Buffer 2 Interrupt

0x11E0 286 CANB_IFRL[BUF3] FLEXCAN_B Buffer 3 Interrupt

0x11F0 287 CANB_IFRL[BUF4] FLEXCAN_B Buffer 4 Interrupt

0x1200 288 CANB_IFRL[BUF5] FLEXCAN_B Buffer 5 Interrupt

0x1210 289 CANB_IFRL[BUF6] FLEXCAN_B Buffer 6 Interrupt

0x1220 290 CANB_IFRL[BUF7] FLEXCAN_B Buffer 7 Interrupt

0x1230 291 CANB_IFRL[BUF8] FLEXCAN_B Buffer 8 Interrupt

0x1240 292 CANB_IFRL[BUF9] FLEXCAN_B Buffer 9 Interrupt

0x1250 293 CANB_IFRL[BUF10] FLEXCAN_B Buffer 10 Interrupt

0x1260 294 CANB_IFRL[BUF11] FLEXCAN_B Buffer 11 Interrupt

0x1270 295 CANB_IFRL[BUF12] FLEXCAN_B Buffer 12 Interrupt

0x1280 296 CANB_IFRL[BUF13] FLEXCAN_B Buffer 13 Interrupt

0x1290 297 CANB_IFRL[BUF14] FLEXCAN_B Buffer 14 Interrupt

0x12A0 298 CANB_IFRL[BUF15] FLEXCAN_B Buffer 15 Interrupt

0x12B0 299 CANB_IFRL[BUF31:BUF16] FLEXCAN_B Buffers 31–16 Interrupts

0x12C0 300 CANB_IFRH[BUF63:BUF32] FLEXCAN_B Buffers 63–32 Interrupts

0x12D0 301 PIT0 PIT[0]

0x12E0 302 PIT1 PIT[1]

0x12F0 303 PIT2 PIT[2]

0x1300 304 PIT3 PIT[3]

0x1310 305 RTI RTI

0x1320 306 PMC PMC

0x1330 307 ECSM_ESR[R1BC]
ECSM_ESR[F1BC]

Flash and SRAM single-bit ECC error correction

0x1340 308–349 Reserved Reserved

Flexray

0x15E0 350 GIFER[MIF] FlexRay MIF

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

366 Freescale Semiconductor

0x15F0 351 GIFER[PRIF] FlexRay PRIF

0x1600 352 GIFER[CHIF] FlexRay CHIF

0x1610 353 GIFER[WUP_IF] FlexRay WUP_IF

0x1620 354 GIFER[FBNE_F] FlexRay FBNE_F

0x1630 355 GIFER[FANE_F] FlexRay FANE_F

0x1640 356 GIFER[RBIF] FlexRay RBIF

0x1650 357 GIFER[TBIF] FlexRay TBIF

0x1660 358 STM1 STM[1]

0x1670 359 STM2 STM[2]

0x1680 360 STM3 STM[3]

0x1690 361–365 REACM_GE
REACM[0]
REACM[1]
REACM[2]
REACM[3]

Reaction Channel Global Error
Reaction Channel 0–3 Interrupt

0x16E0 366 DECFIL_B_In Decimation B input (Fill)

0x16F0 367 DECFIL_B_Out Decimation B output (Drain)

0x1700 368 DECFIL_B_Err Decimation B Error

0x1710 369—
472

Reserved Reserved

Reaction Module

0x1690 361–365 REACM_GE
REACM[0]
REACM[1]
REACM[2]
REACM[3]

Reaction Channel Global Error
Reaction Channel 0–3Interrupt

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 367

The peripheral or software configurable interrupt request asserts when the
PRIn value in the interrupt priority select register (INTC_PSRn) is greater
than the PRIn value in interrupt current priority register (INTC_CPR).

If an asserted peripheral or software configurable interrupt request negates
before the processor acknowledges its request, the interrupt request can
reassert and remain asserted. If this occurs, the processor uses the
INTC_PSRn value to locate the IRQ vector, and updates the PRIn value in
the INTC_CPR with the PRIn value in INTC_PSRn.

Clearing the peripheral interrupt request enable bit for the peripheral
initiating the request, or setting the IRQ mask bit has the same consequences
as clearing its flag bit. Setting its enable bit or clearing its mask bit while its
flag bit is asserted has the same effect on the INTC as an interrupt event
setting the flag bit.

0x1D90 473 ESCIC_SR[TDRE]
ESCIC_SR[TC]

ESCIC_SR[RDRF]
ESCIC_SR[IDLE]
ESCIC_SR[OR]
ESCIC_SR[NF]
ESCIC_SR[FE]
ESCIC_SR[PF]

ESCIC_SR[BERR]
ESCIC_SR[RXRDY]
ESCIC_SR[TXRDY]
ESCIC_SR[LWAKE]

ESCIC_SR[STO]
ESCIC_SR[PBERR]
ESCIC_SR[CERR]

ESCIC_SR[CKERR]
ESCIC_SR[FRC]

ESCIC_SR[OVFL]

Combined Interrupt Requests of ESCI Module C:
Transmit Data Register Empty, Transmit

Complete, Receive Data Register Full, Idle line,
Overrun, Noise Flag, Framing Error Flag, and
Parity Error Flag interrupt requests, SCI Status

Register 2 Bit Error interrupt request, LIN Status
Register 1 Receive Data Ready, Transmit Data

Ready, Received LIN Wakeup Signal, Slave
TimeOut, Physical Bus Error, CRC Error,

Checksum Error, Frame Complete interrupts
requests, and LIN Status Register 2 Receive

Register Overflow

0x1DA0 474—
483

Reserved Reserved

0x1E40 484—
485

REACM[4]
REACM[5]

Reaction Channel 4–5 Interrupts

1 The maximum vector number (485) is used to identify the location of the last available interrupt vector in
memory for this device. Because blocks of memory throughout the total memory map are used for other
purposes, the maximum vector number does not indicate the total number of available interrupt sources
for this device.

2 Interrupt requests from the same module location are ORed together.

Table 15-8. Interrupt Request Sources (continued)

Hardware
Vector
Mode
Offset

Vector
Number1 Source2 Description

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

368 Freescale Semiconductor

15.5.1.1 Peripheral interrupt requests

An interrupt event in a peripheral’s hardware sets a flag bit, which resides in that peripheral. The interrupt
request from the peripheral is driven by that flag bit.

The time from when the peripheral starts to drive its peripheral interrupt request to the INTC to the time
that the INTC starts to drive the interrupt request to the processor is three clocks.

15.5.1.2 Software configurable interrupt requests

The software set/clear interrupt registers (INTC_SSCIRx_x) support the setting or clearing of
software-configurable interrupt requests. These registers contain eight independent sets of bits to set and
clear a corresponding flag bit by software. With the exception of being set by software, this flag bit behaves
the same as a flag bit set within a peripheral. This flag bit generates an interrupt request within the INTC
just like a peripheral interrupt request.

An interrupt request is triggered by software writing a 1 to the SETn bit in INTC software set/clear
interrupt registers (INTC_SSCIR0–INTC_SSCIR7). This write sets a CLRn flag bit that generates an
interrupt request. The interrupt request is cleared by writing a 1 to the CLRn bit. Specific behavior includes
the following:

• Writing a 1 to SETn leaves SETn unchanged at 0 but sets the flag bit (CLRn bit).

• Writing a 0 to SETn has no effect.

• Writing a 1 to CLRn clears the flag (CLRn) bit.

• Writing a 0 to CLRn has no effect.

• If a 1 is written to a pair of SETn and CLRn bits at the same time, the flag (CLRn) is set, regardless
of whether CLRn was asserted before the write.

The time from the write to the SETn bit to the time that the INTC starts to drive the interrupt request to the
processor is four clocks.

15.5.1.3 Unique vector for each interrupt request source

Each peripheral and software configurable interrupt request is assigned a hardwired unique 9-bit vector.
Software configurable interrupts 0–7 are assigned vectors 0–7, respectively. The peripheral interrupt
requests are assigned vectors 8 to as high as needed to cover all of the peripheral interrupt requests.

15.5.2 Priority management

The asserted interrupt requests are compared to each other based on their PRIn values in INTC priority
select registers (INTC_PSR0–INTC_PSR485). The result of the comparison also is compared to PRI in
INTC current priority register (INTC_CPR). The results of those comparisons are used to manage the
priority of the ISR being executed by the processor. The LIFO also assists in managing the priority.

15.5.2.1 Current priority and preemption

The priority arbitrator, selector, encoder, and comparator submodules shown in Figure 15-1 are used to
compare the priority of the asserted interrupt requests to the current priority. If the priority of any asserted

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 369

peripheral or software configurable interrupt request is higher than the current priority, then the interrupt
request to the processor is asserted. Also, a unique vector for the preempting peripheral or software
configurable interrupt request is generated for INTC interrupt acknowledge register (INTC_IACKR), and
if in hardware vector mode, for the interrupt vector provided to the processor.

15.5.2.1.1 Priority arbitrator submodule

The priority arbitrator submodule compares all the priorities of all of the asserted interrupt requests, both
peripheral and software configurable. The output of the priority arbitrator submodule is the highest of
those priorities. Also, any interrupt requests which have this highest priority are output as asserted
interrupt requests to the request selector submodule.

15.5.2.1.2 Request selector submodule

If only one interrupt request from the priority arbitrator submodule is asserted, then it is passed as asserted
to the vector encoder submodule. If multiple interrupt requests from the priority arbitrator submodule are
asserted, then only the one with the lowest vector is passed as asserted to the vector encoder submodule.
The lower vector is chosen regardless of the time order of the assertions of the peripheral or software
configurable interrupt requests.

15.5.2.1.3 Vector encoder submodule

The vector encoder submodule generates the unique 9-bit vector for the asserted interrupt request from the
request selector submodule.

15.5.2.1.4 Priority comparator submodule

The priority comparator submodule compares the highest priority output from the priority arbitrator
submodule with PRI in INTC_CPR. If the priority comparator submodule detects that this highest priority
is higher than the current priority, then it asserts the interrupt request to the processor. This interrupt request
to the processor asserts whether this highest priority is raised above the value of PRI in INTC_CPR or the
PRI value in INTC_CPR is lowered below this highest priority. This highest priority then becomes the new
priority which is written to PRI in INTC_CPR when the interrupt request to the processor is
acknowledged. Interrupt requests whose PRIn in INTC_PSRn are zero does not cause a preemption
because their PRIn is not higher than PRI in INTC_CPR.

15.5.2.2 LIFO

The LIFO stores the preempted PRI values from the INTC_CPR. Therefore, because these priorities are
stacked within the INTC, if interrupts need to be enabled during the ISR, at the beginning of the interrupt
exception handler the PRI value in the INTC_CPR does not need to be loaded from the INTC_CPR and
stored onto the context stack. Likewise at the end of the interrupt exception handler, the priority does not
need to be loaded from the context stack and stored into the INTC_CPR.

The PRI value in the INTC_CPR is pushed onto the LIFO when the INTC_IACKR is read in software
vector mode or the interrupt acknowledge signal from the processor is asserted in hardware vector mode.
The priority is popped into PRI in the INTC_CPR whenever the INTC_EOIR is written.

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

370 Freescale Semiconductor

Although the INTC supports 16 priorities, an ISR executing with PRI in the INTC_CPR equal to 15 is not
preempted. Therefore, the LIFO supports the stacking of 15 priorities. However, the LIFO is only 14
entries deep. An entry for a priority of 0 is not needed because of how pushing onto a full LIFO and
popping an empty LIFO are treated. If the LIFO is pushed 15 or more times than it is popped, the priorities
first pushed are overwritten. A priority of 0 is an overwritten priority. However, the LIFO pop zeros if it
is popped more times than it is pushed. Therefore, although a priority of 0 was overwritten, it is regenerated
with the popping of an empty LIFO.

The LIFO is not memory mapped.

15.5.3 Details on handshaking with processor

15.5.3.1 Software vector mode handshaking

15.5.3.1.1 Acknowledging interrupt request to processor

A timing diagram of the interrupt request and acknowledge handshaking in software vector mode, along
with the handshaking near the end of the interrupt exception handler, is shown in Figure 15-15. The INTC
examines the peripheral and software configurable interrupt requests. When it finds an asserted peripheral
or software configurable interrupt request with a higher priority than PRI in INTC current priority register
(INTC_CPR), it asserts the interrupt request to the processor. The INTVEC field in INTC interrupt
acknowledge register (INTC_IACKR) is updated with the preempting interrupt request’s vector when the
interrupt request to the processor is asserted. The INTVEC field retains that value until the next time the
interrupt request to the processor is asserted. The rest of the handshaking is described in Section 15.2.4.1,
Software vector mode.

15.5.3.1.2 End-of-interrupt exception handler

Before the interrupt exception handling completes, INTC end-of-interrupt register (INTC_EOIR) must be
written. When it is written, the LIFO is popped so that the preempted priority is restored into PRI of the
INTC_CPR. Before it is written, the peripheral or software configurable flag bit must be cleared so that
the peripheral or software configurable interrupt request is negated.

NOTE

To ensure proper operation across all Power Architecture MCUs, execute an
MBAR or MSYNC instruction between the access to clear the flag bit and the
write to the INTC_EOIR.

When returning from the preemption, the INTC does not search for the peripheral or software configurable
interrupt request whose ISR was preempted. Depending on how much the ISR progressed, that interrupt
request can no longer be asserted. When PRI in INTC_CPR is lowered to the priority of the preempted
ISR, the interrupt request for the preempted ISR or any other asserted peripheral or software configurable
interrupt request at or below that priority does not cause a preemption. Instead, after the restoration of the
preempted context, the processor returns to the instruction address that it was to next execute before it was
preempted. This next instruction is part of the preempted ISR or the interrupt exception handler’s prolog
or epilog.

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 371

Figure 15-15. Software Vector Mode Handshaking Timing Diagram

15.5.3.2 Hardware vector mode handshaking

A timing diagram of the interrupt request and acknowledge handshaking in hardware vector mode, along
with the handshaking near the end of the interrupt exception handler, is shown in Figure 15-16. As in
software vector mode, the INTC examines the peripheral and software configurable interrupt requests, and
when it finds an asserted one with a higher priority than PRI in INTC_CPR, it asserts the interrupt request
to the processor. The INTVEC field in the INTC_IACKR is updated with the preempting peripheral or
software configurable interrupt request’s vector when the interrupt request to the processor is asserted. The
INTVEC field retains that value until the next time the interrupt request to the processor is asserted. In
addition, the value of the interrupt vector to the processor matches the value of the INTVEC field in the
INTC_IACKR. The rest of the handshaking is described in Section 15.2.4.2, Hardware vector mode.

The handshaking near the end of the interrupt exception handler, that is the writing to the INTC_EOIR, is
the same as in software vector mode. Refer to Section 15.5.3.1.2, End-of-interrupt exception handler.

Clock

Interrupt Request
to Processor

Hardware Vector
Enable

Interrupt
Acknowledge

Interrupt Vector

Read
INTC_IACKR

Write
INTC_EOIR

INTVEC in
INTC_IACKR

PRI in
INTC_CPR

Peripheral Interrupt
Request 100

0

0

0

108

1 0

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

372 Freescale Semiconductor

Figure 15-16. Hardware Vector Mode Handshaking Timing Diagram

15.6 Initialization and application information

15.6.1 Initialization flow

After exiting reset, all of the PRIn fields in INTC priority select registers (INTC_PSR0–INTC_PSR485)
is zero, and PRI in INTC current priority register (INTC_CPR) is 15. These reset values prevent the INTC
from asserting the interrupt request to the processor. The enable or mask bits in the peripherals are reset
such that the peripheral interrupt requests are negated.

An initialization sequence that allows the peripheral and software configurable interrupt requests to
generate an interrupt request to the processor is:
interrupt_request_initialization:
configure VTES and HVEN in INTC_MCR
configure VTBA in INTC_IACKR
raise the PRIn fields in INTC_PSRn
set the enable bits or clear the mask bits for the peripheral interrupt requests
lower PRI in INTC_CPR to zero
enable processor recognition of interrupts

15.6.2 Interrupt exception handler

These example interrupt exception handlers use Power Architecture assembly code.

15.6.2.1 Software vector mode

interrupt_exception_handler:
code to create stack frame, save working register, and save SRR0 and SRR1

Clock

Interrupt Request
to Processor

Hardware Vector
Enable

Interrupt
Acknowledge

Interrupt Vector

Read
INTC_IACKR

Write
INTC_EOIR

INTVEC in
INTC_IACKR

PRI in
INTC_CPR

Peripheral Interrupt
Request 100

0

0 108

0

108

0 1

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 373

lis r3,INTC_IACKR@ha # form adjusted upper half of INTC_IACKR address
lwz r3,INTC_IACKR@l(r3) # load INTC_IACKR, which clears request to processor
lwz r3,0x0(r3) # load address of ISR from vector table
wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

mtlr r3 # move the INTC_IACKR address into the link register
blrl # branch to ISR; link register updated with epilog

address

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
li r4,0x0 # form 0 to write to INTC_EOIR
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR@l(r3) # store to INTC_EOIR, informing INTC to lower priority

code to restore SRR0 and SRR1, restore working registers, and delete stack frame

rfi

vector_table_base_address:
address of ISR for interrupt with vector 0
address of ISR for interrupt with vector 1

.

.

.
address of ISR for interrupt with vector 510
address of ISR for interrupt with vector 511

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # return to epilog

15.6.2.2 Hardware vector mode

This interrupt exception handler is useful with processor and system bus implementations that support a
hardware vector. In this example, each interrupt_exception_handlerx has space for only four
instructions, and therefore a branch to interrupt_ exception_handler_continuedx is needed.
interrupt_exception_handlerx:
b interrupt_exception_handler_continuedx# 4 instructions available, branch to continue

interrupt_exception_handler_continuedx:
code to create stack frame, save working register, and save SRR0 and SRR1

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

374 Freescale Semiconductor

wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

bl ISRx # branch to ISR for interrupt with vector x

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
li r4,0x0 # form 0 to write to INTC_EOIR
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR@l(r3) # store to INTC_EOIR, informing INTC to lower priority

code to restore SRR0 and SRR1, restore working registers, and delete stack frame

rfi

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # branch to epilog

15.6.3 ISR, RTOS, and task hierarchy

The RTOS and all of the tasks under its control typically execute with PRI in INTC current priority register
(INTC_CPR) having a value of 0. The RTOS execute the tasks according to whatever priority scheme that
it has, but that priority scheme is independent and has a lower priority of execution than the priority scheme
of the INTC. In other words, the ISRs execute above INTC_CPR priority 0 and outside the control of the
RTOS, the RTOS executes at INTC_CPR priority 0, and while the tasks execute at different priorities
under the control of the RTOS, they also execute at INTC_CPR priority 0.

If a task shares a resource with an ISR and the PCP is being used to manage that shared resource, then the
task’s priority can be elevated in the INTC_CPR while the shared resource is being accessed.

An ISR whose PRIn in INTC priority select registers (INTC_PSR0–INTC_PSR485) has a value of 0 does
not cause an interrupt request to the processor, even if its peripheral or software configurable interrupt
request is asserted. For a peripheral interrupt request, not setting its enable bit or disabling the mask bit
causes it to remain negated, which consequently also does not cause an interrupt request to the processor.
Since the ISRs are outside the control of the RTOS, this ISR does not run unless called by another ISR or
the interrupt exception handler, perhaps after executing another ISR.

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 375

15.6.4 Order of execution

An ISR with a higher priority can preempt an ISR with a lower priority, regardless of the unique vectors
associated with each of their peripheral or software configurable interrupt requests. However, if multiple
peripheral or software configurable interrupt requests are asserted, more than one has the highest priority,
and that priority is high enough to cause preemption, the INTC selects the one with the lowest unique
vector regardless of the order in time that they asserted. However, the ability to meet deadlines with this
scheduling scheme is no less than if the ISRs execute in the time order that their peripheral or software
configurable interrupt requests asserted.

The example in Table 15-9 shows the order of execution of both ISRs with different priorities, and with
the same priority.

Table 15-9. Order of ISR Execution Example

Step Step Description

Code Executing At End of Step
PRI in

INTC_CPR
at End of

Step
RTOS ISR1081

1 ISR108 executes for peripheral interrupt request 100 because the first eight ISRs are for software configurable interrupt
requests.

ISR208 ISR308 ISR408
Interrupt

Exception
Handler

1 RTOS at priority 0 is executing. X 0

2 Peripheral interrupt request 100 at
priority 1 asserts. Interrupt taken.

X 1

3 Peripheral interrupt request 400 at
priority 4 asserts. Interrupt taken.

X 4

4 Peripheral interrupt request 300 at
priority 3 asserts.

X 4

5 Peripheral interrupt request 200 at
priority 3 asserts.

X 4

6 ISR408 completes. Interrupt exception
handler writes to INTC_EOIR.

X 1

7 Interrupt taken. ISR208 starts to
execute, even though peripheral
interrupt request 300 asserted first.

X 3

8 ISR208 completes. Interrupt exception
handler writes to INTC_EOIR.

X 1

9 Interrupt taken. ISR308 starts to
execute.

X 3

10 ISR308 completes. Interrupt exception
handler writes to INTC_EOIR.

X 1

11 ISR108 completes. Interrupt exception
handler writes to INTC_EOIR.

X 0

12 RTOS continues execution. X 0

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

376 Freescale Semiconductor

15.6.5 Priority ceiling protocol

15.6.5.1 Elevating priority

The PRI field in INTC current priority register (INTC_CPR) is elevated in the OSEK PCP to the ceiling
of all of the priorities of the ISRs that share a resource. This protocol therefore allows coherent accesses
of the ISRs to that shared resource.

For example, ISR1 has a priority of 1, ISR2 has a priority of 2, and ISR3 has a priority of 3. They all share
the same resource. Before ISR1 or ISR2 can access that resource, they must raise the PRI value in
INTC_CPR to 3, the ceiling of all of the ISR priorities. After they release the resource, the PRI value in
INTC_CPR can be lowered. If they do not raise their priority, then ISR2 can preempt ISR1, and ISR3 can
preempt ISR1 or ISR2, possibly corrupting the shared resource. Another possible failure mechanism is
deadlock. If the higher priority ISR needs the lower priority ISR to release the resource before it can
continue, but the lower priority ISR cannot release the resource until the higher priority ISR completes and
execution returns to the lower priority ISR.

Using the PCP instead of disabling processor recognition of all interrupts eliminates the time when
accessing a shared resource that all higher priority interrupts are blocked. For example, while ISR3 cannot
preempt ISR1 while it is accessing the shared resource, all of the ISRs with a priority higher than 3 can
preempt ISR1.

15.6.5.2 Ensuring coherency

Non-coherent accesses to a shared resource can occur. As an example, ISR1 and ISR2 both share a
resource. ISR1 has a lower priority, therefore it executes and then writes the new PRI value in the current
priority register (INTC_CPR). The next instruction writes a value to a shared coherent data block.

If INTC asserts the ISR2 interrupt request to the processor just before or at the same time as the first ISR1
write, it is possible for both the ISR1 and ISR2 writes to execute while the processor responds to the INTC
request, discards the transactions, and flushes the processing pipeline. However, ISR2 cannot access the
data block coherently because the data block is now corrupted.

OSEK uses the GetResource and ReleaseResource system services to manage access to a shared resource.
To prevent corrupting a coherent data block, use the following code to modify the PRI in INTC_CPR.
Interrupts must be enabled before executing the following GetResource code sequence:

GetResource:
raise PRI
mbar
isync

ReleaseResource:
mbar
lower PRI

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 377

15.6.6 Selecting priorities according to request rates and
deadlines

The selection of the priorities for the ISRs can be made using Rate Monotonic Scheduling (RMS) or a
superset of it, Deadline Monotonic Scheduling (DMS). In RMS, the ISRs that have higher request rates
have higher priorities. In DMS, if the deadline is before the next time the ISR is requested, then the ISR is
assigned a priority according to the time from the request for the ISR to the deadline, not from the time of
the request for the ISR to the next request for it.

For example, ISR1 executes every 100 s, ISR2 executes every 200 s, and ISR3 executes every 300 s.
ISR1 has a higher priority than ISR2, which has a higher priority than ISR3. However, if ISR3 has a
deadline of 150 s, then it has a higher priority than ISR2.

The INTC has 16 priorities, which can be considerably less than the number of ISRs. In this case, group
the ISRs with other ISRs that have similar deadlines. For example, when a priority is allocated for every
time, the request rate doubles ISRs with request rates around 1 ms share a priority; ISRs with request rates
around 500 s share a priority; ISRs with request rates around 250 s share a priority, etc. With this
approach, a range of ISR request rates of 216 can be covered, regardless of the number of ISRs.

Reducing the number of priorities reduces the processor's ability to meet its deadlines. However, it also
allows easier management of ISRs with similar deadlines that share a resource. They do not need to use
the PCP to access the shared resource.

15.6.7 Software configurable interrupt requests

The software configurable interrupt requests can be used in two ways. They can be used to schedule a
lower priority portion of an ISR and for processors to interrupt other processors in a multiple processor
system.

15.6.7.1 Scheduling a lower priority portion of an ISR

A portion of an ISR needs to be executed at the PRIn value in INTC priority select registers
(INTC_PSR0–INTC_PSR485), which becomes the PRI value in INTC current priority register
(INTC_CPR) with the interrupt acknowledgement. The ISR, however, can have a portion of it that does
not need to be executed at this higher priority. Therefore, executing this later portion that does not need to
be executed at this higher priority can prevent the execution of ISRs, which do not have a higher priority
than the earlier portion of the ISR but do have a higher priority than what the later portion of the ISR needs.
This preemptive scheduling inefficiency reduces the processor's ability to meet its deadlines.

One option is for the ISR to complete the earlier higher priority portion, but then schedule through the
RTOS a task to execute the later lower priority portion. However, some RTOSs can require a large amount
of time for an ISR to schedule a task. Therefore, a second option for the ISR is, after completing the higher
priority portion, to set a SETn bit in INTC software set/clear interrupt registers
(INTC_SSCIR0–INTC_SSCIR7). Writing a 1 to SETn causes a software configurable interrupt request.
This software configurable interrupt request, which usually has a lower PRIn value in the INTC_PSRn,
does not cause preemptive scheduling inefficiencies.

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

378 Freescale Semiconductor

After generating a software configurable interrupt request, the higher priority ISR completes. The lower
priority ISR is scheduled according to its priority. Execution of the higher priority ISR is not resumed after
the completion of the lower priority ISR.

15.6.7.2 Scheduling an ISR on another processor

Since the SETn bits in the INTC_SSCIRn are memory mapped, processors in multiple processor systems
can schedule ISRs on the other processors. One application is that one processor simply wants to command
another processor to perform a piece of work, and the initiating processor does not need to use the results
of that work. If the initiating processor is concerned that processor executing the software configurable
ISR has not completed the work before asking it to again execute that ISR, it can check if the
corresponding CLRn bit in INTC_SSCIRn is asserted before again writing a 1 to the SETn bit.

Another application is the sharing of a block of data. For example, a first processor has completed
accessing a block of data and wants a second processor to then access it. Furthermore, after the second
processor has completed accessing the block of data, the first processor again wants to access it. The
accesses to the block of data must be done coherently. The procedure is that the first processor writes a 1
to a SETn bit on the second processor. The second processor, after accessing the block of data, clears the
corresponding CLRn bit and then writes 1 to a SETn bit on the first processor, informing it that it now can
access the block of data.

15.6.8 Lowering priority within an ISR

In implementations without the software-configurable interrupt requests in the INTC software set/clear
interrupt registers (INTC_SSCIR0–INTC_SSCIR7), a way — besides scheduling a task through an RTOS
— to prevent preemptive scheduling inefficiencies with an ISR whose work spans multiple priorities (as
described in Section 15.6.7.1, Scheduling a lower priority portion of an ISR) is to lower the current
priority. However, the INTC has a LIFO whose depth is determined by the number of priorities.

NOTE

Lowering the PRI value in INTC current priority register (INTC_CPR)
within an ISR to below the ISR’s corresponding PRI value in INTC priority
select registers (INTC_PSR0–INTC_PSR485) allows more preemptions
than the depth of the LIFO can support.

Therefore, through its use of the LIFO the INTC does not support lowering the current priority within an
ISR as a way to avoid preemptive scheduling inefficiencies.

15.6.9 Negating an interrupt request outside of its ISR

15.6.9.1 Negating an interrupt request as a side effect of an ISR

Some peripherals have flag bits which can be cleared as a side effect of servicing a peripheral interrupt
request. For example, reading a specific register can clear the flag bits, and consequently their
corresponding interrupt requests, too. This clearing as a side effect of servicing a peripheral interrupt
request can cause the negation of other peripheral interrupt requests besides the peripheral interrupt request

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 379

whose ISR presently is executing. This negating of a peripheral interrupt request outside of its ISR can be
a desired effect.

15.6.9.2 Negating multiple interrupt requests in one ISR

An ISR can clear other flag bits besides its own flag bit. One reason that an ISR clears multiple flag bits
is because it serviced those other flag bits, and therefore the ISRs for these other flag bits do not need to
be executed.

15.6.9.3 Proper setting of interrupt request priority

Whether an interrupt request negates outside of its own ISR due to the side effect of an ISR execution or
the intentional clearing a flag bit, the priorities of the peripheral or software configurable interrupt requests
for these other flag bits must be selected properly. Their PRIn values in INTC priority select registers
(INTC_PSR0–INTC_PSR485) must be selected to be at or lower than the priority of the ISR that cleared
their flag bits. Otherwise, those flag bits still can cause the interrupt request to the processor to assert.
Furthermore, the clearing of these other flag bits also has the same timing relationship to the writing to
INTC end-of-interrupt register (INTC_EOIR) as the clearing of the flag bit that caused the present ISR to
be executed. Refer to Section 15.5.3.1.2, End-of-interrupt exception handler, for more information.

A flag bit whose enable bit or mask bit is negating its peripheral interrupt request can be cleared at any
time, regardless of the peripheral interrupt request’s PRIn value in INTC_PSRn.

15.6.10 Examining LIFO contents

Normally you do not need to know the contents of the LIFO, or even how deep the LIFO is nested.
Although the LIFO contents are not memory mapped, you can read the contents by popping the LIFO and
reading the PRI field in the INTC current priority register (INTC_CPR). Disabling processor recognition
of interrupts while examining the LIFO contents provides a coherent view of the preempted priorities.

The code sequence is:
pop_lifo:
store to INTC_EOIR
load INTC_CPR, examine PRI, and store onto stack
if PRI is not zero or value when interrupts were enabled, branch to pop_lifo

When you are finished examining the LIFO contents, you can restore it in software vector mode using the
following code sequence. In hardware vector mode, reading the INTC_IACKR does not push the
INTC_CPR[PRI] onto the LIFO, therefore the LIFO contents cannot be restored in hardware vector mode.

push_lifo:
load stacked PRI value and store to INTC_CPR
load INTC_IACKR
if stacked PRI values are not depleted, branch to push_lifo

Interrupt Controller (INTC)

MPC5644A Microcontroller Reference Manual, Rev. 6

380 Freescale Semiconductor

NOTE

Reading the INTC_IACKR acknowledges the interrupt request to the
processor and updates the INTC_CPR[PRI] with the priority of the
preempting interrupt request. If the processor recognition of interrupts is
disabled during the LIFO restoration, interrupt requests to the processor can
go undetected. However, since the peripheral or software configurable
interrupt requests are not cleared, the peripheral interrupt request to the
processor re-asserts when INTC_CPR[PRI] is lower than the priorities of
those peripheral or software configurable interrupt requests.

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 381

Chapter 16
System Integration Unit (SIU)

16.1 Overview

The System integration unit (SIU) controls this device’s reset configuration, pad configuration, external
interrupt, general purpose I/O (GPIO), internal peripheral multiplexing, and the system reset operation.
The reset configuration block contains the external pin boot configuration logic. The pad configuration
block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and
discrete input/output control of the MCU I/O pins. The reset controller performs reset monitoring of
internal and external reset sources, and drives the RSTOUT pin. The SIU is accessed by the core through
the peripheral bus.

16.2 Features
• System configuration

— MCU reset configuration via external pins

— Pad configuration control

• System reset monitoring and generation

— Power-on reset support

— Reset Status Register provides last reset source to software

— Glitch detection on reset input

— Software controlled reset assertion

• External interrupt

— 15 interrupt requests

— 1 Non-Maskable/Critical Interrupt request (NMI)

— Rising or falling edge event detection

— Programmable digital filter for glitch rejection

• GPIO

— GPIO function on 163 I/O pins

— Dedicated input and output registers for each GPIO pin

• Internal multiplexing

— Allows serial and parallel chaining of DSPIs

— Allows flexible selection of eQADC trigger inputs

— Allows selection of interrupt requests between external pins and DSPI

— Allows selection of some eTPU inputs from external eTPU pins or deserialized output from the
DSPI module

— Allows selection of serialized data source for the DSPI

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

382 Freescale Semiconductor

16.3 Modes of operation

16.3.1 Normal mode

In normal mode, the SIU provides the register interface and logic that controls system configuration, the
reset controller, and GPIO.

16.3.2 Debug mode

SIU operation in debug mode is identical to operation in normal mode.

16.4 Block diagram

Figure 16-1 is a block diagram of the SIU. The signals shown are external pins to the device. The SIU
registers are accessed through the crossbar switch. Note that the Power-on Reset Detection block, Pad
Interface/Pad Ring block, and Peripheral I/O Channels are external to the SIU.

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 383

Figure 16-1. SIU block diagram

16.5 Signal description

Table 16-1 lists the external pins used by the SIU.

Reset
Controller

RESET

SIU
Registers

Detection

GPIO

RSTOUT

Pad Configuration

Power-on

Reset

Peripheral I/O Channels

P
a
d

In
te

rf
ac

e
/P

ad
 R

in
g

Config

Reset

Edge

External

IRQ /

IMUX
DSPI Signals, &

IRQ Inputs,

eQADC Triggers

BOOTCFG1_

IRQ[7:15]

IRQ[4:5]

IRQ[0:3]

IRQ[3]_

GPIO[212]

WKPCFG_
NMI_
GPIO[213]

Detects

BOOTCFG0_
IRQ[2]_
GPIO[211]

ETRIG[3]

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

384 Freescale Semiconductor

16.6 Memory map and register descriptions

16.6.1 Memory map

Table 16-2 is the address map for the SIU registers.

Table 16-1. SIU signal properties

Name I/O type Pad type Function Pull up/down1

1 Internal weak pull up/down. The reset weak pull up/down state is given by the pull up/down state for the primary pin
function. For example, the reset weak pull up/down state of the BOOTCFG1 pin is weak pull down enabled.

RESETS

RESET Input — Reset Input Up

RSTOUT Output Slow Reset Output Up

SYSTEM CONFIGURATION

BOOTCFG0 Input Slow Boot Configuration Input Down

BOOTCFG1 Input Slow Boot Configuration Input Down

WKPCFG_
NMI_

GPIO[213]

Input
Input
I/O

Slow
Weak Pull Configuration Pin /

Non-Maskable Interrupt /
General Purpose I/O

Up
—

Up/Down

GPIO CONFIGURATION

GPIO[0:245] I/O Slow General Purpose I/O Up/Down

EXTERNAL INTERRUPT

IRQ[0:5,7:15] Input Slow External Interrupt Request Input —2

2 See Table 3-3 in Section 3.1, Signal Properties for more information.

Table 16-2. SIU address map

Address Use
Bits per
registe

r
Location

SIU_BASE MCU ID Register 2 (SIU_MIDR2) 32 on page
16-387

SIU_BASE+0x4 MCU ID Register (SIU_MIDR) 32 on page
16-388

SIU_BASE+0x8 Reserved

SIU_BASE+0xC Reset Status Register (SIU_RSR) 32 on page
16-390

SIU_BASE+0x10 System Reset Control Register (SIU_SRCR) 32 on page
16-392

SIU_BASE+0x14 SIU External Interrupt Status Register (SIU_EISR) 32 on page
16-393

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 385

SIU_BASE+0x18 DMA/Interrupt Request Enable Register (SIU_DIRER) 32 on page
16-394

SIU_BASE+0x1C DMA/Interrupt Request Select Register (SIU_DIRSR) 32 on page
16-395

SIU_BASE+0x20 Overrun Status Register (SIU_OSR) 32 on page
16-396

SIU_BASE+0x24 Overrun Request Enable Register (SIU_ORER) 32 on page
16-396

SIU_BASE+0x28 External IRQ Rising-Edge Event Enable Register (SIU_IREER) 32 on page
16-397

SIU_BASE+0x2C External IRQ Falling-Edge Event Enable Register (SIU_IFEER) 32 on page
16-398

SIU_BASE+0x30 External IRQ Digital Filter Register (SIU_IDFR) 32 on page
16-398

SIU_BASE+0x34 –
SIU_BASE+0x3F

Reserved

SIU_BASE+0x40 –
SIU_BASE+0x37B

Pad Configuration Register 0 (SIU_PCR0) –
Pad Configuration Register 413 (SIU_PCR413)1

16 on page
16-400

SIU_BASE+0x37C –
SIU_BASE+0x5FF

Reserved

SIU_BASE+0x600 –
SIU_BASE+0x79D

GPIO Pin Data Output Register 0 – 3 (SIU_GPDO0_3) –
GPIO Pin Data Output Register 412 – 413 (SIU_GPDO412_413)1

8 on page
16-521

SIU_BASE+0x79E –
SIU_BASE+0x7FF

Reserved

SIU_BASE+0x800 –
SIU_BASE+0x8E9

GPIO Pin Data Input Register 0 – 3 (SIU_GPDI0_3) –
GPIO Pin Data Input Register 232 – 233 (SIU_GPDI232_233)1

8 on page
16-522

SIU_BASE+0x8EA –
SIU_BASE+0x8FF

Reserved

SIU_BASE+0x900 eQADC trigger IMUX Select Register (ETISR)2 32 on page
16-523

SIU_BASE+0x904 External Interrupt IMUX Select Register (EIISR)3 32 on page
16-526

SIU_BASE+0x908 DSPI IMUX Select Register (DISR)4 32 on page
16-528

SIU_BASE+0x90C IMUX Select Register 3 (SIU_ISEL3) 32 on page
16-530

SIU_BASE+0x910 –
SIU_BASE+0x91F

Reserved

Table 16-2. SIU address map (continued)

Address Use
Bits per
registe

r
Location

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

386 Freescale Semiconductor

SIU_BASE+0x920 IMUX Select Register 8 (SIU_ISEL8) 32 on page
16-537

SIU_BASE+0x924 IMUX Select Register 9 (SIU_ISEL9) 32 on page
16-538

SIU_BASE+0x928 IMUX Select Register 10 (SIU_ISEL10) 32 on page
16-539

SIU_BASE+0x92C –
SIU_BASE+0x97F

Reserved

SIU_BASE+0x980 Chip Configuration Register (SIU_CCR) 32 on page
16-541

SIU_BASE+0x984 External Clock Control Register (SIU_ECCR) 32 on page
16-542

SIU_BASE+0x988 Compare A High Register (SIU_CARH) 32 on page
16-543

SIU_BASE+0x98C Compare A Low Register (SIU_CARL) 32 on page
16-543

SIU_BASE+0x990 Compare B High Register (SIU_CBRH) 32 on page
16-544

SIU_BASE+0x994 Compare B Low Register (SIU_CBRL) 32 on page
16-544

SIU_BASE+0x998 Reserved

SIU_BASE+0x9A0 System Clock Register (SIU_SYSDIV) 32 on page
16-545

SIU_BASE+0x9A4 Halt Register (SIU_HLT) 32 on page
16-546

SIU_BASE+0x9A8 Halt Acknowledge Register (SIU_HLTACK) 32 on page
16-548

SIU_BASE+0x9AC –
SIU_BASE+0x9B3

Reserved

SIU_BASE+0x9B4 Core MMU PID Control Register (SIU_EMPCR0) 32 on page
16-551

SIU_BASE+0x9B8 –
SIU_BASE+0x9FF

Reserved

1 Gaps exist in this memory space where I/O pins are not available in the specified package.
2 The ETISR is sometimes referred to as ISEL0
3 The EIISR is sometimes referred to as ISEL1
4 The DISR is sometimes referred to as ISEL2

Table 16-2. SIU address map (continued)

Address Use
Bits per
registe

r
Location

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 387

16.6.2 MCU ID Register 2 (SIU_MIDR2)

The MCU ID Register 2 contains additional configuration information about the device.

Figure 16-2. MCU ID Register 2 (SIU_MIDR2)

SIU_BASE + 0x0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Function

S_F FLASH_SIZE_1 FLASH_SIZE_2
TEMP_
RANGE

Res.
MAX_
FREQ

Res.
SUP
PLY

S_F1

1 S_F set with metal option

1 0 0 0 0 0 0 0 1 1 0 1 1 0 0
8 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Function PART_NUMBER (ASCII Character) Res. EE Res. FR

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
A = 0x41

Table 16-3. SIU_MIDR2 field description

Bit Name Description

0 S_F Identifies the manufacturer
0: FSL

1–4 FLASH_SIZE_1 Define major Flash memory size (see Table 16-4 for details)

5–8 FLASH_SIZE_2 Define Flash memory size, small granularity (see Table 16-5 for details)

19–10 TEMP_RANGE Define maximum operating range

11 — Reserved for future enhancements

12–13 MAX_FREQ Define maximum device speed

14 — Reserved for future enhancements

15 SUPPLY Defines if the part is 5 V or 3 V
1: 3 V
0: 5 V

16–23 PART_NUMBER Contain the ASCII representation of the character that indicates the product
family.

24–26 — Reserved for future enhancements

27 EE Indicates if Data Flash is present
1: Data Flash present
0: Data Flash not present

28–30 — Reserved for future enhancements

31 FR Indicates if Data FlexRay is present
1: FlexRay present
0: FlexRay not present

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

388 Freescale Semiconductor

16.6.3 MCU ID Register (SIU_MIDR)

The MCU ID Register contains the part number and the package ID of the device.

Table 16-4. Flash memory size

FLASH_SIZE_1
field

Size

0h 16 KB

1h 32 KB

2h 64 KB

3h 128 KB

4h 256 KB

5h 512 KB

6h 1024 KB

7h 2048 KB

...

n 24+n KB

Table 16-5. Flash memory size detailed1

1 Total flash memory size = (flash size 1) + (flash size 2)

FLASH_SIZE_2
field

Size

0h 0x(Flash size 1)/8

1h 1x(Flash size 1)/8

2h 2x(Flash size 1)/8

... ...

n nx(Flash size 1)/8

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 389

Figure 16-3. MCU ID Register (SIU_MIDR)

SIU_BASE + 0x4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R PARTNUM [0–15] (4 Digits)
W

Reset 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0
5 6 4 4

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R CSP PKG [0–4] Reserved MASKNUM [0–3] - Major MASKNUM [0–3] - Minor
W

Reset —1

1 Values corresponding to device packaging; see Table 16-6.

—2

2 Values for these bits vary according to the package. See Table 16-6 for details.

— — — — 0 0 0 0 0 0 0 0 0 0

Table 16-6. SIU_MIDR field description

Bit Name Description

0–15 PARTNUM [0–15]
Device part number is one of following:
0x5644 (4 MB flash memory)
0x5643 (3 MB flash memory)
0x5647 (2.5 MB flash memory)
0x5642 (2 MB flash memory)
Please see Table 16-7 for details on memory size.

16 CSP CSP configuration:
1: VertiCal 496 CSPpackage
0: Standard QFP package or BGA208 package

17–2
1

PKG [0–4] Indicate the package the die is mounted in
10001: 176-pin QFP
10000: 208-ball BGA
10100: 324-ball BGA

22–2
3

— Reserved

24–2
7

Major MASKNUM [0–3] MCU major mask number; the current value applies to revision 0 and will be
updated for each complete resynthesis

28–3
1

Minor MASKNUM [0–3] MCU minor mask number; the current value applies to revision 0 and will be
updated for each mask revision

Table 16-7. Memory size core dependency

PARTNUM field z0, z1 z3, z4, z5

0h Reserved Reserved

1h 128 KB 512 KB

2h 256 KB 768 KB

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

390 Freescale Semiconductor

16.6.4 Reset Status Register (SIU_RSR)

The Reset Status Register (SIU_RSR) reflects the most recent source, or sources, of reset. This register
contains one bit for each reset source, except JTAG reset. A bit set to logic one indicates the type of reset
that occurred. Simultaneous reset requests cause more than one bit to set at the same time. Once set, the
reset source bits in the SIU_RSR remain set until another reset occurs. A Software External Reset causes
the SERF bit to be set, but no previously set bits in the SIU_RSR will be cleared.

The unidirectional mode of reset operation is implemented, all registers named Mode 1 are implemented.

Figure 16-4. Reset Status Register (SIU_RSR)

3h 320 KB/384 KB 1024 KB

4h 512 KB 1.5 MB

5h 768 KB 2 MB

6h 1024 KB 3 MB

7h 1.5 MB 4 MB

8h 2 MB 6 MB

9h 3 MB 8 MB

SIU_BASE + 0xC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PORS ERS LLRS LCRS WDRS 0 SWTRS 0 0 0 0 0 0 0 SSRS SERF

W

Reset1

1 The reset values for this register are defined for power-on reset only.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

W
K

P
C

F
G

0 0 0 0 0 0 0 0 0 0 0 ABR BOOTCFG

[0–1]

RGF

W

Reset1 U
2

2 The reset value of this bit is determined by the value latched on the associated pin at the negation of the last reset.

0 0 0 0 0 0 0 0 0 0 0 U
3

3 The reset value of this bit is determined by the inverse of the value latched on the associated EVTO pin.

0 0 0

= Unimplemented or Reserved

Table 16-7. Memory size core dependency (continued)

PARTNUM field z0, z1 z3, z4, z5

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 391

Table 16-8. SIU_RSR field description

Bits Name Description

0 PORS Power-On Reset Status
1: A Power-On Reset has occurred.
0: No Power-On Reset has occurred.

1 ERS External Reset Status
1: An External Reset has occurred.
0: No External Reset has occurred.

2 LLRS Loss of Lock Reset Status
1: A Loss of Lock Reset has occurred.
0: No Loss of Lock Reset has occurred.

3 LCRS Loss of Clock Reset Status
1: A Loss of Clock Reset has occurred due to a loss of the reference or failure of the FMPLL.
0: No Loss of Clock Reset has occurred.

4 WDRS Watchdog Timer/Debug Reset Status
1: A Watchdog Timer or Debug Reset has occurred.
0: No Watchdog Timer or Debug Reset has occurred.

5 — Reserved

6 SWTRS Software Watchdog Timer Reset Status
1: An enabled SWT Reset has occurred.
0: No enabled SWT Reset has occurred.

7–13 — Reserved

14 SSRS Software System Reset Status
1: A Software System Reset has occurred.
0: No Software System Reset has occurred.

15 SERF Software External Reset Flag
1: A Software External Reset has occurred.
0: No Software External Reset has occurred.

16 WKPCFG Weak Pull Configuration Pin Status
1: WKPCFG pin latched during the last reset was logical one and weak pull up is the default

setting.
0: WKPCFG pin latched during the last reset was logical zero and weak pull down is the

default setting.

17–2
7

— Reserved

28 ABR Auto Baud Rate
1: Auto Baud Rate Enabled.
0: Auto Baud Rate Disabled.

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

392 Freescale Semiconductor

16.6.5 System Reset Control Register (SIU_SRCR)

The System Reset Control Register (SIU_SRCR) allows software to generate either a Software System
Reset or Software External Reset. The Software System Reset causes an internal reset sequence, while the
Software External Reset only causes the external RSTOUT pin to be asserted for the predetermined
number of clock cycles (refer to Section 4.3.2, RSTOUT). When written to one, the SER bit automatically
clears after the clock count expires. If the value of the SER bit is one and a zero is written to the bit, the
bit is cleared and the RSTOUT pin is negated regardless if the clock count has expired.

Figure 16-5. System Reset Control Register (SIU_SRCR)

29–3
0

BOOTCFG[0:1
]

Reset Configuration Pin Status
The BOOTCFG field holds the value of the BOOTCFG[1] pin that was latched on the last
negation of the RSTOUT pin. The BOOTCFG field is used by the BAM program to
determine the location of the Reset Configuration Word. See Table 4-4 in Section 4.7.1.1,
RCHW overview for a translation of the Reset Configuration Half Word location from the
BOOTCFG field value.
0b00: Boot from internal flash memory (default)
0b01: FlexCAN / eSCI boot
0b10: Boot from external memory (no arbitration)
0b11: Reserved

31 RGF RESET Glitch Flag
This bit is set by the MCU when the RESET pin is asserted for more than 2 clock cycles,
but less than the minimum RESET assertion time of 10 consecutive clock cycles to cause
a reset. This bit is cleared by the reset controller for a valid assertion of the RESET pin or
a power-on reset or a write of one to the bit.
1: A glitch was detected on the RESET pin.
0: No glitch was detected on the RESET pin.

SIU_BASE + 0xE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SSR SER 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 1
1

1 This bit in the MPC5644A MCU has no effect as checkstop reset is not supported.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-8. SIU_RSR field description (continued)

Bits Name Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 393

16.6.6 External Interrupt Status Register (SIU_EISR)

The External Interrupt Status Register is used to record edge triggered events on the IRQ0 – IRQ15 inputs
to the SIU. It also records the critical interrupts NMI and SWT.

Figure 16-6. External IRQ Status Register (SIU_EISR)

Table 16-9. SIU_SRCR field description

Field Description

SSR Software System Reset
Writing a one to this bit causes an internal reset and assertion of the RSTOUT pin. The bit is
automatically cleared by all reset sources except the Software External Reset.
1: Generate a Software System Reset.
0: Do not generate a Software System Reset.

SER Software External Reset
Writing a one to this bit causes a Software External Reset. The RSTOUT pin is asserted for the
predetermined number of clock cycles (refer to Section 4.3.2, RSTOUT), but the MCU is not reset. The
bit is automatically cleared when the Software External Reset completes.
1: Generate a Software External Reset.
0: Do not generate a Software External Reset.

SIU_BASE + 0x14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NMI 0 0 0 0 0 0 0 SWT 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EIF15 EIF14 EIF13 EIF12 EIF11 EIF10 EIF9 EIF8 EIF7 EIF6 EIF5 EIF4 EIF3 EIF2 EIF1 EIF0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-10. SIU_EISR field description

Field Description

NMI Non-Maskable Interrupt Flag
This bit is set when a NMI interrupt occurs on the NMI input pin.
1: An NMI event has occurred on the NMI input
0: No NMI event has occurred on the NMI input

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

394 Freescale Semiconductor

16.6.7 DMA/Interrupt Request Enable Register (SIU_DIRER)

The DMA/Interrupt Request Enable Register allows the assertion of a DMA or interrupt request if the
corresponding flag bit is set in Section 16.6.6, External Interrupt Status Register (SIU_EISR). The
External Interrupt Request Enable bits enable the interrupt or DMA request. There is only one interrupt
request from the SIU to the interrupt controller. The EIRE bits allow selection of which External Interrupt
Request Flag bits cause assertion of the one interrupt request signal.

Figure 16-7. DMA/Interrupt Request Enable Register (SIU_DIRER)

SWT Software Watch Dog Timer Interrupt Flag, from platform
This bit is set when a SWT interrupt occurs on the platform.
1: An SWT event has occurred
0: No SWT event has occurred

EIFx External Interrupt Request Flag x
This bit is set when an edge triggered event occurs on the corresponding IRQx input.
1: An edge triggered event has occurred on the corresponding IRQx input
0: No edge triggered event has occurred on the corresponding IRQx input

SIU_BASE + 0x18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

N
M

I_
S

E
L1

1 This bit is cleared only by a reset.

0 0 0 0 0 0 0

N
M

I_
S

E
L0

1

0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
IR

E
15

E
IR

E
14

E
IR

E
13

E
IR

E
12

E
IR

E
11

E
IR

E
10

E
IR

E
9

E
IR

E
8

E
IR

E
7 0

E
IR

E
5

E
IR

E
4

E
IR

E
3

E
IR

E
2

E
IR

E
1

E
IR

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-10. SIU_EISR field description (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 395

16.6.8 DMA/Interrupt Request Select Register (SIU_DIRSR)

The DMA/Interrupt Request Select Register allows selection between a DMA or interrupt request for
events on the IRQ[0:3] inputs.

Figure 16-8. DMA/Interrupt Request Select Register (SIU_DIRSR)

Table 16-11. SIU_DIRER field description

Field Description

NMI_SEL Non-Maskable Interrupt / Critical Interrupt Selection x
The SIU generates two specific sources of interrupt to the core. One of them is defined as the critical
interrupt (IVOR0 core exception) and the other is defined as the non-maskable interrupt (NMI) (IVOR1
core exception). The NMI_SEL bit selects which exception will be generated by the external NMI pin.
This bit is cleared only by a reset.
1: Critical interrupt (IVOR0) is enabled
0: NMI (IVOR1) is enabled

NMI_SEL0 Non-Maskable Interrupt / Critical Interrupt Selection x
The SIU generates two specific sources of interrupt to the core. One of them is defined as the critical
interrupt (IVOR0 core exception) and the other is defined as the non-maskable interrupt (NMI) (IVOR1
core exception). The NMI_SEL0 bit selects which exception will be generated by the SWT interrupt.
This bit is cleared only by a reset.
1: Critical interrupt (IVOR0) is enabled
0: NMI (IVOR1) is enabled

EIREx External DMA/Interrupt Request Enable x
This bit enables the assertion of a DMA or the interrupt request from the SIU to the interrupt controller
when an edge triggered event occurs on the IRQx inputs.
1: External interrupt request is enabled
0: External interrupt request is disabled

SIU_BASE + 0x1C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0 0

D
IR

S
3

D
IR

S
2

D
IR

S
1

D
IR

S
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-12. SIU_DIRSR field description

Field Description

DIRSx DMA/Interrupt Request Select x
This bit selects between a DMA or interrupt request when an edge triggered event occurs on the
corresponding IRQx input.
1: DMA request is selected (on this device these DMA connections do not exist, causing the interrupt

to be inhibit)
0: Interrupt request is selected

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

396 Freescale Semiconductor

16.6.9 Overrun Status Register (SIU_OSR)

The Overrun Status Register contains flag bits that record an overrun.

Figure 16-9. Overrun Status Register (SIU_OSR)

16.6.10 Overrun Request Enable Register (SIU_ORER)

The Overrun Request Enable Register contains bits to enable an overrun if the corresponding flag bit is set
in the SIU_OSR. If any Overrun Request Enable bit and the corresponding flag bit is set, the single
combined overrun request from the SIU to the interrupt controller is asserted.

Figure 16-10. Overrun Request Enable Register (SIU_ORER)

SIU_BASE + 0x20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

O
V

F
15

O
V

F
14

O
V

F
13

O
V

F
12

O
V

F
11

O
V

F
10

O
V

F
9

O
V

F
8

O
V

F
7

O
V

F
6

O
V

F
5

O
V

F
4

O
V

F
3

O
V

F
2

O
V

F
1

O
V

F
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-13. SIU_OSR field description

Field Description

OVFx Overrun Flag x
This bit is set when an overrun occurs on the corresponding IRQx input.
1: An overrun has occurred on the corresponding IRQx input
0: No overrun has occurred on the corresponding IRQx input

SIU_BASE + 0x24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

O
R

E
15

O
R

E
14

O
R

E
13

O
R

E
12

O
R

E
11

O
R

E
10

O
R

E
9

O
R

E
8

O
R

E
7

O
R

E
6

O
R

E
5

O
R

E
4

O
R

E
3

O
R

E
2

O
R

E
1

O
R

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 397

16.6.11 IRQ Rising-Edge Event Enable Register (SIU_IREER)

The IRQ Rising-Edge Event Enable Register allows rising edge triggered events to be enabled on the
corresponding IRQx inputs. Rising and falling edge events can be enabled by setting the corresponding
bits in both the SIU_IREER and SIU_IFEER.

Figure 16-11. IRQ Rising-Edge Event Enable Register (SIU_IREER)

Table 16-14. SIU_ORER field description

Field Description

OREx Overrun Request Enable x
This bit enables the corresponding overrun request when an overrun occurs on the corresponding
IRQx input.
1: Overrun request is enabled
0: Overrun request is disabled

SIU_BASE + 0x28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R

N
M

IR
E

1

1 This bit is cleared only by a reset.

0 0 0 0 0 0 0

N
M

IR
E

0
1 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

IR
E

E
15

IR
E

E
14

IR
E

E
13

IR
E

E
12

IR
E

E
11

IR
E

E
10

IR
E

E
9

IR
E

E
8

IR
E

E
7

IR
E

E
6

IR
E

E
5

IR
E

E
4

IR
E

E
3

IR
E

E
2

IR
E

E
1

IR
E

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-15. SIU_IREER field description

Field Description

NMIRE NMI Rising-Edge Event Enable (NMI Input)
This write once bit enables rising-edge triggered events on the NMI input. This bit is cleared only by a
reset.
1: Rising edge event is enabled
0: Rising edge event is disabled

NMIRE0 NMI Rising-Edge Event Enable (SWT)
This write once bit enables rising-edge triggered events by SWT. This bit is cleared only by a reset.
1: Rising edge event is enabled
0: Rising edge event is disabled

IREEx IRQ Rising-Edge Event Enable x
This bit enables rising-edge triggered events on the corresponding IRQx input.
1: Rising edge event is enabled
0: Rising edge event is disabled

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

398 Freescale Semiconductor

16.6.12 External IRQ Falling-Edge Event Enable Register (SIU_IFEER)

The External IRQ Falling-Edge Event Enable Register allows falling edge triggered events to be enabled
on the corresponding IRQx inputs. Rising and falling edge events can be enabled by setting the
corresponding bits in both the SIU_IREER and SIU_IFEER.

Figure 16-12. External IRQ Falling-Edge Event Enable Register (SIU_IFEER)

16.6.13 External IRQ Digital Filter Register (SIU_IDFR)

The External IRQ Digital Filter Register specifies the amount of digital filtering on the IRQ0 – IRQ15
inputs. The Digital Filter Length field specifies the number of system clocks that define the period of the
digital filter.

SIU_BASE + 0x2C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R

N
M

IF
E

1

1 This bit is cleared only by a reset.

0 0 0 0 0 0 0

N
M

IF
E

01 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

IF
E

E
15

IF
E

E
14

IF
E

E
13

IF
E

E
12

IF
E

E
11

IF
E

E
10

IF
E

E
9

IF
E

E
8

IF
E

E
7

IF
E

E
6

IF
E

E
5

IF
E

E
4

IF
E

E
3

IF
E

E
2

IF
E

E
1

IF
E

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-16. SIU_IFEER field description

Field Description

NMIFE NMI Falling-Edge Event Enable (NMI Input)
This write once bit enables falling-edge triggered events on the NMI input. This bit is cleared only by a
reset.
1: Falling edge event is enabled
0: Falling edge event is disabled

NMIFE0 NMI Falling-Edge Event Enable (SWT)
This write once bit enables falling-edge triggered events by SWT. This bit is cleared only by a reset.
1: Falling edge event is enabled
0: Falling edge event is disabled

IFEEx IRQ Falling-Edge Event Enable x
This bit enables falling-edge triggered events on the corresponding IRQx input.
1: Falling edge event is enabled
0: Falling edge event is disabled

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 399

Figure 16-13. IRQ Digital Filter Register (SIU_IDFR)

16.6.14 IRQ Filtered Input Register (SIU_IFIR)

The SIU_IFIR is a read-only register used to capture the filtered values of the IRQ0–31 pins. This feature
is enabled with a parameter at the top level of the module.

The MSB positions of the register correspond to NMI pins and the number of NMI pins are defined by a
parameter.

The LSB positions of the register corresponds to the IRQ pins and the number of IRQ pins is defined by a
parameter.

SIU_BASE + 0x30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0 0 DFL[0–3]
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-17. SIU_IDFR field description

Field Description

DFL[0–3] Digital Filter Length
This field defines the digital filter period on the IRQx inputs according to Equation 16-1:

Eqn. 16-1

For a 100 MHz system clock, this gives a range of 20 ns to 328 µs. The minimum time of two clocks
accounts for synchronization of the IRQ input pins with the system clock.
Using the same calculation, for a 150 MHz system clock, this gives a range of 13.3 ns to 218 µs.

Filter Period S ystemClockPeriod 2
DFL  1 S ystemClockPeriod +=

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

400 Freescale Semiconductor

Figure 16-14. IRQ Filtered Input Register (SIU_IFIR)

16.6.15 Pad Configuration Registers (SIU_PCR)

The Pad Configuration Registers (PCRs) select function, I/O direction and some electrical characteristics
for configurable device pins. Not all device pins are configurable.

PCRs are 16-bit registers but may be read or written as 32-bit values aligned on 32-bit address boundaries.
They are based on a common set of fields, but only the pertinent fields appear in each register.

The information in the following sections pertains to the bits and fields that are active for a given pin or
group of pins, and the reset state of the register. The reset state given for each PCR is the state prior to
execution of the BAM program. The BAM program may change certain PCRs based on the reset
configuration. See Chapter 21, Boot Assist Module (BAM) for more details.

The device is available in the packages listed in Chapter 1, Introduction. Some of the I/O functions
controlled by the SIU PCRs are not available in the smaller packages. The port enable logic for these PCRs
is the same for PCRs that control I/O functions that are available in all packages. For the smaller packages
where some of the I/O functions are not available, the pad drivers are disabled in the pad interface logic.
The user should take care not to select the unavailable functions via the PA field. See Section 3.1, Signal
Properties, for a definition of which I/O functions are available in each package.

Table 16-18 lists and describes the fields contained in the PCRs. Not all fields appear in each PCR but each
field has an identical function in each register where it resides.

SIU_BASE + 0x2C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R

N
M

IF
E

1

1 This bit is cleared only by a reset.

0 0 0 0 0 0 0

N
M

IF
E

01 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

IF
E

E
15

IF
E

E
14

IF
E

E
13

IF
E

E
12

IF
E

E
11

IF
E

E
10

IF
E

E
9

IF
E

E
8

IF
E

E
7

IF
E

E
6

IF
E

E
5

IF
E

E
4

IF
E

E
3

IF
E

E
2

IF
E

E
1

IF
E

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 401

Table 16-18. SIU_PCR field description

Field Description

— Reserved fields are indicated by shading in the register maps.

PA Pin assignment
Selects the function of a multiplexed pad.

OBE1,2 Output buffer enable
Enables the pad as an output and drives the output buffer enable signal.

0 Disable output buffer for the pad.
1 Enable output buffer for the pad is enabled.

IBE1,2 Input buffer enable
Enables the pad as an input and drives the input buffer enable signal.

0 Disable input buffer for the pad.
1 Enable input buffer for the pad is enabled.

For all PCRs where GPIO function is available on the pin, if the pin is configured as an output and the
IBE bit is set, the actual value of the pin will be reflected in the corresponding GPDIx_x register. Negating
the IBE bit when the pin is configured as an output will reduce noise and power consumption.

DSC3 Drive strength control
Controls the pad drive strength. Drive strength control pertains to pins with the fast I/O pad type.

00 10 pF drive strength
01 20 pF drive strength
10 30 pF drive strength
11 50 pF drive strength

ODE3 Open drain output enable
Controls output driver configuration for the pads. Either open drain or push/pull driver configurations can
be selected. This feature applies to output pins only.

0 Disable open drain for the pad (push/pull driver enabled).
1 Enable open drain for the pad.

PA value1

1 Depending on the register, the PA field size can vary in length.
For PA fields having fewer than four bits, remove the
appropriate number of leading zeroes from these values.

Pin function

0b0001 P Primary function

0b0010 A1 Alternate function 1

0b0100 A2 Alternate function 2

0b1000 A3 Alternate function 3

0b0000 G GPIO

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

402 Freescale Semiconductor

The following sections describe PCR functions using maps that show the fields contained in each register.
Refer to Table 16-18 for the details of each field.

Figure 16-15 shows a sample PCR map. Please note the following:

• The register bit numbering order follows the Power Architecture standard of the most significant
bit being bit 0. Field bit ranges are the opposite—the least significant bit is referred to as bit 0.

• Bit 0 is an example of a reserved field. It is read-only and always returns a value of 0.

HYS4 Input hysteresis
Controls whether hysteresis is enabled for the pad.

0 Disable hysteresis for the pad.
1 Enable hysteresis for the pad.

SRC3 Slew rate control
Controls slew rate for the pad. Slew rate control pertains to pins with slow or medium I/O pad types, and
the output signals are driven according to the value of this field. Actual slew rate depends on the pad type
and load. Refer to the electrical specifications for this information.

00 Minimum slew rate
01 Medium slew rate
10 Invalid value
11 Maximum slew rate

WPE5 Weak pullup/down enable
Controls whether the weak pullup/down devices are enabled/disabled for the pad. Pullup/down devices
are enabled by default.

0 Disable weak pull device for the pad.
1 Enable weak pull device for the pad.

WPS5 Weak pullup/down select
Controls whether weak pullup or weak pulldown devices are used for the pad when weak pullup/down
devices are enabled.

The WKPCFG pin determines whether pullup or pulldown devices are enabled during reset. The WPS
bit determines whether weak pullup or pulldown devices are used after reset, or for pads in which the
WKPCFG pin does not determine the reset weak pullup/down state.

0 Pulldown is enabled for the pad.
1 Pullup is enabled for the pad.

1 In cases where an I/O function is either input-only or output-only the IBE and OBE bits do not need to be set to enable
pin I/O.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and output is
handled internally and the IBE and OBE bits are ignored.

3 If a pin is configured as an input, the ODE, SRC, and DSC bits do not apply.
4 If a pin is configured as an output, the HYS bit does not apply.
5 When a pin is configured as an output, the weak internal pull up/down is disabled regardless of the WPE or WPS settings

in the PCR.

Table 16-18. SIU_PCR field description (continued)

Field Description

M
em

o
ry m

ap
 a

n
d

 reg
iste

r d
es

crip
tio

n
s

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

4
03

Figure 16-15. Sample PCR map

f

SIU_BASE+0x40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0

PA OBE1

1 OBE bit is significant in GPIO

IBE2

2 IBE bit is significant in GPIO

DSC ODE HYS
0 0

WPE WPS
W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and
OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary CS[0] EBI Chip select O 0b01

ALT1 ADDR[8] EBI Address bus I/O 0b10

GPIO GPIO[0] EBI GPIO I/O 0b00

Read values

Write values

Reset values

Register Address

Footnote
Bit Number

Field Name

Register Bit Range = [4:5] Field Bit Range = [1:0]

“Signal” refers to position in
muxing order—Primary, ALT1,
ALT2, ALT3 or GPIO.

Signal I/O direction.
I - Input
O - Output
I/O - Input or output

PA field value
required to
select a
signal for the
pin controlled
by this PCR.

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

404 Freescale Semiconductor

16.6.15.1 Pad Configuration Register 0 (SIU_PCR0)

Figure 16-16. Pad Configuration Register (SIU_PCR0)

16.6.15.2 Pad Configuration Register 1 (SIU_PCR1)

Figure 16-17. Pad Configuration Register (SIU_PCR1)

SIU_BASE+0x40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as CS[0] or ADDR[8] the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE
2

2 When configured as CS[0] or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When
configured as GPI, set the IBE bit to one.

DSC ODE
3

3 When configured as CS[0] or ADDR[8], set the ODE bit to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as CS[0].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-19. SIU_PCR0 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA

Primary CS[0] EBI Chip select O 0b01

ALT1 ADDR[8] EBI Address bus I/O 0b10

GPIO GPIO[0] EBI GPIO I/O 0b00

SIU_BASE+0x42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as CS[1] or ADDR[9] the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE
2

2 When configured as CS[1] or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When
configured as GPI, set the IBE bit to one.

DSC ODE
3

3 When configured as CS[1] or ADDR[9], set the ODE bit to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as CS[1].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 405

16.6.15.3 Pad Configuration Register 2 (SIU_PCR2)

Figure 16-18. Pad Configuration Register (SIU_PCR2)

Table 16-20. SIU_PCR1 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA

Primary CS[1] EBI Chip select O 0b01

ALT1 ADDR[9] EBI Address bus I/O 0b10

GPIO GPIO[1] SIU GPIO I/O 0b00

SIU_BASE+0x44

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA OBE

1

1 When configured as CS[2] or ADDR[10] the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE
2

2 When configured as CS[2] or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When
configured as GPI, set the IBE bit to one.

DSC ODE
3

3 When configured as CS[2] or ADDR[10], set the ODE bit to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as CS[0].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-21. SIU_PCR2 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA

Primary CS[2] EBI Chip select O 0b0001

ALT1 ADDR[10] EBI Address bus I/O 0b0010

ALT2 WE[2]/BE[2] EBI Write/byte enable O 0b0100

ALT3 CAL_WE[2]/BE[2] Cal bus Write/byte enable O 0b1000

GPIO GPIO[2] SIU GPIO I/O 0b0000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

406 Freescale Semiconductor

16.6.15.4 Pad Configuration Register 3 (SIU_PCR3)

Figure 16-19. Pad Configuration Register (SIU_PCR3)

16.6.15.5 Pad Configuration Register 8 (SIU_PCR8)

Figure 16-20. Pad Configuration Register (SIU_PCR8)

SIU_BASE+0x46

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA OBE

1

1 When configured as CS[3] or ADDR[11] the OBE bit has no effect. When configured as GPO, set the OBE bit to one.

IBE
2

2 When configured as CS[3] or GPO, set the IBE bit to one to reflect the pin state in the GPDI register. When
configured as GPI, set the IBE bit to one.

DSC ODE
3

3 When configured as CS[3] or ADDR[11], set the ODE bit to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as CS[0].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-22. SIU_PCR3 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA

Primary CS[3] EBI Chip select O 0b0001

ALT1 ADDR[11] EBI Address bus I/O 0b0010

ALT2 WE[3]/BE[3] EBI Write/byte enable O 0b0100

ALT3 CAL_WE[3]/BE[3] Cal bus Write/byte enable O 0b1000

GPIO GPIO[3] SIU GPIO I/O 0b0000

SIU_BASE+0x50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 When configured as ADDR[12] the OBE bit has no effect. When configured as GPO, the OBE bit should be set to
one.

IBE
2

2 When configured as ADDR[12] or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should
be set to one.

DSC ODE
3

3 When configured as ADDR[12], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[12]

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 407

16.6.15.6 Pad Configuration Register 9 (SIU_PCR9)

Figure 16-21. Pad Configuration Register (SIU_PCR9)

Table 16-23. SIU_PCR8 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[12] EBI Address bus I/O 0b1

GPIO GPIO[8] SIU GPIO I/O 0b0

SIU_BASE+0x52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[13] the OBE bit has no effect. When configured as GPO, the OBE bit should be set to
one.

IBE
2

2 When configured as ADDR[13], WE[2] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as ADDR[13], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[13]

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-24. SIU_PCR9 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[13] EBI Address bus I/O 0b001

ALT2 WE[2] EBI Write enable O 0b100

GPIO GPIO[9] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

408 Freescale Semiconductor

16.6.15.7 Pad Configuration Register 10 (SIU_PCR10)

Figure 16-22. Pad Configuration Register (SIU_PCR10)

16.6.15.8 Pad Configuration Register 11 (SIU_PCR11)

Figure 16-23. Pad Configuration Register (SIU_PCR11)

SIU_BASE+0x54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[14] the OBE bit has no effect. When configured as GPO, the OBE bit should be set to
one.

IBE
2

2 When configured as ADDR[14], WE[2] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as ADDR[14], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[14]

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-25. SIU_PCR10 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[14] EBI Address bus I/O 0b001

ALT2 WE[3] EBI Write enable O 0b100

GPIO GPIO[10] SIU GPIO I/O 0b000

SIU_BASE+0x56

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 When configured as ADDR[15] the OBE bit has no effect. When configured as GPO, the OBE bit should be set to
one.

IBE
2

2 When configured as ADDR[15] or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should
be set to one.

DSC ODE
3

3 When configured as ADDR[15], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[15]

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 409

16.6.15.9 Pad Configuration Register 12 (SIU_PCR12)

Figure 16-24. Pad Configuration Register (SIU_PCR12)

Table 16-26. SIU_PCR11 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[15] EBI Address bus I/O 0b1

GPIO GPIO[11] SIU GPIO I/O 0b0

SIU_BASE+0x58

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[16] or DATA[16] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as DATA[16], FR_A_TX or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[16], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[16]

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-27. SIU_PCR12 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[16] EBI Address bus I/O 0b001

ALT1 FR_A_TX EBI FlexRay transmit O 0b010

ALT2 DATA[16] EBI Data bus I/O 0b100

GPIO GPIO[12] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

410 Freescale Semiconductor

16.6.15.10 Pad Configuration Register 13 (SIU_PCR13)

Figure 16-25. Pad Configuration Register (SIU_PCR13)

16.6.15.11 Pad Configuration Register 14 (SIU_PCR14)

Figure 16-26. Pad Configuration Register (SIU_PCR14)

SIU_BASE+0x5A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[17] or DATA[17], the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[17], FR_A_TX_EN or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[17], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[17]

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-28. SIU_PCR13 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[17] EBI Address bus I/O 0b001

ALT1 FR_A_TX_EN EBI FlexRay transmit enable O 0b010

ALT2 DATA[17] EBI Data bus I/O 0b100

GPIO GPIO[13] SIU GPIO I/O 0b000

SIU_BASE+0x5C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[18], FR_A_RX or DATA[18] the OBE bit has no effect. When configured as GPO, the
OBE bit should be set to one.

IBE
2

2 When configured as ADDR[18] or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should
be set to one.

0 0 ODE
3

3 When configured as ADDR[18], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[18]

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 411

16.6.15.12 Pad Configuration Register 15 (SIU_PCR15)

Figure 16-27. Pad Configuration Register (SIU_PCR15)

Table 16-29. SIU_PCR14 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[18] EBI Address bus I/O 0b001

ALT1 FR_A_RX FlexRay FlexRay receive I 0b010

ALT2 DATA[18] EBI Data bus I/O 0b100

GPIO GPIO[14] SIU GPIO I/O 0b000

SIU_BASE+0x5E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[19] or DATA[19] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[19], FR_B_TX or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[19], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[19]

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-30. SIU_PCR15 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[19] EBI Address bus I/O 0b001

ALT1 FR_B_TX FlexRay FlexRay transmit O 0b010

ALT2 DATA[19] EBI Data bus I/O 0b100

GPIO GPIO[15] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

412 Freescale Semiconductor

16.6.15.13 Pad Configuration Register 16 (SIU_PCR16)

Figure 16-28. Pad Configuration Register (SIU_PCR16)

16.6.15.14 Pad Configuration Register 17 (SIU_PCR17)

Figure 16-29. Pad Configuration Register (SIU_PCR17)

SIU_BASE+0x60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[20] or DATA[20] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[20], DATA[20], FR_B_TX_EN or GPO, the IBE bit may be set to one to reflect the pin
state in the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured
as GPI, the IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[20] or DATA[20], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[20] or DATA[20].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-31. SIU_PCR16 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[20] EBI Address bus I/O 0b001

ALT1 FR_B_TX_EN FlexRay FlexRay transmit enable O 0b010

ALT2 DATA[20] EBI Data bus I/O 0b100

GPIO GPIO[16] SIU GPIO I/O 0b000

SIU_BASE+0x62

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[21], FR_B_RX or DATA[21] the OBE bit has no effect. When configured as GPO, the
OBE bit should be set to one.

IBE
2

2 When configured as ADDR[21], DATA[21] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[21] or DATA[21], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[21] or DATA[21].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 413

16.6.15.15 Pad Configuration Register 18 (SIU_PCR18)

Figure 16-30. Pad Configuration Register (SIU_PCR18)

Table 16-32. SIU_PCR17 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[21] EBI Address bus I/O 0b001

ALT1 FR_B_RX FlexRay FlexRay receive I 0b010

ALT2 DATA[21] EBI Data bus I/O 0b100

GPIO GPIO[17] SIU GPIO I/O 0b000

SIU_BASE+0x64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[22] or DATA[22] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[22] DATA[22] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[22] or DATA[22], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[22] or DATA[22].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-33. SIU_PCR18 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[22] EBI Address bus I/O 0b001

ALT2 DATA[22] EBI Data bus I/O 0b100

GPIO GPIO[18] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

414 Freescale Semiconductor

16.6.15.16 Pad Configuration Register 19 (SIU_PCR19)

Figure 16-31. Pad Configuration Register (SIU_PCR19)

16.6.15.17 Pad Configuration Register 20 (SIU_PCR20)

Figure 16-32. Pad Configuration Register (SIU_PCR20)

SIU_BASE+0x66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[23] or DATA[23] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[23], DATA[23] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[23] or DATA[23], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[23] or DATA[23].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-34. SIU_PCR19 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[23] EBI Address bus I/O 0b001

ALT2 DATA[23] EBI Data bus I/O 0b100

GPIO GPIO[19] SIU GPIO I/O 0b000

SIU_BASE+0x68

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[24] or DATA[24] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[24], DATA[24] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[24] or DATA[24], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[24] or DATA[24].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 415

16.6.15.18 Pad Configuration Register 21 (SIU_PCR21)

Figure 16-33. Pad Configuration Register (SIU_PCR21)

Table 16-35. SIU_PCR20 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[24] EBI Address bus I/O 0b001

ALT2 DATA[24] EBI Data bus I/O 0b100

GPIO GPIO[20] SIU GPIO I/O 0b000

SIU_BASE+0x6A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[25] or DATA[25] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[25], DATA[25] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[25] DATA[25], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[25] or DATA[25].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-36. SIU_PCR21 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[25] EBI Address bus I/O 0b001

ALT2 DATA[25] EBI Data bus I/O 0b100

GPIO GPIO[21] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

416 Freescale Semiconductor

16.6.15.19 Pad Configuration Register 22 (SIU_PCR22)

Figure 16-34. Pad Configuration Register (SIU_PCR22)

16.6.15.20 Pad Configuration Register 23 (SIU_PCR23)

Figure 16-35. Pad Configuration Register (SIU_PCR23)

SIU_BASE+0x6C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[26] or DATA[26] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[26], DATA[26] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[26] or DATA[26], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[26] or DATA[26].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-37. SIU_PCR22 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[26] EBI Address bus I/O 0b001

ALT2 DATA[26] EBI Data bus I/O 0b100

GPIO GPIO[22] SIU GPIO I/O 0b000

SIU_BASE+0x6E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[27] or DATA[27] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[27], DATA[27] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[27] or DATA[27], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[27] or DATA[27].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 417

16.6.15.21 Pad Configuration Register 24 (SIU_PCR24)

Figure 16-36. Pad Configuration Register (SIU_PCR24)

Table 16-38. SIU_PCR23 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[27] EBI Address bus I/O 0b001

ALT2 DATA[27] EBI Data bus I/O 0b100

GPIO GPIO[23] SIU GPIO I/O 0b000

SIU_BASE+0x70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[28] or DATA[28] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[28], DATA[28] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[28] or DATA[28], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[28] or DATA[28].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-39. SIU_PCR24 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[28] EBI Address bus I/O 0b001

ALT2 DATA[28] EBI Data bus I/O 0b100

GPIO GPIO[24] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

418 Freescale Semiconductor

16.6.15.22 Pad Configuration Register 25 (SIU_PCR25)

Figure 16-37. Pad Configuration Register (SIU_PCR25)

16.6.15.23 Pad Configuration Register 26 (SIU_PCR26)

Figure 16-38. Pad Configuration Register (SIU_PCR26)

SIU_BASE+0x72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[29] or DATA[29] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[29], DATA[29] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[29] or DATA[29], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[29]

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-40. SIU_PCR25 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[29] EBI Address bus I/O 0b001

ALT2 DATA[29] EBI Data bus I/O 0b100

GPIO GPIO[25] SIU GPIO I/O 0b000

SIU_BASE+0x74

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[30] or DATA[30], the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[30], ADDR[6], DATA[30] or GPO, the IBE bit may be set to one to reflect the pin state
in the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as
GPI, the IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[30], ADDR[6] or DATA[30], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[30], ADDR[6] or DATA[30].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 419

16.6.15.24 Pad Configuration Register 27 (SIU_PCR27)

Figure 16-39. Pad Configuration Register (SIU_PCR27)

Table 16-41. SIU_PCR26 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[30] EBI Address bus I/O 0b001

ALT1 ADDR[6] EBI Address bus O 0b010

ALT2 DATA[30] EBI Data bus I/O 0b100

GPIO GPIO[26] SIU GPIO I/O 0b000

SIU_BASE+0x76

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ADDR[31] or DATA[31] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as ADDR[31], ADDR[7], DATA[31] or GPO, the IBE bit may be set to one to reflect the pin state
in the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as
GPI, the IBE bit should be set to one.

0 0 ODE
3

3 When configured as ADDR[31], ADDR[7] or DATA[31], the ODE bit should be set to zero.

HYS SRC WPE
4

4 See the EBI section for weak pull up settings when configured as ADDR[31], ADDR[7] or DATA[31].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-42. SIU_PCR27 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ADDR[31] EBI Address bus I/O 0b001

ALT1 ADDR[7] EBI Address bus O 0b010

ALT2 DATA[31] EBI Data bus I/O 0b100

GPIO GPIO[27] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

420 Freescale Semiconductor

16.6.15.25 Pad Configuration Register 28 (SIU_PCR28)

Figure 16-40. Pad Configuration Register (SIU_PCR28)

16.6.15.26 Pad Configuration Register 29 (SIU_PCR29)

Figure 16-41. Pad Configuration Register (SIU_PCR29)

SIU_BASE+0x78

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[0] or ADDR[16] the OBE bit has no effect. When configured as GPO, the OBE bit should
be set to one.

IBE
2

2 When configured as DATA[0], ADDR[16] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[0] or ADDR[16], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[0] or ADDR[16].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-43. SIU_PCR28 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[0] EBI Data bus I/O 0b01

ALT1 ADDR[16] EBI Address bus I/O 0b10

GPIO GPIO[28] SIU GPIO I/O 0b00

SIU_BASE+0x7A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[1] or ADDR[17] the OBE bit has no effect. When configured as GPO, the OBE bit should
be set to one.

IBE
2

2 When configured as DATA[1], ADDR[17] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[1] or ADDR[17], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[1] or ADDR[17].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 421

16.6.15.27 Pad Configuration Register 30 (SIU_PCR30)

Figure 16-42. Pad Configuration Register (SIU_PCR30)

Table 16-44. SIU_PCR29 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[1] EBI Data bus I/O 0b01

ALT1 ADDR[17] EBI Address bus I/O 0b10

GPIO GPIO[29] SIU GPIO I/O 0b00

SIU_BASE+0x7C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[2] or ADDR[18] the OBE bit has no effect. When configured as GPO, the OBE bit should
be set to one.

IBE
2

2 When configured as DATA[2], ADDR[18] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[2] or ADDR[18], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[2] or ADDR[18].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-45. SIU_PCR30 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[2] EBI Data bus I/O 0b01

ALT1 ADDR[18] EBI Address bus I/O 0b10

GPIO GPIO[30] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

422 Freescale Semiconductor

16.6.15.28 Pad Configuration Register 31 (SIU_PCR31)

Figure 16-43. Pad Configuration Register (SIU_PCR31)

16.6.15.29 Pad Configuration Register 32 (SIU_PCR32)

Figure 16-44. Pad Configuration Register (SIU_PCR32)

SIU_BASE+0x7E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[3] or ADDR[19] the OBE bit has no effect. When configured as GPO, the OBE bit should
be set to one.

IBE
2

2 When configured as DATA[3], ADDR[19] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[3] or ADDR[19], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[3] or ADDR[19].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-46. SIU_PCR31 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[3] EBI Data bus I/O 0b01

ALT1 ADDR[19] EBI Address bus I/O 0b10

GPIO GPIO[31] SIU GPIO I/O 0b00

SIU_BASE+0x80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[4] or ADDR[20] the OBE bit has no effect. When configured as GPO, the OBE bit should
be set to one.

IBE
2

2 When configured as DATA[4], ADDR[20] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[4] or ADDR[20], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[4] or ADDR[20].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 423

16.6.15.30 Pad Configuration Register 33 (SIU_PCR33)

Figure 16-45. Pad Configuration Register (SIU_PCR33)

Table 16-47. SIU_PCR32 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[4] EBI Data bus I/O 0b01

ALT1 ADDR[20] EBI Address bus I/O 0b10

GPIO GPIO[32] SIU GPIO I/O 0b00

SIU_BASE+0x82

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[5] or ADDR[21] the OBE bit has no effect. When configured as GPO, the OBE bit should
be set to one.

IBE
2

2 When configured as DATA[5], ADDR[21] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[5] or ADDR[21], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[5] or ADDR[21].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-48. SIU_PCR33 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[5] EBI Data bus I/O 0b01

ALT1 ADDR[21] EBI Address bus I/O 0b10

GPIO GPIO[33] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

424 Freescale Semiconductor

16.6.15.31 Pad Configuration Register 34 (SIU_PCR34)

Figure 16-46. Pad Configuration Register (SIU_PCR34)

16.6.15.32 Pad Configuration Register 35 (SIU_PCR35)

Figure 16-47. Pad Configuration Register (SIU_PCR35)

SIU_BASE+0x84

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[6] or ADDR[22] the OBE bit has no effect. When configured as GPO, the OBE bit should
be set to one.

IBE
2

2 When configured as DATA[6], ADDR[22] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[6] or ADDR[22], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[6] or ADDR[22].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-49. SIU_PCR34 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[6] EBI Data bus I/O 0b01

ALT1 ADDR[22] EBI Address bus I/O 0b10

GPIO GPIO[34] SIU GPIO I/O 0b00

SIU_BASE+0x86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[7] or ADDR[23] the OBE bit has no effect. When configured as GPO, the OBE bit should
be set to one.

IBE
2

2 When configured as DATA[7], ADDR[23] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[7] or ADDR[23], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[7] or ADDR[23].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 425

16.6.15.33 Pad Configuration Register 36 (SIU_PCR36)

Figure 16-48. Pad Configuration Register (SIU_PCR36)

Table 16-50. SIU_PCR35 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[7] EBI Data bus I/O 0b01

ALT1 ADDR[23] EBI Address bus I/O 0b10

GPIO GPIO[35] SIU GPIO I/O 0b00

SIU_BASE+0x88

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[8] or ADDR[24] the OBE bit has no effect. When configured as GPO, the OBE bit should
be set to one.

IBE
2

2 When configured as DATA[8], ADDR[24] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[8] or ADDR[24], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[8] or ADDR[24].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-51. SIU_PCR36 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[8] EBI Data bus I/O 0b01

ALT1 ADDR[24] EBI Address bus I/O 0b10

GPIO GPIO[36] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

426 Freescale Semiconductor

16.6.15.34 Pad Configuration Register 37 (SIU_PCR37)

Figure 16-49. Pad Configuration Register (SIU_PCR37)

16.6.15.35 Pad Configuration Register 38 (SIU_PCR38)

Figure 16-50. Pad Configuration Register (SIU_PCR38)

SIU_BASE+0x8A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[9] or ADDR[25] the OBE bit has no effect. When configured as GPO, the OBE bit should
be set to one.

IBE
2

2 When configured as DATA[9], ADDR[25] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[9] or ADDR[25], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[9] or ADDR[25].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-52. SIU_PCR37 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[9] EBI Data bus I/O 0b01

ALT1 ADDR[25] EBI Address bus I/O 0b10

GPIO GPIO[37] SIU GPIO I/O 0b00

SIU_BASE+0x8C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[10] or ADDR[26] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as DATA[10], ADDR[26] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[10] or ADDR[26], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[10] or ADDR[26].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 427

16.6.15.36 Pad Configuration Register 39 (SIU_PCR39)

Figure 16-51. Pad Configuration Register (SIU_PCR39)

Table 16-53. SIU_PCR38 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[10] EBI Data bus I/O 0b01

ALT1 ADDR[26] EBI Address bus I/O 0b10

GPIO GPIO[38] SIU GPIO I/O 0b00

SIU_BASE+0x8E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[11] or ADDR[27] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as DATA[11], ADDR[27] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[11] or ADDR[27], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[11] or ADDR[27].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-54. SIU_PCR39 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[11] EBI Data bus I/O 0b01

ALT1 ADDR[27] EBI Address bus I/O 0b10

GPIO GPIO[39] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

428 Freescale Semiconductor

16.6.15.37 Pad Configuration Register 40 (SIU_PCR40)

Figure 16-52. Pad Configuration Register (SIU_PCR40)

16.6.15.38 Pad Configuration Register 41 (SIU_PCR41)

Figure 16-53. Pad Configuration Register (SIU_PCR41)

SIU_BASE+0x90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[12] or ADDR[28] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as DATA[12], ADDR[28] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[12] or ADDR[28], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[12] or ADDR[28].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-55. SIU_PCR40 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[12] EBI Data bus I/O 0b01

ALT1 ADDR[28] EBI Address bus I/O 0b10

GPIO GPIO[40] SIU GPIO I/O 0b00

SIU_BASE+0x92

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[13] or ADDR[29] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as DATA[13], ADDR[29] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[13] or ADDR[29], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[13] or ADDR[29].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 429

16.6.15.39 Pad Configuration Register 42 (SIU_PCR42)

Figure 16-54. Pad Configuration Register (SIU_PCR42)

Table 16-56. SIU_PCR41 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[13] EBI Data bus I/O 0b01

ALT1 ADDR[29] EBI Address bus I/O 0b10

GPIO GPIO[41] SIU GPIO I/O 0b00

SIU_BASE+0x94

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[14] or ADDR[30] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as DATA[14], ADDR[30] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[14] or ADDR[30], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[14] or ADDR[30].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-57. SIU_PCR42 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[14] EBI Data bus I/O 0b01

ALT1 ADDR[30] EBI Address bus I/O 0b10

GPIO GPIO[42] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

430 Freescale Semiconductor

16.6.15.40 Pad Configuration Register 43 (SIU_PCR43)

Figure 16-55. Pad Configuration Register (SIU_PCR43)

16.6.15.41 Pad Configuration Register 62 (SIU_PCR62)

Figure 16-56. Pad Configuration Register (SIU_PCR62)

SIU_BASE+0x96

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DATA[15] or ADDR[31] the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as DATA[15], ADDR[31] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

DSC ODE
3

3 When configured as DATA[15] or ADDR[31], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as DATA[15] or ADDR[31].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-58. SIU_PCR43 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DATA[15] EBI Data bus I/O 0b01

ALT1 ADDR[31] EBI Address bus I/O 0b10

GPIO GPIO[43] SIU GPIO I/O 0b00

SIU_BASE+0xBC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 When configured as RD_WR, the OBE bit has no effect. When configured as GPO, the OBE bit should be set to
one.

IBE
2

2 When configured as RD_WR or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should
be set to one.

DSC ODE
3

3 When configured as RD_WR, the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as RD_WR.

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 431

16.6.15.42 Pad Configuration Register 63 (SIU_PCR63)

Figure 16-57. Pad Configuration Register (SIU_PCR63)

Table 16-59. SIU_PCR62 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary RD_WR EBI Read/write I/O 0b1

GPIO GPIO[62] SIU GPIO I/O 0b0

SIU_BASE+0xBE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as BDIP or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set
to one.

DSC ODE
3

3 When configured as BDIP, the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as BDIP.

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-60. SIU_PCR63PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary BDIP EBI Burst data in
progress

O 0b1

GPIO GPIO[63] SIU GPIO I/O 0b0

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

432 Freescale Semiconductor

16.6.15.43 Pad Configuration Register 64 (SIU_PCR 64)

Figure 16-58. Pad Configuration Register (SIU_PCR64)

16.6.15.44 Pad Configuration Register 65 (SIU_PCR 65)

Figure 16-59. Pad Configuration Register (SIU_PCR65)

SIU_BASE+0xC0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as WE[0]/BE[0] or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should
be set to one.

DSC ODE
3

3 When configured as WE[0]/BE[0], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as WE[0]/BE[0].

WPS
W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-61. SIU_PCR64 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary WE[0]/BE[0] EBI Write enable / byte
enable

O 0b1

GPIO GPIO[64] SIU GPIO I/O 0b0

SIU_BASE+0xC2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as WE[1]/BE[1] or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should
be set to one.

DSC ODE
3

3 When configured as WE[1]/BE[1], the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as WE[1]/BE[1].

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 433

16.6.15.45 Pad Configuration Register 68 (SIU_PCR68)

Figure 16-60. Pad Configuration Register (SIU_PCR68)

Table 16-62. SIU_PCR65 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary WE[1]/BE[1] EBI Write enable / byte
enable

O 0b1

GPIO GPIO[65] SIU GPIO I/O 0b0

SIU_BASE+0xC8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as OE or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set
to one.

DSC ODE
3

3 When configured as OE, the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as OE.

WPS
W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-63. SIU_PCR68 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary OE EBI Output enable O 0b1

GPIO GPIO[68] SIU GPIO I/O 0b0

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

434 Freescale Semiconductor

16.6.15.46 Pad Configuration Register 69 (SIU_PCR69)

Figure 16-61. Pad Configuration Register (SIU_PCR69)

16.6.15.47 Pad Configuration Register 70 (SIU_PCR70)

Figure 16-62. Pad Configuration Register (SIU_PCR70)

SIU_BASE+0xCA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as TS, the OBE bit has no effect. When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as TS or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set
to one.

DSC ODE
3

3 When configured as TS, the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as TS.

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-64. SIU_PCR69 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary TS EBI Transfer start I/O 0b01

ALT1 ALE EBI Address latch
enable

O 0b10

GPIO GPIO[69] SIU GPIO I/O 0b00

SIU_BASE+0xCC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as TA, the OBE bit has no effect. When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as TA, or GPIO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set
to one.

DSC ODE
3

3 When configured as TA and external master operation is enabled, the ODE bit should be set to zero.

HYS 0 0 WPE
4

4 See the EBI section for weak pull up settings when configured as TA.

WPS
4

W
Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 435

16.6.15.48 Pad Configuration Registers 75–82 (SIU_PCR75–SIU_PCR82)

The SIU_PCR75–SIU_PCR82 registers control the pin function, direction, and static electrical attributes
of the MDO[4:11]_GPIO[75:82] pins. GPIO is the default function at reset for these pins.

NOTE

The full port mode (FPM) and NEXCFG bits in the Nexus port controller
(NPC) port configuration register control whether these pins function as
MDO[4:11] or GPIO[75:82]. When the FPM and NEXCFG bits are set, the
NPC enables the MDO port enable, and disables GPIO. When the FPM or
NEXCFG bit is cleared, the NPC disables the MDO port enable, and enables
GPIO.

16.6.15.48.1 Pad Configuration Register 75 (SIU_PCR75)

Figure 16-63. Pad Configuration Register (SIU_PCR75)

Table 16-65. SIU_PCR70 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using
the IBE and OBE bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching
between input and output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary TA EBI Transfer
acknowledge

I/O 0b001

ALT1 TS EBI Transfer start O 0b010

GPIO GPIO[70] SIU GPIO I/O 0b000

SIU_BASE+0xD6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 This bit applies only to GPIO operation.

IBE
1

0 0 ODE
2

2 The ODE bit should be set to zero for MDO operation.

HYS
3

3 The HYS bit has no effect on MDO operation.

SRC WPE
4

4 The WPE bit should be set to zero for MDO operation.

WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-66. SIU_PCR75 PA values

Signal Name Module Description I/O1,2 PA value

Primary MDO[4] Nexus Message data out O 0b01

ALT1 ETPU_A[2] eTPU eTPU channel O 0b10

GPIO GPIO[75] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

436 Freescale Semiconductor

16.6.15.48.2 Pad Configuration Register 76 (SIU_PCR76)

Figure 16-64. Pad Configuration Register (SIU_PCR76)

16.6.15.48.3 Pad Configuration Register 77 (SIU_PCR77)

Figure 16-65. Pad Configuration Register (SIU_PCR77)

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0xD8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 This bit applies only to GPIO operation.

IBE
1

0 0 ODE
2

2 The ODE bit should be set to zero for MDO operation.

HYS
3

3 The HYS bit has no effect on MDO operation.

SRC WPE
4

4 The WPE bit should be set to zero for MDO operation.

WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-67. SIU_PCR76 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary MDO[5] Nexus Message data out O 0b01

ALT1 ETPU_A[4] eTPU eTPU channel O 0b10

GPIO GPIO[76] SIU GPIO I/O 0b00

SIU_BASE+0xDA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 This bit applies only to GPIO operation.

IBE
1

0 0 ODE
2

2 The ODE bit should be set to zero for MDO operation.

HYS
3

3 The HYS bit has no effect on MDO operation.

SRC WPE
4

4 The WPE bit should be set to zero for MDO operation.

WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 437

16.6.15.48.4 Pad Configuration Register 78 (SIU_PCR78)

Figure 16-66. Pad Configuration Register (SIU_PCR78)

Table 16-68. SIU_PCR77 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary MDO[6] Nexus Message data out O 0b01

ALT1 ETPU_A[13] eTPU eTPU channel O 0b10

GPIO GPIO[77] SIU GPIO I/O 0b00

SIU_BASE+0xDC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 This bit applies only to GPIO operation.

IBE
1

0 0 ODE
2

2 The ODE bit should be set to zero for MDO operation.

HYS
3

3 The HYS bit has no effect on MDO operation.

SRC WPE
4

4 The WPE bit should be set to zero for MDO operation.

WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-69. SIU_PCR78 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary MDO[7] Nexus Message data out O 0b01

ALT1 ETPU_A[19] eTPU eTPU channel O 0b10

GPIO GPIO[78] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

438 Freescale Semiconductor

16.6.15.48.5 Pad Configuration Register 79 (SIU_PCR79)

Figure 16-67. Pad Configuration Register (SIU_PCR79)

16.6.15.48.6 Pad Configuration Register 80 (SIU_PCR80)

Figure 16-68. Pad Configuration Register (SIU_PCR80)

SIU_BASE+0xDE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 This bit applies only to GPIO operation.

IBE
1

0 0 ODE
2

2 The ODE bit should be set to zero for MDO operation.

HYS
3

3 The HYS bit has no effect on MDO operation.

SRC WPE
4

4 The WPE bit should be set to zero for MDO operation.

WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-70. SIU_PCR79 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary MDO[8] Nexus Message data out O 0b01

ALT1 ETPU_A[21] eTPU eTPU channel O 0b10

GPIO GPIO[79] SIU GPIO I/O 0b00

SIU_BASE+0xE0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 This bit applies only to GPIO operation.

IBE
1

0 0 ODE
2

2 The ODE bit should be set to zero for MDO operation.

HYS
3

3 The HYS bit has no effect on MDO operation.

SRC WPE
4

4 The WPE bit should be set to zero for MDO operation.

WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-71. SIU_PCR80 PA values

Signal Name Module Description I/O1,2 PA value

Primary MDO[9] Nexus Message data out O 0b01

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 439

16.6.15.48.7 Pad Configuration Register 81 (SIU_PCR81)

Figure 16-69. Pad Configuration Register (SIU_PCR81)

ALT1 ETPU_A[25] eTPU eTPU channel O 0b10

GPIO GPIO[80] SIU GPIO I/O 0b00

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0xE2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 This bit applies only to GPIO operation.

IBE
1

0 0 ODE
2

2 The ODE bit should be set to zero for MDO operation.

HYS
3

3 The HYS bit has no effect on MDO operation.

SRC WPE
4

4 The WPE bit should be set to zero for MDO operation.

WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-72. SIU_PCR81 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary MDO[10] Nexus Message data out O 0b01

ALT1 ETPU_A[27] eTPU eTPU channel O 0b10

GPIO GPIO[81] SIU GPIO I/O 0b00

Table 16-71. SIU_PCR80 PA values

Signal Name Module Description I/O1,2 PA value

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

440 Freescale Semiconductor

16.6.15.48.8 Pad Configuration Register 82 (SIU_PCR82)

Figure 16-70. Pad Configuration Register (SIU_PCR82)

16.6.15.49 Pad Configuration Register 83 (SIU_PCR83)

Figure 16-71. Pad Configuration Register (SIU_PCR83)

SIU_BASE+0xE4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 This bit applies only to GPIO operation.

IBE
1

0 0 ODE
2

2 The ODE bit should be set to zero for MDO operation.

HYS
3

3 The HYS bit has no effect on MDO operation.

SRC WPE
4

4 The WPE bit should be set to zero for MDO operation.

WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-73. SIU_PCR82 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary MDO[11] Nexus Message data out O 0b01

ALT1 ETPU_A[29] eTPU eTPU channel O 0b10

GPIO GPIO[82] SIU GPIO I/O 0b00

SIU_BASE+0xE6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as CAN_A_TX or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. When configured as SCI_A_TX both OBE and IBE are set to one automatically. Setting the IBE bit
to zero reduces power consumption. When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-74. SIU_PCR83 PA values

Signal Name Module Description I/O1,2 PA value

Primary CAN_A_TX FlexCAN FlexCAN transmit O 0b01

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 441

16.6.15.50 Pad Configuration Register 84 (SIU_PCR84)

Figure 16-72. Pad Configuration Register (SIU_PCR84)

ALT1 SCI_A_TX eSCI eSCI transmit O 0b10

GPIO GPIO[83] SIU GPIO I/O 0b00

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0xE8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as CAN_A_RX or SCI_A_RX, the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-75. SIU_PCR84 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary CAN_A_RX FlexCAN FlexCAN receive I 0b01

ALT1 SCI_A_RX eSCI eSCI receive I 0b10

GPIO GPIO[84] SIU GPIO I/O 0b00

Table 16-74. SIU_PCR83 PA values

Signal Name Module Description I/O1,2 PA value

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

442 Freescale Semiconductor

16.6.15.51 Pad Configuration Register 85 (SIU_PCR85)

Figure 16-73. Pad Configuration Register (SIU_PCR85)

16.6.15.52 Pad Configuration Register 86 (SIU_PCR86)

Figure 16-74. Pad Configuration Register (SIU_PCR86)

SIU_BASE+0xEA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as CAN_B_TX, DSPI_C_PCS[3], SCI_C_TX or GPO, the IBE bit may be set to one to reflect the
pin state in the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When
configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-76. SIU_PCR85 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary CAN_B_TX FlexCAN FlexCAN transmit O 0b001

ALT1 DSPI_C_PCS[3] DSPI Chip select O 0b010

ALT2 SCI_C_TX eSCI eSCI transmit O 0b100

GPIO GPIO[85] SIU GPIO I/O 0b000

SIU_BASE+0xEC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as CAN_B_RX or SCI_C_RX, the OBE bit has no effect. When configured as GPO, the OBE bit
should be set to one.

IBE
2

2 When configured as DSPI_C_PCS[4] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 443

16.6.15.53 Pad Configuration Register 87 (SIU_PCR87)

Figure 16-75. Pad Configuration Register (SIU_PCR87)

Table 16-77. SIU_PCR86 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary CAN_B_RX FlexCAN FlexCAN receive I 0b001

ALT1 DSPI_C_PCS[4] DSPI Chip select O 0b010

ALT2 SCI_C_RX eSCI eSCI receive I 0b100

GPIO GPIO[86] SIU GPIO I/O 0b000

SIU_BASE+0xEE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as CAN_C_TX, DSPI_D_PCS[3] or GPO, the IBE bit may be set to one to reflect the pin state in
the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI,
the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-78. SIU_PCR87 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary CAN_C_TX FlexCAN FlexCAN transmit O 0b01

ALT1 DSPI_D_PCS[3] DSPI Chip select O 0b10

GPIO GPIO[87] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

444 Freescale Semiconductor

16.6.15.54 Pad Configuration Register 88 (SIU_PCR88)

Figure 16-76. Pad Configuration Register (SIU_PCR88)

16.6.15.55 Pad Configuration Register 89 (SIU_PCR89)

Figure 16-77. Pad Configuration Register (SIU_PCR89)

SIU_BASE+0xF0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as CAN_C_RX, the OBE bit has no effect. When configured as GPO, the OBE bit should be set
to one.

IBE
2

2 When configured as CAN_C_RX, DSPI_D_PCS[4] or GPO, the IBE bit may be set to one to reflect the pin state in
the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI,
the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-79. SIU_PCR88 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary CAN_C_RX FlexCAN FlexCAN receive I 0b01

ALT1 DSPI_D_PCS[4] DSPI Chip select O 0b10

GPIO GPIO[88] SIU GPIO I/O 0b00

SIU_BASE+0xF2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 PA OBE
1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as SCI_A_TX, EMIOS[13] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. For SCI loop back operation the IBE bit must be set to one. Setting the IBE bit to zero
reduces power consumption. When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 445

16.6.15.56 Pad Configuration Register 90 (SIU_PCR90)

Figure 16-78. Pad Configuration Register (SIU_PCR90)

Table 16-80. SIU_PCR89 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary SCI_A_TX eSCI eSCI transmit O 0b01

ALT1 EMIOS[13] eMIOS eMIOS channel O 0b10

GPIO GPIO[89] SIU GPIO I/O 0b00

SIU_BASE+0xF4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as SCI_A_RX the OBE bit has no effect. When configured as GPO, the OBE bit should be set to
one.

IBE
2

2 When configured as EMIOS[15] or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. For SCI loop back operation the IBE bit must be set to one. Setting the IBE bit to zero reduces power
consumption. When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-81. SIU_PCR90 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary SCI_A_RX eSCI eSCI receive I 0b01

ALT1 EMIOS[15] eMIOS eMIOS channel O 0b10

GPIO GPIO[90] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

446 Freescale Semiconductor

16.6.15.57 Pad Configuration Register 91 (SIU_PCR91)

Figure 16-79. Pad Configuration Register (SIU_PCR91)

16.6.15.58 Pad Configuration Register 92 (SIU_PCR92)

Figure 16-80. Pad Configuration Register (SIU_PCR92)

SIU_BASE+0xF6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as SCI_B_TX, DSPI_D_PCS[1] or GPO, the IBE bit may be set to one to reflect the pin state in
the corresponding GPDI register. For SCI loop back operation the IBE bit must be set to one. Setting the IBE bit to
zero reduces power consumption. When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-82. SIU_PCR91 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary SCI_B_TX eSCI eSCI transmit O 0b01

ALT1 DSPI_D_PCS[1] DSPI Chip select O 0b10

GPIO GPIO[91] SIU GPIO I/O 0b00

SIU_BASE+0xF8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as SCI_B_RX, the OBE bit has no effect. When configured as GPO, the OBE bit should be set to
one.

IBE
2

2 When configured as DSPI_D_PCS[5] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. For SCI loop back operation the IBE bit must be set to one. Setting the IBE bit to zero
reduces power consumption. When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-83. SIU_PCR92 PA values

Signal Name Module Description I/O1,2 PA value

Primary SCI_B_RX eSCI eSCI receive I 0b01

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 447

16.6.15.59 Pad Configuration Register 93 (SIU_PCR93)

Figure 16-81. Pad Configuration Register (SIU_PCR93)

ALT1 DSPI_D_PCS[5] DSPI Chip select O 0b10

GPIO GPIO[92] SIU GPIO I/O 0b00

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0xFA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA

1

1 The SCKA function is not available on the MPC5644A. Do not select 0b01 or 0b11 for the PA field.

OBE
2

2 When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as DSPI_C_PCS[1] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-84. SIU_PCR93 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

SCKA3

3 This signal name is used to support legacy naming.

ALT1 DSPI_C_PCS[1] DSPI Chip select O 0b10

GPIO GPIO[93] SIU GPIO I/O 0b00

Table 16-83. SIU_PCR92 PA values

Signal Name Module Description I/O1,2 PA value

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

448 Freescale Semiconductor

16.6.15.60 Pad Configuration Register 94 (SIU_PCR94)

Figure 16-82. Pad Configuration Register (SIU_PCR94)

16.6.15.61 Pad Configuration Register 95 (SIU_PCR95)

Figure 16-83. Pad Configuration Register (SIU_PCR95)

SIU_BASE+0xFC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA

1

1 The SINA function is not available on the MPC5644A. Do not select 0b01 or 0b11 for the PA field.

OBE
2

2 When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as DSPI_C_PCS[2] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-85. SIU_PCR94 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

SINA3

3 This signal name is used to support legacy naming.

ALT1 DSPI_C_PCS[2] DSPI Chip select O 0b10

GPIO GPIO[94] SIU GPIO I/O 0b00

SIU_BASE+0xFE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA

1

1 The SOUTA function is not available on the MPC5644A. Do not select 0b01 or 0b11 for the PA field.

OBE
2

2 When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as DSPI_C_PCS[5] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 449

16.6.15.62 Pad Configuration Register 96 (SIU_PCR96)

Figure 16-84. Pad Configuration Register (SIU_PCR96)

Table 16-86. SIU_PCR95 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

SOUTA3

3 This signal name is used to support legacy naming.

ALT1 DSPI_C_PCS[5] DSPI Chip select O 0b10

GPIO GPIO[95] SIU GPIO I/O 0b00

SIU_BASE+0x100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA

1

1 The PCSA[0] function is not available on the MPC5644A. Do not select 0b01 or 0b11 for the PA field.

OBE
2

2 When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as DSPI_D_PCS[2] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-87. SIU_PCR96 PA values

Signal Name Module DescrIption I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

PCSA03

3 This signal name is used to support legacy naming.

ALT1 DSPI_D_PCS[2] DSPI Chip select O 0b10

GPIO GPIO[96] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

450 Freescale Semiconductor

16.6.15.63 Pad Configuration Register 97 (SIU_PCR97)

Figure 16-85. Pad Configuration Register (SIU_PCR97)

16.6.15.64 Pad Configuration Register 98 (SIU_PCR98)

Figure 16-86. Pad Configuration Register (SIU_PCR98)

SIU_BASE+0x102

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA

1

1 The PCSA[1] function is not available on the MPC5644A MCU. Do not select 0b01 or 0b11 for the PA field.

OBE
2

2 When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as DSPI_B_PCS[2] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-88. SIU_PCR97 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

PCSA13

3 This signal name is used to support legacy naming.

ALT1 DSPI_B_PCS[2] DSPI Chip select O 0b10

GPIO GPIO[97] SIU GPIO I/O 0b00

SIU_BASE+0x104

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA

1

1 The PCSA[2] function is not available on the MPC5644A. Do not select 0b01 or 0b11 for the PA field.

OBE
2

2 When configured as DSPI_D_SCK, the OBE bit should be set to one for master operation, and set to zero for slave
operation. When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as DSPI_D_SCK in slave operation, the IBE bit should be set to one. When configured as
DSPI_D_SCK in master operation or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should
be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 451

16.6.15.65 Pad Configuration Register 99 (SIU_PCR99)

Figure 16-87. Pad Configuration Register (SIU_PCR99)

Table 16-89. SIU_PCR98 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

ALT1 DSPI_D_SCK DSPI Clock I/O 0b10

GPIO GPIO[98] SIU GPIO I/O 0b00

SIU_BASE+0x106

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA

1

1 The PCSA[3] function is not available on the MPC5644A. Do not select 0b01 or 0b11 for the PA field.

OBE
2

2 When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-90. SIU_PCR99 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

ALT1 DSPI_D_SIN DSPI Input I 0b10

GPIO GPIO[99] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

452 Freescale Semiconductor

16.6.15.66 Pad Configuration Register 100 (SIU_PCR100)

Figure 16-88. Pad Configuration Register (SIU_PCR100)

16.6.15.67 Pad Configuration Register 101 (SIU_PCR101)

Figure 16-89. Pad Configuration Register (SIU_PCR101)

SIU_BASE+0x108

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA

1

1 The PCSA[4] function is not available on the MPC5644A. Do not select 0b01 or 0b11 for the PA field.

OBE
2

2 When configured as DSPI_D_SOUT, the OBE bit has no effect. When configured as GPO, the OBE bit should be
set to one.

IBE
3

3 When configured as DSPI_D_SOUT or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-91. SIU_PCR100 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

PCSA43

3 This signal name is used to support legacy naming.

ALT1 DSPI_D_SOUT DSPI Output O 0b10

GPIO GPIO[100] SIU GPIO I/O 0b00

SIU_BASE+0x10A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA

1

1 The PCSA[5] function is not available on the MPC5644A. Do not select 0b01 or 0b11 for the PA field.

OBE
2

2 When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as DSPI_B_PCS[3] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 453

16.6.15.68 Pad Configuration Register 102 (SIU_PCR102)

Figure 16-90. Pad Configuration Register (SIU_PCR102)

Table 16-92. SIU_PCR101 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

PCSA53

3 This signal name is used to support legacy naming.

ALT1 DSPI_B_PCS[3] DSPI Chip select O 0b10

GPIO GPIO[101] SIU GPIO I/O 0b00

SIU_BASE+0x10C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DSPI_B_SCK, the OBE bit should be set to one for master operation, and set to zero for slave
operation. When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as DSPI_B_SCK in slave operation the IBE bit should be set to one. When configured as
DSPI_B_SCK in master operation or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should
be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-93. SIU_PCR102 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DSPI_B_SCK DSPI Clock I/O 0b01

ALT1 DSPI_C_PCS[1] DSPI Chip select O 0b10

GPIO GPIO[102] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

454 Freescale Semiconductor

16.6.15.69 Pad Configuration Register 103 (SIU_PCR103)

Figure 16-91. Pad Configuration Register (SIU_PCR103)

16.6.15.70 Pad Configuration Register 104 (SIU_PCR104)

Figure 16-92. Pad Configuration Register (SIU_PCR104)

SIU_BASE+0x10E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DSPI_B_SIN, the OBE bit should be set to zero. When configured as PCS, the OBE bit should
be set to one.

IBE
2

2 When configured as DSPI_B_SIN or DSPI_C_PCS[2], the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-94. SIU_PCR103 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DSPI_B_SIN DSPI Input I 0b01

ALT1 DSPI_C_PCS[2] DSPI Chip select O 0b10

GPIO GPIO[103] SIU GPIO I/O 0b00

SIU_BASE+0x110

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as DSPI_B_SOUT or DSPI_C_PCS[5] or GPO, the IBE bit may be set to one to reflect the pin
state in the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured
as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-95. SIU_PCR104 PA values

Signal Name Module Description I/O1,2 PA value

Primary DSPI_B_SOUT DSPI Output O 0b01

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 455

16.6.15.71 Pad Configuration Register 105 (SIU_PCR105)

Figure 16-93. Pad Configuration Register (SIU_PCR105)

ALT1 DSPI_C_PCS[5] DSPI Chip select O 0b10

GPIO GPIO[104] SIU GPIO I/O 0b00

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0x112

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as DSPI_B_PCS[0], DSPI_D_PCS[2] or GPO, the IBE bit may be set to one to reflect the pin state
in the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as
GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-96. SIU_PCR105 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DSPI_B_PCS[0] DSPI Chip select I/O 0b01

ALT1 DSPI_D_PCS[2] DSPI Chip select O 0b10

GPIO GPIO[105] SIU GPIO I/O 0b00

Table 16-95. SIU_PCR104 PA values

Signal Name Module Description I/O1,2 PA value

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

456 Freescale Semiconductor

16.6.15.72 Pad Configuration Register 106 (SIU_PCR106)

Figure 16-94. Pad Configuration Register (SIU_PCR106)

16.6.15.73 Pad Configuration Register 107 (SIU_PCR107)

Figure 16-95. Pad Configuration Register (SIU_PCR107)

SIU_BASE+0x114

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DSPI_D_PCS[0], the OBE bit should be set to one for master operation, and set to zero for
slave operation. When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as DSPI_D_PCS[0] in slave operation, the IBE bit should be set to one. When configured as PCS
in master operation or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-97. SIU_PCR106 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DSPI_B_PCS[1] DSPI Chip select O 0b01

ALT1 DSPI_D_PCS[0] DSPI Chip select I/O 0b10

GPIO GPIO[106] SIU GPIO I/O 0b00

SIU_BASE+0x116

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as DSPI_B_PCS[2], DSPI_C_SOUT or GPO, the IBE bit may be set to one to reflect the pin state
in the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as
GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-98. SIU_PCR107 PA values

Signal Name Module Description I/O1,2 PA value

Primary DSPI_B_PCS[2] DSPI Chip select O 0b01

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 457

16.6.15.74 Pad Configuration Register 108 (SIU_PCR108)

Figure 16-96. Pad Configuration Register (SIU_PCR108)

ALT1 DSPI_C_SOUT DSPI Output O 0b10

GPIO GPIO[107] SIU GPIO I/O 0b00

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0x118

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DSPI_C_SIN, the OBE bit has no effect. When configured as GPO, the OBE bit should be set
to one.

IBE
2

2 When configured as DSPI_B_PCS[3] or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-99. SIU_PCR108 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DSPI_B_PCS[3] DSPI Chip select O 0b01

ALT1 DSPI_C_SIN DSPI Input I 0b10

GPIO GPIO[108] SIU GPIO I/O 0b00

Table 16-98. SIU_PCR107 PA values

Signal Name Module Description I/O1,2 PA value

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

458 Freescale Semiconductor

16.6.15.75 Pad Configuration Register 109 (SIU_PCR109)

Figure 16-97. Pad Configuration Register (SIU_PCR109)

16.6.15.76 Pad Configuration Register 110 (SIU_PCR110)

Figure 16-98. Pad Configuration Register (SIU_PCR110)

SIU_BASE+0x11A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DSPI_C_SCK, the OBE bit should be set to one for master operation, and set to zero for slave
operation. When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as DSPI_C_SCK in slave operation, the IBE bit should be set to one. When configured as
DSPI_B_PCS[4] or DSPI_C_SCK in master operation or GPO, the IBE bit may be set to one to reflect the pin state
in the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as
GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-100. SIU_PCR109 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DSPI_B_PCS[4] DSPI Chip select O 0b01

ALT1 DSPI_C_SCK DSPI Clock I/O 0b10

GPIO GPIO[109] SIU GPIO I/O 0b00

SIU_BASE+0x11C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as DSPI_C_PCS[0], the OBE bit should be set to one for master operation, and set to zero for
slave operation. When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as DSPI_C_PCS[0] in slave operation, the IBE bit should be set to one. When configured as PCS
in master operation or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 459

16.6.15.77 Pad Configuration Register 113 (SIU_PCR113)

Figure 16-99. Pad Configuration Register (SIU_PCR113)

16.6.15.78 Pad Configuration Register 114–125 (SIU_PCR114–SIU_PCR125)

The SIU_PCR114 – SIU_PCR125 registers control the pin function, direction, and static electrical
attributes of the ETPUA0 – ETPUA11 pins, which host the ETPU_A[0:11], ETPU_A[12:23] and
GPIO[114:125] signals.

Table 16-101. SIU_PCR110 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary DSPI_B_PCS[5] DSPI Chip select O 0b01

ALT1 DSPI_C_PCS[0] DSPI Chip select I/O 0b10

GPIO GPIO[110] SIU GPIO I/O 0b00

SIU_BASE+0x122

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 When configured as TCRCLKA or IRQ, the OBE bit has no effect. When configured as GPO, the OBE bit should
be set to one.

IBE
2

2 When configured as TCRCLKA or IRQ or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the
IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-102. SIU_PCR113 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary TCRCLKA eTPU TCR time base input clock I 0b01

ALT1 IRQ[7] SIU External interrupt I 0b10

GPIO GPIO[113] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

460 Freescale Semiconductor

NOTE

Only the output channels of the ETPU_A[12:23] signals are connected to
pins. Both the input and output channels of the ETPU_A[0:11] signals are
connected to pins.

16.6.15.78.1 Pad Configuration Register 114 (SIU_PCR114)

Figure 16-100. Pad Configuration Register (SIU_PCR114)

SIU_BASE+0x124

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[0] and GPIO[114] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[0] and GPIO[114] when configured as inputs. When configured as
ETPU_A[12] or ETPU_A[19] or when ETPU_A[0] or GPIO[114] are configured as outputs, the IBE bit may be set
to one to reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[0] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-103. SIU_PCR114 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[0] eTPU eTPU channel I/O 0b001

ALT1 ETPU_A[12] eTPU eTPU channel O 0b010

ALT2 ETPU_A[19] eTPU eTPU channel O 0b100

GPIO GPIO[114] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 461

16.6.15.78.2 Pad Configuration Register 115 (SIU_PCR115)

Figure 16-101. Pad Configuration Register (SIU_PCR115)

16.6.15.78.3 Pad Configuration Register 116 (SIU_PCR116)

Figure 16-102. Pad Configuration Register (SIU_PCR116)

SIU_BASE+0x126

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[1] and GPIO[115] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[1] and GPIO[113] when configured as inputs. When configured as
ETPU_A[13] or when ETPU_A[1] or GPIO[115] are configured as outputs, the IBE bit may be set to one to reflect
the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[1] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-104. SIU_PCR115 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[1] eTPU eTPU channel I/O 0b01

ALT1 ETPU_A[13] eTPU eTPU channel O 0b10

GPIO GPIO[115] SIU GPIO I/O 0b00

SIU_BASE+0x128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[2] and GPIO[116] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[2] and GPIO[116] when configured as inputs. When configured as
ETPU_A[14] or when ETPU_A[2] or GPIO[116] are configured as outputs, the IBE bit may be set to one to reflect
the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[2] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

462 Freescale Semiconductor

16.6.15.78.4 Pad Configuration Register 117 (SIU_PCR117)

Figure 16-103. Pad Configuration Register (SIU_PCR117)

Table 16-105. SIU_PCR116 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[2] eTPU eTPU channel I/O 0b01

ALT1 ETPU_A[14] eTPU eTPU channel O 0b10

GPIO GPIO[116] SIU GPIO I/O 0b00

SIU_BASE+0x12A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[3] and GPIO[117] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[3] and GPIO[117] when configured as inputs. When configured as
ETPU_A[15] or when ETPU_A[3] or GPIO[117] are configured as outputs, the IBE bit may be set to one to reflect
the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[3] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-106. SIU_PCR117 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[3] eTPU eTPU channel I/O 0b01

ALT1 ETPU_A[15] eTPU eTPU channel O 0b10

GPIO GPIO[117] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 463

16.6.15.78.5 Pad Configuration Register 118 (SIU_PCR118)

Figure 16-104. Pad Configuration Register (SIU_PCR118)

16.6.15.78.6 Pad Configuration Register 119 (SIU_PCR119)

Figure 16-105. Pad Configuration Register (SIU_PCR119)

SIU_BASE+0x12C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[4] and GPIO[118] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[4] and GPIO[118] when configured as inputs. When configured as
ETPU_A[16] or FR_B_TX or when ETPU_A[4] or GPIO[118] are configured as outputs, the IBE bit may be set to
one to reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[4] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-107. SIU_PCR118 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[4] eTPU eTPU channel I/O 0b0001

ALT1 ETPU_A[16] eTPU eTPU channel O 0b0010

ALT3 FR_B_TX FlexRay FlexRay transmit O 0b1000

GPIO GPIO[118] SIU GPIO I/O 0b0000

SIU_BASE+0x12E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[5] and GPIO[119] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[5] and GPIO[119] when configured as inputs. When configured as
ETPU_A[17] or when ETPU_A[5] or GPIO[119] are configured as outputs, the IBE bit may be set to one to reflect
the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[5] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

464 Freescale Semiconductor

16.6.15.78.7 Pad Configuration Register 120 (SIU_PCR120)

Figure 16-106. Pad Configuration Register (SIU_PCR120)

Table 16-108. SIU_PCR119 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[5] eTPU eTPU channel I/O 0b0001

ALT1 ETPU_A[17] eTPU eTPU channel O 0b0010

ALT2 DSPI_B_SCK_LVDS DSPI LVDS clock O 0b0100

ALT3 FR_B_TX_EN FlexRay FlexRay transmit enable O 0b1000

GPIO GPIO[119] SIU GPIO I/O 0b0000

SIU_BASE+0x130

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[6] and GPIO[120] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[6] and GPIO[120] when configured as inputs. When configured as
ETPU_A[18] or when ETPU_A[6] or GPIO[119] are configured as outputs, the IBE bit may be set to one to reflect
the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[6] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-109. SIU_PCR120 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[6] eTPU eTPU channel I/O 0b0001

ALT1 ETPU_A[18] eTPU eTPU channel O 0b0010

ALT2 DSPI_B_SCK_LVDS+ DSPI LVDS+ clock O 0b0100

ALT3 FR_B_RX FlexRay FlexRay receive I 0b1000

GPIO GPIO[120] SIU GPIO I/O 0b0000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 465

16.6.15.78.8 Pad Configuration Register 121 (SIU_PCR121)

Figure 16-107. Pad Configuration Register (SIU_PCR121)

16.6.15.78.9 Pad Configuration Register 122 (SIU_PCR122)

Figure 16-108. Pad Configuration Register (SIU_PCR122)

SIU_BASE+0x132

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[7] and GPIO[121] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[7] and GPIO[121] when configured as inputs. When configured as
ETPU_A[19] or when ETPU_A[7] or GPIO[119] are configured as outputs, the IBE bit may be set to one to reflect
the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[7] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-110. SIU_PCR121 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[7] eTPU eTPU channel I/O 0b0001

ALT1 ETPU_A[19] eTPU eTPU channel O 0b0010

ALT2 DSPI_B_SOUT_LVDS DSPI LVDS output O 0b0100

ALT3 ETPU_A[6] eTPU eTPU channel O 0b1000

GPIO GPIO[121] SIU GPIO I/O 0b0000

SIU_BASE+0x134

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[8] and GPIO[122] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[8] and GPIO[122] when configured as inputs. When configured as
ETPU_A[20] or when ETPU_A[8] or GPIO[122] are configured as outputs, the IBE bit may be set to one to reflect
the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[8] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

466 Freescale Semiconductor

16.6.15.78.10Pad Configuration Register 123 (SIU_PCR123)

Figure 16-109. Pad Configuration Register (SIU_PCR123)

Table 16-111. SIU_PCR122 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[8] eTPU eTPU channel I/O 0b001

ALT1 ETPU_A[20] eTPU eTPU channel O 0b010

ALT2 DSPI_B_SOUT_LVDS+ DSPI LVDS+ output O 0b100

GPIO GPIO[122] SIU GPIO I/O 0b000

SIU_BASE+0x136

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[9] and GPIO[123] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[9] and GPIO[123] when configured as inputs. When configured as
ETPU_A[21] or when ETPU_A[9] or GPIO[123] are configured as outputs, the IBE bit may be set to one to reflect
the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[9] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-112. SIU_PCR123 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[9] eTPU eTPU channel I/O 0b001

ALT1 ETPU_A[21] eTPU eTPU channel O 0b010

ALT2 RCH1_B Reaction Reaction channel O 0b100

GPIO GPIO[123] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 467

16.6.15.78.11Pad Configuration Register 124 (SIU_PCR124)

Figure 16-110. Pad Configuration Register (SIU_PCR124)

16.6.15.78.12Pad Configuration Register 125 (SIU_PCR125)

Figure 16-111. Pad Configuration Register (SIU_PCR125)

SIU_BASE+0x138

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[10] and GPIO[124] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[10] and GPIO[124] when configured as inputs. When configured
as ETPU_A[22] or when ETPU_A[10] or GPIO[124] are configured as outputs, the IBE bit may be set to one to
reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[10] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-113. SIU_PCR124 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[10] eTPU eTPU channel I/O 0b001

ALT1 ETPU_A[22] eTPU eTPU channel O 0b010

ALT2 RCH1_C Reaction Reaction channel O 0b100

GPIO GPIO[124] SIU GPIO I/O 0b000

SIU_BASE+0x13A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPU_A[11] and GPIO[125] when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPU_A[11] and GPIO[125] when configured as inputs. When configured
as ETPU_A[23] or when ETPU_A[11] or GPIO[125] are configured as outputs, the IBE bit may be set to one to
reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[11] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

468 Freescale Semiconductor

16.6.15.79 Pad Configuration Register 126 (SIU_PCR126)

Figure 16-112. Pad Configuration Register (SIU_PCR126)

Table 16-114. SIU_PCR125 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[11] eTPU eTPU channel I/O 0b001

ALT1 ETPU_A[23] eTPU eTPU channel O 0b010

ALT2 RCH4_B Reaction Reaction channel O 0b100

GPIO GPIO[125] SIU GPIO I/O 0b000

SIU_BASE+0x13C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as PCS, the OBE bit has no effect. The OBE bit must be set to one for both ETPUA and GPIO
when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCS, or
ETPUA or GPO outputs, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[12] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-115. SIU_PCR126 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[12] eTPU eTPU channel I/O 0b001

ALT1 DSPI_B_PCS[1] DSPI Chip select O 0b010

ALT2 RCH4_C Reaction Reaction channel O 0b100

GPIO GPIO[126] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 469

16.6.15.80 Pad Configuration Register 127 (SIU_PCR127)

Figure 16-113. Pad Configuration Register (SIU_PCR127)

16.6.15.81 Pad Configuration Register 128 (SIU_PCR128)

Figure 16-114. Pad Configuration Register (SIU_PCR128)

SIU_BASE+0x13E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPUA and GPIO when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCS, or
ETPUA or GPO outputs, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[13] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-116. SIU_PCR127 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[13] eTPU eTPU channel I/O 0b01

ALT1 DSPI_B_PCS[3] DSPI Chip select O 0b10

GPIO GPIO[127] SIU GPIO I/O 0b00

SIU_BASE+0x140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPUA and GPIO when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCS, or
ETPUA or GPO outputs, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[14] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-117. SIU_PCR128 PA values

Signal Name Module Description I/O1,2 PA value

Primary ETPU_A[14] eTPU eTPU channel I/O 0b0001

ALT1 DSPI_B_PCS[4] DSPI Chip select O 0b0010

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

470 Freescale Semiconductor

16.6.15.82 Pad Configuration Register 129 (SIU_PCR129)

Figure 16-115. Pad Configuration Register (SIU_PCR129)

ALT2 ETPU_A[9] eTPU eTPU channel O 0b0100

ALT3 RCH0_A Reaction Reaction channel O 0b1000

GPIO GPIO[128] SIU GPIO I/O 0b0000

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0x142

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPUA and GPIO when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCS, or
ETPUA or GPO outputs, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[15] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-118. SIU_PCR129 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[15] eTPU eTPU channel I/O 0b001

ALT1 DSPI_B_PCS[5] DSPI Chip select O 0b010

ALT2 RCH1_A Reaction Reaction channel O 0b100

GPIO GPIO[129] SIU GPIO I/O 0b000

Table 16-117. SIU_PCR128 PA values

Signal Name Module Description I/O1,2 PA value

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 471

16.6.15.83 Pad Configuration Register 130 (SIU_PCR130)

Figure 16-116. Pad Configuration Register (SIU_PCR130)

16.6.15.84 Pad Configuration Register 131 (SIU_PCR131)

Figure 16-117. Pad Configuration Register (SIU_PCR131)

SIU_BASE+0x144

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPUA and GPIO when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCS, or
ETPUA or GPO outputs, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[16] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-119. SIU_PCR130 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[16] eTPU eTPU channel I/O 0b001

ALT1 DSPI_D_PCS[1] DSPI Chip select O 0b010

ALT2 RCH2_A Reaction Reaction channel O 0b100

GPIO GPIO[130] SIU GPIO I/O 0b000

SIU_BASE+0x146

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPUA and GPIO when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCS, or
ETPUA or GPO outputs, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[17] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

472 Freescale Semiconductor

16.6.15.85 Pad Configuration Register 132 (SIU_PCR132)

Figure 16-118. Pad Configuration Register (SIU_PCR132)

Table 16-120. SIU_PCR131 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[17] eTPU eTPU channel I/O 0b001

ALT1 DSPI_D_PCS[2] DSPI Chip select O 0b010

ALT2 RCH3_A Reaction Reaction channel O 0b100

GPIO GPIO[131] SIU GPIO I/O 0b000

SIU_BASE+0x148

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPUA and GPIO when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCS, or
ETPUA or GPO outputs, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[18] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-121. SIU_PCR132 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[18] eTPU eTPU channel I/O 0b001

ALT1 DSPI_D_PCS[3] DSPI Chip select O 0b010

ALT2 RCH4_A Reaction Reaction channel O 0b100

GPIO GPIO[132] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 473

16.6.15.86 Pad Configuration Register 133 (SIU_PCR133)

Figure 16-119. Pad Configuration Register (SIU_PCR133)

16.6.15.87 Pad Configuration Register 134 (SIU_PCR134)

Figure 16-120. Pad Configuration Register (SIU_PCR134)

SIU_BASE+0x14A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both ETPUA and GPIO when configured as outputs.

IBE
2

2 The IBE bit must be set to one for both ETPUA and GPIO when configured as inputs. When configured as PCS, or
ETPUA or GPO outputs, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[19] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-122. SIU_PCR133 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[19] eTPU eTPU channel I/O 0b001

ALT1 DSPI_D_PCS[4] DSPI Chip select O 0b010

ALT2 RCH5_A Reaction Reaction channel O 0b100

GPIO GPIO[133] SIU GPIO I/O 0b000

SIU_BASE+0x14C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA OBE

1

1 When configured as IRQ, the OBE bit has no effect. The OBE bit must be set to one for both ETPU_A[20] and
GPIO[134] when configured as outputs.

IBE
2

2 When configured as FR_A_TX, IRQ or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to
one for both ETPU_A[20] and GPIO[134] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[20] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

474 Freescale Semiconductor

16.6.15.88 Pad Configuration Register 135 (SIU_PCR135)

Figure 16-121. Pad Configuration Register (SIU_PCR135)

Table 16-123. SIU_PCR134 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[20] eTPU eTPU channel I/O 0b0001

ALT1 IRQ[8] SIU External interrupt I 0b0010

ALT2 RCH0_B Reaction Reaction channel O 0b0100

ALT3 FR_A_TX FlexRay FlexRay transmit O 0b1000

GPIO GPIO[134] SIU GPIO I/O 0b0000

SIU_BASE+0x14E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA OBE

1

1 When configured as IRQ, the OBE bit has no effect. The OBE bit must be set to one for both ETPU_A[21] and
GPIO[135] when configured as outputs.

IBE
2

2 When configured as FR_A_RX, IRQ or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to
one for both ETPU_A[21] and GPIO[135] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[21] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-124. SIU_PCR135 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[21] eTPU eTPU channel I/O 0b0001

ALT1 IRQ[9] SIU External interrupt I 0b0010

ALT2 RCH0_C Reaction Reaction channel O 0b0100

ALT3 FR_A_RX FlexRay FlexRay receive I 0b1000

GPIO GPIO[135] SIU GPIO I/O 0b0000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 475

16.6.15.89 Pad Configuration Register 136 (SIU_PCR136)

Figure 16-122. Pad Configuration Register (SIU_PCR136)

16.6.15.90 Pad Configuration Register 137 (SIU_PCR137)

Figure 16-123. Pad Configuration Register (SIU_PCR137)

SIU_BASE+0x150

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as IRQ, the OBE bit has no effect. The OBE bit must be set to one for both ETPU_A[22] and
GPIO[136] when configured as outputs.

IBE
2

2 When configured as ETPU_A[17], IRQ or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to
one for both ETPU_A[22] and GPIO[136] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[22] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-125. SIU_PCR136 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[22] eTPU eTPU channel I/O 0b001

ALT1 IRQ[10] SIU External interrupt I 0b010

ALT2 ETPU_A[17] eTPU eTPU channel O 0b100

GPIO GPIO[136] SIU GPIO I/O 0b000

SIU_BASE+0x152

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA OBE

1

1 When configured as IRQ, the OBE bit has no effect. The OBE bit must be set to one for both ETPU_A[23] and
GPIO[137] when configured as outputs.

IBE
2

2 When configured as ETPU_A[21], FR_A_TX_EN, IRQ or GPO, the IBE bit may be set to one to reflect the pin state
in the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be
set to one for both ETPU_A[23] and GPIO[137] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[23] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

476 Freescale Semiconductor

16.6.15.91 Pad Configuration Register 138 (SIU_PCR138)

Figure 16-124. Pad Configuration Register (SIU_PCR138)

Table 16-126. SIU_PCR137 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[23] eTPU eTPU channel I/O 0b0001

ALT1 IRQ[11] SIU External interrupt I 0b0010

ALT2 ETPU_A[21] eTPU eTPU channel O 0b0100

ALT3 FR_A_TX_EN FlexRay FlexRay transmit enable O 0b1000

GPIO GPIO[137] SIU GPIO I/O 0b0000

SIU_BASE+0x154

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as IRQ, the OBE bit has no effect. The OBE bit must be set to one for both ETPU_A[24] and
GPIO[138] when configured as outputs.

IBE
2

2 When configured as DSPI_C_SCK_LVDS, IRQ or GPO, the IBE bit may be set to one to reflect the pin state in
the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set
to one for both ETPU_A[24] and GPIO[138] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[24] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-127. SIU_PCR138 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[24]3

3 The eTPU function controlled by this register has an additional dependency on the SIU_ISEL8 register settings.
Please see Section 16.6.22, IMUX Select Register 8 (SIU_ISEL8), for more detail.

eTPU eTPU channel I/O 0b001

ALT1 IRQ[12] SIU External interrupt I 0b010

ALT2 DSPI_C_SCK_LVDS DSPI LVDS clock O 0b100

GPIO GPIO[138] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 477

16.6.15.92 Pad Configuration Register 139 (SIU_PCR139)

Figure 16-125. Pad Configuration Register (SIU_PCR139)

16.6.15.93 Pad Configuration Register 140 (SIU_PCR140)

Figure 16-126. Pad Configuration Register (SIU_PCR140)

SIU_BASE+0x156

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as IRQ, the OBE bit has no effect. The OBE bit must be set to one for both ETPU_A[25] and
GPIO[139] when configured as outputs.

IBE
2

2 When configured as IRQ, DSPI_C_SCK_LVDS+ or GPO, the IBE bit may be set to one to reflect the pin state in
the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set
to one for both ETPU_A[25] and GPIO[139] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[25] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-128. SIU_PCR139 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[25]3

3 The eTPU function controlled by this register has an additional dependency on the SIU_ISEL8 register settings.
Please see Section 16.6.22, IMUX Select Register 8 (SIU_ISEL8), for more detail.

eTPU eTPU channel I/O 0b001

ALT1 IRQ[13] SIU External interrupt I 0b010

ALT2 DSPI_C_SCK_LVDS+ DSPI LVDS+ clock O 0b100

GPIO GPIO[139] SIU GPIO I/O 0b000

SIU_BASE+0x158

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as IRQ, the OBE bit has no effect. The OBE bit must be set to one for both ETPU_A[26] and
GPIO[140] when configured as outputs.

IBE
2

2 When configured as IRQ, DSPI_C_SOUT_LVDS or GPO, the IBE bit may be set to one to reflect the pin state in
the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set
to one for both ETPU_A[26] and GPIO[140] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[26] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

478 Freescale Semiconductor

16.6.15.94 Pad Configuration Register 141 (SIU_PCR141)

Figure 16-127. Pad Configuration Register (SIU_PCR141)

Table 16-129. SIU_PCR140 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[26]3

3 The eTPU function controlled by this register has an additional dependency on the SIU_ISEL8 register settings.
Please see Section 16.6.22, IMUX Select Register 8 (SIU_ISEL8), for more detail.

eTPU eTPU channel I/O 0b001

ALT1 IRQ[14] SIU External interrupt I 0b010

ALT2 DSPI_C_SOUT_LVDS DSPI LVDS output O 0b100

GPIO GPIO[140] SIU GPIO I/O 0b000

SIU_BASE+0x15A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA OBE

1

1 When configured as IRQ, the OBE bit has no effect. The OBE bit must be set to one for both ETPU_A[27] and
GPIO[141] when configured as outputs.

IBE
2

2 When configured as IRQ, DSPI_C_SOUT_LVDS+, SOUTB or GPO, the IBE bit may be set to one to reflect the pin
state in the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must
be set to one for both ETPU_A[27] and GPIO[141] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[27] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-130. SIU_PCR141 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[27]3

3 The eTPU function controlled by this register has an additional dependency on the SIU_ISEL8 register settings.
Please see Section 16.6.22, IMUX Select Register 8 (SIU_ISEL8), for more detail.

eTPU eTPU channel I/O 0b0001

ALT1 IRQ[15] SIU External interrupt I 0b0010

ALT2 DSPI_C_SOUT_LVDS+ DSPI LVDS+ output O 0b0100

ALT3 DSPI_B_SOUT DSPI Output O 0b1000

GPIO GPIO[141] SIU GPIO I/O 0b0000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 479

16.6.15.95 Pad Configuration Register 142 (SIU_PCR142)

Figure 16-128. Pad Configuration Register (SIU_PCR142)

16.6.15.96 Pad Configuration Register 143 (SIU_PCR143)

Figure 16-129. Pad Configuration Register (SIU_PCR143)

SIU_BASE+0x15C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as PCS or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for GPIO when
configured as input.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[28] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-131. SIU_PCR142 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[28]3

3 The eTPU function controlled by this register has an additional dependency on the SIU_ISEL8 register settings.
Please see Section 16.6.22, IMUX Select Register 8 (SIU_ISEL8), for more detail.

eTPU eTPU channel I/O 0b001

ALT1 DSPI_C_PCS[1] DSPI Chip select O 0b010

ALT2 RCH5_B Reaction Reaction channel O 0b100

GPIO GPIO[142] SIU GPIO I/O 0b000

SIU_BASE+0x15E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as PCS or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for GPIO when
configured as input.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[29] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

480 Freescale Semiconductor

16.6.15.97 Pad Configuration Register 144 (SIU_PCR144)

Figure 16-130. Pad Configuration Register (SIU_PCR144)

Table 16-132. SIU_PCR143 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[29]3

3 The eTPU function controlled by this register has an additional dependency on the SIU_ISEL8 register settings.
Please see Section 16.6.22, IMUX Select Register 8 (SIU_ISEL8), for more detail.

eTPU eTPU channel I/O 0b001

ALT1 DSPI_C_PCS[2] DSPI Chip select O 0b010

ALT2 RCH5_C Reaction Reaction channel O 0b100

GPIO GPIO[143] SIU GPIO I/O 0b000

SIU_BASE+0x160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ETPUA output or GPO, the OBE bit should be set to one.

IBE
2

2 When configured as ETPUA output, PCS, or GPO, the IBE bit may be set to one to reflect the pin state in the
corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to
one for ETPUA or GPIO when configured as input.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[30] pin is determined by the WKPCFG pin

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-133. SIU_PCR144 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[30] eTPU eTPU channel I/O 0b001

ALT1 DSPI_C_PCS[3] DSPI Chip select O 0b010

ALT2 ETPU_A[11] eTPU eTPU channel O 0b100

GPIO GPIO[144] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 481

16.6.15.98 Pad Configuration Register 145 (SIU_PCR145)

Figure 16-131. Pad Configuration Register (SIU_PCR145)

16.6.15.99 Pad Configuration Register 179 (SIU_PCR179)

Figure 16-132. Pad Configuration Register (SIU_PCR179)

SIU_BASE+0x162

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as ETPUA output or GPO, the OBE bit should be set to one.

IBE
2

2 When configured as ETPUA output, DSPI_C_PCS[4], ETPU_A[13] or GPO, the IBE bit may be set to one to reflect
the pin state in the corresponding GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE
bit must be set to one for ETPUA or GPIO when configured as input.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the ETPU_A[31] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-134. SIU_PCR145 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ETPU_A[31] eTPU eTPU channel I/O 0b001

ALT1 DSPI_C_PCS[4] DSPI Chip select O 0b010

ALT2 ETPU_A[13] eTPU eTPU channel O 0b100

GPIO GPIO[145] SIU GPIO I/O 0b000

SIU_BASE+0x1A6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[0] and GPIO[179] when configured as outputs.

IBE
2

2 When configured as ETPU, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[0] and
GPIO[179] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

482 Freescale Semiconductor

16.6.15.100Pad Configuration Register 180 (SIU_PCR180)

Figure 16-133. Pad Configuration Register (SIU_PCR180)

Table 16-135. SIU_PCR179 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[0] eMIOS eMIOS channel I/O 0b001

ALT1 ETPU_A[0] eTPU eTPU channel O 0b010

ALT2 ETPU_A[25] eTPU eTPU channel O 0b100

GPIO GPIO[179] SIU GPIO I/O 0b000

SIU_BASE+0x1A8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[1] and GPIO[180] when configured as outputs.

IBE
2

2 When configured as ETPU, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[1] and
GPIO[180] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-136. SIU_PCR180 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[1] eMIOS eMIOS channel I/O 0b01

ALT1 ETPU_A[1] eTPU eTPU channel O 0b10

GPIO GPIO[180] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 483

16.6.15.101Pad Configuration Register 181 (SIU_PCR181)

Figure 16-134. Pad Configuration Register (SIU_PCR181)

16.6.15.102Pad Configuration Register 182 (SIU_PCR182)

Figure 16-135. Pad Configuration Register (SIU_PCR182)

SIU_BASE+0x1AA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[2] and GPIO[181] when configured as outputs.

IBE
2

2 When configured as ETPU, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[2] and
GPIO[181] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-137. SIU_PCR181 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[2] eMIOS eMIOS channel I/O 0b001

ALT1 ETPU_A[2] eTPU eTPU channel O 0b010

ALT2 RCH2_B Reaction Reaction channel O 0b100

GPIO GPIO[181] SIU GPIO I/O 0b000

SIU_BASE+0x1AC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[3] and GPIO[182] when configured as outputs.

IBE
2

2 When configured as ETPU, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[3] and
GPIO[182] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the EMIOS[3] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

484 Freescale Semiconductor

16.6.15.103Pad Configuration Register 183 (SIU_PCR183)

Figure 16-136. Pad Configuration Register (SIU_PCR183)

Table 16-138. SIU_PCR182 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[3] eMIOS eMIOS channel I/O 0b01

ALT1 ETPU_A[3] eTPU eTPU channel O 0b10

GPIO GPIO[182] SIU GPIO I/O 0b00

SIU_BASE+0x1AE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[4] and GPIO[183] when configured as outputs.

IBE
2

2 When configured as ETPU, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[4] and
GPIO[183] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the EMIOS[4] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-139. SIU_PCR183 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[4] eMIOS eMIOS channel I/O 0b001

ALT1 ETPU_A[4] eTPU eTPU channel O 0b010

ALT2 RCH2_C Reaction Reaction channel O 0b100

GPIO GPIO[183] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 485

16.6.15.104Pad Configuration Register 184 (SIU_PCR184)

Figure 16-137. Pad Configuration Register (SIU_PCR184)

16.6.15.105Pad Configuration Register 185 (SIU_PCR185)

Figure 16-138. Pad Configuration Register (SIU_PCR185)

SIU_BASE+0x1B0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[5] and GPIO[184] when configured as outputs.

IBE
2

2 When configured as ETPU, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[5] and
GPIO[184] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the EMIOS[5] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-140. SIU_PCR184 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[5] eMIOS eMIOS channel I/O 0b01

ALT1 ETPU_A[5] eTPU eTPU channel O 0b10

GPIO GPIO[184] SIU GPIO I/O 0b00

SIU_BASE+0x1B2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[6] and GPIO[185] when configured as outputs.

IBE
2

2 When configured as ETPU, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[6] and
GPIO[185] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

= Unimplemented or Reserved

Table 16-141. SIU_PCR185 PA values

Signal Name Module Description I/O1,2 PA value

Primary EMIOS[6] eMIOS eMIOS channel I/O 0b01

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

486 Freescale Semiconductor

16.6.15.106Pad Configuration Register 186 (SIU_PCR186)

Figure 16-139. Pad Configuration Register (SIU_PCR186)

ALT1 ETPU_A[6] eTPU eTPU channel O 0b10

GPIO GPIO[185] SIU GPIO I/O 0b00

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0x1B4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[7] and GPIO[186] when configured as outputs.

IBE
2

2 When configured as ETPU, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[7] and
GPIO[186] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

= Unimplemented or Reserved

Table 16-142. SIU_PCR186 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[7] eMIOS eMIOS channel I/O 0b01

ALT1 ETPU_A[7] eTPU eTPU channel O 0b10

GPIO GPIO[186] SIU GPIO I/O 0b00

Table 16-141. SIU_PCR185 PA values

Signal Name Module Description I/O1,2 PA value

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 487

16.6.15.107Pad Configuration Register 187 (SIU_PCR187)

Figure 16-140. Pad Configuration Register (SIU_PCR187)

16.6.15.108Pad Configuration Register 188 (SIU_PCR188)

Figure 16-141. Pad Configuration Register (SIU_PCR188)

SIU_BASE+0x1B6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[8] and GPIO[187] when configured as outputs.

IBE
2

2 When configured as ETPU or SCI_B_TX, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both
EMIOS[8] and GPIO[187] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-143. SIU_PCR187 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[8] eMIOS eMIOS channel I/O 0b001

ALT1 ETPU_A[8] eTPU eTPU channel O 0b010

ALT2 SCI_B_TX eSCI eSCI transmit O 0b100

GPIO GPIO[187] SIU GPIO I/O 0b000

SIU_BASE+0x1B8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[9] and GPIO[188] when configured as outputs.

IBE
2

2 When configured as ETPU, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[9] and
GPIO[188] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-144. SIU_PCR188 PA values

Signal Name Module Description I/O1,2 PA value

Primary EMIOS[9] eMIOS eMIOS channel I/O 0b001

ALT1 ETPU_A[9] eTPU eTPU channel O 0b010

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

488 Freescale Semiconductor

16.6.15.109Pad Configuration Register 189 (SIU_PCR189)

Figure 16-142. Pad Configuration Register (SIU_PCR189)

ALT2 SCI_B_RX eSCI eSCI receive I 0b100

GPIO GPIO[188] SIU GPIO I/O 0b000

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0x1BA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[10] and GPIO[189] when configured as outputs.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[10] and
GPIO[189] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the EMIOS[10] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-145. SIU_PCR189 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[10] eMIOS eMIOS channel I/O 0b001

ALT1 DSPI_D_PCS[3] DSPI Chip select O 0b010

ALT2 RCH3_B Reaction Reaction channel O 0b0100

GPIO GPIO[189] SIU GPIO I/O 0b000

Table 16-144. SIU_PCR188 PA values

Signal Name Module Description I/O1,2 PA value

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 489

16.6.15.110Pad Configuration Register 190 (SIU_PCR190)

Figure 16-143. Pad Configuration Register (SIU_PCR190)

16.6.15.111Pad Configuration Register 191 (SIU_PCR191)

Figure 16-144. Pad Configuration Register (SIU_PCR191)

SIU_BASE+0x1BC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[11] and GPIO[190] when configured as outputs.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[11] and
GPIO[190] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the EMIOS[11] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-146. SIU_PCR190 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[11] eMIOS eMIOS channel I/O 0b001

ALT1 DSPI_D_PCS[4] DSPI Chip select O 0b010

ALT2 RCH3_C Reaction Reaction channel O 0b0100

GPIO GPIO[190] SIU GPIO I/O 0b000

SIU_BASE+0x1BE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for GPIO[191] when configured as an output.

IBE
2

2 When configured as ETPU_A[27] or GPO the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for GPIO[191]
when configured as an input.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the EMIOS[12] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

490 Freescale Semiconductor

16.6.15.112Pad Configuration Register 192 (SIU_PCR192)

Figure 16-145. Pad Configuration Register (SIU_PCR192)

Table 16-147. SIU_PCR191 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[12] eMIOS eMIOS channel I/O 0b001

ALT1 DSPI_C_SOUT DSPI Output O 0b010

ALT2 ETPU_A[27] eTPU eTPU channel O 0b100

GPIO GPIO[191] SIU GPIO I/O 0b000

SIU_BASE+0x1C0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for GPIO[192] when configured as an output.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for GPIO[192] when
configured as an input.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the EMIOS[13] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-148. SIU_PCR192 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[13] eMIOS eMIOS channel I/O 0b01

ALT1 DSPI_D_SOUT DSPI Output O 0b10

GPIO GPIO[192] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 491

16.6.15.113Pad Configuration Register 193 (SIU_PCR193)

Figure 16-146. Pad Configuration Register (SIU_PCR193)

16.6.15.114Pad Configuration Register 194 (SIU_PCR194)

Figure 16-147. Pad Configuration Register (SIU_PCR194)

SIU_BASE+0x1C2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 The OBE bit must be set to one for GPIO[193] when configured as outputs.

IBE
2

2 When configured as IRQ, ETPU or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for GPIO[193]
when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

= Unimplemented or Reserved

Table 16-149. SIU_PCR193 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[14] eMIOS eMIOS channel I/O 0b001

ALT1 IRQ[0] SIU External interrupt I 0b010

ALT2 ETPU_A[29] eTPU eTPU channel O 0b100

GPIO GPIO[193] SIU GPIO I/O 0b000

SIU_BASE+0x1C4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for GPIO[194] when configured as outputs.

IBE
2

2 When configured as IRQ, ETPU or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding
GPDI register. Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for GPIO[194]
when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

= Unimplemented or Reserved

Table 16-150. SIU_PCR194 PA values

Signal Name Module Description I/O1,2 PA value

Primary EMIOS[15] eMIOS eMIOS channel I/O 0b01

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

492 Freescale Semiconductor

16.6.15.115Pad Configuration Register 195 (SIU_PCR195)

Figure 16-148. Pad Configuration Register (SIU_PCR195)

ALT1 IRQ[1] SIU External interrupt I 0b10

GPIO GPIO[194] SIU GPIO I/O 0b00

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0x1C6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[16] and GPIO[195] when configured as outputs.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[16] and
GPIO[195] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-151. SIU_PCR195 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[16] eMIOS eMIOS channel I/O 0b1

GPIO GPIO[195] SIU GPIO I/O 0b0

Table 16-150. SIU_PCR194 PA values

Signal Name Module Description I/O1,2 PA value

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 493

16.6.15.116Pad Configuration Register 196 (SIU_PCR196)

Figure 16-149. Pad Configuration Register (SIU_PCR196)

16.6.15.117Pad Configuration Register 197 (SIU_PCR197)

Figure 16-150. Pad Configuration Register (SIU_PCR197)

SIU_BASE+0x1C8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[17] and GPIO[196] when configured as outputs.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[17] and
GPIO[196] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-152. SIU_PCR196 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[17] eMIOS eMIOS channel I/O 0b1

GPIO GPIO[196] SIU GPIO I/O 0b0

SIU_BASE+0x1CA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[18] and GPIO[197] when configured as outputs.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[18] and
GPIO[197] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-153. SIU_PCR197 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

PA value

Primary EMIOS[18] eMIOS eMIOS channel I/O 0b1

GPIO GPIO[197] SIU GPIO I/O 0b0

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

494 Freescale Semiconductor

16.6.15.118Pad Configuration Register 198 (SIU_PCR198)

Figure 16-151. Pad Configuration Register (SIU_PCR198)

16.6.15.119Pad Configuration Register 199 (SIU_PCR199)

Figure 16-152. Pad Configuration Register (SIU_PCR199)

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0x1CC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[19] and GPIO[198] when configured as outputs.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[19] and
GPIO[198] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-154. SIU_PCR198 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[19] eMIOS eMIOS channel I/O 0b1

GPIO GPIO[198] SIU GPIO I/O 0b0

SIU_BASE+0x1CE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[20] and GPIO[199] when configured as outputs.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[20] and
GPIO[199] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the EMIOS[20] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 495

16.6.15.120Pad Configuration Register 200 (SIU_PCR200)

Figure 16-153. Pad Configuration Register (SIU_PCR200)

Table 16-155. SIU_PCR199 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[20] eMIOS eMIOS channel I/O 0b1

GPIO GPIO[199] SIU GPIO I/O 0b0

SIU_BASE+0x1D0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[21] and GPIO[200] when configured as outputs.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[21] and
GPIO[200] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
3

3 The weak pull up/down selection at reset for the EMIOS[21] pin is determined by the WKPCFG pin.

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 WKP

= Unimplemented or Reserved

Table 16-156. SIU_PCR200 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[21] eMIOS eMIOS channel I/O 0b1

GPIO GPIO[200] SIU GPIO I/O 0b0

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

496 Freescale Semiconductor

16.6.15.121Pad Configuration Register 201 (SIU_PCR201)

Figure 16-154. Pad Configuration Register (SIU_PCR201)

16.6.15.122Pad Configuration Register 202 (SIU_PCR202)

Figure 16-155. Pad Configuration Register (SIU_PCR202)

SIU_BASE+0x1D2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[22] and GPIO[201] when configured as outputs.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[22] and
GPIO[201] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

= Unimplemented or Reserved

Table 16-157. SIU_PCR201 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[22] eMIOS eMIOS channel I/O 0b1

GPIO GPIO[201] SIU GPIO I/O 0b0

SIU_BASE+0x1D4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 The OBE bit must be set to one for both EMIOS[23] and GPIO[202] when configured as outputs.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. The IBE bit must be set to one for both EMIOS[23] and
GPIO[202] when configured as inputs.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

= Unimplemented or Reserved

Table 16-158. SIU_PCR202 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

PA value

Primary EMIOS[23] eMIOS eMIOS channel I/O 0b1

GPIO GPIO[202] SIU GPIO I/O 0b0

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 497

16.6.15.123Pad Configuration Register 203 (SIU_PCR203)

Figure 16-156. Pad Configuration Register (SIU_PCR203)

16.6.15.124Pad Configuration Register 204 (SIU_PCR204)

Figure 16-157. Pad Configuration Register (SIU_PCR204)

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0x1D6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA

1

1 The PA bit should be set to one for EMIOS and cleared to zero when used as GPIO.

OBE
2

2 When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as EMIOS or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set
to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-159. SIU_PCR203 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[14] eMIOS eMIOS channel O 0b1

GPIO GPIO[203] SIU GPIO I/O 0b0

SIU_BASE+0x1D8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA

1

1 The PA bit should be set to one for EMIOS and cleared to zero when used as GPIO.

OBE
2

2 When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as EMIOS or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set
to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

498 Freescale Semiconductor

16.6.15.125Pad Configuration Register 206 (SIU_PCR206)

Figure 16-158. Pad Configuration Register (SIU_PCR206)

16.6.15.126Pad Configuration Register 207 (SIU_PCR207)

Figure 16-159. Pad Configuration Register (SIU_PCR207)

Table 16-160. SIU_PCR204 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary EMIOS[15] eMIOS eMIOS channel O 0b1

GPIO GPIO[204] SIU GPIO I/O 0b0

SIU_BASE+0x1DC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
When configured as GPI, the IBE bit should be set to one. Setting the IBE bit to zero reduces power consumption.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-161. SIU_PCR206 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

GPIO GPIO[206]
ETRIG0

SIU GPIO I/O 0b0

SIU_BASE+0x1DE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
When configured as GPI, the IBE bit should be set to one. Setting the IBE bit to zero reduces power consumption.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 499

16.6.15.127Pad Configuration Register 208 (SIU_PCR208)

Figure 16-160. Pad Configuration Register (SIU_PCR208)

Table 16-162. SIU_PCR207 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

GPIO GPIO[207]
ETRIG1

SIU GPIO I/O 0b0

SIU_BASE+0x1E0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as IRQ, the OBE bit has no effect. When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as IRQ or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set
to one.

0 0 ODE HYS
3

3 When configured as IRQ, the HYS bit should be set to one.

SRC WPE WPS
W

Reset 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1

= Unimplemented or Reserved

Table 16-163. SIU_PCR208 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary PLLREF Config Selects FMPLL mode after reset I 0b001

ALT1 IRQ[4] SIU External interrupt I 0b010

ALT2 ETRIG2 SIU Triggers eQADC CFIFO2 I 0b100

GPIO GPIO[208] SIU GPIO I/O 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

500 Freescale Semiconductor

16.6.15.128Pad Configuration Register 209 (SIU_PCR209)

Figure 16-161. Pad Configuration Register (SIU_PCR209)

16.6.15.129Pad Configuration Register 210 (SIU_PCR210)

Figure 16-162. Pad Configuration Register (SIU_PCR210)

SIU_BASE+0x1E2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA OBE

1

1 When configured as IRQ, the OBE bit has no effect. When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as IRQ or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set
to one.

0 0 ODE HYS
3

3 When configured as IRQ, the HYS bit should be set to one.

SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-164. SIU_PCR209 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

PLLCFG1

ALT1 IRQ[5] SIU External interrupt I 0b010

ALT2 DSPI_D_SOUT DSPI Output O 0b100

GPIO GPIO[209] SIU GPIO I/O 0b000

SIU_BASE+0x1E4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA

1

1 RSTCFG function is only applicable during reset. The PA bit must be set to zero for GPIO operation

OBE
2

2 When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 501

16.6.15.130Pad Configuration Register 211 (SIU_PCR211)

Figure 16-163. Pad Configuration Register (SIU_PCR211)

Table 16-165. SIU_PCR210 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary RSTCFG Reset/Config Enable/disable PLLREF and BOOTCFG I 0b1

GPIO GPIO[210] SIU GPIO I/O 0b0

SIU_BASE+0x1E6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA

1

1 The BOOTCFG function applies only during reset when the RSTCFG pin is asserted during reset.

OBE
2

2 When configured as IRQ, the OBE bit has no effect. When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as IRQ or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set
to one.

0 0 ODE HYS
4

4 When configured as IRQ, the HYS bit should be set to one.

SRC WPE WPS
W

Reset 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0

= Unimplemented or Reserved

Table 16-166. SIU_PCR211 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary BOOTCFG[0] Reset/Config Selects boot mode I 0b01

ALT1 IRQ[2] SIU External interrupt I 0b10

GPIO GPIO[211] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

502 Freescale Semiconductor

16.6.15.131Pad Configuration Register 212 (SIU_PCR212)

Figure 16-164. Pad Configuration Register (SIU_PCR212)

16.6.15.132Pad Configuration Register 213 (SIU_PCR213)

Figure 16-165. Pad Configuration Register (SIU_PCR213)

SIU_BASE+0x1E8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA

1

1 The BOOTCFG function applies only during reset when the RSTCFG pin is asserted during reset.

OBE
2

2 When configured as IRQ, the OBE bit has no effect. When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as IRQ or GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI
register. Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set
to one.

0 0 ODE HYS
4

4 When configured as IRQ, the HYS bit should be set to one.

SRC WPE WPS
W

Reset 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0

= Unimplemented or Reserved

Table 16-167. SIU_PCR212 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary BOOTCFG[1] Reset/Config Selects boot mode I 0b001

ALT1 IRQ[3] SIU External interrupt I 0b010

ALT2 ETRIG3 SIU Triggers eQADC CFIFO3 I 0b100

GPIO GPIO[212] SIU GPIO I/O 0b000

SIU_BASE+0x1EA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA

1

1 WKPCFG function is only applicable during reset.

OBE
2

2 When configured as GPO, the OBE bit should be set to one.

IBE
3

3 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 503

16.6.15.133Pad Configuration Register 214 (SIU_PCR214)

The SIU_PCR214 register controls the enabling/disabling and drive strength of the ENGCLK pin. The
ENGCLK pin is enabled and disabled by setting and clearing the OBE bit. The ENGCLK pin is enabled
during reset.

Figure 16-166. Pad Configuration Register (SIU_PCR214)

Table 16-168. SIU_PCR213 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary WKPCFG Reset/Config Connects eTPU and eMIOS
pins to internal weak pull-up
or weak pull-down devices
after reset

I 0b001

ALT1 NMI Reset/Config Non-Maskable interrupt I 0b010

ALT2 DSPI_B_SOUT DSPI Output O 0b100

GPIO GPIO[213] SIU GPIO I/O 0b000

SIU_BASE+0x1EC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 ENGCLK is enabled/disabled by setting/clearing this bit.

0 DSC ODE HYS 0 0 WPE WPS
W

Reset 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-169. SIU_PCR214 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary ENGCLK Clock Generation Engineering clock output O 0b001

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

504 Freescale Semiconductor

16.6.15.134Pad Configuration Register 215 (SIU_PCR215)

Figure 16-167. Pad Configuration Register (SIU_PCR215)

16.6.15.135Pad Configuration Register 216 (SIU_PCR216)

Figure 16-168. Pad Configuration Register (SIU_PCR216)

SIU_BASE+0x1EE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA

1

1 Input and output buffers are enabled/disabled based on PA selection. Both input and output buffer disabled for
AN[12] function. Output buffer only enabled for MA[0], ETPU and SDS functions.

0 0 0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-170. SIU_PCR215 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary AN[12] eQADC Analog input I 0b0001

ALT1 MA[0] eQADC Mux address O 0b0010

ALT2 ETPU_A[19] eTPU eTPU channel O 0b0100

GPIO SDS eQADC Serial data select O 0b0000

SIU_BASE+0x1F0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA

1

1 Input and output buffers are enabled/disabled based on PA selection. Both input and output buffer disabled for
AN[13] function. Output buffer only enabled for MA[1], ETPU and SDO functions.

0 0 0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-171. SIU_PCR216 PA values

Signal Name Module Description I/O1,2 PA value

Primary AN[13] eQADC Analog input I 0b0001

ALT1 MA[1] eQADC Mux address O 0b0010

ALT2 ETPU_A[21] eTPU eTPU channel O 0b0100

GPIO SDO eQADC Serial data output O 0b0000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 505

16.6.15.136Pad Configuration Register 217 (SIU_PCR217)

Figure 16-169. Pad Configuration Register (SIU_PCR217)

16.6.15.137Pad Configuration Register 218 (SIU_PCR218)

Figure 16-170. Pad Configuration Register (SIU_PCR218)

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

SIU_BASE+0x1F2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 PA

1

1 Input and output buffers are enabled/disabled based on PA selection. Both input and output buffer disabled for
AN[14] function. Output buffer only enabled for MA[2] and ETPU function and input buffer only enabled for SDI
functions.

0 0 0 0 ODE HYS SRC WPE
2

2 The WPE bit should be set to zero when configured as an analog input or MA[2], and set to one when configured
as SDI.

WPS
3

3 The WPS bit should be set to one when configured as SDI.

W
Reset 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-172. SIU_PCR217 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary AN[14] eQADC Analog input I 0b0001

ALT1 MA[2] eQADC Mux address O 0b0010

ALT2 ETPU_A[27] eTPU eTPU channel O 0b0100

GPIO SDI eQADC Serial data input I 0b0000

SIU_BASE+0x1F4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA

1

1 Input and output buffers are enabled/disabled based on PA selection. Both input and output buffer disabled for
AN[15] function. Output buffer only enabled for FCK and ETPU functions.

0 0 0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

506 Freescale Semiconductor

16.6.15.138Pad Configuration Register 219 (SIU_PCR219)

NOTE

The SIU_PCR219 register is unusual in that it controls pads for two separate
device pins: GPIO[219] and MCKO. Please carefully note the pin(s)
affected by the bits in this register.

Figure 16-171. Pad Configuration Register (SIU_PCR219)

Table 16-173. SIU_PCR218 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary AN[15] eQADC Analog input I 0b001

ALT1 FCK eQADC Free-running clock O 0b010

ALT2 ETPU_A[29] eTPU eTPU channel O 0b100

SIU_BASE+0x1F6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 OBE

1

1 When configured as GPO, the OBE bit should be set to 1.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
When configured as GPI, the IBE bit should be set to one.

DSC[1:0] ODE HYS SRC[1:0] WPE WPS
W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-174. SIU_PCR219 field descriptions

Field Description

0–5 Reserved

6
OBE1

Output buffer enable
Enables the pad as an output and drives the output buffer enable signal.

0 Disable output buffer for the pad.
1 Enable output buffer for the pad is enabled.

Note: This field affects only the GPIO[219] pin.

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 507

7
IBE1

Input buffer enable
Enables the pad as an input and drives the input buffer enable signal.

0 Disable input buffer for the pad.
1 Enable input buffer for the pad is enabled.

For all PCRs where GPIO function is available on the pin, if the pin is configured as an output and the
IBE bit is set, the actual value of the pin will be reflected in the corresponding GPDIx_x register.
Negating the IBE bit when the pin is configured as an output will reduce noise and power consumption.

Note: This field affects only the GPIO[219] pin.

8–9
DSC[1:0]2

Drive strength control
Controls the pad drive strength. Drive strength control pertains to pins with the fast I/O pad type.

00 10 pF drive strength
01 20 pF drive strength
10 30 pF drive strength
11 50 pF drive strength

Note: This field affects only the MCKO pin.

10
ODE3

Open drain output enable
Controls output driver configuration for the pads. Either open drain or push/pull driver configurations
can be selected. This feature applies to output pins only.

0 Disable open drain for the pad (push/pull driver enabled).
1 Enable open drain for the pad.

Note: This field affects both the GPIO[219] and MCKO pins.

11
HYS3

Input hysteresis
Controls whether hysteresis is enabled for the pad.

0 Disable hysteresis for the pad.
1 Enable hysteresis for the pad.

Note: This field affects both the GPIO[219] and MCKO pins.

12–13
SRC[1:0]3

Slew rate control
Controls slew rate for the pad. Slew rate control pertains to pins with slow or medium I/O pad types,
and the output signals are driven according to the value of this field. Actual slew rate depends on the
pad type and load. Refer to the electrical specifications for this information.

00 Minimum slew rate
01 Medium slew rate
10 Invalid value
11 Maximum slew rate

Note: This field affects only the GPIO[219] pin.

Table 16-174. SIU_PCR219 field descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

508 Freescale Semiconductor

16.6.15.139Pad Configuration Register 220 (SIU_PCR220)

Figure 16-172. Pad Configuration Register (SIU_PCR220)

14
WPE4

Weak pullup/down enable
Controls whether the weak pullup/down devices are enabled/disabled for the pad. Pullup/down devices
are enabled by default.

0 Disable weak pull device for the pad.
1 Enable weak pull device for the pad.

Note: This field affects both the GPIO[219] and MCKO pins.

15
WPS4

Weak pullup/down select
Controls whether weak pullup or weak pulldown devices are used for the pad when weak pullup/down
devices are enabled.

The WKPCFG pin determines whether pullup or pulldown devices are enabled during reset. The WPS
bit determines whether weak pullup or pulldown devices are used after reset, or for pads in which the
WKPCFG pin does not determine the reset weak pullup/down state.

0 Pulldown is enabled for the pad.
1 Pullup is enabled for the pad.

Note: This field affects both the GPIO[219] and MCKO pins.

1 In cases where an I/O function is either input-only or output-only the IBE and OBE bits do not need to be set to
enable pin I/O.

2 If a pin is configured as an input, the ODE, SRC, and DSC bits do not apply.
3 If a pin is configured as an output, the HYS bit does not apply.
4 When a pin is configured as an output, the weak internal pull up/down is disabled regardless of the WPE or WPS

settings in the PCR.

SIU_BASE+0x1F8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 DSC ODE HYS 0 WPE WPS
W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-175. SIU_PCR220 PA values

Signal Name Module Description I/O PA value

Primary MDO0 Nexus Nexus message data out O —

Table 16-174. SIU_PCR219 field descriptions (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 509

16.6.15.140Pad Configuration Register 221 (SIU_PCR221)

Figure 16-173. Pad Configuration Register (SIU_PCR221)

16.6.15.141Pad Configuration Register 222 (SIU_PCR222)

Figure 16-174. Pad Configuration Register (SIU_PCR222)

16.6.15.142Pad Configuration Register 223 (SIU_PCR223)

Figure 16-175. Pad Configuration Register (SIU_PCR223)

SIU_BASE+0x1FA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 DSC ODE HYS 0 WPE WPS
W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-176. SIU_PCR221 PA values

Signal Name Module Description I/O PA value

Primary MDO1 Nexus Nexus message data out O —

SIU_BASE+0x1FC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 DSC ODE HYS 0 WPE WPS
W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-177. SIU_PCR222 PA values

Signal Name Module Description I/O PA value

Primary MDO2 Nexus Nexus message data out O —

SIU_BASE+0x1FE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 DSC ODE HYS 0 WPE WPS
W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-178. SIU_PCR223 PA values

Signal Name Module Description I/O PA value

Primary MDO3 Nexus Nexus message data out O —

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

510 Freescale Semiconductor

16.6.15.143Pad Configuration Register 224 (SIU_PCR224)

Figure 16-176. Pad Configuration Register (SIU_PCR224)

16.6.15.144Pad Configuration Register 225 (SIU_PCR225)

Figure 16-177. Pad Configuration Register (SIU_PCR225)

16.6.15.145Pad Configuration Register 226 (SIU_PCR226)

Figure 16-178. Pad Configuration Register (SIU_PCR226)

SIU_BASE+0x200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-179. SIU_PCR224 PA values

Signal Name Module Description I/O PA value

Primary MSEO0 Nexus Nexus message start/end out O —

SIU_BASE+0x202

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-180. SIU_PCR225 PA values

Signal Name Module Description I/O PA value

Primary MSEO1 Nexus Nexus message start/end out O —

SIU_BASE+0x204

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-181. SIU_PCR226 PA values

Signal Name Module Description I/O PA value

Primary RDY Nexus Read/write ready O —

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 511

16.6.15.146Pad Configuration Register 227 (SIU_PCR227)

Figure 16-179. Pad Configuration Register (SIU_PCR227)

16.6.15.147Pad Configuration Register 228 (SIU_PCR228)

Figure 16-180. Pad Configuration Register (SIU_PCR228)

16.6.15.148Pad Configuration Register 229 (SIU_PCR229)

The SIU_PCR229 register controls the enabling/disabling and drive strength of the CLKOUT pin. The
CLKOUT pin is enabled and disabled by setting and clearing the OBE bit. The CLKOUT pin is enabled
during reset.

Figure 16-181. Pad Configuration Register (SIU_PCR229)

SIU_BASE+0x206

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE IBE 0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-182. SIU_PCR227 PA values

Signal Name Module Description I/O PA value

Primary EVTO Nexus Nexus event out O —

SIU_BASE+0x208

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 SRC 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-183. SIU_PCR228 PA values

Signal Name Module Description I/O PA value

Primary TDO JTAG Nexus event out O 01

SIU_BASE+0x20A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 CLKOUT pin is enabled and disabled by setting and clearing the OBE bit.

0 DSC ODE HYS 0 0 WPE WPS
W

Reset 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

512 Freescale Semiconductor

16.6.15.149Pad Configuration Register 230 (SIU_PCR230)

Figure 16-182. Pad Configuration Register (SIU_PCR230)

16.6.15.150Pad Configuration Register 231 (SIU_PCR231)

Figure 16-183. Pad Configuration Register (SIU_PCR231)

Table 16-184. SIU_PCR229 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary CLKOUT Clock Generation System clock output O 0b001

SIU_BASE+0x20C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

= Unimplemented or Reserved

Table 16-185. SIU_PCR230 PA values

Signal Name Module Description I/O PA value

Primary RSTOUT Reset External Reset Output O 0b001

SIU_BASE+0x20E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-186. SIU_PCR231 PA values

Signal Name Module Description I/O PA value

Primary EVTI Nexus Nexus event in I —

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 513

16.6.15.151Pad Configuration Register 232 (SIU_PCR232)

Figure 16-184. Pad Configuration Register (SIU_PCR232)

16.6.15.152Pad Configuration Register 244 (SIU_PCR244)

Figure 16-185. Pad Configuration Register (SIU_PCR244)

SIU_BASE+0x210

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 SRC 0 0
W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-187. SIU_PCR232 PA values

Signal Name Module Description I/O PA value

Primary TDI JTAG Nexus event in I 01

SIU_BASE+0x228

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-188. SIU_PCR244 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary SCI_C_TX eSCI eSCI C transmit O 0b01

GPIO GPIO[244] SIU GPIO I/O 0b00

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

514 Freescale Semiconductor

16.6.15.153Pad Configuration Register 245 (SIU_PCR245)

Figure 16-186. Pad Configuration Register (SIU_PCR245)

16.6.15.154Pad Configuration Register 336 (SIU_PCR336)

Figure 16-187. Pad Configuration Register (SIU_PCR336)

SIU_BASE+0x22A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 PA OBE

1

1 When configured as GPO, the OBE bit should be set to one.

IBE
2

2 When configured as GPO, the IBE bit may be set to one to reflect the pin state in the corresponding GPDI register.
Setting the IBE bit to zero reduces power consumption. When configured as GPI, the IBE bit should be set to one.

0 0 ODE HYS SRC WPE WPS
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

= Unimplemented or Reserved

Table 16-189. SIU_PCR245 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary SCI_C_RX eSCI eSCI C receive I 0b01

GPIO GPIO[245] SIU GPIO I/O 0b00

SIU_BASE+0x2E0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 DSC ODE HYS 0 0 WPE WPS
W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-190. SIU_PCR336 PA values

Signal Name Module Description I/O PA value

Primary CAL_CS0 Calibration bus Calibration chip select O —

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 515

16.6.15.155Pad Configuration Register 338 (SIU_PCR338)

Figure 16-188. Pad Configuration Register (SIU_PCR338)

16.6.15.156Pad Configuration Register 339 (SIU_PCR339)

Figure 16-189. Pad Configuration Register (SIU_PCR339)

SIU_BASE+0x2E4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA 0 0 DSC ODE HYS 0 0 WPE WPS
W

Reset 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-191. SIU_PCR338 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary CAL_CS2 Calibration bus Calibration chip select O 001

ALT1 CAL_ADDR[10] Calibration bus Calibration address bus I/O 010

ALT2 CAL_WE[2]/BE[2] Calibration bus Calibration write/byte enable O 100

SIU_BASE+0x2E6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA 0 0 DSC ODE HYS 0 0 WPE WPS
W

Reset 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-192. SIU_PCR339 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary CAL_CS3 Calibration bus Calibration chip select O 001

ALT1 CAL_ADDR[11] Calibration bus Calibration address bus I/O 010

ALT2 CAL_WE[3]/BE[3] Calibration bus Calibration write/byte enable O 100

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

516 Freescale Semiconductor

16.6.15.157Pad Configuration Register 340 (SIU_PCR340)

NOTE

Unlike other pad configuration registers (PCRs), which control the function
and electrical characteristics of one pin, this register controls the function
and electrical characteristics for a group of pins on the Calibration bus.

Figure 16-190. Pad Configuration Register (SIU_PCR340)

16.6.15.158Pad Configuration Register 341 (SIU_PCR341)

NOTE

Unlike other pad configuration registers (PCRs), which control the function
and electrical characteristics of one pin, this register controls the electrical
characteristics for a group of pins on the Calibration bus.

Figure 16-191. Pad Configuration Register (SIU_PCR341)

SIU_BASE+0x2E8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA 0 0 DSC ODE HYS 0 0 WPE WPS
W

Reset 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-193. SIU_PCR340 PA values

Signal Name Module Description I/O1,2

1 In cases where an I/O function can be either an input or an output, I/O direction is specified using the IBE and OBE
bits. Set IBE = 1 for input or OBE = 1 for output.

2 For I/O functions that change direction dynamically, such as the external data bus, switching between input and
output is handled internally and the IBE and OBE bits are ignored.

PA value

Primary CAL_ADDR[12:15] Calibration bus Calibration address bus I/O 001

ALT1 CAL_WE[2]/BE[2] Calibration write/byte enable O 010

CAL_WE3]/BE[3] Calibration write/byte enable O

CAL_DATA[31] Calibration data bus I/O

CAL_ALE Calibration address latch enable O

SIU_BASE+0x2EA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 DSC ODE HYS 0 0 WPE WPS
W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 517

16.6.15.159Pad Configuration Register 342 (SIU_PCR342)

NOTE

Unlike other pad configuration registers (PCRs), which control the function
and electrical characteristics of one pin, this register controls the function
and electrical characteristics for a group of pins on the Calibration bus.

Figure 16-192. Pad Configuration Register (SIU_PCR342)

16.6.15.160Pad Configuration Register 343 (SIU_PCR343)

Figure 16-193. Pad Configuration Register (SIU_PCR343)

Table 16-194. SIU_PCR341PA values

Signal Name Module Description I/O PA value

Primary CAL_DATA[0:15] Calibration bus Calibration data bus I/O —

SIU_BASE+0x2EC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 DSC ODE HYS 0 0 WPE WPS
W

Reset 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-195. SIU_PCR342 PA values

Signal Name Module Description I/O PA value

Primary CAL_RD_WR Calibration bus Calibration data bus I/O —

CAL_WE[0]/BE[0] Calibration write/byte enable

CAL_WE[1]/BE[1] Calibration write/byte enable

CAL_OE Calibration output enable

SIU_BASE+0x2EE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA 0 0 DSC ODE HYS 0 0 WPE WPS
W

Reset 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-196. SIU_PCR343 PA values

Signal Name Module Description I/O PA value

Primary CAL_TS Calibration bus Calibration transfer start O 01

ALT1 CAL_ALE Calibration bus Address Latch Enable O 10

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

518 Freescale Semiconductor

16.6.15.161Pad Configuration Register 345 (SIU_PCR345)

NOTE

Unlike other pad configuration registers (PCRs), which control the function
and electrical characteristics of one pin, this register controls the function
and electrical characteristics for a group of pins on the Calibration bus.

Figure 16-194. Pad Configuration Register (SIU_PCR345)

16.6.15.162Pad Configuration Register 350 – 381 (SIU_PCR350 – SIU_PCR381)

The SIU_PCR350 – SIU_PCR381 registers control the muxing of the signals to the DSPI. PA field values
are shown in Table 16-198.

Figure 16-195. Pad Configuration Register 350 – 381 (SIU_PCR350 – SIU_PCR381)

SIU_BASE+0x2F2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA 0 0 DSC ODE HYS 0 0 WPE WPS
W

Reset 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-197. SIU_PCR345 PA values

Signal Name Module Description I/O PA value

Primary CAL_ADDR[16:30] Calibration bus Calibration address bus I/O 01

ALT1 CAL_DATA[16:30] Calibration bus Calibration data bus I/O 10

SIU_BASE+0x2Fc – SIU_BASE+0x33a (32)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-198. SIU_PCR350 – SIU_PCR381 DSPI muxing

Register
Address

offset from
SIU_BASE

DSPI serialize
signal name

PA value

0b001 0b100 0b010 0b000

SIU_PCR350 0x2FC DSPI_B -DSI0 ETPU_A_23 — EMIOS_11 GPIO350

SIU_PCR351 0x2FE DSPI_B -DSI1 ETPU_A_22 — EMIOS_10 GPIO351

SIU_PCR352 0x300 DSPI_B -DSI2 ETPU_A_21 — EMIOS_9 GPIO352

SIU_PCR353 0x302 DSPI_B -DSI3 ETPU_A_20 — EMIOS_8 GPIO353

SIU_PCR354 0x304 DSPI_B -DSI4 ETPU_A_19 — EMIOS_6 GPIO354

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 519

16.6.15.163Pad Configuration Register 382 – 389 (SIU_PCR382 – SIU_PCR389)

The SIU_PCR382 – SIU_PCR389 registers control the muxing of the signals to the DSPI. PA field values
are shown in Table 16-199.

SIU_PCR355 0x306 DSPI_B -DSI5 ETPU_A_18 — EMIOS_5 GPIO355

SIU_PCR356 0x308 DSPI_B -DSI6 ETPU_A_17 — EMIOS_4 GPIO356

SIU_PCR357 0x30A DSPI_B -DSI7 ETPU_A_16 — EMIOS_3 GPIO357

SIU_PCR358 0x30C DSPI_B -DSI8 ETPU_A_29 — EMIOS_2 GPIO358

SIU_PCR359 0x30E DSPI_B -DSI9 ETPU_A_28 — EMIOS_1 GPIO359

SIU_PCR360 0x310 DSPI_B -DSI10 ETPU_A_27 — EMIOS_0 GPIO360

SIU_PCR361 0x312 DSPI_B -DSI11 ETPU_A_26 — EMIOS_23 GPIO361

SIU_PCR362 0x314 DSPI_B -DSI12 ETPU_A_25 — EMIOS_15 GPIO362

SIU_PCR363 0x316 DSPI_B -DSI13 ETPU_A_24 — EMIOS_14 GPIO363

SIU_PCR364 0x318 DSPI_B -DSI14 ETPU_A_31 — EMIOS_13 GPIO364

SIU_PCR365 0x31A DSPI_B -DSI15 ETPU_A_30 — EMIOS_12 GPIO365

SIU_PCR366 0x31C DSPI_B -DSI16 ETPU_A_12 — EMIOS_23 GPIO366

SIU_PCR367 0x31E DSPI_B -DSI17 ETPU_A_13 — EMIOS_15 GPIO367

SIU_PCR368 0x320 DSPI_B -DSI18 ETPU_A_14 — EMIOS_14 GPIO368

SIU_PCR369 0x322 DSPI_B -DSI19 ETPU_A_15 — EMIOS_13 GPIO369

SIU_PCR370 0x324 DSPI_B -DSI20 ETPU_A_0 — EMIOS_12 GPIO370

SIU_PCR371 0x326 DSPI_B -DSI21 ETPU_A_1 — EMIOS_11 GPIO371

SIU_PCR372 0x328 DSPI_B -DSI22 ETPU_A_2 — EMIOS_10 GPIO372

SIU_PCR373 0x32A DSPI_B -DSI23 ETPU_A_3 — EMIOS_9 GPIO373

SIU_PCR374 0x32C DSPI_B -DSI24 ETPU_A_4 — EMIOS_8 GPIO374

SIU_PCR375 0x32E DSPI_B -DSI25 ETPU_A_5 — EMIOS_6 GPIO375

SIU_PCR376 0x330 DSPI_B -DSI26 ETPU_A_6 — EMIOS_5 GPIO376

SIU_PCR377 0x332 DSPI_B -DSI27 ETPU_A_7 — EMIOS_4 GPIO377

SIU_PCR378 0x334 DSPI_B -DSI28 ETPU_A_8 — EMIOS_3 GPIO378

SIU_PCR379 0x336 DSPI_B -DSI29 ETPU_A_9 — EMIOS_2 GPIO379

SIU_PCR380 0x338 DSPI_B -DSI30 ETPU_A_10 — EMIOS_1 GPIO380

SIU_PCR381 0x33A DSPI_B -DSI31 ETPU_A_11 — EMIOS_0 GPIO381

Table 16-198. SIU_PCR350 – SIU_PCR381 DSPI muxing (continued)

Register
Address

offset from
SIU_BASE

DSPI serialize
signal name

PA value

0b001 0b100 0b010 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

520 Freescale Semiconductor

Figure 16-196. Pad Configuration Register 382 – 389 (SIU_PCR382 – SIU_PCR389)

16.6.15.164Pad Configuration Register 390 – 413 (SIU_PCR390 – SIU_PCR413)

The SIU_PCR390 – SIU_PCR413 registers control the muxing of the signals to the DSPI. PA field values
are shown in Table 16-200.

Figure 16-197. Pad Configuration Register 390 – 413 (SIU_PCR390 – SIU_PCR413)

SIU_BASE+0x33C – SIU_BASE+0x34A (8)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 PA 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-199. SIU_PCR382 – SIU_PCR389 DSPI muxing

Register
Address

offset from
SIU_BASE

DSPI serialize
signal name

PA value

0b001 0b100 0b010 0b000

SIU_PCR382 0x33C DSPI_C -DSI0 ETPU_A_12 EMIOS_7 EMIOS_12 GPIO382

SIU_PCR 383 0x33E DSPI_C -DSI1 ETPU_A_13 EMIOS_16 EMIOS_13 GPIO383

SIU_PCR 384 0x340 DSPI_C -DSI2 ETPU_A_14 EMIOS_17 EMIOS_14 GPIO384

SIU_PCR 385 0x342 DSPI_C -DSI3 ETPU_A_15 EMIOS_18 EMIOS_15 GPIO385

SIU_PCR 386 0x344 DSPI_C -DSI4 ETPU_A_0 EMIOS_19 EMIOS_23 GPIO386

SIU_PCR 387 0x346 DSPI_C -DSI5 ETPU_A_1 EMIOS_20 EMIOS_0 GPIO387

SIU_PCR 388 0x348 DSPI_C -DSI6 ETPU_A_2 EMIOS_21 EMIOS_1 GPIO388

SIU_PCR 389 0x34A DSPI_C -DSI7 ETPU_A_3 EMIOS_22 EMIOS_2 GPIO389

SIU_BASE+0x34C – SIU_BASE+0x37A (24)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PA 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-200. SIU_PCR390 – SIU_PCR413 DSPI muxing

Register
Address

offset from
SIU_BASE

DSPI serialize
signal name

PA value

0b001 0b100 0b010 0b000

SIU_PCR 390 0x34C DSPI_C -DSI8 ETPU_A_4 — EMIOS_3 GPIO390

SIU_PCR 391 0x34E DSPI_C -DSI9 ETPU_A_5 — EMIOS_4 GPIO391

SIU_PCR 392 0x350 DSPI_C -DSI10 ETPU_A_6 — EMIOS_5 GPIO392

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 521

16.6.16 GPIO Pin Data Output Registers (SIU_GPDO0_3 –
SIU_GPDO412_413)

The SIU_GPDOx_x registers are written to by software to drive data out on the external GPIO pin. Each
byte of a register drives a single external GPIO pin, which allows the state of the pin to be controlled
independently from other GPIO pins. Writes to the SIU_GPDOx_x registers have no effect on pin states if
the pins are configured as inputs by the associated Pad Configuration Registers. The SIU_GPDOx_x
register values are automatically driven to the GPIO pins without software update if the direction of the
GPIO pins is changed from input to output.

Writes to the SIU_GPDOx_x registers have no effect on the state of the corresponding pins when the pins
are configured for their primary function by the corresponding PCR.

SIU_PCR 393 0x352 DSPI_C -DSI11 ETPU_A_7 — EMIOS_6 GPIO393

SIU_PCR 394 0x354 DSPI_C -DSI12 ETPU_A_8 — EMIOS_8 GPIO394

SIU_PCR 395 0x356 DSPI_C -DSI13 ETPU_A_9 — EMIOS_9 GPIO395

SIU_PCR 396 0x358 DSPI_C -DSI14 ETPU_A_10 — EMIOS_10 GPIO396

SIU_PCR 397 0x35A DSPI_C -DSI15 ETPU_A_11 — EMIOS_11 GPIO397

SIU_PCR 398 0x35C DSPI_C -DSI16 ETPU_A_23 — EMIOS_0 GPIO398

SIU_PCR 399 0x35E DSPI_C -DSI17 ETPU_A_22 — EMIOS_1 GPIO399

SIU_PCR 400 0x360 DSPI_C -DSI18 ETPU_A_21 — EMIOS_2 GPIO400

SIU_PCR 401 0x362 DSPI_C -DSI19 ETPU_A_20 — EMIOS_3 GPIO401

SIU_PCR 402 0x364 DSPI_C -DSI20 ETPU_A_19 — EMIOS_4 GPIO402

SIU_PCR 403 0x366 DSPI_C -DSI21 ETPU_A_18 — EMIOS_5 GPIO403

SIU_PCR 404 0x368 DSPI_C -DSI22 ETPU_A_17 — EMIOS_6 GPIO404

SIU_PCR 405 0x36A DSPI_C -DSI23 ETPU_A_16 — EMIOS_8 GPIO405

SIU_PCR 406 0x36C DSPI_C -DSI24 ETPU_A_29 — EMIOS_9 GPIO406

SIU_PCR 407 0x36E DSPI_C -DSI25 ETPU_A_28 — EMIOS_10 GPIO407

SIU_PCR 408 0x370 DSPI_C -DSI26 ETPU_A_27 — EMIOS_11 GPIO408

SIU_PCR 409 0x372 DSPI_C -DSI27 ETPU_A_26 — EMIOS_12 GPIO409

SIU_PCR 410 0x374 DSPI_C -DSI28 ETPU_A_25 — EMIOS_13 GPIO410

SIU_PCR 411 0x376 DSPI_C -DSI29 ETPU_A_24 — EMIOS_14 GPIO411

SIU_PCR 412 0x378 DSPI_C -DSI30 ETPU_A_31 — EMIOS_15 GPIO412

SIU_PCR 413 0x37A DSPI_C -DSI31 ETPU_A_30 — EMIOS_23 GPIO413

Table 16-200. SIU_PCR390 – SIU_PCR413 DSPI muxing (continued)

Register
Address

offset from
SIU_BASE

DSPI serialize
signal name

PA value

0b001 0b100 0b010 0b000

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

522 Freescale Semiconductor

The definition of the SIU_GPDOx_x registers is given in Figure 16-198 and Figure 16-199. Each of the
PDO bits corresponds to the pin with the same GPIO pin number. For example, PDO0 is the pin data output
bit for the CS[0]_ADDR[8]_GPIO[0] pin, and PDO213 is the pin data output bit for the
WKPCFG_GPIO[213] pin. Gaps exist in this memory space where the pin is not available in the package.

Figure 16-198. GPIO Pin Data Out Register 0 – 3 (SIU_GPDO0 – SIU_GPDO3)

Figure 16-199. GPIO Pin Data Out Register 412 – 413 (SIU_GPDO410 – SIU_GPDO413)

16.6.17 GPIO Pin Data Input Registers (SIU_GPDI0_3 – SIU_GPDI_232)

The SIU_GPDIx_x registers are read-only registers that allow software to read the input state of an external
GPIO pin. Each byte of a register represents the input state of a single external GPIO pin. If the GPIO pin
is configured as an output, and the input buffer enable (IBE) bit is set in the associated Pad Configuration
Register, the SIU_GPDIx_x register reflects the actual state of the output pin.

The definition of the SIU_GPDIx_x registers is given in Figure 16-200 and Figure 16-201. Each of the
GPDI bits corresponds to the pin with the same GPIO pin number. For example, GPDI0 is the pin data

SIU_BASE + 0x600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 PDO

0

0 0 0 0 0 0 0 PDO

1W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 PDO

2

0 0 0 0 0 0 0 PDO

3W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

SSIU_BASE + 0x79D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 PDO

412

0 0 0 0 0 0 0 PDO

413W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-201. SIU_GPDOx_x field description

Field Description

PDOx
Pin Data Out. This bit stores the data to be driven out on the external GPIO pin associated with the
register.
0 VOL is driven on the external GPIO pin when the pin is configured as an output.
1 VOH is driven on the external GPIO pin when the pin is configured as an output.

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 523

input bit for the CS[0]_GPIO[0] pin, and PDI213 is the pin data input bit for the WKPCFG_GPIO[213]
pin. Gaps exist in this memory space where the pin is not available in the package.

Figure 16-200. GPIO Pin Data In Register 0 – 3 (SIU_GPDI0 – SIU_GPDI3)

Figure 16-201. GPIO Pin Data In Register 230 – 232 (SIU_GPDI230 – SIU_GPDI232)

16.6.18 eQADC Trigger Input Select Register (SIU_ETISR1)

The eQADC Trigger Input Select Register (SIU_ETISR) selects the source for the eQADC trigger inputs.

The fields in this register operate in conjunction with the corresponding fields in the SIU_ISEL3 register.
Each field in the SIU_ETISR offers direct selection of three signals to be used as a trigger to a eQADC
CFIFO queue. The TSEL5 field is used to select the trigger source for eQADC CFIFO5, the TSEL4 field
selects the trigger source for eQADC CFIFO4, and so on. Additionally, each SIU_ETISR field offers
selection among a group of signals using the corresponding field in the SIU_ISEL3 register.

SIU_BASE + 0x800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 PDI

0

0 0 0 0 0 0 0 PDI

1
W

Reset 0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 PDI

2

0 0 0 0 0 0 0 PDI

3
W

Reset 0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 U

= Unimplemented or Reserved

SIU_BASE + 0x8EA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 PDI

230

0 0 0 0 0 0 0 PDI

231
W

Reset 0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 U

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 PDI

232

0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 U 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-202. SIU_GPDIx_x field description

Field Description

PDIx
Pin Data In. This bit stores the input state on the external GPIO pin associated with the register.
0 Signal on pin is less than or equal to VIL.
1 Signal on pin is greater than or equal to VIH.

1. The ETISR is sometimes referred to as ISEL0

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

524 Freescale Semiconductor

Figure 16-202 illustrates the available trigger selections for eQADC CFIFO5.

Figure 16-202. Trigger selection for eQADC CFIFO queue 5

As shown in the above figure, the TSEL5 field can be used to select the eTPU_A[26], eMIOS[12] or
GPIO[207] signal or, by assigning a value of 0b00 to the TSEL5 field, a variety of other signals can be
selected using the eTSEL5 field of the SIU_ISEL3 register.

Figure 16-203. eQADC Trigger Input Select Register (SIU_ETISR)

SIU_BASE+0x900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R TSEL5 TSEL4 TSEL3 TSEL2 TSEL1 TSEL0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

SIU_ETISR[TSEL5]

00 01 10 11

eTPU_A[26]

eMIO
S[12]

ETRIG
[1]

SIU_ISEL3[eTSEL5]

PIT1 Trig
ger

PIT3 Trig
ger

eTPU[30] A
ND PIT1

to eQADC external trigger input 5

PIT2 Trig
ger

eTPU30 AND PIT0

eTPU[29]

ETRIG
2 pin

eTPU[28]

eTPU[31]

RTI T
rig

ger

PIT0 Trig
ger

GPIO
[207]

eMIO
S[10] A

ND PIT3

eMIO
S[23]

eTPU[30]

eMIO
S[10] A

ND PIT2

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 525

Table 16-203. SIU_ETISR field description

Field Description

0:1
TSEL5

eQADC Trigger Input Select 5. The eQADC trigger 5 input is as follows:
00 eTSEL5 (described in SIU_ISEL3)
01 eTPU_A[26] channel
10 eMIOS[12] channel
11 ETRIG[1] pin

2:3
TSEL4

eQADC Trigger Input Select 4. The eQADC trigger 4 input is as follows:
00 eTSEL4 (described in SIU_ISEL3)
01 eTPU_A[27] channel
10 eMIOS[13] channel
11 ETRIG[0] pin

4:5
TSEL3

eQADC Trigger Input Select 3. The eQADC trigger 3 input is as follows:
00 eTSEL3 (described in SIU_ISEL3)
01 eTPU_A[28] channel
10 eMIOS[14] channel
11 ETRIG[1] pin

6:7
TSEL2

eQADC Trigger Input Select 2. The eQADC trigger 2 input is as follows:
00 eTSEL2 (described in SIU_ISEL3)
01 eTPU_A[29] channel
10 eMIOS[15] channel
11 ETRIG[0] pin

8:9
TSEL1

eQADC Trigger Input Select 1. The eQADC trigger 1 input is as follows:
00 eTSEL1 (described in SIU_ISEL3)
01 eTPU_A[31] channel
10 eMIOS[11] channel
11 ETRIG[1] pin

10:11
TSEL0

eQADC Trigger Input Select 0. The eQADC trigger 0 input is as follows:
00 eTSEL0 (described in SIU_ISEL3)
01 eTPU_A[30] channel
10 eMIOS[10] channel
11 ETRIG[0] pin

12:31 Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

526 Freescale Semiconductor

16.6.19 External IRQ Input Select Register (SIU_EIISR1)

The EIISR selects the source for the external interrupt/DMA inputs.

Figure 16-204. External IRQ Input Select Register (SIU_EIISR)

1.The EIISR is sometimes referred to as ISEL1

SIU_BASE+0x904

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R ESEL15 ESEL14 ESEL13 ESEL12 ESEL11 ESEL10 ESEL9 ESEL8
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R ESEL7 ESEL6 ESEL5 ESEL4 ESEL3 ESEL2 ESEL1 ESEL0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-204. SIU_EIISR field description

Field Description

0:1
ESEL15

External IRQ Input Select 15. IRQ[15] input is specified by ESEL15 as follows:
00 IRQ[15] pin
01 DSPI_B[15] deserialized output
10 DSPI_C[0] deserialized output
11 DSPI_D[1] deserialized output

2:3
ESEL14

External IRQ Input Select 14. IRQ[14] input is specified by ESEL14 as follows:
00 IRQ[14] pin
01 DSPI_B[14] deserialized output
10 DSPI_C[15] deserialized output
11 DSPI_D[0] deserialized output

4:5
ESEL13

External IRQ Input Select 13. IRQ[13] input is specified by ESEL13 as follows:
00 IRQ[13] pin
01 DSPI_B[13] deserialized output
10 DSPI_C[14] deserialized output
11 DSPI_D[15] deserialized output

6:7
ESEL12

External IRQ Input Select 12. IRQ[12] input is specified by ESEL12 as follows:
00 IRQ[12] pin
01 DSPI_B[12] deserialized output
10 DSPI_C[13] deserialized output
11 DSPI_D[14] deserialized output

8:9
ESEL11

External IRQ Input Select 11. IRQ[11] input is specified by ESEL11 as follows:
00 IRQ[11] pin
01 DSPI_B[11] deserialized output
10 DSPI_C[12] deserialized output
11 DSPI_D[13] deserialized output

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 527

10:11
ESEL10

External IRQ Input Select 10. IRQ[10] input is specified by ESEL10 as follows:
00 IRQ[10] pin
01 DSPI_B[10] deserialized output
10 DSPI_C[11] deserialized output
11 DSPI_D[12] deserialized output

12:13
ESEL9

External IRQ Input Select 9. IRQ[9] input is specified by ESEL9 as follows:
00 IRQ[9] pin
01 DSPI_B[9] deserialized output
10 DSPI_C[10] deserialized output
11 DSPI_D[11] deserialized output

14:15
ESEL8

External IRQ Input Select 8. IRQ[8] input is specified by ESEL8 as follows:
00 IRQ[8] pin
01 DSPI_B[8] deserialized output
10 DSPI_C[9] deserialized output
11 DSPI_D[10] deserialized output

16:17
ESEL7

External IRQ Input Select 7. IRQ[7] input is specified by ESEL7 as follows:
00 IRQ[7] pin
01 DSPI_B[7] deserialized output
10 DSPI_C[8] deserialized output
11 DSPI_D[9] deserialized output

18:19
ESEL6

External IRQ Input Select 6. IRQ[6] is multiplexed on the TCRCLK_B pin, which is not available in any
of the MPC5644A packages. IRQ[6] input is specified by ESEL6 as follows:
00 IRQ[6] pin
01 DSPI_B[6] deserialized output
10 DSPI_C[7] deserialized output
11 DSPI_D[8] deserialized output

20:21
ESEL5

External IRQ Input Select 5. IRQ[5] input is specified by ESEL5 as follows:
00 IRQ[5] pin
01 DSPI_B[5] deserialized output
10 DSPI_C[6] deserialized output
11 DSPI_D[7] deserialized output

22:23
ESEL4

External IRQ Input Select 4. IRQ[4] input is specified by ESEL4 as follows:
00 IRQ[4] pin
01 DSPI_B[4] deserialized output
10 DSPI_C[5] deserialized output
11 DSPI_D[6] deserialized output

24:25
ESEL3

External IRQ Input Select 3. IRQ[3] input is specified by ESEL3 as follows:
00 IRQ[3] pin
01 DSPI_B[3] deserialized output
10 DSPI_C[4] deserialized output
11 DSPI_D[5] deserialized output

26:27
ESEL2

External IRQ Input Select 2. IRQ[2] input is specified by ESEL2 as follows:
00 IRQ[2] pin
01 DSPI_B[2] deserialized output
10 DSPI_C[3] deserialized output
11 DSPI_D[4] deserialized output

Table 16-204. SIU_EIISR field description (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

528 Freescale Semiconductor

16.6.20 DSPI Input Select Register (SIU_DISR1)

The DISR specifies the source of each DSPI data input, slave select, clock input, and trigger input to allow
serial and parallel chaining of the DSPI blocks.

Figure 16-205. DSPI Input Select Register (SIU_DISR)

28:29
ESEL1

External IRQ Input Select 1. IRQ[1] input is specified by ESEL1 as follows:
00 IRQ[1] pin
01 DSPI_B[1] deserialized output
10 DSPI_C[2] deserialized output
11 eMIOS[15]

30:31
ESEL0

External IRQ Input Select 0. IRQ[0] input is specified by ESEL0 as follows:
00 IRQ[0] pin
01 DSPI_B[0] deserialized output
10 DSPI_C[1] deserialized output
11 eMIOS[14]

1.The DISR is sometimes referred to as ISEL2

SIU_BASE+0x908

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 SINSELB SSSELB SCKSELB TRIGSELB
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R SINSELC SSSELC SCKSELC TRIGSELC SINSELD SSSELD SCKSELD TRIGSELD
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-205. SIU_DISR field description

Field Description

0:7 Reserved

8:9
SINSELB

DSPI_B Data Input Select. The source of the data input of DSPI_B is specified by SINSELB as follows:
00 DSPI_B_SIN pin
01 Reserved
10 DSPI_C_SOUT
11 DSPI_D_SOUT

10:11
SSSELB

DSPI_B Slave Select Input Select. The source of the slave select input of DSPI_B is specified by
SSSELB as follows:
00 DSPI_B_PCS[0] pin
01 Reserved
10 DSPI_C_PCS[0] (Master)
11 DSPI_D_PCS[0] (Master)

Table 16-204. SIU_EIISR field description (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 529

12:13
SCKSELB

DSPI_B Clock Input Select. The source of the clock input of DSPI_B when in slave mode is specified
by SCKSELB as follows:
00 DSPI_B_SCK pin
01 Reserved
10 DSPI_C_SCK (Master)
11 DSPI_D_SCK (Master)

14:15
TRIGSELB

DSPI_B Trigger Input Select. The source of the trigger input of DSPI_B for master or slave mode is
specified by TRIGSELB as follows:
00 Reserved
01 Reserved
10 DSPI_C_PCS[4]
11 DSPI_D_PCS[4]

16:17
SINSELC

DSPI_C Data Input Select. The source of the data input of DSPI_C is specified by SINSELC as follows:
00 DSPI_C_SIN pin
01 Reserved
10 DSPI_B_SOUT
11 DSPI_D_SOUT

18:19
SSSELC

DSPI_C Slave Select Input Select. The source of the slave select input of DSPI_C is specified by
SSSELC as follows:
00 DSPI_C_PCS[0] pin
01 Reserved
10 DSPI_B_PCS[0] (Master)
11 DSPI_D_PCS[0] (Master)

20:21
SCKSELC

DSPI_C Clock Input Select. The source of the clock input of DSPI_C when in slave mode is specified
by SCKSELC as follows:
00 DSPI_C_SCK pin
01 Reserved
10 DSPI_B_SCK (Master)
11 DSPI_D_SCK (Master)

22:23
TRIGSELC

DSPI_C Trigger Input Select. The source of the trigger input of DSPI_C for master or slave mode is
specified by TRIGSELC as follows:
00 Reserved
01 Reserved
10 DSPI_B_PCS[4]
11 DSPI_D_PCS[4]

24:25
SINSELD

DSPI_D Data Input Select. The source of the data input of DSPI_D is specified by SINSELD as follows:
00 DSPI_D_SIN pin
01 Reserved
10 DSPI_B_SOUT
11 DSPI_C_SOUT

26:27
SSSELD

DSPI_D Slave Select Input Select. The source of the slave select input of DSPI_D is specified by
SSSELD as follows:
00 DSPI_D_PCS[0] pin
01 Reserved
10 DSPI_B_PCS[0] (Master)
11 DSPI_C_PCS[0] (Master)

Table 16-205. SIU_DISR field description (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

530 Freescale Semiconductor

16.6.21 IMUX Select Register 3 (SIU_ISEL3)

The SIU_ISEL 3 register selects the source for the external eQADC trigger inputs.

Figure 16-206. IMUX Select Register 3 (SIU_ISEL3)

For options 0b01000, 0b01001, 0b10100, 0b10101 for each queue, two trigger sources are logically
ANDed together. The intention is that the PIT provides the regular cyclic trigger, while the eTPU or
eMIOS channels are used to ‘gate’ that cyclic trigger. This way, the ADC can be commanded to make
regular samples but only during a given time or angle window.

28:29
SCKSELD

DSPI_D Clock Input Select. The source of the clock input of DSPI_D when in slave mode is specified
by SCKSELD as follows:
00 DSPI_D_SCK pin
01 Reserved
10 DSPI_B_SCK (Master)
11 DSPI_C_SCK (Master)

30:31
TRIGSELD

DSPI_D Trigger Input Select. The source of the trigger input of DSPI_D for master or slave mode is
specified by TRIGSELD as follows:
00 Reserved
01 Reserved
10 DSPI_B_PCS[4]
11 DSPI_C_PCS[4]

SIU_BASE+0x90C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 eTSEL5 eTSEL4 eTSEL3
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R eTSEL

3

eTSEL2 eTSEL1 eTSEL0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-206. eQADC queue0 enhanced trigger selection

eTSEL0 eQADC enhanced trigger input

0 0 0 0 0 GPIO206 (eTRIG0)

0 0 0 0 1 RTI Trigger

0 0 0 1 0 PIT0 Trigger

0 0 0 1 1 PIT1 Trigger

0 0 1 0 0 PIT2 Trigger

Table 16-205. SIU_DISR field description (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 531

0 0 1 0 1 PIT3 Trigger

0 0 1 1 0 Reserved

0 0 1 1 1 BOOTCFG[1] (eTRIG3)

0 1 0 0 0 eTPU30 AND PIT0

0 1 0 0 1 eTPU30 AND PIT1

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 eTPU28

0 1 1 0 1 eTPU29

0 1 1 1 0 eTPU30

0 1 1 1 1 eTPU31

1 0 0 0 0 Reserved

1 0 0 0 1 Reserved

1 0 0 1 0 Reserved

1 0 0 1 1 Reserved

1 0 1 0 0 eMIOS10 AND PIT2

1 0 1 0 1 eMIOS10 AND PIT3

1 0 1 1 0 Reserved

1 0 1 1 1 Reserved

1 1 0 0 0 Reserved

1 1 0 0 1 Reserved

1 1 0 1 0 Reserved

1 1 0 1 1 Reserved

1 1 1 0 0 Reserved

1 1 1 0 1 Reserved

1 1 1 1 0 Reserved

1 1 1 1 1 eMIOS23

Table 16-207. eQADC queue1 enhanced trigger selection

eTSEL1 eQADC enhanced trigger input

0 0 0 0 0 GPIO207 (eTRIG1)

0 0 0 0 1 RTI Trigger

0 0 0 1 0 PIT0 Trigger

Table 16-206. eQADC queue0 enhanced trigger selection (continued)

eTSEL0 eQADC enhanced trigger input

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

532 Freescale Semiconductor

0 0 0 1 1 PIT1 Trigger

0 0 1 0 0 PIT2 Trigger

0 0 1 0 1 PIT3 Trigger

0 0 1 1 0 Reserved

0 0 1 1 1 PLLREF (eTRIG2)

0 1 0 0 0 eTPU31 AND PIT0

0 1 0 0 1 eTPU31 AND PIT1

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 eTPU28

0 1 1 0 1 eTPU29

0 1 1 1 0 eTPU30

0 1 1 1 1 eTPU31

1 0 0 0 0 Reserved

1 0 0 0 1 Reserved

1 0 0 1 0 Reserved

1 0 0 1 1 Reserved

1 0 1 0 0 eMIOS11 AND PIT2

1 0 1 0 1 eMIOS11 AND PIT3

1 0 1 1 0 Reserved

1 0 1 1 1 Reserved

1 1 0 0 0 Reserved

1 1 0 0 1 Reserved

1 1 0 1 0 Reserved

1 1 0 1 1 Reserved

1 1 1 0 0 Reserved

1 1 1 0 1 Reserved

1 1 1 1 0 Reserved

1 1 1 1 1 eMIOS23

Table 16-207. eQADC queue1 enhanced trigger selection (continued)

eTSEL1 eQADC enhanced trigger input

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 533

Table 16-208. eQADC queue2 enhanced trigger selection

eTSEL2 eQADC enhanced trigger input

0 0 0 0 0 GPIO206 (eTRIG0)

0 0 0 0 1 RTI Trigger

0 0 0 1 0 PIT0 Trigger

0 0 0 1 1 PIT1 Trigger

0 0 1 0 0 PIT2 Trigger

0 0 1 0 1 PIT3 Trigger

0 0 1 1 0 Reserved

0 0 1 1 1 BOOTCFG[1] (eTRIG3)

0 1 0 0 0 eTPU30 AND PIT0

0 1 0 0 1 eTPU30 AND PIT1

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 eTPU28

0 1 1 0 1 eTPU29

0 1 1 1 0 eTPU30

0 1 1 1 1 eTPU31

1 0 0 0 0 Reserved

1 0 0 0 1 Reserved

1 0 0 1 0 Reserved

1 0 0 1 1 Reserved

1 0 1 0 0 eMIOS10 AND PIT2

1 0 1 0 1 eMIOS10 AND PIT3

1 0 1 1 0 Reserved

1 0 1 1 1 Reserved

1 1 0 0 0 Reserved

1 1 0 0 1 Reserved

1 1 0 1 0 Reserved

1 1 0 1 1 Reserved

1 1 1 0 0 Reserved

1 1 1 0 1 Reserved

1 1 1 1 0 Reserved

1 1 1 1 1 eMIOS23

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

534 Freescale Semiconductor

Table 16-209. eQADC queue3 enhanced trigger selection

eTSEL3 eQADC enhanced trigger input

0 0 0 0 0 GPIO207 (eTRIG1)

0 0 0 0 1 RTI Trigger

0 0 0 1 0 PIT0 Trigger

0 0 0 1 1 PIT1 Trigger

0 0 1 0 0 PIT2 Trigger

0 0 1 0 1 PIT3 Trigger

0 0 1 1 0 Reserved

0 0 1 1 1 PLLREF (eTRIG2)

0 1 0 0 0 eTPU30 AND PIT0

0 1 0 0 1 eTPU30 AND PIT1

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 eTPU28

0 1 1 0 1 eTPU29

0 1 1 1 0 eTPU30

0 1 1 1 1 eTPU31

1 0 0 0 0 Reserved

1 0 0 0 1 Reserved

1 0 0 1 0 Reserved

1 0 0 1 1 Reserved

1 0 1 0 0 eMIOS10 AND PIT2

1 0 1 0 1 eMIOS10 AND PIT3

1 0 1 1 0 Reserved

1 0 1 1 1 Reserved

1 1 0 0 0 Reserved

1 1 0 0 1 Reserved

1 1 0 1 0 Reserved

1 1 0 1 1 Reserved

1 1 1 0 0 Reserved

1 1 1 0 1 Reserved

1 1 1 1 0 Reserved

1 1 1 1 1 eMIOS23

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 535

Table 16-210. eQADC queue4 enhanced trigger selection

eTSEL4 eQADC enhanced trigger input

0 0 0 0 0 GPIO206 (eTRIG0)

0 0 0 0 1 RTI Trigger

0 0 0 1 0 PIT0 Trigger

0 0 0 1 1 PIT1 Trigger

0 0 1 0 0 PIT2 Trigger

0 0 1 0 1 PIT3 Trigger

0 0 1 1 0 Reserved

0 0 1 1 1 BOOTCFG[1] (eTRIG3)

0 1 0 0 0 eTPU30 AND PIT0

0 1 0 0 1 eTPU30 AND PIT1

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 eTPU28

0 1 1 0 1 eTPU29

0 1 1 1 0 eTPU30

0 1 1 1 1 eTPU31

1 0 0 0 0 Reserved

1 0 0 0 1 Reserved

1 0 0 1 0 Reserved

1 0 0 1 1 Reserved

1 0 1 0 0 eMIOS10 AND PIT2

1 0 1 0 1 eMIOS10 AND PIT3

1 0 1 1 0 Reserved

1 0 1 1 1 Reserved

1 1 0 0 0 Reserved

1 1 0 0 1 Reserved

1 1 0 1 0 Reserved

1 1 0 1 1 Reserved

1 1 1 0 0 Reserved

1 1 1 0 1 Reserved

1 1 1 1 0 Reserved

1 1 1 1 1 eMIOS23

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

536 Freescale Semiconductor

Table 16-211. eQADC queue5 enhanced trigger selection

eTSEL5 eQADC enhanced trigger input

0 0 0 0 0 GPIO207 (eTRIG1)

0 0 0 0 1 RTI Trigger

0 0 0 1 0 PIT0 Trigger

0 0 0 1 1 PIT1 Trigger

0 0 1 0 0 PIT2 Trigger

0 0 1 0 1 PIT3 Trigger

0 0 1 1 0 Reserved

0 0 1 1 1 PLLREF (eTRIG2)

0 1 0 0 0 eTPU30 AND PIT0

0 1 0 0 1 eTPU30 AND PIT1

0 1 0 1 0 Reserved

0 1 0 1 1 Reserved

0 1 1 0 0 eTPU28

0 1 1 0 1 eTPU29

0 1 1 1 0 eTPU30

0 1 1 1 1 eTPU31

1 0 0 0 0 Reserved

1 0 0 0 1 Reserved

1 0 0 1 0 Reserved

1 0 0 1 1 Reserved

1 0 1 0 0 eMIOS10 AND PIT2

1 0 1 0 1 eMIOS10 AND PIT3

1 0 1 1 0 Reserved

1 0 1 1 1 Reserved

1 1 0 0 0 Reserved

1 1 0 0 1 Reserved

1 1 0 1 0 Reserved

1 1 0 1 1 Reserved

1 1 1 0 0 Reserved

1 1 1 0 1 Reserved

1 1 1 1 0 Reserved

1 1 1 1 1 eMIOS23

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 537

16.6.22 IMUX Select Register 8 (SIU_ISEL8)

The SIU_ISEL8 Register is used to multiplex the eTPU[24:29] inputs.

These six eTPU channels can come from the output of the DSPI or the corresponding pad.

When SIU_ISEL8 is in its default state, the eTPU pins listed in Figure 16-207 will not be connected to
their respective output pin, irrespective of the SIU_PCR[PA] field.

Figure 16-207. IMUX Select Register 8 (SIU_ISEL8)

SIU_BASE+0x920

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0

E
S

E
L5 0 0 0

E
S

E
L4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0

E
S

E
L3 0 0 0

E
S

E
L2 0 0 0

E
S

E
L1 0 0 0

E
S

E
L0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-212. SIU_ISEL8 field description

Field Description

0:10 Reserved

11
ESEL5

eTPU input channel connected as follows:
0 DSPI_B[8] deserialized output
1 eTPU channel 29

12:14 Reserved

15
ESEL4

eTPU input channel connected as follows:
0 DSPI_B[9] deserialized output
1 eTPU channel 28

16:18 Reserved

19
ESEL3

eTPU input channel connected as follows:
0 DSPI_B[10] deserialized output
1 eTPU channel 27

20:22 Reserved

23
ESEL2

eTPU input channel connected as follows:
0 DSPI_B[11] deserialized output
1 eTPU channel 26

24:26 Reserved

27
ESEL1

eTPU input channel connected as follows:
0 DSPI_B[12] deserialized output
1 eTPU channel 25

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

538 Freescale Semiconductor

16.6.23 IMUX Select Register 9 (SIU_ISEL9)

The eQADC has a mode of operation called “Streaming”. This mode requires a second trigger for queue
0. The source for this trigger can come from eTPU, eMIOS or PIT channels. A mux select register is
required to select the source of this new queue0 trigger.

Figure 16-208. IMUX Select Register 9 (SIU_ISEL9)

28:30 Reserved

31
ESEL0

eTPU input channel connected as follows:
0 DSPI_B[13] deserialized output
1 eTPU channel 24

SIU_BASE+0x924

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0 eTSEL0A
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-213. eQADC advance trigger selection

eTSEL0A eQADC enhanced trigger input

0 0 0 0 0 Reserved

0 0 0 0 1 RTI Trigger

0 0 0 1 0 PIT0 Trigger

0 0 0 1 1 PIT1 Trigger

0 0 1 0 0 PIT2 Trigger

0 0 1 0 1 PIT3 Trigger

0 0 1 1 0 Reserved

0 0 1 1 1 Reserved

0 1 0 0 0 eTPU30 AND PIT0

0 1 0 0 1 eTPU30 AND PIT1

0 1 0 1 0 Reserved

Table 16-212. SIU_ISEL8 field description (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 539

16.6.24 IMUX Select Register 10 (SIU_ISEL10)

The IMUX Select Register 10 (SIU_ISEL10) register contains bit fields that specify which eTPU output
is connected to the decimation filter Integrator halt signal (HSELx) and Integrator reset signal

0 1 0 1 1 Reserved

0 1 1 0 0 eTPU28

0 1 1 0 1 eTPU29

0 1 1 1 0 eTPU30

0 1 1 1 1 eTPU31

1 0 0 0 0 Reserved

1 0 0 0 1 Reserved

1 0 0 1 0 Reserved

1 0 0 1 1 Reserved

1 0 1 0 0 eMIOS10 AND PIT2

1 0 1 0 1 eMIOS10 AND PIT3

1 0 1 1 0 Reserved

1 0 1 1 1 Reserved

1 1 0 0 0 Reserved

1 1 0 0 1 Reserved

1 1 0 1 0 Reserved

1 1 0 1 1 Reserved

1 1 1 0 0 Reserved

1 1 1 0 1 Reserved

1 1 1 1 0 Reserved

1 1 1 1 1 eMIOS23

Table 16-213. eQADC advance trigger selection (continued)

eTSEL0A eQADC enhanced trigger input

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

540 Freescale Semiconductor

(ZSELx).For more details refer to Section 26.3.3, Integrator halt signal and Section 26.3.4, Integrator reset
signal.

Figure 16-209. IMUX Select Register 10 (SIU_ISEL10 or SIU_DECFIL1)

SIU_BASE+0x928

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R HSELB ZSELB HSELA ZSELA
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-214. Decimation filter control source selection

Field Code Source

ZSELA 0 0 0 1 eTPU[22]

0 0 1 0 eTPU[23]

0 0 1 1 eTPU[24]

0 1 0 0 eTPU[25]

Others Unused

HSELA 0 0 0 1 eTPU[22]

0 0 1 0 eTPU[23]

0 0 1 1 eTPU[24]

0 1 0 0 eTPU[25]

Others Unused

ZSELB 0 0 0 1 eTPU[22]

0 0 1 0 eTPU[23]

0 0 1 1 eTPU[24]

0 1 0 0 eTPU[25]

Others Unused

HSELB 0 0 0 1 eTPU[22]

0 0 1 0 eTPU[23]

0 0 1 1 eTPU[24]

0 1 0 0 eTPU[25]

Others Unused

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 541

16.6.25 Chip Configuration Register (SIU_CCR)

Figure 16-210. Chip Configuration Register (SIU_CCR)

SIU_BASE + 0x980

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M
A

T
C

H

D
IS

N
E

X

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U

1

1During reset the comparison is performed and result is uncertain

U
2

2The value after reset is uncertain

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C
R

S
E 0

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-215. SIU_CCR field description

Field Description

0:13 Reserved

14
MATCH

Compare Register Match. The MATCH bit is a read only bit that holds the value of the match input
signal to the SIU. The match bit is asserted if the password in shadow flash memory and the contents
of the SIU_CBRH/SIU_CBRL registers are equal.
0 Match input signal is negated
1 Match input signal is asserted

15
DISNEX

Disable Nexus. The DISNEX bit is a read only bit that holds the value of the Nexus disable input signal
to the SIU. When system reset negates, the value in this bit depends on the censorship control word
and the boot configuration bits.
0 Nexus disable input signal is negated
1 Nexus disable input signal is asserted

16:29 Reserved

30
CRSE

Calibration Reflection Suppression Enable. The CRSE bit enables the suppression of reflections from
the EBI’s calibration bus onto the non-calibration bus. The EBI drives some outputs to both the
calibration and non-calibration busses. When CRSE is asserted, the values driven onto the calibration
bus pins will not be reflected onto the non-calibration bus pins. When CRSE is negated, the values
driven onto the calibration bus pins will be reflected onto the non-calibration bus pins.
CRSE only enables reflection suppression for non-calibration bus pins which do not have a negated
state to which the pins return at the end of the access. CRSE does not enable reflection suppression
for the non-calibration bus pins which have a negated state to which the pins return at the end of an
access. Those reflections always are suppressed. Furthermore, the suppression of reflections from the
non-calibration bus onto the calibration bus is not enabled by CRSE. Those reflections are also always
suppressed.
0 Calibration reflection suppression is disabled
1 Calibration reflection suppression is enabled

31 Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

542 Freescale Semiconductor

16.6.26 External Clock Control Register (SIU_ECCR)

The SIU_ECCR controls the timing relationship between the system clock and the external clock
CLKOUT. All bits and fields in the SIU_ECCR are read/write and are reset by the global signals
asynchronous reset signal.

Figure 16-211. External Clock Control Register (SIU_ECCR)

SIU_BASE+0x984

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R ENGDIV

E
N

G
S

S
E 0 0 0

E
B

T
S 0 EBDF

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

= Unimplemented or Reserved

Table 16-216. SIU_ECCR field description

Field Description

0:15 Reserved

16:23
ENGDIV

Engineering Clock Division Factor. The ENGDIV field specifies the frequency ratio between the system
clock and the ENGCLK. The ENGCLK frequency is divided from the system clock frequency according
to the following equation.

Eqn. 16-2

ENGDIV = 0 is reserved and results in the ENGCLK frequency being equal to the System Clock
Frequency.

24
ENGSSE

Engineering clock (ENGCLK) source select.
0 ENGCLK source is system clock.
1 ENGCLK source is crystal oscillator clock.

25:27 Reserved

28
EBTS

External Bus Tap Select. The EBTS bit changes the phase relationship between the system clock and
CLKOUT. Changing the phase relationship so that CLKOUT is advanced in relation to system clock
increases the output hold time of the external bus signals to a non-zero value. It also increases the output
delay times, increases the input hold times to non-zero values, and decreases the input setup times.
Note: The EBTS bit must not be modified while an external bus transaction is in progress.

ENGCLK
SystemClockorCrystalOscillator

ENGDIVx2
---=

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 543

16.6.27 Compare A High Register (SIU_CARH)

The SIU_CARH register holds the 32-bit value that is compared against the value in the SIU_CBRH
register. The CMPAH field is read/write and is reset by the IP Green-Line synchronous reset signal.

Figure 16-212. Compare A High Register (SIU_CARH)

16.6.28 Compare A Low Register (SIU_CARL)

The SIU_CARL register holds the 32-bit value that is compared against the value in the SIU_CBRL
register. The CMPAL field is read/write and is reset by the IP Green-Line synchronous reset signal.

29 Reserved

30:31
EBDF

External Bus Division Factor. The EBDF field specifies the frequency ratio between the system clock and
CLKOUT. The EBDF field must not be changed during an external bus access or while an access is
pending.
00 External bus division factor = 1
01 External bus division factor = 2
10 Reserved
11 External bus division factor = 4
Note: The reset value of the EBDF field is divide-by-2. After reset, if EBDF is changed to divided-by-1,

no glitches occurs on the CLKOUT signal, but if EBDF is changed back to divide-by-2 or
divide-by-4, there is no guarantee that the switch will be glitchless.

SIU_BASE + 0x988

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R CMPAH
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R CMPAH
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-216. SIU_ECCR field description (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

544 Freescale Semiconductor

Figure 16-213. Compare A Low Register (SIU_CARL)

16.6.29 Compare B High Register (SIU_CBRH)

The SIU_CBRH register holds the 32-bit value that is compared against the value in the SIU_CARH
register. The CMPBH field is read/write and is reset by the IP Green-Line synchronous reset signal.

Figure 16-214. Compare B High Register (SIU_CBRH)

16.6.30 Compare B Low Register (SIU_CBRL)

The SIU_CBRL register holds the 32-bit value that is compared against the value in the SIU_CARL
register. The CMPBL field is read/write and is reset by the IP Green-Line synchronous reset signal.

SIU_BASE + 0x98C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R CMPAL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R CMPAL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

SIU_BASE + 0x990

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R CMPBH
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R CMPBH
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 545

Figure 16-215. Compare B Low Register (SIU_CBRL)

16.6.31 System Clock Register (SIU_SYSDIV)

The fields in the SIU_SYSDIV register are read/write and are reset by the IP Green-Line synchronous reset
signal.

Figure 16-216. System Clock Register (SIU_SYSDIV)

SIU_BASE + 0x994

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R CMPBL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R CMPBL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

SIU_BASE + 0x9A0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C
A

N
_

S
R

C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0

B
Y

P
A

S
S SYSCLKDIV 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

= Unimplemented or Reserved

Table 16-217. SIU_SYSDIV field description

Field Description

0:14 Reserved

15
CAN_SRC

FlexCAN 2:1 mode
1 When CAN_CTRL[CLK_SRC] = 1, FlexCAN runs at half the system frequency
0 When CAN_CTRL[CLK_SRC] = 1, FlexCAN runs at the system frequency
See Section 5.3.3.4, Support for CAN interface operation.

16:26 Reserved

27
BYPASS

Bypass bit
1 System clock divider is bypassed
0 System clock divider is not bypassed

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

546 Freescale Semiconductor

16.6.32 Halt Register (SIU_HLT)

The SIU_HLT register is used to put various modules into stop mode to save power. Each bit will drive a
separate stop request signal to a different module. When the module acknowledges the stop request, the
clock to that module is halted. In order to remove the module from stop mode, the corresponding bit in the
SIU_HLT register must be cleared. In the case of the CPU, stop mode in entered when the corresponding
bit in SIU_HLT is set and a WAIT instruction is executed. The CPU exits stop mode upon reception of any
interrupt request.

Figure 16-217. Halt Register (SIU_HLT)

28:29
SYSCLKDIV

System Clock Divide
The SYSCLKDIV bits select the divider value for the system clock (ipg_clk). Note that the
SYSCLKDIV divider is required in addition to the RFD to allow the other sources for the system clock
(16 MHz IRC and OSC) to be divided down to slowest frequencies to improve power. The output of
the clock divider is nominally a 50% duty cycle.

00 Divide by 2
01 Divide by 4
10 Divide by 8
11 Divide by 16

Note: The above four divider values can be selected only if SIU_SYSDIV[BYPASS] value = 0. If
SIU_SYSDIV[BYPASS] = 1, the system clock divider is bypassed and “divide by 1” is selected.

30:31 Reserved

SIU_BASE + 0x9A4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R

C
P

U
S

T
P 0 0 0 0

T
P

U
S

T
P

N
P

C
S

T
P

E
B

IS
T

P

A
D

C
S

T
P

R
E

A
C

M
S

T
P

M
IO

S
S

T
P

D
F

IL
S

T
P 0

P
IT

S
T

P 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0

C
N

C
S

T
P

C
N

B
S

T
P

C
N

A
S

T
P

S
P

ID
S

T
P

S
P

IC
S

T
P

S
P

IB
S

T
P 0 0 0 0 0 0

S
C

IC
S

T
P

S
C

IB
S

T
P

S
C

IA
S

T
P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-217. SIU_SYSDIV field description (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 547

Table 16-218. SIU_HLT field description

Field Description

0
CPUSTP

CPU stop request
When asserted, a stop request is sent to the following modules: CPU, cross-bar, peripheral bridge,
system RAM, STM, and DMA.
1: Stop mode request
0: Normal operation

1:2 Reserved

3 Reserved (unimplemented)

4 Reserved

5
TPUSTP

eTPU stop request
When asserted, a stop request is sent to the eTPU module and the eTPU Nexus module.
1: Stop mode request
0: Normal operation

6
NPCSTP

Nexus stop request
When asserted, a stop request is sent to the Nexus Controller.
1: Stop mode request
0: Normal operation

7
EBISTP

EBI stop request
When asserted, a stop request is sent to the external bus controller which handles the calibration
interface.
1: Stop mode request
0: Normal operation

8
ADCSTP

eQADC stop request
When asserted, a stop request is sent to the eQADC module.
1: Stop mode request
0: Normal operation

9
REACMSTP

Reaction module stop request
When asserted, a stop request is sent to the Reaction module.
1: Stop mode request
0: Normal operation

10
MIOSSTP

eMIOS stop request
When asserted, a stop request is sent to the eMIOS module.
1: Stop mode request
0: Normal operation

11
DFILSTP

Decimation filter stop request
When asserted, a stop request is sent to the decimation filter module.
1: Stop mode request
0: Normal operation

12 Reserved

13
PITSTP

PIT stop request
When asserted, a stop request is sent to the periodic interrupt timer module.
1: Stop mode request
0: Normal operation

14:16 Reserved

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

548 Freescale Semiconductor

16.6.33 Halt Acknowledge Register (SIU_HLTACK)

The bits in the SIU_HLTACK register indicate that the module requested to halt via the SIU_HLT register
has completed the halt process and has entered a halted state with the module clocks disabled. This register
is read-only.

17
CNCSTP

FlexCAN C stop request
When asserted, a stop request is sent to the FlexCAN C module.
1: Stop mode request
0: Normal operation

18
CNBSTP

FlexCAN B stop request
When asserted, a stop request is sent to the FlexCAN B module.
1: Stop mode request
0: Normal operation

19
CNASTP

FlexCAN A stop request
When asserted, a stop request is sent to the FlexCAN A module.
1: Stop mode request
0: Normal operation

20
SPIDSTP

DSPI D stop request
When asserted, a stop request is sent to the DSPI C.
1: Stop mode request
0: Normal operation

21
SPICSTP

DSPI C stop request
When asserted, a stop request is sent to the DSPI C.
1: Stop mode request
0: Normal operation

22
SPIBSTP

DSPI B stop request
When asserted, a stop request is sent to the DSPI B.
1: Stop mode request
0: Normal operation

23:28 Reserved

29
SCICSTP

eSCI C stop request
When asserted, a stop request is sent to the eSCI C module.
1: Stop mode request
0: Normal operation

30
SCIBSTP

eSCI B stop request
When asserted, a stop request is sent to the eSCI B module.
1: Stop mode request
0: Normal operation

31
SCIASTP

eSCI A stop request
When asserted, a stop request is sent to the eSCI A module.
1: Stop mode request
0: Normal operation

Table 16-218. SIU_HLT field description (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 549

Figure 16-218. Halt Acknowledge Register (SIU_HLTACK)

SIU_BASE + 0x9A8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
P

U
A

C
K 0 0 0

N
S

E
T

IA
C

K

T
P

U
A

C
K

N
P

C
A

C
K

E
B

IA
C

K

A
D

C
A

C
K

R
E

A
C

M
A

C
K

M
IO

S
A

C
K

D
F

IL
A

C
K 0

P
IT

A
C

K 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

C
N

C
A

C
K

C
N

B
A

C
K

C
N

A
A

C
K

S
P

ID
A

C
K

S
P

IC
A

C
K

S
P

IB
A

C
K

0 0 0 0 0 0

S
C

IC
A

C
K

S
C

IB
A

C
K

S
C

IA
A

C
K

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-219. SIU_HLTACK field description

Field Description

0
CPUACK

CPU stop acknowledge
When asserted, indicates that a stop acknowledge was received from the following modules: CPU,
cross-bar, peripheral bridge, system RAM, Flash, STM, DMA.
1: Stop mode request
0: Normal operation

1:3 Reserved

4
NSETIACK

eTPU Nexus module (NSETI) stop acknowledge
When asserted, indicates that a stop acknowledge was received from the NSETI module.
1: Stop mode request
0: Normal operation

5
TPUACK

eTPU stop acknowledge
When asserted, indicates that a stop acknowledge was received from the eTPU module.
1: Stop mode request
0: Normal operation

6
NPCACK

Nexus stop acknowledge
When asserted, indicates that a stop acknowledge was received from the Nexus Controller.
1: Stop mode request
0: Normal operation

7
EBIACK

EBI stop acknowledge
When asserted, indicates that a stop acknowledge was received from the external bus controller
which handles the calibration interface.
1: Stop mode request
0: Normal operation

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

550 Freescale Semiconductor

8
ADCACK

eQADC stop acknowledge
When asserted, indicates that a stop acknowledge was received from the eQADC module.
1: Stop mode request
0: Normal operation

9
REACMACK

Reaction module (REACM) stop acknowledge
When asserted, indicates that a stop acknowledge was received from the Reaction module.
1: Stop mode request
0: Normal operation

10
MIOSACK

eMIOS stop acknowledge
When asserted, indicates that a stop acknowledge was received from the eMIOS module.
1: Stop mode request
0: Normal operation

11
DFILACK

Decimation filter stop acknowledge
When asserted, indicates that a stop acknowledge was received from the decimation filter module.
1: Stop mode request
0: Normal operation

12 Reserved

13
PITACK

PIT stop acknowledge
When asserted, indicates that a stop acknowledge was received from the periodic interrupt timer
module.
1: Stop mode request
0: Normal operation

14:16 Reserved

17
CNCACK

FlexCAN C stop acknowledge
When asserted, indicates that a stop acknowledge was received from the FlexCAN C module.
1: Stop mode request
0: Normal operation

18

FlexCAN B stop acknowledge
When asserted, indicates that a stop acknowledge was received from the FlexCAN B module.
1: Stop mode request
0: Normal operation

19
CNAACK

FlexCAN A stop acknowledge
When asserted, indicates that a stop acknowledge was received from the FlexCAN A module.
1: Stop mode request
0: Normal operation

20

DSPI D stop acknowledge
When asserted, indicates that a stop acknowledge was received from the DSPI D.
1: Stop mode request
0: Normal operation

21
SPICACK

DSPI C stop acknowledge
When asserted, indicates that a stop acknowledge was received from the DSPI C.
1: Stop mode request
0: Normal operation

Table 16-219. SIU_HLTACK field description (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 551

16.6.34 Core MMU PID Control Register (SIU_EMPCR0)

The SIU_EMPCR0 register is part of a mechanism that provides the capability of real-time remapping of
MMU entries by software or an external tool. This capability is intended for use in calibration activities
requiring real-time switching between calibration data tables.

The SIU_EMPCR0 register works in conjunction with the Nexus module to enable an external calibration
tool to modify the logical-to-physical address mapping of the calibration bus by replacing bits 6:7 of the
MMU’s PID (process id) register with values specified in SIU_EMPCR0 register fields. This remapping
does not interrupt normal application code execution.

In addition, the register provides a synchronization mechanism that enables the mapping to change when
a specified instruction address is reached or a specified load/store address is accessed. Synchronization is
implemented using Watchpoint Event 2 output in the processor core.

The mechanism is detailed in Figure 16-219 and Table 16-220.

See application note AN4030 for more detail.

22
SPIBACK

DSPI B stop acknowledge
When asserted, indicates that a stop acknowledge was received from the DSPI B.
1: Stop mode request
0: Normal operation

23:28 Reserved

29

eSCI C stop acknowledge
When asserted, indicates that a stop acknowledge was received from the eSCI C module.
1: Stop mode request
0: Normal operation

30
SCIBACK

eSCI B stop acknowledge
When asserted, indicates that a stop acknowledge was received from the eSCI B module.
1: Stop mode request
0: Normal operation

31
SCIAACK

eSCI A stop acknowledge
When asserted, indicates that a stop acknowledge was received from the eSCI A module.
1: Stop mode request
0: Normal operation

Table 16-219. SIU_HLTACK field description (continued)

Field Description

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

552 Freescale Semiconductor

Figure 16-219. Core MMU PID Control Register (SIU_EMPCR0)

16.7 Functional description

The following sections provide an overview of the SIU operation features.

SIU_BASE + 0x9B4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
X

T
_P

ID
_E

N

E
X

T
_P

ID
_S

Y
N

C
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E
X

T
_P

ID
6

E
X

T
_P

ID
7

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 16-220. SIU_EMPCR0 field description

Field Description

EXT_PID_EN
0

External PID Selection Enable
0: The contents of this register are not used to select the alternate MMU mapping.
1: The contents of this register are used to select the alternate MMU mapping defined by

EXT_PID6 and EXT_PID7.

EXT_PID_SYNC0
1

External PID Synchronization 0
0: The Nexus Watchpoint Event 2 does not transfer the EXT_PID6 and EXT_PID7 values to

the MMU.
1: The Nexus Watchpoint Event 2 transfers the EXT_PID6 and EXT_PID7 values to the

MMU.

2:29 Reserved

EXT_PID6
30

External PID bit 6
0: When the PID remapping is enabled (EXT_PID_EN = 1), the processor MMU’s PID

register bit 6 is logic 0.
1: When the PID remapping is enabled (EXT_PID_EN = 1), the processor MMU’s PID

register bit 6 is logic 1.

EXT_PID7
31

External PID bit 7
0: When the PID remapping is enabled (EXT_PID_EN = 1), the processor MMU’s PID

register bit 7 is logic 0.
1: When the PID remapping is enabled (EXT_PID_EN = 1), the processor MMU’s PID

register bit 7 is logic 1.

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 553

16.7.1 System configuration

16.7.1.1 Boot configuration

Two BOOTCFG signals are implemented in MPC5644A MCUs.

The BAM program uses the BOOTCFG0 bit to determine where to read the reset configuration word, and
whether to initiate a FlexCAN or eSCI boot. See Section 4.7.1, Reset configuration half word (RCHW),
for details on the RCHW.

Table 21-3 in Section 21.5.2, BAM program operation, defines the boot modes specified by the
BOOTCFG0 and BOOTCFG1 pins. During the assertion of RSTOUT, the BOOTCFG0 and BOOTCFG1
pins are used to update the RSR and the BAM boot mode.

This device has a second serial boot mode to support not only a Freescale serial boot (compatible with
existing MPC5500 devices), but also a new serial boot with CAN and SCI baudrate auto-detection.

For additional details on the BAM program operation see Chapter 21, Boot Assist Module (BAM).

16.7.1.2 Pad configuration

The Pad Configuration Registers (PCR) in the SIU allow software control of the static electrical
characteristics of external pins. The multiplexed function of a pin, selection of pull up or pull down
devices, the slew rate of I/O signals, open drain mode for output pins, hysteresis on input pins, and the
drive strength for bus signals can be specified through the PCRs.

16.7.2 Reset control

The reset controller logic is located in the SIU. See Chapter 4, Resets for details on reset operation.

16.7.3 External interrupt request input (IRQ)

The fifteen external interrupt request inputs available on this device (IRQ[0:5,7:15]) connect to the SIU
IRQ inputs. The External IRQ Input Select Register (EIISR) specifies the IRQ[0:5,7:15] signals that are
input to the SIU IRQs.

NOTE

IRQ[6] can be only generated by the deserialized output of the DSPI
module—not the external pins.

External interrupt requests are triggered by rising- and/or falling-edge events that are enabled by setting a
bit in:

• IRQ rising-edge event enable register (SIU_IREER)

• IRQ falling-edge event enable register (SIU_IFEER)

If the bit is set in both registers, both rising- and falling-edge events trigger an interrupt request. Each IRQ
has a counter that tracks the number of system clock cycles that occur between the rising- and falling-edge
events. An IRQ counter exists for each IRQ rising- or falling-edge event enable bit.

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

554 Freescale Semiconductor

The digital filter length field in the IRQ digital filter register (SIU_IDFR) specifies the minimum number
of system clocks that the IRQ signal must hold a logic value to qualify the edge-triggered event as a valid
state change. When the number of system clocks in the IRQ counter equals the value in the digital filter
length field, the IRQ state latches and the IRQ counter is cleared.

If the previous filtered state of the IRQ does not match the current state, and the rising- or falling-edge
event is enabled, the IRQ flag bit is set to 1. For example, the IRQ flag bit is set if a rising-edge event
occurs under the following conditions:

• Previous filtered IRQ state was a logic 0

• Current latched IRQ state is a logic 1

• Rising-edge event is enabled for the IRQ

When the counter for an IRQ is not enabled, the state of the IRQ is held in the current and previous state
latches. The IRQ counter operates independently of the IRQ or overrun flag bit. Clearing the IRQ flag or
overrun flag bits does not clear or reload the counter.

Refer to the following sections for more information:

• Section 16.6.6, External Interrupt Status Register (SIU_EISR)

• Section 16.6.11, IRQ Rising-Edge Event Enable Register (SIU_IREER)

• Section 16.6.12, External IRQ Falling-Edge Event Enable Register (SIU_IFEER)

• Section 16.6.13, External IRQ Digital Filter Register (SIU_IDFR)

16.7.3.1 External interrupts

The IRQ signals map to 15 independent interrupt requests output from the SIU. The IRQ flag bit is set
when a rising-edge and/or falling-edge event occurs for the IRQ. An external IRQ signal is asserted when
all of the following occur:

• Enable bit is set in the IRQ rising- and/or falling-edge event registers (SIU_IREER, SIU_IFEER)

• IRQ flag bit is set in the external interrupt status register (SIU_EISR)

• Enable bit is cleared in the DMA/Interrupt request enable register (SIU_DIRER)

• Select bit is cleared in the DMA/Interrupt select register (SIU_DIRSR)

The NMI and SWT Interrupts can each generate an NMI Exception or Critical Interrupt Exception as an
input to the core. This selection is controlled by the NMI_SEL8 and NMI_SEL0 (SIU_DIRER) signals
respectively. When WKPCFG_NMI_GPIO213 is enabled as NMI, the pin will override the PCR
configuration after reset. The SIU_DIRER selects between critical and non-maskable interrupt use, the
SIU_EISR reports the status of NMI, and the SIU_IFEER selects edge sensitivity of the NMI input.

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 555

Figure 16-220. SIU DMA/Interrupt request diagram

Refer to the following sections for more information:

• Section 16.6.7, DMA/Interrupt Request Enable Register (SIU_DIRER)

• Section 16.6.8, DMA/Interrupt Request Select Register (SIU_DIRSR)

16.7.4 GPIO operation

The SIU provides all GPIO functionality for this device. Each device pin that has GPIO functionality has
an associated Pin Configuration Register in the SIU where the GPIO function is selected for the pin. In
addition, each device pin with GPIO functionality has an input data register (SIU_GPDIx_x) and an output
data register (SIU_GPDOx_x).

SIU_EISR

SIU

Interrupt
Controller

overrun

SIU_DIRSR

DMA /
INT

Select

SIU_OSR

IMUX
EIRQ
pins
or

internal
sources

0

1
2

0

1

15

15

request

interrupt
request

3
4

interrupt
request

23SWT

CPU

NMI_SEL8 (for SWT) (SIU_DIRER)

NMI

Critical
Interrupt

31NMI

NMI_SEL0 (for NMI) (SIU_DIRER)

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

556 Freescale Semiconductor

16.7.5 Internal multiplexing

The IMUX Select Registers (SIU_ISELx) provide selection of the eQADC external trigger inputs sources,
the SIU external interrupts, some of the eTPU inputs and the DSPI signals that are used in the serial and
parallel chaining of DSPI blocks.

16.7.5.1 eQADC external trigger input multiplexing

The six eQADC external trigger inputs can be connected to either an external pin, an eTPU channel, an
eMIOS channel or a PIT or RTI trigger. The input source for each eQADC external trigger is individually
specified in the ETISR, SIU_ISEL3 and SIU_ISEL9 registers. One of these inputs is in turn specified in
the IMUX Select Register 3 (SIU_ISEL3). An example of the multiplexing of an eQADC external trigger
input is given in Figure 16-221. As shown in the figure, the Trigger[0] input of the eQADC can be
connected to either the ETRIG[0] pin, the eTPU_A[30] channel or the eMIOS[10] channel or the output
of the mux, IMUX3. The inputs of IMUX3 can be some of the eTPU/eMIOS channels or PIT/RTI triggers
or External triggers.

Figure 16-221. eQADC trigger input multiplexing example

The remaining ADC trigger inputs are multiplexed in the same manner. Note that if an ETRIG input is
connected to an eTPU or eMIOS channel, the external pin used by that channel can be used by the alternate
function on that pin.

Along with the six eQADC external trigger inputs, there is one additional trigger input to ADC. The source
of that trigger is specified in IMUX Select Register 9 (SIU_ISEL9). It is similar to SIU_ISEL3, shown in
the above figure.

16.7.5.2 SIU external interrupt input multiplexing

The fifteen SIU external interrupt inputs can be connected to either external pins or to deserialized output
signals from a DSPI block. The input source for each SIU external interrupt is individually specified in the
External IRQ Input Select Register1 (EIISR). An example of the multiplexing of an SIU external interrupt
input is given in Figure 16-222. As shown in the figure, the IRQ[0] input of the SIU can be connected to
either the eMIOS[14]_IRQ[0]_eTPU_A[29]_GPIO[193] pin, the DSPI_B[0] deserialized output signal,
the DSPI_C[1] deserialized output signal or eMIOS[14] channel. The remaining IRQ inputs are

1. The EIISR is sometimes referred to as ISEL1.

ETISR[TSEL0]

ETRIG[0]

eTSEL0

eTPU_A[30]

eMIOS[10]
To ADC Trigger Input

SIU_ISEL3

RTI-Trigger
PIT-0/1/2/3-Trigger
ETRIG-0/3
eTPU_A-28/29/30/31
eMIOS-10/23

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 557

multiplexed in the same manner. Only IRQ[0] and [1] have an eMIOS channel as input. Other IRQ input
source is one of the DSPI_D[15:4,1:0] output signal instead (as specified in the External IRQ Input Select
Register (EIISR)). The inputs to the IRQ from each DSPI block are offset by one so that if more than one
DSPI block is connected to the same external device type, a separate interrupt can be generated for each
device. This also applies to DSPI blocks connected to external devices of different type that have status
bits in the same bit location of the deserialized information.

See Section 16.6.19, External IRQ Input Select Register (SIU_EIISR), for more information.

Figure 16-222. SIU external interrupt input multiplexing example

16.7.5.3 Multiplexed inputs for DSPI multiple transfer operation

To support multiple DSPIs transfer operations, an input multiplexor is required for the SIN, SS, SCK IN,
and trigger signals of each DSPI. These DSPI input sources can be a pin or respectively the SOUT, PCS[0],
SCK OUT, or PCSS of any other DSPI. They are individually specified in the DSPI Input Select Register
(DISR).

See Section 30.9.3.6, Multiple transfer operation (MTO), for more information on Multiple Transfer
Operation.

16.7.5.4 Multiplexed inputs for eTPU[29:24]

The eTPU channel input pins, eTPU[29:24], are multiplexed with DSPI_B[8:13] deserialized output
signals and then given as input to the eTPU block. These are individually specified in the IMUX Select
Register 8 (SIU_ISEL8).

When SIU_ISEL8 is in its default state, the eTPU[29:24] will not be connected to their respective output
pin, irrespective of the SIU_PCR[PA] field. The SIU_ISEL8 register must be modified if these signals are
to be used as external inputs or outputs.

EIISR[0:1]

DSPI_B[0] serialized output

DSPI_C[1] serialized output

eMIOS[14] channel

IRQ[0]

eMIOS[14]_IRQ[0]_eTPU_A[29]_GPIO[193]

System Integration Unit (SIU)

MPC5644A Microcontroller Reference Manual, Rev. 6

558 Freescale Semiconductor

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 559

Chapter 17
Frequency-modulated phase locked loop (FMPLL)

17.1 Information specific to this device

This section presents device-specific parameterization and customization information not specifically
referenced in the remainder of this chapter.

17.1.1 Device-specific features

• On-chip oscillator for external crystal: Range (4–40 MHz)

• Internal RC oscillator (RCOSC): 16 MHz

• Phase-locked loop (PLL): VCO Range (256–512 MHz)

• PLLREF top level pin to control PLL reference

• Clock Quality monitor

• System Clock Divider (SYSDIV) used to further reduce the system clock frequency

• Register to control system clock source and programming of PLL parameter

• Clock gating for individual modules controlled by either SIU_HLT or module’s MDIS register bit
(Refer to Table 5-2 (MDIS support) Chapter 5, Operating Modes and Clocking, to see which
modules implement the MDIS bit.)

17.1.2 Device-specific parameters

Table 17-1 shows the reset values for several register fields on this device.

17.2 Introduction

This chapter describes the features and functions of the FMPLL module.

Table 17-1. Register field reset values

Parameter name Value Description

FMPLL_SYNCR[PREDIV] 0b111 inhibit the clock to the phase detector

FMPLL_SYNCR[MFD] 0b00100 divide-by-8

FMPLL_SYNCR[RFD] 0b010 divide-by-4

FMPLL_ESYNCR1[EMODE] 0b0 allowing legacy mode to be used

FMPLL_ESYNCR1[EPREDIV] 0b1111 inhibit the clock to the phase detector

FMPLL_ESYNCR1[EMFD] 0b0100000 divide-by-32

FMPLL_ESYNCR2[ERFD] 0b11 divide-by-16

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

560 Freescale Semiconductor

17.2.1 Overview

The frequency modulated phase locked loop (FMPLL) allows the user to generate high speed system
clocks from a crystal oscillator or from an external clock generator. Furthermore, the FMPLL supports
programmable frequency modulation of the system clock. The FMPLL multiplication factor, reference
clock predivider factor, output clock divider ratio, modulation depth and multiplication rate are all
controllable through programmable registers.

Figure 17-1 shows the block diagram of the FMPLL.

Figure 17-1. FMPLL block diagram

17.2.2 Features

The FMPLL has the following features:

• Reference clock predivider for finer frequency synthesis resolution

• Reduced frequency divider for reducing the FMPLL output clock frequency without forcing the
FMPLL to relock

• Input clock frequency range from 4 MHz to 20 or 40 MHz1 before the predivider, and from 4 MHz
to 16 MHz after the predivider

• Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz

• VCO free-running frequency range from 25 MHz to 125 MHz

• 4 bypass modes: crystal or external reference with PLL on or off

• 2 normal modes: crystal or external reference

• Programmable frequency modulation

— Triangle wave modulation

— Register programmable modulation frequency and depth

1. See Section 17.1, Information specific to this device, for information on crystal frequencies supported.

XTAL
OSC

EXTAL

XTAL

Predivider
PREDIV Phase

Detector

Charge
Pump
Low Pass
Filter

VCO

Divider
MFD

Out Divider
RFD

FM
Controller

Control/Status Registers

PLL

PREDIV RFD MFD Lock

Clock Quality Monitor

Reference
Failure

FMPLL
Failure

PLLREF

RC
OSC

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 561

• Lock detect circuitry reports when the FMPLL has achieved frequency lock and continuously
monitors lock status to report loss of lock conditions

— User-selectable ability to generate an interrupt request upon loss of lock

— User-selectable ability to generate a system reset upon loss of lock

• Clock quality monitor (CQM) module provides loss-of-clock detection for the FMPLL reference
and output clocks

— User-selectable ability to generate an interrupt request upon loss of clock

— User-selectable ability to generate a system reset upon loss of clock

— Backup clock (reference clock or FMPLL free-running) can be applied to the system in case of
loss of clock

17.2.3 Modes of operation

Upon reset, the operational mode is bypass with PLL running, and the source of the reference clock, either
the crystal oscillator or external clock, is determined by the reset value of the CLKCFG[2] bit of the
FMPLL_ESYNCR1. The reset state of this bit comes from an external signal to the module connected to
a package pin called PLLREF. After reset, a different operational mode can be selected by writing to
FMPLL_ESYNCR1[CLKCFG]. The available modes are specified in Table 17-2.

At reset the FMPLL is enabled, but the reset value of the predivider may be set by the SoC integration to
inhibit the clock to the PLL, making the VCO run within its free-running frequency range of 25 MHz to
125 MHz, unconnected from the system clock (since bypass is the default mode at reset). If using crystal
reference, after power-on reset the Clock Quality Monitor (CQM) will inhibit the system clock and keep
system reset asserted while the crystal oscillator has not stabilized. The PLLREF input must be kept stable
during the whole period while system reset is asserted.

Table 17-2. Clock mode selection

CLKCFG[0] CLKCFG[1]1

1 CLKCFG[1] is not writable to zero while CLKCFG[0] = 1.

CLKCFG[2]2

2 The reset state of this bit is determined by the logical state applied to the PLLREF pin.

Clock mode

0 0 0 Bypass mode with external reference and PLL off

0 0 1 Bypass mode with crystal reference and PLL off

0 1 0 Bypass mode with external reference and PLL running

0 1 1 Bypass mode with crystal reference and PLL running

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Normal mode with external reference

1 1 1 Normal mode with crystal reference

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

562 Freescale Semiconductor

17.2.3.1 Bypass mode with crystal reference

In the bypass mode with crystal reference, the FMPLL is completely bypassed and the system clock is
driven from the crystal oscillator. The user must supply a crystal that is within the appropriate frequency
range, the crystal manufacturer recommended external support circuitry, and short signal route from the
MCU to the crystal.

In bypass mode the PLL itself may or may not be running, depending on the state of the CLKCFG[1] bit
of FMPLL_ESYNCR1, but the PLL output is not connected to the system clock. Consequently, frequency
modulation is not available. The predivider is also bypassed.

Bypass mode with crystal reference is the default mode at reset if the PLLREF input is driven high. After
reset, this mode can be entered by programming FMPLL_ESYNCR1[CLKCFG] as shown in Table 17-2.

17.2.3.2 Bypass mode with external reference

The bypass mode with external reference functions the same as bypass mode with crystal reference, except
that the system clock is driven by an external clock generator connected to the EXTAL pin, rather than a
crystal oscillator. The input frequency range is the same and frequency modulation is not available.

Bypass mode with external reference is the default mode at reset if the PLLREF input is driven low. After
reset, this mode can be entered by programming FMPLL_ESYNCR1[PLLCFG] as shown in Table 17-2.

17.2.3.3 Normal mode with crystal reference

In the normal mode with crystal reference, the FMPLL receives an input clock frequency from the crystal
oscillator and the predivider, and multiplies the frequency to create the FMPLL output clock. The user
must supply a crystal that is within the appropriate frequency range, the crystal manufacturer
recommended external support circuitry, and short signal route from the MCU to the crystal.

In normal mode with crystal reference, the FMPLL can generate a frequency modulated clock or a
non-modulated clock (locked on a single frequency). The modulation rate, modulation depth, output
divider (RFD) and whether the FMPLL is modulating or not can be programmed by writing to the FMPLL
registers.

17.2.3.4 Normal mode with external reference

The normal mode with external reference functions the same as normal mode with crystal reference,
except that the input clock reference to the FMPLL is driven by an external clock generator connected to
the EXTAL pin, rather than a crystal oscillator. The input frequency range is the same and frequency
modulation is available.

17.3 External signal description

Table 17-3 lists external signals used by the FMPLL during normal operation.

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 563

17.3.1 Detailed signal descriptions

Table 17-4 describes the external signals used by the FMPLL.

17.4 Memory map and register definition

This section provides the memory map and detailed descriptions of all registers of the FMPLL.

17.4.1 Memory map

Table 17-5 shows the memory map. Addresses are given as offsets of the module base address.

Table 17-3. Signal properties

Name Function I/O Pull

PLLREF Configures the FMPLL clock reference at reset I/O Up

XTAL Output drive for external crystal O —

EXTAL_EXTCLK Crystal/external clock input I/O —

VDDPLL Analog power supply (1.2V +/ 10%) Power —

VSSPLL1

1 This signal is internally bonded to VSS.

Analog ground Groun
d

—

Table 17-4. FMPLL detailed signal descriptions

Signal
I/
O

Description

PLLREF I/
O

PLL reference—Determines the reset state of the CLKCFG[2] bit in FMPLL_ESYNCR1.
The PLLREF pin must be kept stable during system reset. After reset, this pin has no effect
on the PLL configuration, therefore it can be assigned to another function such as GPIO.

State
meaning

Asserted—Indicates that the reference clock comes from the crystal oscillator.
Negated—Indicates that the reference clock comes from the external clock
generator.

Timing Assertion or negation—Must be done at the beginning of the reset cycle and
then kept stable for the whole reset duration.

XTAL O Crystal oscillator—Output for an external crystal oscillator.

EXTAL_EXTCLK I/
O

Crystal oscillator/external clock input—This pin is the input for an external crystal oscillator
or an external clock source. The function of this pin is determined by the CLKCFG[2] bit in
FMPLL_ESYNCR1, whose reset value is determined by the PLLREF pin.

VDDPLL / VSSPLL — PLL power supply—These are the 1.2V supply and ground for the FMPLL.

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

564 Freescale Semiconductor

17.4.2 Register descriptions

This section contains the register descriptions in ascending address order. Two different programming
models are selectable through FMPLL_ESYNCR1[EMODE]:

• Legacy model—The FMPLL is controlled by the Synthesizer Control Register (SYNCR). In this
model, the FMPLL operating mode changes automatically to normal mode when the register is
written in the first time. There is no way to switch back to bypass mode once the operating mode
has switched to normal.

• Enhanced model—The PLL is controlled by the Enhanced Synthesizer Control Registers 1–2
(ESYNCR1/ESYNCR2). In this model, it is possible to change the FMPLL operating mode back
and forth between bypass and normal modes by programming FMPLL_ESYNCR1[CLKCFG].

The reset value of FMPLL_ESYNCR1[EMODE] is determined by the SoC integration. This bit is write
once. After it is set to ‘1’, further write attempts to this bit will have no effect.

17.4.2.1 Synthesizer Control Register (SYNCR)

This register is provided for backwards compatibility with previous devices. New applications should use
ESYNCR1/ESYNCR2 instead of SYNCR.

Table 17-5. FMPLL memory map

Offset Register Location

0x0000 Synthesizer Control Register (SYNCR) on page 17-564

0x0004 Synthesizer Status Register (SYNSR) on page 17-567

0x0008 Enhanced Synthesizer Control Register 1 (ESYNCR1) on page 17-569

0x000C Enhanced Synthesizer Control Register 2 (ESYNCR2) on page 17-571

0x0010 Reserved —

0x0014 Reserved —

0x0018 Synthesizer FM Modulation Register (SYNFMMR) on page 17-572

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 565

Offset 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
PREDIV MFD

0
RFD

LOC
EN

LOL
RE

LOC
REW

Reset 0 –1 –1 –1 –1 –1 –1 –1 –1 0 –1 –1 –1 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 LOL
IRQ

LOC
IRQ

0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 Reset value is determined by the SoC integration.

Figure 17-2. Synthesizer Control Register (SYNCR)

Table 17-6. SYNCR field descriptions

Field Description

0 Reserved, should be cleared.

1–3
PREDIV

Predivider
This 3-bit field controls the value of the divider on the input clock. The output of the predivider circuit
generates the reference clock to the FMPLL analog loop. The value 111 causes the input clock to be
inhibited.
000 Divide by 1
001 Divide by 2
010 Divide by 3
011 Divide by 4
100 Divide by 5
101 Divide by 6
110 Divide by 7
111 Clock inhibit

4–8
MFD

Multiplication factor divider
This 5-bit field controls the value of the divider in the FMPLL feedback loop. The value specified by the
MFD bits establishes the multiplication factor applied to the reference frequency.
000xx Invalid
00100 Divide by 8
00101 Divide by 9
00110 Divide by 10
...
10011 Divide by 23
10100 Divide by 24
10101 Invalid
1011x Invalid
11xxx Invalid

9 Reserved, should be cleared.

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

566 Freescale Semiconductor

10–12
RFD

Reduced frequency divider
This 3-bit field controls a divider at the output of the FMPLL. The value specified by the RFD bits
establishes the division factor applied to the FMPLL frequency.
000 Divide by 1
001 Divide by 2
010 Divide by 4
011 Invalid
1xx Invalid

13
LOCEN

Loss-of-clock enable
The LOCEN bit determines if the loss-of-clock function is operational. This bit only has effect in normal
mode. In bypass mode, the loss-of-clock function is always enabled, regardless of the state of the
LOCEN bit. Furthermore, the LOCEN bit has no effect on the loss-of-lock detection circuitry.
0 Loss of clock disabled
1 Loss of clock enabled

14
LOLRE

Loss-of-lock reset enable
The LOLRE bit determines whether system reset is asserted or not upon a loss-of-lock indication. When
operating in normal mode, the FMPLL must be locked before setting the LOLRE bit, otherwise reset is
immediately asserted. Note that once reset is asserted, the operating mode is switched to bypass mode,
and once in bypass, a loss-of-lock condition does not generate reset, regardless of the value of the
LOLRE bit. See Section 17.5.3, Lock detection.
0 Ignore loss-of-lock. Reset not asserted.
1 Assert reset on loss-of-lock when operating in normal mode.

15
LOCRE

Loss-of-clock reset enable
The LOCRE bit determines whether system reset is asserted or not upon a loss-of-clock condition when
LOCEN = 1. LOCRE has no effect when LOCEN = 0. If the LOCF bit in the SYNSR indicates a
loss-of-clock condition, setting the LOCRE bit causes immediate reset. In bypass mode with crystal
reference, reset will occur if the reference clock fails, even if LOCRE = 0 or even if LOCEN = 0. The
LOCRE bit has no effect in bypass mode with external reference. In this mode, the reference clock is not
monitored at all. See Section 17.5.4.2, Loss-of-clock reset.
0 Ignore loss-of-clock. Reset not asserted.
1 Assert reset on loss-of-clock.

16 Reserved, should be cleared.

17
LOLIRQ

Loss-of-lock interrupt request
The LOLIRQ bit enables a loss-of-lock interrupt request when the LOLF flag is set. If either LOLF or
LOLIRQ is negated, the interrupt request is negated. When operating in normal mode, the FMPLL must
be locked before setting the LOLIRQ bit, otherwise an interrupt is immediately asserted. The interrupt
request only happens in normal mode, therefore the LOLIRQ bit has no effect in bypass mode. See
Section 17.5.3, Lock detection.
0 Ignore loss-of-lock. Interrupt not requested.
1 Enable interrupt request upon loss-of-lock.

18
LOCIRQ

Loss-of-clock interrupt request
The LOCIRQ bit enables a loss-of-clock interrupt request when the LOCF flag is set. If either LOCF or
LOCIRQ is negated, the interrupt request is negated. If loss-of-clock is detected while in bypass mode,
a system reset is generated. Therefore, LOCIRQ has no effect in bypass mode. See Section 17.5.4.3,
Loss-of-clock interrupt request.
0 Ignore loss-of-clock. Interrupt not requested.
1 Enable interrupt request upon loss-of-clock.

19–31 Reserved, should be cleared.

Table 17-6. SYNCR field descriptions (continued)

Field Description

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 567

17.4.2.2 Synthesizer Status Register (SYNSR)

Offset 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0

LOL
F

LOC
MOD

E
PLL
SEL

PLL
REF

LOCK
S

LOC
K

LOC
F

0 0

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 –1 0 0 0 0 0

1 Reset value is determined by the state of the PLLREF pin.

Figure 17-3. Synthesizer Status Register (SYNSR)

Table 17-7. SYNSR field descriptions

Field Description

0–21 Reserved, should be cleared.

22
LOLF

Loss-of-lock flag
This bit provides the interrupt request flag for the loss-of-lock. To clear the flag, software must write a 1 to
the bit. Writing 0 has no effect. This flag bit is sticky in the sense that if lock is reacquired, the bit will remain
set until cleared by either writing 1 or asserting reset. It will not be asserted when lock is lost due to system
reset, write to the FMPLL_SYNCR in legacy mode which modifies the PREDIV or MFD fields, or write to
FMPLL_ESYNCR1 in enhanced mode which modifies the EMODE, EPREDIV, EMFD or CLKCFG[1:0]
fields. Furthermore, it is not asserted if the loss-of-lock condition was detected while the FMPLL is in
bypass mode. Nevertheless, going from normal to bypass will not automatically clear the flag if it was
asserted while the FMPLL was in normal mode. See Section 17.5.3, Lock detection.
0 No loss of lock detected. Interrupt service not requested.
1 Loss of lock detected. Interrupt service requested.

23
LOC

Loss-of-clock
This bit is an indication of whether a loss-of-clock condition is present. If LOC = 0, the system clocks are
operating normally. If LOC = 1, the system clocks have failed due to a reference or VCO failure. If a
loss-of-clock condition occurs which sets this bit and the clocks later return to normal, this bit will be
cleared. A loss-of-clock condition can only be detected if LOCEN = 1. Furthermore, the LOC bit is not
asserted when the FMPLL is in bypass mode (because, in bypass, the VCO clock is not monitored and a
loss-of-clock on the reference clock causes reset). See Section 17.5.4, Loss-of-clock detection.
0 No loss-of-clock detected. Clocks are operating normally.
1 Loss-of-clock detected. Clocks are not operating normally.

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

568 Freescale Semiconductor

24
MODE

Mode of operation
This bit indicates whether the FMPLL is working in bypass mode or normal mode. The reset value
indicates bypass mode. In legacy mode (FMPLL_ESYNCR1[EMODE] negated), the MODE bit will change
to normal mode at the first time the FMPLL_SYNCR is written. In enhanced mode
(FMPLL_ESYNCR1[EMODE] asserted), the MODE bit reflects the value of the CLKCFG[0] bit of the
FMPLL_ESYNCR1.
0 Bypass mode
1 Normal mode

25
PLLSEL

Mode select
In previous MCUs of the MPC5500 family, this bit was used to differentiate between dual controller mode
and normal mode (negated in bypass or dual controller mode, asserted in normal mode). Dual controller
mode is not supported, therefore in legacy mode this bit resets to ‘0’ (bypass), but changes to ‘1’ (normal
mode) at the first time the FMPLL_SYNCR is written. In enhanced mode, the MODE bit reflects the value
of the CLKCFG[1] bit of the FMPLL_ESYNCR1.
0 Legacy mode: bypass or dual controller; enhanced mode: PLL off
1 Legacy mode: normal; enhanced mode: PLL on

26
PLLREF

FMPLL reference source
This bit indicates whether the FMPLL reference is from a crystal oscillator or from an external clock
generator. The reset value is determined by the state of the PLLREF pin. In legacy mode, the reset value
captured from the PLLREF pin cannot be changed anymore after reset. In enhanced mode, the PLLREF
bit reflects the value of the CLKCFG[2] bit of the FMPLL_ESYNCR1.
0 External clock reference
1 Crystal oscillator reference

27
LOCKS

Sticky FMPLL lock status bit
This bit is set by the lock detect circuitry when the FMPLLL acquires lock after one of the following:
 • A system reset
 • A write to the FMPLL_SYNCR in legacy mode which changes the PREDIV or MFD fields
 • A write to the FMPLL_ESYNCR1 in enhanced mode which changes the EMODE, EPREDIV, EMFD or

CLKCFG[1:2] fields
Whenever the FMPLL loses lock, LOCKS is cleared. LOCKS remains cleared even after the FMPLL
relocks, until one of the three previously stated conditions occurs. Coming in bypass mode from system
reset, LOCKS is asserted as soon as the FMPLL has locked, even if normal mode was not entered yet. If
the FMPLL is locked, going from normal to bypass mode does not clear the LOCKS bit.
0 FMPLL has lost lock since last system reset or last write to PLL registers which affect the lock status.
1 FMPLL has not lost lock.

28
LOCK

FMPLL lock status bit
Indicates whether the FMPLL has acquired lock. FMPLL lock occurs when the synthesized frequency
matches to within approximately 4% of the programmed frequency. The FMPLL loses lock when a
frequency deviation of greater than approximately 16% occurs. The flag is also immediately negated when
the PREDIV or MFD fields of the SYNCR are changed in legacy mode, or when EMODE, EPREDIV,
EMFD or CLKCFG[1:2] are changed in enhanced mode, and then asserted again when the PLL regains
lock. If operating in bypass mode, the LOCK bit is still asserted or negated when the FMPLL acquires or
loses lock.
0 FMPLL is unlocked.
1 FMPLL is locked.

Table 17-7. SYNSR field descriptions (continued)

Field Description

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 569

17.4.2.3 Enhanced Synthesizer Control Register 1 (ESYNCR1)

Figure 17-4. Enhanced Synthesizer Control Register 1 (ESYNCR1)

29
LOCF

Loss-of-clock flag
This bit provides the interrupt request flag for the loss-of-clock. To clear the flag, software must write a 1
to the bit. Writing 0 has no effect. This flag bit is sticky in the sense that if clocks return to normal, the bit
will remain set until cleared by either writing 1 or asserting reset. The LOCF flag is not asserted while the
FMPLL is in bypass mode. See Section 17.5.4, Loss-of-clock detection, for information on which operating
modes and conditions can this flag be asserted.
0 No loss of clock detected. Interrupt service not requested.
1 Loss of clock detected. Interrupt service requested.

30–31 Reserved, should be cleared.

Offset 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
M

O
D

E

CLKCFG
0 0 0 0 0 0 0 0

EPREDIV
W

Reset 0 0 1 –1

1 Reset value determined by the PLLREF pin.

0 0 0 0 0 0 0 0 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
EMFD

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Table 17-7. SYNSR field descriptions (continued)

Field Description

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

570 Freescale Semiconductor

Table 17-8. ESYNCR1 field descriptions

Field Description

0
EMODE

Enhanced mode enable
This bit determines whether the FMPLL will be controlled by SYNCR or ESYNCR1/ESYNCR2. At SoC
integration, a signal tie will dictate the default state that the PLL operates. If the SoC integration ties the
FMPLL to run in enhanced mode, the EMODE bit will reflect this by reading a logic 1. Additionally,
software writes to this bit to revert to legacy mode will not be allowed. If the signal is tied to select legacy
mode as the default state, the EMODE bit will reflect this by reading a logic 0. In this case, software
writes to this bit to enable enhanced mode is allowed, but it is a write once operation. After written to
‘1’, further write attempts to this bit will have no effect.
0 Legacy mode. FMPLL controlled by SYNCR.
1 Enhanced mode. FMPLL controlled by ESYNCR1/ESYNCR2.

1–3
CLKCFG

Clock configuration
This 3-bit field is used to change the operating mode of the FMPLL. Bit 2 is not writable to ‘0’ while bit
1 is ‘1’. The reset state of bit 3 is determined by the state of the PLLREF pin.
000 Bypass mode with external reference and PLL off
001 Bypass mode with crystal reference and PLL off
010 Bypass mode with external reference and PLL running
011 Bypass mode with crystal reference and PLL running
100 Reserved
101 Reserved
110 Normal mode with external reference
111 Normal mode with crystal reference

4–11 Reserved, should be cleared.

12–15
EPREDIV

Enhanced predivider
This 4-bit field controls the value of the divider on the input clock. The output of the predivider circuit
generates the reference clock to the PLL analog loop. The PREDIV value 1111 causes the input clock
to be inhibited.
0000 Divide by 1
0001 Divide by 2
0010 Divide by 3
0011 Divide by 4
0100 Divide by 5
0101 Divide by 6
0110 Divide by 7
0111 Divide by 8
1000 Divide by 9
1001 Divide by 10
1010 Divide by 11
1011 Divide by 12
1100 Divide by 13
1101 Divide by 14
1110 Divide by 15
1111 Clock inhibit

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 571

17.4.2.4 Enhanced Synthesizer Control Register 2 (ESYNCR2)

16–24 Reserved, should be cleared.

25–31
EMFD

Enhanced multiplication factor divider
This 7-bit field controls the value of the divider in the FMPLL feedback loop. The value specified by the
EMFD bits establishes the multiplication factor applied to the reference frequency. The valid range of
multiplication factors is 32 (010_0000) to 96 (110_0000). Values outside this range are invalid and will
cause the FMPLL to produce unpredictable clock output.
00x_xxxx Invalid
010_0000 Divide by 32
010_0001 Divide by 33
...
101_1111 Divide by 95
110_0000 Divide by 96
110_0001 Invalid
...
111_1111 Invalid

Offset 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

L
O

C
E

N

LO
LR

E

L
O

C
R

E

LO
L

IR
Q

LO
C

IR
Q 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ERFD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Figure 17-5. Enhanced Synthesizer Control Register 2 (ESYNCR2)

Table 17-9. ESYNCR2 field descriptions

Field Description

0–7 Reserved, should be cleared.

8
LOCEN

Loss-of-clock enable
The LOCEN bit determines if the loss-of-clock function is operational. This bit only has effect in normal
mode. In bypass mode, the loss-of-clock function is always enabled, regardless of the state of the LOCEN
bit. Furthermore, the LOCEN bit has no effect on the loss-of-lock detection circuitry.
0 Loss of clock disabled
1 Loss of clock enabled

Table 17-8. ESYNCR1 field descriptions (continued)

Field Description

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

572 Freescale Semiconductor

17.4.2.5 Synthesizer FM Modulation Register (SYNFMMR)

This register controls the frequency modulation (FM) features of the FMPLL. FM is not backwards
compatible with previous devices. Therefore, this register must be used in enhanced mode. It can only be
programmed when the FMPLL is locked. Writing to this register while the FMPLL is unlocked has no
effect. Furthermore, when the PLL loses lock, frequency modulation is disabled and the
FMPLL_SYNFMMR is reset.

9
LOLRE

Loss-of-lock reset enable
The LOLRE bit determines whether system reset is asserted or not upon a loss-of-lock indication. When
operating in normal mode, the FMPLL must be locked before setting the LOLRE bit, otherwise reset is
immediately asserted. Note that once reset is asserted, the operating mode is switched to bypass mode,
and once in bypass, a loss-of-lock condition does not generate reset, regardless of the value of the
LOLRE bit. See Section 17.5.3, Lock detection.
0 Ignore loss-of-lock. Reset not asserted.
1 Assert reset on loss-of-lock when operating in normal mode.

10
LOCRE

Loss-of-clock reset enable
The LOCRE bit determines whether system reset is asserted or not upon a loss-of-clock condition when
LOCEN = 1. LOCRE has no effect when LOCEN = 0. If the LOCF bit in the SYNSR indicates a
loss-of-clock condition, setting the LOCRE bit causes immediate reset. In bypass mode with crystal
reference, reset will occur if the reference clock fails, even if LOCRE = 0 or even if LOCEN = 0. The
LOCRE bit has no effect in bypass mode with external reference. In this mode, the reference clock is not
monitored at all. See Section 17.5.4.2, Loss-of-clock reset.
0 Ignore loss-of-clock. Reset not asserted.
1 Assert reset on loss-of-clock.

11
LOLIRQ

Loss-of-lock interrupt request
The LOLIRQ bit enables a loss-of-lock interrupt request when the LOLF flag is set. If either LOLF or
LOLIRQ is negated, the interrupt request is negated. When operating in normal mode, the FMPLL must
be locked before setting the LOLIRQ bit, otherwise an interrupt is immediately asserted. The interrupt
request only happens in normal mode, therefore the LOLIRQ bit has no effect in bypass mode. See
Section 17.5.3, Lock detection.
0 Ignore loss-of-lock. Interrupt not requested.
1 Enable interrupt request upon loss-of-lock.

12
LOCIRQ

Loss-of-clock interrupt request
The LOCIRQ bit enables a loss-of-clock interrupt request when the LOCF flag is set. If either LOCF or
LOCIRQ is negated, the interrupt request is negated. If loss-of-clock is detected while in bypass mode, a
system reset is generated. Therefore, LOCIRQ has no effect in bypass mode. See Section 17.5.4.3,
Loss-of-clock interrupt request.
0 Ignore loss-of-clock. Interrupt not requested.
1 Enable interrupt request upon loss-of-clock.

13–29 Reserved, should be cleared.

30–31
ERFD

Enhanced reduced frequency divider
This 2-bit field controls a divider at the output of the FMPLL. The value specified by the ERFD bits
establishes the division factor applied to the FMPLL frequency.
00 Divide by 2
01 Divide by 4
10 Divide by 8
11 Divide by 16

Table 17-9. ESYNCR2 field descriptions (continued)

Field Description

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 573

Offset 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BSY MOD
EN

MOD
SEL

MODPERIOD
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
INCSTEP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 17-6. Synthesizer FM Modulation Register (SYNFMMR)

Table 17-10. SYNFMMR field descriptions

Field Description

0
BSY

Busy
This bit is asserted soon after a write access to the FMPLL_SYNFMMR, and remains asserted while
the FMPLL processes the new frequency modulation programming. The CPU must wait until this bit
is negated before attempting another write access to this register. Any write attempt while the BSY
flag is set will have no effect.
0 Write to the FMPLL_SYNFMMR is allowed.
1 The FMPLL is still busy processing the previous change on the FMPLL_SYNFMMR; write access

to the register is not possible.

1
MODEN

Modulation enable
This bit enables the frequency modulation.
0 Frequency modulation disabled
1 Frequency modulation enabled

2
MODSEL

Modulation selection
This bit selects whether modulation will be centered around the nominal frequency or spread below
the nominal frequency.
0 Modulation centered around nominal frequency.
1 Modulation spread below nominal frequency.

3–15
MODPERIOD

Modulation period
This 13-bit field is the binary equivalent of the modperiod variable derived from the formula:

where ffbk represents the frequency of the feedback divider, and fmod represents the modulation
frequency.

modperiod round
ffbk

4 fmod
------------------()=

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

574 Freescale Semiconductor

NOTE

The product of INCSTEP and MODPERIOD cannot be larger than
(215  1).

17.5 Functional description
This section explains the FMPLL operation and configuration.

17.5.1 Input clock frequency
The FMPLL is designed to operate over an input clock frequency range as determined by the operating mode. The operating
ranges for each mode are given in Table 17-11.

17.5.2 Clock configuration
In legacy mode, the relationship between the output frequency fsys and input frequency fref is determined by the PREDIV, MFD
and RFD values programmed in the FMPLL_SYNCR, according to the following equation:

Eqn. 17-1

16 Reserved, should be cleared.

17–31
INCSTEP

Increment step
This 14-bit field is the binary equivalent of the incstep variable derived from the formula:

where MD represents the peak modulation depth in percentage (+/MD for centered modulation,
2 * MD for modulation below nominal frequency), and EMFD represents the nominal value of the
feedback loop divider.

Table 17-11. Input clock frequency at the predivider input

Mode Input frequency range

Bypass mode with crystal reference
Normal mode with crystal reference

4 MHz – 20/40 MHz1

1 See Section 17.1, Information specific to this device, for information on crystal frequencies supported.

Bypass mode with external reference
Normal mode with external reference

0 Hz – fsys
2

2 fsys is the system frequency of the MCU. The predivider ratio has to be chosen such that the input to the PLL itself
(after the predivider) does not exceed 16 MHz.

Table 17-10. SYNFMMR field descriptions (continued)

Field Description

incstep round
2

15
1–  MD EMFD

100 5 modperiod
--()=

fsys fref
MFD 4+

PREDIV 1+  2
RFD

---=

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 575

In legacy mode, the relationship between the VCO frequency and the output frequency is determined by the value of

the RFD value programmed in the SYNCR register, according to the following equation:

Eqn. 17-2

In enhanced mode, the relationship between input and output frequency is determined by the EPREDIV, EMFD and ERFD values
programmed in the FMPLL_ESYNCR1 and FMPLL_ESYNCR2, according to the following equation:

Eqn. 17-3

When programming the FMPLL, be sure not to violate the maximum system clock frequency or max/min VCO frequency
specification. In enhanced mode, the VCO frequency is calculated according to the following equation:

Eqn. 17-4

NOTE: Maximum system clock frequency is 150 MHz and max/min VCO frequency is 256 MHz to 512 MHz.

Furthermore, the PREDIV or EPREDIV values must not be set to any value that causes the input frequency to the phase detector
to go below 4 MHz.

The LOCK flag is immediately negated after any of the following events:

1. In legacy mode, the PREDIV or MFD fields of the FMPLL_SYNCR are changed

2. In enhanced mode, the EMODE, EPREDIV, EMFD of CLKCFG[1:2] fields of the FMPLL_ESYNCR1 are changed1

Upon any of these events an internal timer is initialized to count 64 cycles of the PLL input clock. During this period, the LOCK
flag is held negated. After the timer expires, the LOCK flag reflects the value coming from the PLL lock detection circuitry. To
prevent an immediate reset, the LOLRE bit must be cleared before doing any of the above operations.

Changing RFD or ERFD does not affect the FMPLL, hence no relock delay is incurred. Resulting changes in clock frequency are
synchronized to the next falling edge of the current system clock. However, RFD or ERFD should only be changed when the
LOCK bit is set, to avoid exceeding the allowable system operating frequency.

Coming out of reset, the FMPLL will be enabled (on), but running in bypass mode. The recommended procedure to program the
FMPLL and engage normal mode is:

1. Assert the EMODE bit and program the EPREDIV and EMFD fields of FMPLL_ESYNCR1 and the RFD field of
FMPLL_ESYNCR2.

2. Poll FMPLL_SYNSR[LOCK] until it asserts.

1. Note that changing only the CLKCFG[0] bit to move from bypass to normal or vice-versa, and keeping the values of the other
FMPLL_ESYNCR1 fields unchanged, will not cause the PLL to lose lock or the lock flag to be cleared.

fVCO fsys

fVCO 4 fsys 2
RFD=

fsys fref
EMFD

EPREDIV 1+  2
ERFD 1+ 

--=

fVCO fref
EMFD

EPREDIV 1+ 
---------------------------------------=

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

576 Freescale Semiconductor

3. If required, program the FMPLL_SYNFMMR with desired FM parameters, poll the BSY bit until it negates, then enable
FM by asserting the MODEN bit.

4. Engage normal mode by writing to FMPLL_ESYNCR1[CLKCFG].

17.5.3 Lock detection
A pair of counters monitor the reference and feedback clocks to determine when the system has acquired frequency lock. Once
the FMPLL has locked, the counters continue to monitor the reference and feedback clocks and will report if/when the FMPLL
has lost lock. The FMPLL registers provide the flexibility to select whether to generate an interrupt, assert system reset or do
nothing in the event that the FMPLL loses lock.

Loss-of-lock reset and interrupt are only generated when the FMPLL is operating in normal mode. The LOCF bit is not asserted
by a loss-of-lock condition detected during bypass, although going to bypass mode from normal mode does not automatically
clear the flag if it was asserted while the FMPLL was in normal mode.

17.5.4 Loss-of-clock detection

The FMPLL reference and output clocks may be continuously monitored by a module called Clock
Quality Monitor (CQM), shown in Figure 17-7. The intent of the CQM is to assure that the system bus
clock is created from good clock sources. Whether the clocks are monitored or not is determined by the
clock operating mode and control bits in the FMPLL registers, as shown in Table 17-12.

In bypass mode with crystal reference, the reference clock is always monitored, regardless of the state of
the LOCEN bit. In bypass mode with external reference, the reference clock is not monitored, regardless
of the state of the LOCEN bit. This is done so that the whole device frequency range can be sourced from
the external clock generator when using external reference mode. The FMPLL output may only monitored
in normal mode, depending on the state of the LOCEN bit.

The clock quality monitor uses an internal 4 MHz RC oscillator as a reference time base to measure the
frequency of the crystal oscillator and the FMPLL output. The frequency of these clocks are expected to
be within the following frequency ranges:

• Reference clock must be within the crystal frequency range1

• PLL output must be above 1.5 MHz (minimum VCO free-running frequency divided by the
maximum ERFD)

In the event either of the clocks fall outside the expected window, a loss of clock condition is reported. The
FMPLL can be programmed to switch the system clock to a backup clock in the event of such a failure.
Additionally, the user may select to have the system enter reset, assert an interrupt request, or do nothing
if/when the FMPLL reports this condition.

1. See Section 17.1, Information specific to this device, for information on crystal frequencies supported.

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 577

Figure 17-7. Clock quality monitor

17.5.4.1 Alternate/Backup clock selection

If loss-of-clock detection is enabled by LOCEN, the FMPLL is operating in normal mode and the Clock
Quality Monitor detects a failure at the FMPLL output clock, then a backup clock selection feature
automatically connects the system clock to the reference clock input (either external or crystal reference).
After this happens, the system clock remains connected to the reference clock until next system reset, even
if the FMPLL regains itself and relocks. If, however, the reference clock also fails, either simultaneously
or after the FMPLL failure, the system clock is connected back to the FMPLL output.

If the reference fails in normal mode, then no backup clock selection occurs, and the FMPLL output
continues to be the system clock. If the reference stops, the FMPLL will operate in free-running mode.

Table 17-12. Loss-of-clock monitoring

Operating mode LOCEN1

1 LOCEN is the loss-of-clock enable bit in either FMPLL_SYNCR or FMPLL_ESYNCR2, depending on
FMPLL_ESYNCR1[EMODE].

Reference clock
monitored?

FMPLL output
monitored?

Bypass mode with external reference and PLL off — No No

Bypass mode with crystal reference and PLL off — Yes No

Bypass mode with external reference and PLL running — No No

Bypass mode with crystal reference and PLL running — Yes No

Normal mode with external reference 0 No No

1 No Yes

Normal mode with crystal reference 0 No No

1 Yes Yes

RC oscillator
4 MHz

Crystal oscillator
4 – 40 MHz

> 1.5 MHz

Counter 1

Counter 2

Counter 3
PLL

Control

Logic

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

578 Freescale Semiconductor

In bypass mode with crystal reference, a reference fail will force a reset. In bypass mode with external
reference, no backup clock selection occurs if the reference fails.

17.5.4.2 Loss-of-clock reset

When a loss-of-clock condition is recognized, a system reset may be asserted depending on the clock
operating mode and control bits in the FMPLL registers, as shown in Table 17-13.
FMPLL_SYNSR[LOCF] and FMPLL_SYNSR[LOC] are cleared after reset, therefore, another means
must be used externally to determine that a loss-of-clock condition occurred.

LOCEN and LOCRE have no effect in bypass mode. If the reference fails while the FMPLL is in bypass
mode with crystal reference, a system reset is asserted regardless of the state of LOCEN and LOCRE.
Since bypass is the FMPLL reset mode, the crystal oscillator must be present and functioning properly to
exit reset when PLLREF = 1. When PLLREF = 0, the reference clock is not checked for loss-of-clock, so
exit from reset can happen regardless the state of the reference clock. Exit from reset is not affected by the
state of the FMPLL output because the FMPLL clock is not monitored in bypass mode.

17.5.4.3 Loss-of-clock interrupt request

When a loss-of-clock condition is recognized, an interrupt request may be asserted depending on the clock
operating mode and control bits in the FMPLL registers, as shown in Table 17-14.

LOCEN and LOCIRQ have no effect in bypass mode. If the reference fails in bypass mode with crystal
reference, a system reset is asserted instead of an interrupt request. If the reference fails in bypass with

Table 17-13. Loss-of-clock reset

Operating mode LOCEN1

1 LOCEN is the loss-of-clock enable bit in either FMPLL_SYNCR or FMPLL_ESYNCR2, depending on
FMPLL_ESYNCR1[EMODE].

LOCRE
2

2 LOCRE is the loss-of-clock reset enable bit in either FMPLL_SYNCR or FMPLL_ESYNCR2, depending on
FMPLL_ESYNCR1[EMODE].

Reset

Reference failure FMPLL failure

Bypass mode with external reference and PLL off — — No No

Bypass mode with crystal reference and PLL off — — Yes No

Bypass mode with external reference and PLL
running

— — No No

Bypass mode with crystal reference and PLL running — — Yes No

Normal mode with external reference 0 — No No

1 0 No No

1 1 No Yes

Normal mode with crystal reference 0 — No No

1 0 No No

1 1 Yes Yes

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 579

external reference, no reset or interrupts are generated. Furthermore, no reset or interrupts are generated
when lock is lost due to a write to the FMPLL_SYNCR in legacy mode which modifies the PREDIV or
MFD fields, or a write to FMPLL_ESYNCR1 in enhanced mode which modifies the EMODE, EPREDIV,
EMFD or CLKCFG[1:0] fields.

17.5.5 Frequency modulation

Frequency modulation uses a triangular profile as shown in Figure 17-8. The modulation frequency and
depth are set using the MODPERIOD and INCSTEP fields of the FMPLL_SYNFMMR.

Figure 17-8. Triangular frequency modulation

Table 17-14. Loss-of-clock interrupt request

Operating mode LOCEN1

1 LOCEN is the loss-of-clock enable bit in either FMPLL_SYNCR or FMPLL_ESYNCR2, depending on the
FMPLL_ESYNCR1[EMODE].

LOCIRQ
2

2 LOCIRQ is the loss-of-clock interrupt enable bit in either FMPLL_SYNCR or FMPLL_ESYNCR2, depending on the
FMPLL_ESYNCR1[EMODE].

Interrupt request

Reference
failure

FMPLL failure

Bypass mode with external reference and PLL off — — — —

Bypass mode with crystal reference and PLL off — — No —

Bypass mode with external reference and PLL running — — — —

Bypass mode with crystal reference and PLL running — — No —

Normal mode with external reference 0 — — No

1 0 — No

1 1 — Yes

Normal mode with crystal reference 0 — No No

1 0 No No

1 1 Yes Yes

2 x MD

MD
fsys

fsys

Center Spread

Down Spread

fsys = PLL nominal frequency

MD = Modulation depth percentage

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

580 Freescale Semiconductor

The following equations define how to calculate MODPERIOD and INCSTEP based on the frequency of
the feedback divider (ffbk), the modulation frequency (fmod) and the modulation depth percentage (MD):

Eqn. 17-5

Eqn. 17-6

MODPERIOD and INCSTEP are subject to the following restriction:

Eqn. 17-7

Because of the above rounding operations, the effective modulation depth applied to the FMPLL is given
by the following formula:

Eqn. 17-8

As an example, suppose the following configuration:

• Input frequency: 4 MHz

• Load divider (EMFD): 64

• Input divider: 1

• VCO frequency: 4 MHz × 64 = 256 MHz

• PLL output frequency: 256 MHz / ERFD

• Center spread (MODSEL = 0)

• Modulation frequency: 24 kHz

• Modulation depth: +/ 2.0 % (4% peak-to-peak)

• MODPERIOD = Round [(4 × 106)/(4 × 24 × 103)] = Round [41.66] = 42

• INCSTEP = Round [((215  1) × 2 × 64) / (100 × 5 × 42)] = Round [199.722] = 200

• MODPERIOD × INCSTEP = 42 × 200 = 8400 (which is less than 215)

• MD (quantized) = ((42 × 200 × 100 × 5) / ((215  1) × 64) = 2.00278 %

In this example, the modulation depth error is 0.00278%.

The FM parameters can only be changed, and FM can only be enabled, when the PLL is locked. Writing
to the FMPLL_SYNFMMR while the PLL is unlocked has no effect. Furthermore, when the PLL loses

MODPERIOD round
ffbk

4 fmod
------------------()=

INCSTEP round
215 1–  MD EMFD

100 5 MODPERIOD
---()=

MODPERIOD INCSTEP  215

INCSTEP round
MODPERIOD INCSTEP 100 5

2
15

1–  EMFD
---()=

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 581

lock, the FM parameters are reset and the modulation is disabled until the PLL relocks and the
FMPLL_SYNFMMR is programmed again.

After programming the FM parameters, it takes some time until these parameters get propagated to the
PLL analog circuitry. During this time, the BSY bit gets asserted. The modulation must only be enabled
when the FM parameters have already propagated to the analog circuitry. Therefore, the sequence for
programming FM is:

1. Poll FMPLL_SYNSR[LOCK] until it asserts.

2. Program the MODSEL, MODPERIOD and INCSTEP fields of the FMPLL_SYNFMMR.

3. Poll FMPLL_SYNFMMR[BSY] until it negates.

4. Assert FMPLL_SYNFMMR[MODEN].

Frequency-modulated phase locked loop (FMPLL)

MPC5644A Microcontroller Reference Manual, Rev. 6

582 Freescale Semiconductor

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 583

Chapter 18
Error Correction Status Module (ECSM)

18.1 Overview

The Error Correction Status Module (ECSM) provides control functions regarding information on memory
errors reported by error-correcting codes. The ECSM is mapped into the IPS space and supports a number
of miscellaneous control functions for the platform.

18.2 Features
• Program-visible information on the platform configuration and revision

• Optional address map for device’s crossbar switch (XBAR)

• Miscellaneous Reset Status Register (ECSM_MRSR)

• Registers for capturing information on memory errors if error-correcting codes (ECC) are
implemented

18.3 Module memory map

The Error Correction Status Module does not include any logic that provides access control. Rather, this
function is supported using the standard access control logic provided by the IPS controller.

Table 18-1 is a 32-bit view of the ECSM’s memory map.

Table 18-1. ECSM 32-bit memory map

ECSM Offset Register

0x00 Reserved Reserved

0x04 Reserved Reserved

0x08 Reserved

0x0C Reserved Miscellaneous Reset
Status Register
(ECSM_MRSR)

0x10 Reserved Miscellaneous Wakeup
Control Register
(ECSM_MWCR)

0x14 Reserved

0x18 Reserved

0x1C Reserved

0x20 Reserved

0x24 Miscellaneous User-Defined Control Register (ECSM_MUDCR)

0x28 Reserved

0x2C – 0x3C Reserved

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

584 Freescale Semiconductor

18.4 Register descriptions

Attempted accesses to reserved addresses result in an error termination, while attempted writes to
read-only registers are ignored and do not terminate with an error.

NOTE

Unless noted otherwise, writes to the programming model must match
the size of the register, e.g., an n-bit register only supports n-bit writes, etc.
Attempted writes of a different size than the register width produce an error
termination of the bus cycle and no change to the targeted register.

18.4.1 Miscellaneous Reset Status Register (ECSM_MRSR)

The ECSM_MRSR contains a bit for each of the reset sources to the device. An asserted bit indicates the
last type of reset that occurred. Only one bit is set at any time in the ECSM_MRSR, reflecting the cause
of the most recent reset as signalled by device reset input signals. The ECSM_MRSR can only be read
from the IPS programming model. Any attempted write is ignored.

0x40
Reserved

ECC Configuration
Register (ECSM_ECR)

0x44
Reserved

ECC Status Register
(ECSM_ESR)

0x48 Reserved ECC Error Generation Register (ECSM_EEGR)

0x4C Reserved

0x50 Flash ECC Address Register (ECSM_FEAR)

0x54 Reserved Flash ECC Master
Number Register
(ECSM_FEMR)

Flash ECC Attributes
(ECSM_FEAT)

Register

0x58 Flash ECC Data Register High (ECSM_FEDRH)

0x5C Flash ECC Data Register Low (ECSM_FEDRL)

0x60 RAM ECC Address Register (ECSM_REAR)

0x64 Reserved RAM ECC Syndrome
Register

(ECSM_PRESR)

RAM ECC Master
Number Register
(ECSM_REMR)

RAM ECC Attributes
Register

(ECSM_REAT)

0x68 RAM ECC Data Register High (ECSM_REDRH)

0x6C RAM ECC Data Register Low (ECSM_REDRL)

0x70 – 0x7C Reserved

Table 18-1. ECSM 32-bit memory map (continued)

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 585

18.4.2 Miscellaneous Wakeup Control Register (ECSM_MWCR)

Implementation of low-power sleep modes and exit from these modes via an interrupt require
communication between the ECSM, the interrupt controller (INTC) and external logic typically associated
with phase-locked loop clock generation circuitry. The Miscellaneous Wakeup Control Register
(ECSM_MWCR) provides an 8-bit register controlling entry into these types of low-power modes as well
as definition of the interrupt level needed to exit the mode.

The following sequence of operations is generally needed to enable this functionality. Note that the exact
details are likely to be system-specific.

1. The processor core loads the appropriate data value into the ECSM_MWCR, setting the ENBWCR
bit and the desired interrupt priority level.

2. At the appropriate time, the processor ceases execution. The exact mechanism varies by processor
core. In some cases, a processor-is-stopped status is signaled to the ECSM and external logic. This
assertion, if properly enabled by ECSM_MWCR[ENBWCR], causes the ECSM output signal
“enter_low_power_mode” to be set. This, in turn, causes the selected external, low-power mode,
to be entered, and the appropriate clock signals disabled. In most implementations, there are
multiple low-power modes, where the exact clocks to be disabled vary across the different modes.

3. After entering the low-power mode, the interrupt controller enables a special combinational logic
path which evaluates all unmasked interrupt requests. The device remains in this mode until an
event which generates an unmasked interrupt request with a priority level greater than the value
programmed in the ECSM_MWCR[PRILVL] occurs.

4. Once the appropriately-high interrupt request level arrives, the interrupt controller signals its
presence, and the ECSM responds by asserting an “exit_low_power_mode” signal.

5. The external logic senses the assertion of the “exit” signal, and re-enables the appropriate clock
signals.

Register address: ECSM Base + 0x000F (0xFFF4_000F)

0 1 2 3 4 5 6 7

R POR OFPLR 0 0 0 0 0 0

W

Reset 1 0 0 0 0 0 0 0

= Unimplemented

Figure 18-1. Miscellaneous Reset Status Register (ECSM_MRSR)

Table 18-2. ECSM_MRSR field description

Name Description

0
POR

Power-On Reset
1 = Last recorded event was caused by a power-on reset (based on a device input signal)

1
OFPLR

Device Input Reset
1 = Last recorded event was a reset caused by a device input reset.

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

586 Freescale Semiconductor

6. With the processor core clocks enabled, the core handles the pending interrupt request.

18.4.3 Miscellaneous User-Defined Control Register (ECSM_MUDCR)

The ECSM_MUDCR is used to specify the number of additional wait states required for the device
SRAM. Please see the device data sheet for details on the cut-off frequency for the addition of 1 wait state.

Register address: ECSM Base + 0x13 (0xFFF4_0013)

0 1 2 3 4 5 6 7

R ENBWCR 0 0 0 PRILVL[0:3]

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented

Figure 18-2. Miscellaneous Wakeup Control Register (ECSM_MWCR)

Table 18-3. ECSM_MWCR field description

Name Description

0
ENBWCR

Enable WCR
0 = MWCR is disabled
1 = MWCR is enabled

4–7
PRILVL[0:3]

Interrupt Priority Level
The interrupt priority level is a core-specific definition. It specifies the interrupt priority level needed
to exit the low-power mode. Specifically, an unmasked interrupt request of a priority level greater than
the PRILVL value is required to exit the mode.

Certain interrupt controller implementations include logic associated with this priority level that
restricts the data value contained in this field to a [0, maximum - 1] range. See the specific interrupt
controller module for details.

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 587

18.4.4 ECC registers

For platform designs including error-correcting code (ECC) implementations to improve the quality and
reliability of memories, there are a number of program-visible registers for the sole purpose of reporting
and logging of memory failures. These registers include:

• ECC Configuration Register (ECSM_ECR)

• ECC Status Register (ECSM_ESR)

• ECC Error Generation Register (ECSM_EEGR)

• Flash ECC Address Register (ECSM_FEAR)

• Flash ECC Master Number Register (ECSM_FEMR)

• Flash ECC Attributes Register (ECSM_FEAT)

• Flash ECC Data Register (ECSM_FEDR)

• RAM ECC Address Register (ECSM_REAR)

• RAM ECC Syndrome Register (ECSM_PRESR)

• RAM ECC Master Number Register (ECSM_REMR)

• RAM ECC Attributes Register (ECSM_REAT)

Register address: ECSM Base + 0x0024 (0xFFF4_0024)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 SWSC 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented

Figure 18-3. Miscellaneous User-Defined Control Register (ECSM_MUDCR)

Table 18-4. ECSM_MUDCR field description

Name Description

0 Reserved

1
SWSC

SRAM Wait State Control
0 = No additional SRAM wait states
1 = 1 additional SRAM wait state

2–31 Reserved

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

588 Freescale Semiconductor

• RAM ECC Data Register (ECSM_REDR)

The details on the ECC registers are provided in the subsequent sections.

The 32-bit ECC organization essentially provides two completely independent error checking mechanisms
for the total 64-bit RAM width. The ECC logic provides a 1-of-3 error response vector for each 32 bits of
memory: no error, single-bit correctable error, multi-bit non-correctable error. Table 18-5 defines the
association between the reported ECC result and the RAM bank chip selects.

As shown in Table 18-5, accesses of only a single memory bank report the ECC from that bank directly.
For accesses involving both banks, the “most severe” ECC response is reported with the even bank taking
priority if the responses are equivalent. This approach also provides improved correction capabilities
compared to the 64-bit ECC implementation.

18.4.4.1 ECC Configuration Register (ECSM_ECR)

The ECC Configuration Register is an 8-bit control register for specifying which types of memory errors
are reported. In all systems with ECC, the occurrence of a non-correctable error causes the current access
to be terminated with an error condition. In many cases, this error termination is reported directly by the
initiating bus master. However, there are certain situations where the occurrence of this type of

Table 18-5. AHB Response and ECC Reporting for Even and Odd ECC

RAM Valid
Even

RAM
Valid
Odd

ECC Even ECC Odd
Reported

ECC

RAM Bus
Response

Even

RAM Bus
Response Odd

AHB HRESP

0 0 x x No access,
No_error

xxxx xxxx okay

1 0 none x No_error data xxxx okay

1 0 single x Even_single corrected xxxx okay

1 0 multi x Even_multi non-corrected xxxx err

0 1 x none No_error xxxx data okay

0 1 x single Odd_single xxxx corrected okay

0 1 x multi Odd_multi xxxx non-corrected err

1 1 none none No_error data data okay

1 1 single none Even_single corrected data okay

1 1 multi none Even_multi non-corrected data err

1 1 none single Odd_single data corrected okay

1 1 single single Even_single corrected corrected okay

1 1 multi single Even_multi non-corrected corrected err

1 1 none multi Odd_multi data non-corrected err

1 1 single multi Odd_multi corrected non-corrected err

1 1 multi multi Even_multi non-corrected non-corrected err

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 589

non-correctable error is not reported by the master. Examples include speculative instruction fetches
which are discarded due to a change-of-flow operation, and buffered operand writes. The ECC reporting
logic in the ECSM provides an optional error interrupt mechanism to signal all non-correctable memory
errors. In addition to the interrupt generation, the ECSM captures specific information (memory address,
attributes and data, bus master number, etc.) which can be useful for subsequent failure analysis.

Register address: ECSM Base + 0x0043 (0xFFF4_0043)

0 1 2 3 4 5 6 7

R 0 0
ER1BR EF1BR

0 0
ERNCR EFNCR

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented

Figure 18-4. ECC Configuration Register (ECSM_ECR)

Table 18-6. ECSM_ECR field description

Name Description

2
ER1BR

Enable RAM 1-bit Reporting
0 = Reporting of single-bit platform RAM corrections is disabled.
1 = Reporting of single-bit platform RAM corrections is enabled.

The occurrence of a single-bit RAM correction generates an ECSM ECC interrupt request as signalled
by the assertion of ECSM_ESR[R1BC]. The address, attributes and data are also captured in the
ECSM_REAR, ECSM_PRESR, ECSM_REMR, ECSM_REAT and ECSM_REDR registers.

3
EF1BR

Enable Flash 1-bit Reporting
0 = Reporting of single-bit platform flash corrections is disabled.
1 = Reporting of single-bit platform flash corrections is enabled.

The occurrence of a single-bit flash correction generates an ECSM ECC interrupt request as signalled
by the assertion of ECSM_ESR[F1BC]. The address, attributes and data are also captured in the
ECSM_FEAR, ECSM_FEMR, ECSM_FEAT and ECSM_FEDR registers.

6
ERNCR

Enable RAM Non-Correctable Reporting
0 = Reporting of non-correctable platform RAM errors is disabled.
1 = Reporting of non-correctable platform RAM errors is enabled.

The occurrence of a non-correctable multi-bit RAM error generates an ECSM ECC interrupt request as
signalled by the assertion of ECSM_ESR[RNCE]. The faulting address, attributes and data are also
captured in the ECSM_REAR, ECSM_PRESR, ECSM_REMR, ECSM_REAT and ECSM_REDR
registers.

7
EFNCR

Enable Flash Non-Correctable Reporting
0 = Reporting of non-correctable platform flash errors is disabled.
1 = Reporting of non-correctable platform flash errors is enabled.

The occurrence of a non-correctable multi-bit flash error generates an ECSM ECC interrupt request as
signalled by the assertion of ECSM_ESR[FNCE]. The faulting address, attributes and data are also
captured in the ECSM_FEAR, ECSM_FEMR, ECSM_FEAT and ECSM_FEDR registers.

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

590 Freescale Semiconductor

18.4.4.2 ECC Status Register (ECSM_ESR)

The ECC Status Register is an 8-bit control register for signaling which types of properly-enabled ECC
events have been detected. The ECSM_ESR signals the last, properly-enabled memory event to be
detected. An ECC interrupt request is asserted if any flag bit is asserted and its corresponding enable bit is
asserted.

ECC interrupt generation is separated into single-bit error detection/correction, uncorrectable error
detection and the combination of the two as defined by the following boolean equations:

ECSM_ECC1BIT_IRQ
= ECSM_ECR[ER1BR] & ECSM_ESR[R1BC] // platform ram, 1-bit correction
| ECSM_ECR[EF1BR] & ECSM_ESR[F1BC] // platform flash, 1-bit correction

ECSM_ECCRNCR_IRQ
= ECSM_ECR[ERNCR] & ECSM_ESR[RNCE] // platform ram, noncorrectable error

ECSM_ECCFNCR_IRQ
= ECSM_ECR[EFNCR] & ECSM_ESR[FNCE] // platform flash, noncorrectable error

ECSM_ECC2BIT_IRQ
= ECSM_ECCRNCR_IRQ // platform ram, noncorrectable error
| ECSM_ECCFNCR_IRQ // platform flash, noncorrectable error

ECSM_ECC_IRQ
= ECSM_ECC1BIT_IRQ // 1-bit correction
| ECSM_ECC2BIT_IRQ // noncorrectable error

where the combination of a properly-enabled category in the ECSM_ECR and the detection of the
corresponding condition in the ECSM_ESR produces the interrupt request.

The ECSM allows a maximum of one bit of the ECSM_ESR to be asserted at any given time. This
preserves the association between the ECSM_ESR and the corresponding address and attribute registers,
which are loaded on each occurrence of a properly-enabled ECC event. If there is a pending ECC interrupt
and another properly-enabled ECC event occurs, the ECSM hardware automatically handles the
ECSM_ESR reporting, clearing the previous data and loading the new state and thus guaranteeing that
only a single flag is asserted.

To maintain the coherent software view of the reported event, the following sequence in the ECSM error
interrupt service routine is suggested:

1. Read the ECSM_ESR and save it.

2. Read and save all the address and attribute reporting registers.

3. Re-read the ECSM_ESR and verify the current contents matches the original contents. If the two
values are different, go back to step 1 and repeat.

4. When the values are identical, write a ‘1’ to the asserted ESR flag to negate the interrupt request.

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 591

In the event that multiple status flags are signaled simultaneously, the ECSM records the event with the
R1BC as highest priority, then F1BC, then RNCE, and finally FNCE.

Register address: ECSM Base + 0x0047 (0xFFF4_0047)

0 1 2 3 4 5 6 7

R 0 0 R1BC F1BC 0 0 RNCE FNCE

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented

Figure 18-5. ECC Status Register (ECSM_ESR)

Table 18-7. ECSM_ESR field description

Name Description

2
R1BC

Platform RAM 1-bit Correction
0 = No reportable single-bit platform RAM correction has been detected.
1 = A reportable single-bit platform RAM correction has been detected.

This bit can only be set if ECSM_ECR[ER1BR] is asserted. The occurrence of a properly-enabled
single-bit RAM correction generates an ECSM ECC interrupt request. The address, attributes and data
are also captured in the ECSM_REAR, ECSM_PRESR, ECSM_REMR, ECSM_REAT and
ECSM_REDR registers. To clear this interrupt flag, write a ‘1’ to this bit. Writing a ‘0’ has no effect.

3
F1BC

Platform Flash 1-bit Correction
0 = No reportable single-bit platform flash correction has been detected.
1 = A reportable single-bit platform flash correction has been detected.

This bit can only be set if ECSM_ECR[EF1BR] is asserted. The occurrence of a properly-enabled
single-bit flash correction generates an ECSM ECC interrupt request. The address, attributes and data
are also captured in the ECSM_FEAR, ECSM_FEMR, ECSM_FEAT and ECSM_FEDR registers. To
clear this interrupt flag, write a ‘1’ to this bit. Writing a ‘0’ has no effect.

6
RNCE

Platform RAM Non-Correctable Error
0 = No reportable non-correctable platform RAM error has been detected.
1 = A reportable non-correctable platform RAM error has been detected.

The occurrence of a properly-enabled non-correctable RAM error generates an ECSM ECC interrupt
request. The faulting address, attributes and data are also captured in the ECSM_REAR,
ECSM_PRESR, ECSM_REMR, ECSM_REAT and ECSM_REDR registers. To clear this interrupt flag,
write a ‘1’ to this bit. Writing a ‘0’ has no effect.

7
FNCE

Platform Flash Non-Correctable Error
0 = No reportable non-correctable platform flash error has been detected.
1 = A reportable non-correctable platform flash error has been detected.

The occurrence of a properly-enabled non-correctable flash error generates an ECSM ECC interrupt
request. The faulting address, attributes and data are also captured in the ECSM_FEAR, ECSM_FEMR,
ECSM_FEAT and ECSM_FEDR registers. To clear this interrupt flag, write a ‘1’ to this bit. Writing a ‘0’
has no effect.

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

592 Freescale Semiconductor

18.4.4.3 ECC Error Generation Register (ECSM_EEGR)

The ECC Error Generation Register is a 16-bit control register used to force the generation of single- and
double-bit data inversions in the memories with ECC, most notably the RAM. This capability is provided
for two purposes:

• It provides a software-controlled mechanism for “injecting” errors into the memories during data
writes to verify the integrity of the ECC logic.

• It provides a mechanism to allow testing of the software service routines associated with memory
error logging.

It should be noted that while the ECSM_EEGR is associated with the RAM, similar capabilities exist for
the flash, that is, the ability to program the non-volatile memory with single- or double-bit errors is
supported for the same two reasons previously identified.

For both types of memories (RAM and flash), the intent is to generate errors during data write cycles, such
that subsequent reads of the corrupted address locations generate ECC events, either single-bit corrections
or double-bit non-correctable errors that are terminated with an error response.

Register address: ECSM Base + 0x004A (0xFFF4_004A)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
R

C
A

P 0

F
R

C
1

B
I1

1 This field is writable only in test mode in cut 1.0 devices.

F
R

11
B

I1

0 0

F
R

C
N

C
I

F
R

1N
C

I

0 ERRBIT[6:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented

Figure 18-6. ECC Error Generation Register (ECSM_EEGR)

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 593

Table 18-8. ECSM_EEGR field description

Name Description

0
FRCAP

Force RAM Error Injection Access Protection
0 = All Platform masters are able to generate RAM ECC errors via the ECSM_EEGR.
1 = Only the Platform master with ID=0 (usually the core) can generate RAM ECC errors via the
ECSM_EEGR.

The assertion of this bit ensures that RAM data inversions can only occur from the master module with
the master ID of 0. Since this is usually the core, this protects the RAM from errant or multiple
simultaneous attempted data inversions from other master modules and, in the case of a multi-core
system, ensures that only one core can issue a RAM data inversion.

The reset value of the bit is 0 and as a result, RAM data inversions can be requested from any master
module. It is the responsibility of the software to ensure the proper setting of this bit.

2
FRC1BI1

Force RAM Continuous 1-bit Data Inversions
0 = No RAM continuous 1-bit data inversions are generated.
1 = 1-bit data inversions in the RAM are continuously generated.

The assertion of this bit forces the RAM controller to create 1-bit data inversions, as defined by the bit
position specified in ERRBIT[6:0], continuously on every write operation.

The normal ECC generation takes place in the RAM controller, but then the polarity of the bit position
defined by ERRBIT is inverted to introduce a 1-bit ECC event in the RAM.

After this bit has been enabled to generate another continuous 1-bit data inversion, it must be cleared
before being set again to correctly re-enable the error generation logic.

3
FR11BI1

Force RAM One 1-bit Data Inversion
0 = No RAM single 1-bit data inversion is generated.
1 = One 1-bit data inversion in the RAM is generated.

The assertion of this bit forces the RAM controller to create one 1-bit data inversion, as defined by the
bit position specified in ERRBIT[6:0], on the first write operation after this bit is set.

The normal ECC generation takes place in the RAM controller, but then the polarity of the bit position
defined by ERRBIT is inverted to introduce a 1-bit ECC event in the RAM.

After this bit has been enabled to generate a single 1-bit data inversion, it must be cleared before
being set again to properly re-enable the error generation logic.

6
FRCNCI

Force RAM Continuous Non-Correctable Data Inversions
0 = No RAM continuous 2-bit data inversions are generated.
1 = 2-bit data inversions in the RAM are continuously generated.

The assertion of this bit forces the RAM controller to create 2-bit data inversions, as defined by the bit
position specified in ERRBIT[6:0] and the overall odd parity bit, continuously on every write operation.

After this bit has been enabled to generate another continuous non-correctable data inversion, it must
be cleared before being set again to properly re-enable the error generation logic.

The normal ECC generation takes place in the RAM controller, but then the polarity of the bit position
defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error in the
RAM.

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

594 Freescale Semiconductor

7
FR1NCI

Force RAM One Non-Correctable Data Inversions
0 = No RAM single 2-bit data inversions are generated.
1 = One 2-bit data inversion in the RAM is generated.

The assertion of this bit forces the RAM controller to create one 2-bit data inversion, as defined by the
bit position specified in ERRBIT[6:0] and the overall odd parity bit, on the first write operation after this
bit is set.

The normal ECC generation takes place in the RAM controller, but then the polarity of the bit position
defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error in the
RAM.

After this bit has been enabled to generate a single 2-bit error, it must be cleared before being set
again to properly re-enable the error generation logic.

Table 18-8. ECSM_EEGR field description (continued)

Name Description

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 595

If an attempt to force a non-correctable inversion (by asserting ECSM_EEGR[FRCNCI] or
ECSM_EEGR[FRC1NCI]) and ECSM_EEGR[ERRBIT] equals 64, then no data inversion will be
generated.

The only allowable values for the four control bit enables {FR11BI, FRC1BI, FRCNCI, FR1NCI} are
{0,0,0,0}, {1,0,0,0}, {0,1,0,0}, {0,0,1,0} and {0,0,0,1}. All other values result in unpredictable operations.

ERRBIT
[6:0]

The vector defines the bit position which is complemented to create the data inversion on the write
operation. For the creation of 2-bit data inversions, the bit specified by this field plus the odd parity bit
of the ECC code are inverted.

The RAM controller follows a vector bit ordering scheme where LSB=0. Errors in the ECC syndrome
bits can be generated by setting this field to a value greater than the RAM width. For example,
consider a 64-bit RAM implementation and ECC organized on a 32-bit boundary.

The 32-bit ECC approach requires 7 code bits for each 32-bit word. For RAM data width of 64 bits,
the actual SRAM is 2 × (32 bits data + 7 bits for ECC) = 78 bits which is organized as two 39-bit
memory banks, “even” bank and “odd” bank. The following association between the ERRBIT field and
the corrupted memory bit is defined:

if ERRBIT = 0, then RAM[0] of the odd bank is inverted
if ERRBIT = 1, then RAM[1] of the odd bank is inverted
...
if ERRBIT = 31, then RAM[31] of the odd bank is inverted
if ERRBIT = 32, then RAM[0] of the even bank is inverted
if ERRBIT = 33, then RAM[1] of the even bank is inverted
...
if ERRBIT = 63, then RAM[31] of the even bank is inverted
if ERRBIT = 64, then ECC Parity[0] of the odd bank is inverted
if ERRBIT = 65, then ECC Parity[1] of the odd bank is inverted
...
if ERRBIT = 70, then ECC Parity[6] of the odd bank is inverted
if ERRBIT = 71, then ECC Parity[0] of the even bank is inverted
if ERRBIT = 72, then ECC Parity[1] of the even bank is inverted
...
if ERRBIT = 77, then ECC Parity[6] of the even bank is inverted

For ERRBIT values between 78 and 95, no bit position is inverted. To accommodate address bus
inversions, the ERRBIT values start at 96 as defined:

if ERRBIT = 96, then ADDR[0] is inverted
if ERRBIT = 97, then ADDR[1] is inverted
...
if ERRBIT = 114, then ADDR[18] is inverted
if ERRBIT = 115, then ADDR[19] is inverted

For ERRBIT values greater than 115, the address bus inversion has no effect as only the lower 20 bits
are used by the platform RAM controller.

1 This field is writable only in test mode in cut 1.0 devices.

Table 18-8. ECSM_EEGR field description (continued)

Name Description

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

596 Freescale Semiconductor

18.4.4.4 Flash ECC Address Register (ECSM_FEAR)

The ECSM_FEAR is a 32-bit register for capturing the address of the last, properly-enabled ECC event in
the platform flash memory. Depending on the state of the ECC Configuration Register, an ECC event in
the flash causes the address, attributes and data associated with the access to be loaded into the
ECSM_FEAR, ECSM_FEMR, ECSM_FEAT and ECSM_FEDRs, and the appropriate flag (F1BC or
FNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

18.4.4.5 Flash ECC Master Number Register (ECSM_FEMR)

The ECSM_FEMR is a 4-bit register for capturing the XBAR bus master number of the last,
properly-enabled ECC event in the flash memory. Depending on the state of the ECC Configuration
Register, an ECC event in the flash causes the address, attributes and data associated with the access to be
loaded into the ECSM_FEAR, ECSM_FEMR, ECSM_FEAT and ECSM_FEDR registers, and the
appropriate flag (FNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

Register address: ECSM Base + 0x0050 (0xFFF4_0054)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEAR[31:16]

W

Reset — — — — — — — — — — — — — — — —

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEAR[15:0]

W

Reset — — — — — — — — — — — — — — — —

= Unimplemented

Figure 18-7. Flash ECC Address Register (ECSM_FEAR)

Table 18-9. ECSM_FEAR field description

Name Description

0–31
FEAR[31:0]

Flash ECC Address Register
This 32-bit register contains the faulting access address of the last, properly-enabled flash ECC
event.

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 597

18.4.4.6 Flash ECC Attributes (ECSM_FEAT) Register

The ECSM_FEAT register is an 8-bit register for capturing the XBAR bus master attributes of the last,
properly-enabled ECC event in the flash memory. Depending on the state of the ECC Configuration
Register, an ECC event in the flash causes the address, attributes and data associated with the access to be
loaded into the ECSM_FEAR, ECSM_FEMR, ECSM_FEAT and ECSM_FEDR registers, and the
appropriate flag (FNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

Register address: ECSM Base + 0x0056 (0xFFF4_0056)

0 1 2 3 4 5 6 7

R 0 0 0 0 FEMR[3:0]

W

Reset 0 0 0 0 — — — —

= Unimplemented

Figure 18-8. Flash ECC Master Number Register (ECSM_FEMR)

Table 18-10. ECSM_FEMR field description

Name Description

4–7
FEMR[3:0]

Flash ECC Master Number Register
This 4-bit register contains the XBAR bus master number of the faulting access of the last,
properly-enabled flash ECC event.

Register address: ECSM Base + 0x0057 (0xFFF4_0057)

0 1 2 3 4 5 6 7

R WRITE SIZE[2:0] PROT0 PROT1 PROT2 PROT3

W

Reset — — — — — — — —

= Unimplemented

Figure 18-9. Flash ECC Attributes (ECSM_FEAT) Register

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

598 Freescale Semiconductor

18.4.4.7 Flash ECC Data Register (ECSM_FEDRH, ECSM_FEDRL)

The ECSM_FEDR is a 64-bit register for capturing the data associated with the last, properly-enabled ECC
event in the flash memory. Depending on the state of the ECC Configuration Register, an ECC event in
the flash causes the address, attributes and data associated with the access to be loaded into the
ECSM_FEAR, ECSM_FEMR, ECSM_FEAT, and ECSM_FEDR registers, and the appropriate flag
(FNCE) in the ECC Status Register to be asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

This register can only be read from the IPS programming model; any attempted write is ignored.

Table 18-11. ECSM_FEAT field description

Name Description

0
WRITE

AMBA-AHB HWRITE
0 = AMBA-AHB read access
1 = AMBA-AHB write access

1–3
SIZE[2:0]

AMBA-AHB HSIZE
0b000 = 8-bit AMBA-AHB access
0b001 = 16-bit AMBA-AHB access
0b010 = 32-bit AMBA-AHB access
0b011 = Reserved
0b1xx = Reserved

4–7
PROTn

AMBA-AHB HPROT
PROT3: Cacheable 0 = Non-cacheable, 1 = Cacheable
PROT2: Bufferable 0 = Non-bufferable, 1 = Bufferable
PROT1: Mode 0 = User mode, 1 = Supervisor mode
PROT0: Type 0 = I-Fetch, 1 = Data

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 599

18.4.4.8 RAM ECC Address Register (ECSM_REAR)

The ECSM_REAR is a 32-bit register for capturing the address of the last, properly-enabled ECC event in
the RAM memory. Depending on the state of the ECC Configuration Register, an ECC event in the RAM
causes the address, attributes and data associated with the access to be loaded into the ECSM_REAR,
ECSM_PRESR, ECSM_REMR, ECSM_REAT and ECSM_REDR registers, and the appropriate flag
(RNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

Register address: ECSM Base + 0x58, +0x5C ((0xFFF4_0058, 0xFFF4_005C)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEDH[31:16]

W

Reset — — — — — — — — — — — — — — — —

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEDH[15:0]

W

Reset — — — — — — — — — — — — — — — —

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

R FEDL[31:16]

W

Reset — — — — — — — — — — — — — — — —

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

R FEDL[15:0]

W

Reset — — — — — — — — — — — — — — — —

= Unimplemented

Figure 18-10. Flash ECC Data Register (ECSM_FEDRH, ECSM_FEDRL)

Table 18-12. ECSM_FEDR field description

Name Description

0–63
FEDH[31:0]
FEDL[31:0]

Flash ECC Data Register
This 64-bit register contains the data associated with the faulting access of the last,
properly-enabled flash ECC event. The register contains the data value taken directly from the data
bus.

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

600 Freescale Semiconductor

18.4.4.9 RAM ECC Syndrome Register (ECSM_PRESR)

The ECSM_PRESR is an 8-bit register for capturing the error syndrome of the last, properly-enabled ECC
event in the RAM memory. Depending on the state of the ECC Configuration Register, an ECC event in
the RAM causes the address, attributes and data associated with the access to be loaded into the
ECSM_REAR, ECSM_PRESR, ECSM_REMR, ECSM_REAT and ECSM_REDR registers, and the
appropriate flag (RNCE) in the ECC Status Register to be asserted.

The ECSM_PRESR can only be read from the IPS programming model; any attempted write is ignored.

Register address: ECSM Base + 0x0060 (0xFFF4_0060)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REAR[31:16]

W

Reset — — — — — — — — — — — — — — — —

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REAR[15:0]

W

Reset — — — — — — — — — — — — — — — —

= Unimplemented

Figure 18-11. RAM ECC Address Register (ECSM_REAR)

Table 18-13. ECSM_REAR field description

Name Description

0–31
REAR[31:0]

RAM ECC Address Register
This 32-bit register contains the faulting access address of the last, properly-enabled RAM ECC
event.

Register address: ECSM Base + 0x0065 (0xFFF4_0065)

0 1 2 3 4 5 6 7

R PRESR[7:0]

W

Reset — — — — — — — —

= Unimplemented

Figure 18-12. RAM ECC Syndrome Register (ECSM_PRESR)

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 601

NOTE

Table 18-15 associates the 8 bits of the ECC syndrome with the exact data
bit in error for single-bit correctable code words. This table follows the bit
vectoring notation where the LSB = 0. The syndrome value of 0x00 implies
no error condition but this value is not readable when the ECSM_PRESR is
read for the no error case.

Table 18-14. ECSM_PRESR field description

Name Description

0–7
PRESR[7:0]

RAM ECC Syndrome Register
This 8-bit syndrome field includes optimized syndrome encoding for the entire 39-bit (32-bit data +
7-bit ECC) code word of each bank for single-bit errors.
Syndrome values for non-correctable errors are not defined.

For correctable single-bit errors, the mapping shown in Table 18-15 associates the 8 bits of the
syndrome with the data bit in error.

Table 18-15. RAM syndrome mapping for single-bit correctable errors

PRESR[7:0] Data bit in error

0x01 ECC ODD[0]

0x02 ECC ODD[1]

0x04 ECC ODD[2]

0x07 DATA ODD BANK[31]

0x08 ECC ODD[3]

0x10 ECC ODD[4]

0x20 ECC ODD[5]

0x40 ECC ODD[6]

0x43 DATA ODD BANK[0]

0x45 DATA ODD BANK[1]

0x46 DATA ODD BANK[2]

0x49 DATA ODD BANK[3]

0x4A DATA ODD BANK[4]

0x4C DATA ODD BANK[5]

0x4F DATA ODD BANK[21]

0x51 DATA ODD BANK[6]

0x52 DATA ODD BANK[7]

0x54 DATA ODD BANK[8]

0x57 DATA ODD BANK[22]

0x58 DATA ODD BANK[9]

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

602 Freescale Semiconductor

0x5B DATA ODD BANK[23]

0x5D DATA ODD BANK[24]

0x5E DATA ODD BANK[25]

0x61 DATA ODD BANK[10]

0x62 DATA ODD BANK[11]

0x64 DATA ODD BANK[12]

0x67 DATA ODD BANK[26]

0x68 DATA ODD BANK[13]

0x6B DATA ODD BANK[27]

0x6D DATA ODD BANK[28]

0x6E DATA ODD BANK[29]

0x70 DATA ODD BANK[14]

0x73 DATA ODD BANK[15]

0x75 DATA ODD BANK[16]

0x76 DATA ODD BANK[17]

0x79 DATA ODD BANK[18]

0x7A DATA ODD BANK[19]

0x7C DATA ODD BANK[20]

0x7F DATA ODD BANK[30]

0x81 ECC EVEN[0]

0x82 ECC EVEN[1]

0x84 ECC EVEN[2]

0x87 DATA EVEN BANK[31]

0x88 ECC EVEN[3]

0x90 ECC EVEN[4]

0xA0 ECC EVEN[5]

0xC0 ECC EVEN[6]

0xC3 DATA EVEN BANK[0]

0xC5 DATA EVEN BANK[1]

0xC6 DATA EVEN BANK[2]

0xC9 DATA EVEN BANK[3]

0xCA DATA EVEN BANK[4]

0xCC DATA EVEN BANK[5]

Table 18-15. RAM syndrome mapping for single-bit correctable errors (continued)

PRESR[7:0] Data bit in error

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 603

18.4.4.10 RAM ECC Master Number Register (ECSM_REMR)

The ECSM_REMR is a 4-bit register for capturing the XBAR bus master number of the last,
properly-enabled ECC event in the RAM memory. Depending on the state of the ECC Configuration
Register, an ECC event in the RAM causes the address, attributes and data associated with the access to
be loaded into the ECSM_REAR, ECSM_PRESR, ECSM_REMR, ECSM_REAT and ECSM_REDR
registers, and the appropriate flag (RNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is ignored.

0xCF DATA EVEN BANK[21]

0xD1 DATA EVEN BANK[6]

0xD2 DATA EVEN BANK[7]

0xD4 DATA EVEN BANK[8]

0xD7 DATA EVEN BANK[22]

0xD8 DATA EVEN BANK[9]

0xDB DATA EVEN BANK[23]

0xDD DATA EVEN BANK[24]

0xDE DATA EVEN BANK[25]

0xE1 DATA EVEN BANK[10]

0xE2 DATA EVEN BANK[11]

0xE4 DATA EVEN BANK[12]

0xE7 DATA EVEN BANK[26]

0xE8 DATA EVEN BANK[13]

0xEB DATA EVEN BANK[27]

0xED DATA EVEN BANK[28]

0xEE DATA EVEN BANK[29]

0xF0 DATA EVEN BANK[14]

0xF3 DATA EVEN BANK[15]

0xF5 DATA EVEN BANK[16]

0xF6 DATA EVEN BANK[17]

0xF9 DATA EVEN BANK[18]

0xFA DATA EVEN BANK[19]

0xFC DATA EVEN BANK[20]

0xFF DATA EVEN BANK[30]

Table 18-15. RAM syndrome mapping for single-bit correctable errors (continued)

PRESR[7:0] Data bit in error

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

604 Freescale Semiconductor

18.4.4.11 RAM ECC Attributes Register (ECSM_REAT)

The ECSM_REAT register is an 8-bit register for capturing the XBAR bus master attributes of the last,
properly-enabled ECC event in the RAM memory. Depending on the state of the ECC Configuration
Register, an ECC event in the RAM causes the address, attributes and data associated with the access to
be loaded into the ECSM_REAR, ECSM_PRESR, ECSM_REMR, ECSM_REAT and ECSM_REDR
registers, and the appropriate flag (RNCE) in the ECC Status Register to be asserted. The ECSM_REAT
register is read-only.

Register address: ECSM Base + 0x0066 (0xFFF4_0066)

0 1 2 3 4 5 6 7

R 0 0 0 0 REMR[3:0]

W

Reset 0 0 0 0 — — — —

= Unimplemented

Figure 18-13. RAM ECC Master Number Register (ECSM_REMR)

Table 18-16. ECSM_REMR field description

Name Description

4–7
REMR[3:0]

RAM ECC Master Number Register
This 4-bit register contains the XBAR bus master number of the faulting access of the last,
correctly-enabled RAM ECC event.

Register address: ECSM Base + 0x0067 (0xFFF4_0067)

0 1 2 3 4 5 6 7

R WRITE SIZE[2:0] PROT0 PROT1 PROT2 PROT3

W

Reset — — — — — — — —

= Unimplemented

Figure 18-14. RAM ECC Attributes (ECSM_REAT) Register

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 605

18.4.4.12 RAM ECC Data Register (ECSM_REDRH, ECSM_REDRL)

The ECSM_REDR is a 64-bit register for capturing the data associated with the last, properly-enabled
ECC event in the RAM memory. Depending on the state of the ECC Configuration Register, an ECC event
in the RAM causes the address, attributes and data associated with the access to be loaded into the
ECSM_REAR, ECSM_PRESR, ECSM_REMR, ECSM_REAT and ECSM_REDR registers, and the
appropriate flag (RNCE) in the ECC Status Register to be asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

Since the RAM controller calculates ECC on a 32-bit boundary, only the 32-bit piece of data containing
the error is recorded in the lower 32-bit word. The upper 32 bits will read back all zeroes as defined.

This register can only be read from the IPS programming model; any attempted write is ignored.

Table 18-17. ECSM_REAT field description

Name Description

0
WRITE

AMBA-AHB HWRITE
0 = AMBA-AHB read access
1 = AMBA-AHB write access

1–3
SIZE[2:0]

AMBA-AHB HSIZE
0b000 = 8-bit AMBA-AHB access
0b001 = 16-bit AMBA-AHB access
0b010 = 32-bit AMBA-AHB access
0b011 = 64-bit AMBA-AHB access
0b1xx = Reserved

4–7
PROTn

AMBA-AHB HPROT
PROT3: Cacheable 0 = Non-cacheable, 1 = Cacheable
PROT2: Bufferable 0 = Non-bufferable, 1 = Bufferable
PROT1: Mode 0 = User mode, 1 = Supervisor mode
PROT0: Type 0 = I-Fetch, 1 = Data

Error Correction Status Module (ECSM)

MPC5644A Microcontroller Reference Manual, Rev. 6

606 Freescale Semiconductor

Register address: ECSM Base + 0x68, +0x6C (0xFFF4_0068, (0xFFF4_006C)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REDH[31:16]

W

Reset — — — — — — — — — — — — — — — —

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REDH[15:0]

W

Reset — — — — — — — — — — — — — — — —

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

R REDL[31:16]

W

Reset — — — — — — — — — — — — — — — —

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

R REDL[15:0]

W

Reset — — — — — — — — — — — — — — — —

= Unimplemented

Figure 18-15. RAM ECC Data Register (ECSM_REDR)

Table 18-18. ECSM_REDR field description

Name Description

0–63
REDH[31:0]
REDL[31:0]

RAM ECC Data Register
This 64-bit register contains the data associated with the faulting access of the last,
properly-enabled RAM ECC event. The register contains the data value taken directly from
the data bus.

System Timer Module (STM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 607

Chapter 19
System Timer Module (STM)

19.1 Information Specific to This Device

This section presents device-specific parameterization and customization information not specifically
referenced in the remainder of this chapter.

19.1.1 Device-Specific Features

• One 32-bit up counter with 8-bit prescaler

• Four 32-bit compare channels

• Independent interrupt source for each channel

• Counter can be stopped in debug mode

19.2 Introduction

19.2.1 Overview

The System Timer Module (STM) is a 32-bit timer designed to support commonly required system and
application software timing functions. The STM includes a 32-bit up counter and four 32-bit compare
channels with a separate interrupt source for each channel. The counter is driven by the system clock
divided by an 8-bit prescale value (1 to 256).

19.2.2 Modes of operation

The STM supports two device modes of operation: normal and debug. When the STM is enabled in normal
mode, its counter runs continuously. In debug mode, operation of the counter is controlled by the FRZ bit
in the STM_CR register. If the FRZ bit is set, the counter is stopped in debug mode, otherwise it continues
to run.

19.3 External signal description

The STM does not have any external interface signals.

19.4 Memory map and register definition

The STM programming model has fourteen 32-bit registers. The STM registers can only be accessed using
32-bit (word) accesses. Attempted references using a different size or to a reserved address generates a bus
error termination.

19.4.1 Memory map

The STM memory map is shown in Table 19-1.

System Timer Module (STM)

MPC5644A Microcontroller Reference Manual, Rev. 6

608 Freescale Semiconductor

19.4.2 Register descriptions

The following sections detail the individual registers within the STM programming model.

Table 19-1. STM memory map

Address offset Register description Size (bits) Access Location

0x0000 STM Control Register(STM_CR) 32 R/W on page
19-609

0x0004 STM Count Register(STM_CNT) 32 R/W on page
19-609

0x0008 Reserved — — —

0x000C Reserved — — —

0x0010 STM Channel 0 Control Register(STM_CCR0) 32 R/W on page
19-610

0x0014 STM Channel 0 Interrupt Register(STM_CIR0) 32 R/W on page
19-610

0x0018 STM Channel 0 Compare Register(STM_CMP0) 32 R/W on page
19-611

0x001C Reserved — — —

0x0020 STM Channel 1 Control Register(STM_CCR1) 32 R/W on page
19-610

0x0024 STM Channel 1 Interrupt Register(STM_CIR1) 32 R/W on page
19-610

0x0028 STM Channel 1 Compare Register(STM_CMP1) 32 R/W on page
19-611

0x002C Reserved — — —

0x0030 STM Channel 2 Control Register(STM_CCR2) 32 R/W on page
19-610

0x0034 STM Channel 2 Interrupt Register(STM_CIR2) 32 R/W on page
19-610

0x0038 STM Channel 2 Compare Register(STM_CMP2) 32 R/W on page
19-611

0x003C Reserved — — —

0x0040 STM Channel 3 Control Register(STM_CCR3) 32 R/W on page
19-610

0x0044 STM Channel 3 Interrupt Register(STM_CIR3) 32 R/W on page
19-610

0x0048 STM Channel 3 Compare Register(STM_CMP3) 32 R/W on page
19-611

0x004C – 0x3FFF Reserved — — —

System Timer Module (STM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 609

19.4.2.1 STM Control Register (STM_CR)

The STM Control Register (STM_CR) includes the prescale value, freeze control and timer enable bits.

19.4.2.2 STM Count Register (STM_CNT)

The STM Count Register (STM_CNT) holds the timer count value.

Offset 0x000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CPS

0 0 0 0 0 0
FRZ TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-1. STM Control Register (STM_CR)

Table 19-2. STM_CR field description

Field Description

CPS Counter Prescaler
Selects the clock divide value for the prescaler (1 – 256)
0x00 = Divide system clock by 1
0x01 = Divide system clock by 2
...
0xFF = Divide system clock by 256

FRZ Freeze
Allows the timer counter to be stopped when the device enters debug mode
0 = STM counter continues to run in debug mode.
1 = STM counter is stopped in debug mode.

TEN Timer Counter Enabled
0 = Counter is disabled
1 = Counter is enabled

Offset 0x004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CNT

W

Reset 0

Figure 19-2. STM Count Register (STM_CNT)

System Timer Module (STM)

MPC5644A Microcontroller Reference Manual, Rev. 6

610 Freescale Semiconductor

19.4.2.3 STM Channel n Control Register (STM_CCRn)

The STM Channel n Control Register (STM_CCRn) has the enable bit for channel n of the timer.

19.4.2.4 STM Channel n Interrupt Register (STM_CIRn)

The STM Channel n Interrupt Register (STM_CIRn) has the interrupt flag for channel n of the timer.

Table 19-3. STM_CNT field description

Field Description

CNT Timer count value used as the time base for all channels
When enabled, the counter increments at the rate of the system clock divided by the prescale value.

Offset 0x10+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-3. STM Channel Control Register (STM_CCRn)

Table 19-4. STM_CCRn field description

Field Description

CEN Channel Enable
0 = The channel is disabled.
1 = The channel is enabled.

System Timer Module (STM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 611

19.4.2.5 STM Channel Compare Register (STM_CMPn)

The STM channel compare register (STM_CMPn) holds the compare value for channel n.

Offset 0x14+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 19-4. STM Channel Interrupt Register (STM_CIRn)

Table 19-5. STM_CIRn field description

Field Description

CIF Channel Interrupt Flag
The flag and interrupt are cleared by writing a ‘1’ to this bit. Writing a ‘0’ has no effect.
0 = No interrupt request
1 = Interrupt request due to a match on the channel

Offset 0x18+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMP

W

Reset 0

Figure 19-5. STM Channel Compare Register (STM_CMPn)

Table 19-6. STM_CMPn Register field description

Field Description

CMP Compare value for channel n
If the STM_CCRn[CEN] bit is set and the STM_CMPn register matches the STM_CNT register, a channel
interrupt request is generated and the STM_CIRn[CIF] bit is set.

System Timer Module (STM)

MPC5644A Microcontroller Reference Manual, Rev. 6

612 Freescale Semiconductor

19.5 Functional Description

The System Timer Module (STM) is a 32-bit timer designed to support commonly required system and
application software timing functions. The STM includes a 32-bit up counter and four 32-bit compare
channels with a separate interrupt source for each channel.

The STM has one 32-bit up counter (STM_CNT) that is used as the time base for all channels. When
enabled, the counter increments at the system clock frequency divided by a prescale value. The
STM_CR[CPS] field sets the divider to any value in the range from 1 to 256. The counter is enabled with
the STM_CR[TEN] bit. When enabled in normal mode the counter continuously increments. When
enabled in debug mode the counter operation is controlled by the STM_CR[FRZ] bit. When the
STM_CR[FRZ] bit is set, the counter is stopped in debug mode, otherwise it continues to run in debug
mode. The counter rolls over at 0xFFFF_FFFF to 0x0000_0000 with no restrictions at this boundary.

The STM has four identical compare channels. Each channel includes a channel control register
(STM_CCRn), a channel interrupt register (STM_CIRn) and a channel compare register (STM_CMPn).
The channel is enabled by setting the STM_CCRn[CEN] bit. When enabled, the channel will set the
STM_CIR[CIF] bit and generate an interrupt request when the channel compare register matches the timer
counter. The interrupt request is cleared by writing a ‘1’ to the STM_CIRn[CIF] bit. A write of ‘0’ to the
STM_CIRn[CIF] bit has no effect.

Software Watchdog Timer (SWT)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 613

Chapter 20
Software Watchdog Timer (SWT)

20.1 Introduction

20.1.1 Overview

The Software Watchdog Timer (SWT) is a peripheral module that can prevent system lockup in situations
such as software getting trapped in a loop or if a bus transaction fails to terminate. When enabled, the SWT
requires periodic execution of a watchdog servicing operation. The servicing operation resets the timer to
a specified time-out period. If this servicing action does not occur before the timer expires the SWT
generates an interrupt or hardware reset. The SWT can be configured to generate a reset or interrupt on an
initial time-out, a reset is always generated on a second consecutive time-out.

20.1.2 Features

The SWT has the following features:

• 32-bit time-out register to set the time-out period

• Programmable selection of system or oscillator clock for timer operation

• Programmable selection of window mode or regular servicing

• Programmable selection of reset or interrupt on an initial time-out

• Programmable selection of fixed or keyed servicing

• Master access protection

• Hard and soft configuration lock bits

20.1.3 Modes of operation

The SWT supports three device modes of operation: normal, debug and stop. When the SWT is enabled
in normal mode, its counter runs continuously. In debug mode, operation of the counter is controlled by
the FRZ bit in the SWT_MCR. If the FRZ bit is set, the counter is stopped in debug mode, otherwise it
continues to run. In stop mode, operation of the counter is controlled by the STP bit in the SWT_MCR. If
the STP bit is set, the counter is stopped in stop mode; otherwise, it continues to run.

20.2 External signal description

The SWT module does not have any external interface signals.

20.3 Memory map and register definition

The SWT programming model has seven 32-bit registers. The programming model can only be accessed
using 32-bit (word) accesses. References using a different size are invalid. Other types of invalid accesses
include: writes to read-only registers, incorrect values written to the service register when enabled,
accesses to reserved addresses and accesses by masters without permission. If the RIA bit in the

Software Watchdog Timer (SWT)

MPC5644A Microcontroller Reference Manual, Rev. 6

614 Freescale Semiconductor

SWT_MCR is set then the SWT generates a system reset on an invalid access otherwise a bus error is
generated. If either the HLK or SLK bits in the SWT_MCR are set then the SWT_MCR, SWT_TO,
SWT_WN, SWT_SK registers are read-only.

20.3.1 Memory map

The SWT memory map is shown in Table 20-1. The reset values of SWT_MCR, SWT_TO and SWT_WN
are device specific. These values are determined by SWT inputs.

20.3.2 Register descriptions

The following sections detail the individual registers within the SWT programming model.

20.3.2.1 SWT Module Control Register (SWT_MCR)

The SWT_MCR contains fields for configuring and controlling the SWT. The reset value of this register
is device specific. Some devices can be configured to automatically clear the SWT_MCR[WEN] bit
during the boot process. This register is read-only if either the SWT_MCR[HLK] or SWT_MCR[SLK]
bits are set.

Table 20-1. SWT memory map

Offset from SWT
Base address
(0xFFF3_8000)

Register name Register description
Size
(bits)

Access Location

0x0000 SWT_MCR SWT Module Control Register 32 R/W on page
20-614

0x0004 SWT_IR SWT Interrupt Register 32 R/W on page
20-616

0x0008 SWT_TO SWT Time-out Register 32 R/W on page
20-616

0x000C SWT_WN SWT Window Register 32 R/W on page
20-617

0x0010 SWT_SR SWT Service Register 32 R/W on page
20-617

0x0014 SWT_CO SWT Counter Output Register 32 R on page
20-618

0x0018 SWT_SK SWT Service Key Register 32 R/W on page
20-618

0x001C – 0x3FFF Reserved — — —

Software Watchdog Timer (SWT)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 615

Offset 0x0000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MAP
0

MAP
1

MAP
2

MAP
3

MAP
4

MAP
5

MAP
6

MAP
7

0 0 0 0 0 0 0 0

W

Reset1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 KEY RIA WND ITR HLK SLK CSL STP FRZ WEN

W

Reset 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0

Figure 20-1. SWT Module Control Register (SWT_MCR)

Table 20-2. SWT_MCR field description

Field Description

MAPn Master Access Protection for Master n
The platform bus master assignments are device specific.
0 = Access for the master is not enabled
1 = Access for the master is enabled

KEY Keyed Service Mode
0 = Fixed Service Sequence, the fixed sequence 0xA602, 0xB480 is used to service the watchdog
1 = Keyed Service Mode, two pseudorandom key values are used to service the watchdog

RIA Reset on Invalid Access
0 = Invalid access to the SWT generates a bus error
1 = Invalid access to the SWT causes a system reset if WEN = 1

WND Window Mode
0 = Regular mode, service sequence can be done at any time
1 = Windowed mode, the service sequence is only valid when the down counter is less than the value
in the SWT_WN register.

ITR Interrupt Then Reset
0 = Generate a reset on a time-out
1 = Generate an interrupt on an initial time-out, reset on a second consecutive time-out

HLK Hard Lock
This bit is only cleared at reset.
0 = SWT_MCR, SWT_TO, SWT_WN and SWT_SK are read/write registers if SLK = 0
1 = SWT_MCR, SWT_TO, SWT_WN and SWT_SK are read-only registers

SLK Soft Lock
This bit is cleared by writing the unlock sequence to the service register.
0 = SWT_MCR, SWT_TO SWT_WN and SWT_SK are read/write registers if HLK = 0
1 = SWT_MCR, SWT_TO, SWT_WN and SWT_SK are read-only registers

CSL Clock Selection
Selects the clock that drives the internal timer
0 = System clock
1 = Oscillator clock

Software Watchdog Timer (SWT)

MPC5644A Microcontroller Reference Manual, Rev. 6

616 Freescale Semiconductor

20.3.2.2 SWT Interrupt Register (SWT_IR)

The SWT_IR contains the time-out interrupt flag.

20.3.2.3 SWT Time-Out Register (SWT_TO)

The SWT Time-Out (SWT_TO) register contains the 32-bit time-out period. The reset value for this
register is device specific. This register is read-only if either the SWT_MCR[HLK] or SWT_MCR[SLK]
bits are set.

STP Stop Mode Control
Allows the watchdog timer to be stopped when the device enters stop mode
0 = SWT counter continues to run in stop mode
1 = SWT counter is stopped in stop mode

FRZ Debug Mode Control
Allows the watchdog timer to be stopped when the device enters debug mode
0 = SWT counter continues to run in debug mode
1 = SWT counter is stopped in debug mode

WEN Watchdog Enabled
0 = SWT is disabled
1 = SWT is enabled

Offset 0x0004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-2. SWT Interrupt Register (SWT_IR)

Table 20-3. SWT_IR field description

Field Description

TIF Time-out Interrupt Flag
The flag and interrupt are cleared by writing a ‘1’ to this bit. Writing a ‘0’ has no effect.
0 = No interrupt request
1 = Interrupt request due to an initial time-out

Table 20-2. SWT_MCR field description (continued)

Field Description

Software Watchdog Timer (SWT)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 617

Figure 20-3. SWT Time-Out Register (SWT_TO)

20.3.2.4 SWT Window Register (SWT_WN)

The SWT Window (SWT_WN) register contains the 32-bit window start value. This register is cleared on
reset. This register is read-only if either the SWT_MCR[HLK] or SWT_MCR[SLK] bits are set.

Figure 20-4. SWT Window Register (SWT_WN)

20.3.2.5 SWT Service Register (SWT_SR)

The SWT Time-Out (SWT_SR) service register is the target for service operation writes used to reset the
watchdog timer.

Offset 0x008 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R WTO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0

Table 20-4. SWT_TO Register field description

Field Description

WTO Watchdog time-out period in clock cycles
An internal 32-bit down counter is loaded with this value or 0x100 which ever is greater when the service
sequence is written or when the SWT is enabled.

Offset 0x00C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R WST

W

Reset 0

Table 20-5. SWT_WN Register field description

Field Description

WST Window start value
When window mode is enabled, the service sequence can only be written when the internal down counter
is less than this value.

Software Watchdog Timer (SWT)

MPC5644A Microcontroller Reference Manual, Rev. 6

618 Freescale Semiconductor

Figure 20-5. SWT Service Register (SWT_SR)

20.3.2.6 SWT Counter Output Register (SWT_CO)

The SWT Counter Output (SWT_CO) register is a read-only register that shows the value of the internal
down counter when the SWT is disabled.

Figure 20-6. SWT Counter Output Register (SWT_CO)

20.3.2.7 SWT Service Key Register (SWT_SK)

The SWT Service Key (SWT_SK) register holds the previous (or initial) service key value. This register
is read-only if either the SWT_MCR[HLK] or SWT_MCR[SLK] bits are set.

Offset 0x010 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W WSC

Reset 0

Table 20-6. SWT_SR field description

Field Description

WSC Watchdog Service Code
This field is used to service the watchdog and to clear the soft lock bit (SWT_MCR[SLK]). If the
SWT_MCR[KEY] bit is set, two pseudorandom key values are written to service the watchdog, see
Section 20.4, Functional description, for details. Otherwise, the sequence 0xA602 followed by 0xB480 is
written to the WSC field. To clear the soft lock bit (SWT_MCR[SLK]), the value 0xC520 followed by 0xD928
is written to the WSC field.

Offset 0x014 Access: Read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1

Table 20-7. SWT_CO Register field description

Field Description

CNT Watchdog Count
When the watchdog is disabled (SWT_MCR[WEN] = 0) this field shows the value of the internal down
counter. When the watchdog is enabled the value of this field is 0x0000_0000. Values in this field can lag
behind the internal counter value for up to six system plus eight counter clock cycles. Therefore, the value
read from this field immediately after disabling the watchdog may be higher than the actual value of the
internal counter.

Software Watchdog Timer (SWT)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 619

Figure 20-7. SWT Service Register (SWT_SK)

20.4 Functional description

The SWT is a 32-bit timer designed to enable the system to recover in situations such as software getting
trapped in a loop or if a bus transaction fails to terminate. It includes a control register (SWT_MCR), an
interrupt register (SWT_IR), a time-out register (SWT_TO), a window register (SWT_WN), a service
register (SWT_SR), a counter output register (SWT_CO) and a service key register (SWT_SK).

The SWT_MCR includes bits to enable the timer, set configuration options and lock configuration of the
module. The watchdog is enabled by setting the SWT_MCR[WEN] bit. The reset value of the
SWT_MCR[WEN] bit is dependent upon the SWT field in the Reset Configuration Half Word (see
Section 21.5.3, Reset configuration half word (RCHW)). If the reset value of this bit is 1, the watchdog
starts operation automatically after reset is released.

The SWT_TO register holds the watchdog time-out period in clock cycles unless the value is less than
0x100 in which case the time-out period is set to 0x100. This time-out period is loaded into an internal
32-bit down counter when the SWT is enabled and each time a valid service operation is performed. The
SWT_MCR[CSL] bit selects which clock (system or oscillator) is used to drive the down counter.

The configuration of the SWT can be locked through use of either a soft lock or a hard lock. In either case,
when locked the SWT_MCR, SWT_TO, SWT_WN and SWT_SK registers are read-only. The hard lock
is enabled by setting the SWT_MCR[HLK] bit which can only be cleared by a reset. The soft lock is
enabled by setting the SWT_MCR[SLK] bit and is cleared by writing the unlock sequence to the service
register. The unlock sequence is a write of 0xC520 followed by a write of 0xD928 to the SWT_SR[WSC]
field. There is no timing requirement between the two writes. The unlock sequence logic ignores service
sequence writes and recognizes the 0xC520, 0xD928 sequence regardless of previous writes. The unlock
sequence can be written at any time and does not require the SWT_MCR[WEN] bit to be set.

When enabled, the SWT requires periodic execution of a servicing operation which consists of writing two
values to the SWT_SR. Writing the proper sequence of values loads the internal down counter with the
time-out period. There is no timing requirement between the two writes and the service sequence logic
ignores unlock sequence writes. If the SWT_MCR[KEY] bit is zero, the fixed sequence 0xA602, 0xB480
is written to the SWT_SR[WSC] field to service the watchdog. If the SWT_MCR[KEY] bit is set, then

Offset 0x018 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W SK

Reset 0

Table 20-8. SWT_SK field description

Field Description

SK Service Key
This field is the previous (or initial) service key value used in keyed service mode. If SWT_MCR[KEY] is set,
the next key value to be written to the SWT_SR is (17*SK+3) mod 216.

Software Watchdog Timer (SWT)

MPC5644A Microcontroller Reference Manual, Rev. 6

620 Freescale Semiconductor

two pseudorandom keys are written to the SWT_SR[WSC] field to service the watchdog. The key values
are determined by the pseudorandom key generator defined in Equation 20-1. This algorithm will generate
a sequence of 216 different key values before repeating. The state of the key generator is held in the
SWT_SK register. For example, if SWT_SK[SK] is 0x0100 then the service sequence keys are 0x1103,
0x2136. In this mode, each time a valid key is written to the SWT_SR register, the SWT_SK register is
updated. So, after servicing the watchdog by writing 0x1103 and then 0x2136 to the SWT_SR[WSC] field,
SWT_SK[SK] is 0x2136 and the next key sequence is 0x3499, 0x7E2C.

Eqn. 20-1

Accesses to SWT registers occur with no peripheral bus wait states. (The peripheral bus bridge may add
one or more system wait states.) However, due to synchronization logic in the SWT design, recognition of
the service sequence or configuration changes may require up to three system plus seven counter clock
cycles.

If window mode is enabled (SWT_MCR[WND] bit is set), the service sequence must be performed in the
last part of the time-out period defined by the window register. The window is open when the down counter
is less than the value in the SWT_WN register. Outside of this window, service sequence writes are invalid
accesses and generate a bus error or reset depending on the value of the SWT_MCR[RIA] bit. For
example, if the SWT_TO register is set to 5000 and SWT_WN register is set to 1000 then the service
sequence must be performed in the last 20% of the time-out period. There is a short lag in the time it takes
for the window to open due to synchronization logic in the watchdog design. This delay could be up to
three system plus four counter clock cycles.

The interrupt then reset bit (SWT_MCR[ITR]) controls the action taken when a time-out occurs. If the
SWT_MCR[ITR] bit is not set, a reset is generated immediately on a time-out. If the SWT_MCR[ITR] bit
is set, an initial time-out causes the SWT to generate an interrupt and load the down counter with the
time-out period. If the service sequence is not written before the second consecutive time-out, the SWT
generates a system reset. The interrupt is indicated by the time-out interrupt flag (SWT_IR[TIF]). The
interrupt request is cleared by writing a ‘1’ to the SWT_IR[TIF] bit.

The SWT_CO register shows the value of the down counter when the watchdog is disabled. When the
watchdog is enabled this register is cleared. The value shown in this register can lag behind the value in
the internal counter for up to six system plus eight counter clock cycles.

The SWT_CO can be used during a software self test of the SWT. For example, the SWT can be enabled
and not serviced for a fixed period of time less than the time-out value. Then the SWT can be disabled
(SWT_MCR[WEN] cleared) and the value of the SWT_CO read to determine if the internal down counter
is working properly.

SKn+1 = (17*SKn+3) mod 2
16

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 621

Chapter 21
Boot Assist Module (BAM)

21.1 Overview

The Boot Assist Module (BAM) is a 4 KB block of read-only memory (ROM) containing the boot
program code for this device.

The BAM program supports four different boot modes:

• Boot from internal Flash

• Serial boot via SCI or CAN interface

• Serial boot via SCI or CAN interface with baud rate detection

• Boot from a memory connected to the External Bus Interface (EBI)

The BAM program is executed by the core just after a device reset. Depending on the boot mode, the
program initializes appropriate minimum device resources to start user code application.

21.2 Features
• Initial core MMU setup with minimum address translation for all internal device resources

• MMU configuration to boot user application, compiled as Power Architecture technology code or
as Freescale VLE code

• Passes control to user application code in the internal flash memory

• Automatic switch to Serial Boot mode if internal flash is blank or invalid

• Serial boot by loading user program via CAN bus or eSCI to the internal SRAM

— User programmable 64-bit password protection

— Optional automatic detection of the host SCI or CAN speed

• Boot from an external memory device, connected to the EBI

• Controls core Watchdog Timer or/and the Software Watchdog Timer (SWT)

21.3 Modes of operation

21.3.1 Normal mode

The BAM program is executed immediately following the negation of reset.

21.3.2 Debug mode

The BAM program is not executed when the device comes out of reset in OnCE debug mode. The user
must provide the required device initialization using the development tool before accessing the device
resources.

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

622 Freescale Semiconductor

21.3.3 Internal boot mode

This mode of operation is intended for systems that boot from internal flash memory. The internal flash
memory is used for all code and all boot configuration data.

21.3.4 Serial boot mode

This mode of operation is intended to load a user program into internal SRAM, using either the eSCI or
CAN serial interface, then to execute that program. The program can then be used to control the download
of data and erasing/programming of the internal or external flash memory.

21.3.5 Calibration bus boot mode

Calibration bus boot is not supported. External bus boot is supported instead.

21.4 Memory map

The BAM occupies 16 KB of memory space, 0xFFFF_C000 to 0xFFFF_FFFF. The actual code size of the
BAM program is less than 4 KB and starts at 0xFFFF_F000, repeating itself down every 4 kilobytes in the
BAM address space. The CPU starts the BAM program execution at its reset vector from address
0xFFFF_FFFC.

The BAM exits to the user code at 0xFFFF_FFF8 address. The last BAM executed instruction is a BLR.
The link register is preloaded with the user application start address. When booting from internal or
external flash, the start address is taken from next to valid RCHW 32-bit word.When the device boots
serially the start address is set according the serial boot protocol.

Table 21-1 shows the BAM address map.

21.5 Functional description

21.5.1 BAM Program flow chart

The BAM program flow chart is shown in Figure 21-1.

Table 21-1. BAM memory map

Address Description

0xFFFF_C000 – 0xFFFF_EFFF BAM program mirrored

0xFFFF_F000 – 0xFFFF_FFFF BAM program

0xFFFF_FFFC Device reset vector

0xFFFF_FFF8 BAM Last executed instruction

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 623

Figure 21-1. BAM program flow chart

21.5.2 BAM program operation

The BAM is accessed by the device core after the negation of RSTOUT, before user code starts. First, the
BAM program configures the core MMU to allow access to all device internal resources, according to
Table 21-2. This MMU setup remains the same for internal Flash boot mode.

Reset

Config MMU
for Internal

boot

Internal
boot?

Y

N

Search for RCHW

Found
RCHW?

Y

N

Internal flash
boot

Serial

Boot?

Y

N

Setup EBI

Check RCHW

Found
RCHW?

Y

N

EBI Bus

 boot
Serial boot

Exit To User Code

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

624 Freescale Semiconductor

The MMU regions are mapped with logical address the same as physical address except for the external
bus interface (EBI). The logical EBI address space is mapped to physical address space of the internal
Flash memory. This allows code, written to run from external memory, to be executed from internal Flash.

After the MMU configuration, the BAM program checks the BOOTCFG field of the reset status register
(SIU_RSR) and the appropriate boot sequence is started as shown in Table 21-3.

Depending on the values stored in the censorship word and serial boot control word in the shadow row of
the internal Flash memory, the internal Flash memory can be enabled or disabled, the Nexus port can be
enabled or disabled, the password received in the serial boot mode is compared with the fixed public
password or compared to a user programmable password in the internal Flash memory.

Table 21-2. MMU configuration for internal flash boot

TLB
entry

Region
Logical

base address
Physical

base address
Size Attributes

0 Peripheral Bridge B1 and BAM

1 This device has only a single peripheral bridge, but to match the memory map of other devices in the MPC5500
family the peripherals are mapped to appear as if they are on two different peripheral bridges.

0xFFF0_0000 0xFFF0_0000 1 MB Guarded
Big endian
Global PID

1 Internal Flash 0x0000_0000 0x0000_0000 16 MB Not guarded
Big endian
Global PID

2 EBI 0x2000_0000 0x0000_0000 16 MB Not guarded
Big endian
Global PID

3 Internal SRAM 0x4000_0000 0x4000_0000 256 KB Not guarded
Big endian
Global PID

4 Peripheral Bridge A1 0xC3F0_0000 0xC3F0_0000 1 MB Guarded
Big endian
Global PID

Table 21-3. Boot modes

BOOTCFG
[0:1]

Censorship
control

0x00FF_FDE
0

Serial boot
control

0x00FF_FDE
2

Boot mode name
Internal
Flash
state

Nexus
state

Serial
password

00

!0x55AA1

Any value

Internal—Censored Enabled Disable
d

Flash

0x55AA Internal—Public Enabled Enabled Public

01 Any value

0x55AA Serial—Flash password Enabled Disable
d

Flash

!0x55AA Serial—Public password Disable
d

Enabled Public

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 625

The censorship word is a 32-bit word of data stored in the shadow row of internal flash memory. This
memory location is read and interpreted by hardware as part of the boot process and is used in conjunction
with the BOOTCFG pin to enable/disable the internal flash memory and the Nexus interface. The address
of the Censorship word is 0x00FF_FDE0. The censorship word consists of two fields: censorship control
and serial boot control. The censorship word is programmed during manufacturing to be 0x55AA_55AA.
This results in a device that is not censored and uses a Flash-based password for serial boot mode.

Figure 21-2. Censorship word

The BAM program uses the state of bit SIU_CCR[DISNEX] to determine whether the serial password
received in serial boot mode should be compared to a public password (fixed value of the
0xFEED_FACE_CAFE_BEEF) or needs to be compared to a Flash password - 64-bit data, stored in the
shadow row of internal flash at address 0x00FF_FDD8. If the bit is set, the BAM uses the Flash serial
password, if the bit is cleared, it uses the public password.

10

!0x55AA

Any value

External—No
arbitration—Censored

Disable
d

Enabled Public

0x55AA External—No arbitration—Public Enabled Enabled Public

11 Invalid value

1 ‘!’ = ‘NOT,’ as in!0x55AA, means all values except 0x55AA. Do not use 0x0000 or 0xFFFF for the value of the
censorship control or serial boot control words.

Censorship Word @ 0x00FF_FDE0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Censorship Control - showing an uncensored part (Factory Default)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Serial Boot Control - showing the use of the flash based password (Factory Default)

Table 21-3. Boot modes (continued)

BOOTCFG
[0:1]

Censorship
control

0x00FF_FDE
0

Serial boot
control

0x00FF_FDE
2

Boot mode name
Internal
Flash
state

Nexus
state

Serial
password

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

626 Freescale Semiconductor

Figure 21-3. Serial boot flash password

A valid serial password must be always programmed, regardless the boot mode used. This provides
capability to “rescue” the part using the serial boot mode, if the flash content becomes corrupted for
whatever reason.

21.5.3 Reset configuration half word (RCHW)

The Reset Configuration Half Word defines boot options and has to be programmed by the user to
predefined locations in the internal flash or at the beginning of the external flash device. The next 32-bit
word after the RCHW has to be programmed with a starting address of the user application. The BAM
program uses this location to fetch the address, where it passes control to.

Table 21-6 provides possible RCHW locations in the internal flash. When booting from the external flash
device, the RCHW should reside in the very first 16-bit half word of the flash.

Figure 21-4 shows the fields of the RCHW.

Figure 21-4. Reset configuration half word

Flash Password @ 0x00FF_FDD8 - 0x00FF_FDDF

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1

Serial Boot Password (0x00FF_FDD8) - 0xFEED (Factory Default)

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0

Serial Boot Password (0x00FF_FDDA) - 0xFACE (Factory Default)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

Serial Boot Password (0x00FF_FDDC) - 0xCAFE (Factory Default)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1

Serial Boot Password (0x00FF_FDDE) - 0xBEEF (Factory Default)

BOOT_BLOCK_ADDRESS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SWT WTE PS0 VLE 0 1 0 1 1 0 1 0

Boot Identifier = 0x5A

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 627

The watchdog timeout periods, when the watchdogs are controlled by RCHW, are shown in Table 21-5.

Table 21-4. RCHW field description

Field Description

bits 0–3 Reserved
These bit values are ignored when the halfword is read. Write to 0 for future compatibility.

SWT Watchdog timer enable
This bit determines if the software watchdog timer is enabled after passing control to the user
application code.
0 Disable software watchdog timer
1 Software watchdog timer maintains its default state out of reset, i.e. enabled. The timeout period is

programmed to be 261600 system clocks.

WTE Device core Watchdog timer enable
This bit determines if the core software watchdog timer is enabled.after passing control to the user
application code.
0 Disable core software watchdog timer
1 Software watchdog timer maintains its default state out of reset, i.e. enabled. The timeout period is

programmed to be 2.5*217 system clocks.

PS0 Port size
Defines the width of the data bus connected to the memory on CS0. After system reset, CS0 is
changed to a 16-bit port by the BAM, which fetches the RCHW from either 16- or 32-bit external
memories. Then the BAM reconfigures the EBI as a 16-bit bus or a 32-bit bus, according to the
settings of this bit.
0 32-bit CS0 port size
1 16-bit CS0 port size
Note: Used in EBI boot mode only. Do not set the port to 32-bits if the device only has a 16-bit data

bus.

VLE VLE Code Indicator
This bit is used to configure the MMU entries 1-3 coded as either Power Architecture instructions or
as Freescale VLE instructions.
0 User code executes as Power Architecture code
1 User code executes as Freescale VLE code

BOOTID Boot identifier
This field serves two functions. First, it is used to indicate which block in flash memory contains the
boot program. Second, it identifies whether the flash memory is programmed or invalid. The value of
a valid boot identifier is 0x5A.

Table 21-5. Watchdog timeouts

Crystal frequency (MHz) Core WD timeout1 (ms)

1 327,680 system clocks

SWT timeout2 (ms)

2 261,600 system clocks

8 40.1 32.7

12 27.3 21.8

16 20.5 16.35

20 16.4 13.08

40 8.2 6.54

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

628 Freescale Semiconductor

21.5.3.1 Reset boot vector

The boot vector, shown in Figure 21-5, has to be programmed by the user to the user application code
memory device (internal or external flash) to the next 32-bit word after the RCHW. The value from this
location is used by the BAM program as a start address of the user application to switch to.

Figure 21-5. Reset boot vector

21.5.4 Internal boot mode

When the BAM program detects internal Flash boot mode, it sets up a machine check exception handler
because it will be accessing Flash memory locations that may be corrupted and cause a bus error. Then the
BAM program tries to find a valid RCHW in six predefined locations. If a valid RCHW is not found, the
BAM program proceeds to check of possibility of booting to the serial boot mode.

21.5.4.1 Finding reset configuration half word

The BAM searches the internal Flash memory for a valid reset configuration half word (RCHW). Possible
RCHW locations are shown in Table 21-6.

BOOT_BLOCK_ADDRESS is the address from Table 21-6 where the BAM finds a valid RCHW. If the
BAM program finds a valid RCHW, the core watchdog is enabled if the RCHW[WTE] bit is programmed

BOOT_BLOCK_ADDRESS + 0x0000_0004

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31

Table 21-6. Possible RCHW locations in the internal flash

Block Address

0 0x0000_0000

1 0x0000_4000

2 0x0000_8000

3 0x0000_C000

4 0x0001_0000

5 0x0001_4000

6 0x0001_8000

7 0x0001_C000

8 0x0002_0000

9 0x0003_0000

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 629

high, the SWT is disabled if the RCHW[SWT] bit is programmed low, the BAM program fetches the reset
vector from the address of the BOOT_BLOCK_ADDRESS + 0x4, and branches to the reset boot vector
(shown in Figure 21-5). A user application should have a valid instruction at the reset boot vector address.

21.5.4.2 Enabling debug of a censored device

When a device is in a censored state, the debug port (JTAG/Nexus) is disabled and only JTAG BSDL
commands can be used. Access to the Nexus/JTAG clients on a censored device requires inputting the
proper password into the JTAG Censorship Control Register during reset.

NOTE

When the debug port is enabled on a censored device, it is enabled only until
the next reset.

Figure 21-6 shows the logic that enables access to Nexus clients in a censored device using the JTAG port.

Figure 21-6. Enabling JTAG/Nexus port access on a censored device

Compare

64-bit Password

JTAG Port Controller

CENSOR_CTRL register

Nexus client
TAP controller

Debug/Calibration Tool
Access

64-bit Password

Enable/disable

Censored Flash Array
Other Nexus clients
 • eDMA
 • e200z4 processor

.

.

.

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

630 Freescale Semiconductor

The steps to enable the debug port on a censored device are as follows:

1. After the RSTOUT pin has is negated, hold the device in system reset state using a debugger or
other tool.

2. While the device is being held in system reset state shift the 64-bit password into the
CENSOR_CTRL register (see Section 36.4.1.4, CENSOR_CTRL Register) via the JTAG port
using the JTAG ENABLE_CENSOR_CTRL instruction. The JTAG serial password is compared
against the serial boot flash password from the flash shadow block.

3. If there is a match the Nexus client TAP controller enters normal operation mode and the flag
SIU_CCR[DISNEX] is negated, indicating Nexus is enabled. Upon negation of reset the debug /
calibration tool is able to access the device via NEXUS port and JTAG. If the JTAG serial password
does not match the serial boot flash password or the serial boot flash password is an illegal
password then the debug / calibration tool is not able to access the device.

After the debug port is enabled, the tool can access the censored device and can erase and
reprogram the shadow flash block in order to uncensor the device.

NOTE

If the shadow flash block is erased without reprogramming a new valid
password before a reset it will contain an illegal password and the debug
port will be inaccessible.

4. Subsequent resets will clear the JTAG censor password register and the Nexus client TAP
controller will hold in reset again. Therefore, the tool must resend the JTAG serial password, as
described above, in order to enable the Nexus client TAP controller again.

21.5.5 Serial boot mode

When the BAM program transitions to the Serial Boot mode, unused message buffers in CAN_A are used
for the BAM program stack and variables and the SWT watchdog is reprogrammed with timeperiod
greater than the default value.

The MMU setup depends on the way BAM enters the serial boot mode. If EBI boot mode is taken, the
MMU is set up for that mode (see Table 21-11). The serial boot mode can run in either of two modes of
operation:

• Standard serial boot mode using fixed baud rates derived from the crystal oscillator used

• Baud Rate Detection serial boot mode, which allows communication with adaptable speed, based
on measured input signal

The Fixed Baud Rate mode or Baud Rate Detection mode are selected based on the state of the EVTO pin,
recorded in the SIU_RSR[ABR] bit. If the bit is set, the Baud Rate Detection mode is selected if the bit is
cleared, the Fixed Baud Rate is selected.

SIU_RSR[ABR] bit reflects the inverted state of the EVTO pin, thus to select Baud Rate Detection mode,
the EVTO pin needs to be driven low.

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 631

When the Fixed Baud Rate mode is selected, the BAM program configures the SCI_A_RX pin to be the
input of the eSCI_A module, CN_A_RX pin as an input, and CN_A_TX as an output of the CAN_A
module.

When Baud Rate Detection Mode is selected, the BAM program configures SCI_A_RX and CN_A_RX
pins as GPI inputs for polling their state by the CPU.

Table 21-7 shows the configuration summary for theSCI and CAN controllers pins.

The BAM configures the communication modules for reception with fixed baud rates as shown in the
Table 21-8 and waits for data reception.

.

Table 21-7. CAN/eSCI pins configuration for CAN/eSCI fixed baud rate boot modes

Pins
Reset

function

Initial Serial Boot Mode
Serial Boot Mode after a

valid CAN message received

Serial Boot Mode after a
valid eSCI message

received

Function
Pad

configuration
Function

Pad
configuration

Function
Pad

configuration

CN_A_TX GPIO CN_A_TX Push/Pull
output, with

medium slew
rate

CN_A_TX Push/Pull
output, with

medium slew
rate

GPIO —

CN_A_RX GPIO CN_A_RX Input with
pull-up and
hysteresis

CN_A_RX Input with
pull-up and
hysteresis

GPIO —

SCI_A_T
X

GPIO GPIO — GPIO — SCI_A_TX Push/Pull
output, with

medium slew
rate

SCI_A_R
X

GPIO SCI_A_R
X

Input with
pull-up and
hysteresis

GPIO — SCI_A_R
X

Input with
pull-up and
hysteresis

Table 21-8. Serial boot mode – baud rate & watchdog summary

Crystal
frequency

(MHz)

System
Clock

frequency
(MHz)

Desired
eSCI Baud

rate
(baud)

Actual
eSCI Baud

rate
(baud)

eSCI
error (%)

CAN
Baud
rate

(baud)

Core Watchdog1

timeout period
(s)

1 The SWT is used as a watchdog during serial boot mode, but the core watchdog is enabled just before switching
to the user application to provide compatibility with earlier MPC55XX parts.

SWT timeout
period during

serial boot
(s)

fxtal fsys = fxtal fsys / 833.33 fsys / 832 — fsys / 40 2.5 * 227 / fsys 223696213 / fsys

8 8 9600 9615.4 0.16 200K 42 27.96

12 12 14400 14423. 0 0.16 300K 28 18.64

16 16 19200 19230.8 0.16 400K 21 13.98

20 20 24000 24038.5 0.16 500K 16.8 11.18

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

632 Freescale Semiconductor

If a message with 0x11 ID, containing 8 bytes, is received by the CAN controller first, the BAM program
transitions to the Serial CAN Boot sub-mode, disabling eSCI, and reconfiguring the SCI_A_RX pin to its
reset state.

If a message from eSCI is received first, the BAM program transitions to the Serial SCI Boot submode,
disables CAN_A module and configures its pins to their reset state.

Then the BAM program transitions to the serial download protocol execution.

21.5.5.1 CAN controller configuration in the fixed baud rate mode

The CAN controller is configured to operate at a baud rate equal to system frequency divided by 40, using
the standard 11-bit identifier format detailed in CAN 2.0A specification. See Table 21-8 for examples of
baud rates. Only one message buffer 0 is used for all communications.

The bit timing is configured as shown in Figure 21-7.

Figure 21-7. CAN bit timing

The BAM program ignores CAN errors and all received data is assumed to be good and is echoed out on
the CN_A_TX signal. It is the responsibility of the host computer to compare the “echoes” with the sent
data and restart the process if an error is detected.

21.5.5.2 SCI controller configuration in fixed baud rate mode

The eSCI is configured for 1 start bit, 8 data bits, no parity, 1 stop bit and to operate at a baud rate equal
to system clock divided by 832. See Table 21-8 for examples of baud rates.

The BAM program ignores the eSCI errors: All data received will be assumed to be good and will be
echoed out on the TXD signal. It is the responsibility of the host computer to compare the echoes with the
sent data and restart the process if an error is detected.

21.5.5.3 Serial boot mode download protocol

The download protocol follows four steps:

1. Host sends 64-bit password.

SYNC_SEG TIME SEGMENT 1 TIME SEGMENT 2

NRZ Signal

1 time quanta

1 Bit Time

7 time quanta 2 time quanta

Transmit Point Sample Point

Note: 1 Time quanta = 4 System clock periods

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 633

2. Host sends start address, size of download code in bytes, and VLE bit.

3. Host sends the application code data.

4. The device switches to the loaded code at the start address.

The communication is done in half-duplex manner, any transmission from host is followed by the device
transmission. The host computer should not send data until it receives echo from the device. All multibyte
data structures have to be sent most significant byte (MSB) first.

When the CAN is used for serial download, the data is packed into standard CAN messages in the
following manner:

• A message with 0x11 ID and 8-byte length is used to send the password. The device transmits the
same data, but the message ID is set to 0x1.

• A message with 0x12 ID and 8-byte length is used to send the start address, length, and the VLE
mode bit. The device transmits back the same data, but with ID set to 0x2.

• Messages with 0x13 ID are used to send the downloaded data. The device transmits back received
data with message ID of 0x3.

When the SCI is used for serial download, the data has to be sent on a byte-by-byte basis. the device
transmits back the received data.

21.5.5.4 Download protocol execution

The BAM program executes the serial boot as follows:

1. Download 64-bit password.

The received 8-byte password is checked for validity. For a password to be valid, none of its four
16-bit half words must equal 0x0000 or 0xFFFF.

The BAM program then checks the censorship status of the device by checking the bit
SIU_CCR[DISNEX]. If Nexus is disabled, the device is considered to be censored and the
password is compared with a password stored in the shadow row in internal flash memory.

If Nexus is enabled, the device is not considered to be censored and the password is compared to
the fixed value = 0xFEED_FACE_CAFE_BEEF.

If the password check fails, the device stops responding. To get the device out of that state, the
RESET signal must be asserted.

If the password check passes, the BAM transitions to the next step in the protocol.

2. Download start address, size of download, and VLE bit.

The next 8 bytes received by the device are considered to contain a 32-bit start address, the VLE
mode bit, and a 31-bit code length (see Figure 21-8).

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

634 Freescale Semiconductor

Figure 21-8. Start address, VLE bit and download size in bytes

The start address defines where the received data will be stored and where the device will branch
after the download is finished. The two least significant bits of the start address are ignored by the
BAM program, such that the loaded code should be 32-bit word aligned.

The length defines how many data bytes to be loaded.

The VLE mode bit instructs the device to program MMU entries 1–3 with VLE attribute. If it is 1,
the downloaded code must be compiled to VLE instructions, if it is 0 the code contains Power
instructions.

3. Download data.

Each byte of data received is stored in the device memory, starting at the address specified in the
previous protocol step, and incrementing through memory until the number of bytes of data
received and stored in memory matches the number specified in the previous protocol step.

BAM program buffers incoming data, collecting up to eight bytes. The buffered data is written to
the RAM with 64-bit writes to prevent ECC errors, which may happen if the device RAM is
protected by 64-bit ECC code.

Once the buffered data is written to the RAM the BAM program refreshes the SWT watchdog.

NOTE

Only system RAM supports 64-bit writes; therefore, attempting to
download data to other RAM apart from system RAM will cause errors.

If the start address of the downloaded data is not on an 8-byte boundary, the
BAM will write 0x0 to the memory locations from the proceeding 8-byte
boundary to the start address (maximum 4 bytes). The BAM also writes 0x0
to all memory locations from the last byte of data downloaded to the
following 8 byte boundary (maximum 7 bytes) and additional 8 zero bytes
to prevent possible ECC errors may be caused by the CPU prefetching.

4. Switch to the loaded code.

The BAM program waits for the last echo message transmission to complete, then the active
communication controller is disabled. Its pins revert to GPIO inputs.

To provide compatibility with older devices, the BAM writes the core time base registers (TBU
and TBL) with 0x0 and enables the core watchdog to cause a reset after a time-out period of

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
START_ADDRESS[0:15]

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
START_ADDRESS[16:31]

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
VLE CODE_LENGTH[0:14]

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
CODE_LENGTH[15:30]

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 635

2.5 x 227 system clock cycles and disables SWT watchdog. See Table 21-8 for examples of time out
periods.

The BAM code passes control to the loaded code at start address, which was received in step 2 of
the protocol.

NOTE

The loaded code must periodically refresh the core watchdog timer or
change the timeout period to a value that will not cause resets during normal
operation.

21.5.5.5 Baud rate detection procedure

To improve baud rate detection accuracy the baud rate detection routine is copied to the beginning of the
system RAM from the BAM ROM. Then the CPU branches to the RAM.

The device configures the CN_A_RX and SCI_A_RX pins as general purpose inputs and starts to poll
them until one of them goes low.

If the CN_A_RX pin transitions first, the BAM program starts CAN baud rate detection routine, ignoring
SCI_A_RX. After detecting the CAN baud rate, the BAM program transitions to the CAN download
protocol routine described above.

If the SCI_A_RX pin transitions first, the SCI baud rate detection and download protocol routines are
called, ignoring any further CAN pins activity.

21.5.5.5.1 SCI baud rate detection

The host has to send a zero byte to allow the device to detect the serial link baud rate. The host transmits
1 start bit, 8 zero data bits and 1 stop bit. The device does not echo it.

The device polls the SCI_A_RX pin for high to low transition and starts the core Time Base counter (TBU
and TBL). Then the device polls for low to high transition on the pin and when it happens, the device turns
off the TB counter. The TB content is used to calculate incoming signal baud rate. The SCI baud rate is
equal to the TB content divided by 144 (measured over 9 bits with 16 system clocks per bit).

21.5.5.6 CAN baud rate detection

The host transmits a zero length message with zero 11-bit ID and the device measures time over 40 bits,
polling CN_A_RX pin for high and low, according to the sent data. The device does not acknowledge this
message.

The CAN baud rate depends on the number of quanta per bit and serial clock frequency, which is defined
by a prescaler. The CAN baud rate detection routine selects these parameters to maximize number of
quanta per bit and achieve minimum difference between measured value and duration of the 40 CAN bits,
to be programmed with selected pair of the parameters.

The CAN controller can be programmed with 8 to 25 number of quanta per bit. The bit timing parameters,
selected by the baud rate detection routine, are shown in Table 21-9. (See FlexCAN chapter for the
parameters definition).

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

636 Freescale Semiconductor

.

Maximum and minimum speeds of the serial communication modules are defined by the device system
frequency and shown in Table 21-10.

Table 21-9. CAN bit timing lookup table

Time quanta per bit
Time segment 1 Time segment 2

RJW
PROPSEG PSEG1 PSEG2

8 1 3 3 2

9 2 3 3 2

10 3 3 3 2

11 4 3 3 2

12 3 4 4 2

13 4 4 4 3

14 5 4 4 3

15 6 4 4 4

16 7 4 4 3

17 8 4 4 3

18 7 5 5 4

19 8 5 5 4

20 7 6 6 4

21 8 6 6 4

22 7 6 6 4

23 8 6 6 4

24 7 7 7 4

25 8 7 7 4

Table 21-10. Maximum and minimum detectable baud rates

fsys = fxtal
[MHz]

Max baud rate for CAN
(fsys/8)1 [bit/s]

1 Limited to 1 Mbit/s by CAN standard

Min CAN baud rate
(fsys/25/256) [bit/s]

Max baud rate for SCI
(fsys/160) [bit/s]

Min baud rate for SCI
(fsys/16/216) [bit/s]

8 1M 1250 50K 7.6

12 1M 1875 75K 11.5

16 1M 2500 100K 15.2

20 1M 3125 125K 19

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 637

21.5.6 Booting from the External Bus Interface (EBI)

For devices packaged in the 324-ball BGA or chip scale packages (CSP), there is an option to boot from
a memory device on the external bus. Drive the BOOTCFG0 high to select serial boot mode.

NOTE

For serial boot the user needs to connect a boot memory device with a
programmed valid RCHW to the EBI.

The BAM program sets up the MMU entries for EBI and Internal Flash (see Table 21-11), EBI bus pins
and tries to read RCHW from logical address 0x2000_0000.

If the valid RCHW is read from that address, the BAM program reads user application code start address
from logical address 0x2000_0004, parses RCHW, sets up watchdogs, updates EBI, SRAM and Internal
Flash MMU entries, according the RCHW[VLE] bit and passes control to the user code.

If no valid RCHW was read, BAM switches to the serial boot mode.

21.5.6.1 EBI Configuration for External Bus Interface Boot Mode

The BAM program sets up EBI related registers as shown in Table 21-12.

Table 21-11. MMU Configuration for EBI Boot and Serial Boot modes

TLB
Entry

Region
Logical

Base Address
Physical

Base Address
Size Attributes

1 Internal Flash 0x0000_0000 0x2000_0000 16 Mbytes Not guarded
Big endian
Global PID

2 EBI 0x2000_0000 0x2000_0000 16 Mbytes Not guarded
Big endian
Global PID

Table 21-12. EBI register settings

Register Value Comments

EBI_MCR 0x0000_0801 16-bit wide bus

EBI_BR0 0x2000_0803 Burst Inhibit

EBI_OR0 0xFF80_00F0 Set 15 wait states, 8 MB

SIU_PCR0 0x443 Selects CS[0] function, sets pad to 20 pF drive strength,
enables weak pull device for pad and enables pullup

SIU_PCR[8:11] 0x440 Selects ADDR[12:15] and sets pads to 20 pF drive
strength

SIU_PCR[12:27] 0x40C Selects ADDR[16:31], sets pads to medium slew rate
and enables weak pull device for pads

SIU_PCR[28:43] 0x440 Selects DATA[0:15] and sets pads to 20 pF drive
strength

Boot Assist Module (BAM)

MPC5644A Microcontroller Reference Manual, Rev. 6

638 Freescale Semiconductor

SIU_PCR64 0x443 Selects WE[0]/BE[0] function, sets pad to 20 pF drive
strength, enables weak pull device for pad and enables

pullup

SIU_PCR[68:69] 0x443 Selects OE and TS functions, sets pads to 20 pF drive
strength, enables weak pull device for pads and enables

pullup

Table 21-12. EBI register settings (continued)

Register Value Comments

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 639

Chapter 22
Configurable Enhanced Modular IO Subsystem (eMIOS200)

22.1 Device-specific features
• Sixteen 24-bit wide channels

• 3 channels internal timebases can be shared between channels

• 1 timebase from the eTPU can be imported and used by the channels

• Global enable feature for all eMIOS200 and eTPU timebases

• Doze mode is not supported

• Each channel has its own pin (not available on all package types)

22.2 Introduction

The eMIOS200 module provides the capability to generate or measure timed events, for example
generating PWM waveforms or measuring input pulse width. It is implemented with its own configuration
of timer channels to suit the target applications needs, while maintaining full backwards compatibility with
previous eMIOS implementations. The MPC5644A has one eMIOS200 module that implements
twenty-four 24-bit counters.

The overall architecture of the eMIOS200 resembles that of its predecessor, the MIOS. The MIOS timer
block provided a framework where a set of sublocks with different timer functions were assembled to
attend the specific needs of a device. The MPC5644AeMIOS200 builds on this concept by using a
modified Unified Channel module that provides a superset of the functionality of individual MIOS
channels, while providing a consistent user interface. This allows more flexibility as each channel can be
programmed for different functions in different applications of the device. In addition, the eMIOS200
architecture allows the use of dedicated channels that perform specific functions not included in MIOS
inheritance.

NOTE

The MPC5644A eMIOS200 uses a modified version of the Unified Channel
block that contains a reduced set of functions compared to the MPC55xx
Unified Channel. See Section 22.2.3, Channel configurations, for details.

Figure 22-1 shows the block diagram of the MPC5644A eMIOS200 module.

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

640 Freescale Semiconductor

Figure 22-1. eMIOS200 block diagram

22.2.1 Features

The eMIOS timer module provides the capability to generate or measure events in hardware.

The eMIOS module features include:

• Twenty-four 24-bit wide channels

• 3 channels’ internal timebases can be shared between channels

• 1 timebase from eTPU2 can be imported and used by the channels

• Global enable feature for all eMIOS and eTPU timebases

• Dedicated pin for each channel (not available on all package types)

Each channel (0–23) supports the following functions:

• General-purpose input/output (GPIO)

•
••

•
••

Channel[7]

Channel[0]

[B]

EMIOS[7]

EMIOS[0]

[A]

•••
•••

Counter
Buses
(Time

Bases)

All
Submodules

Internal
Counter
Clock
Enable

IIB

Output Disable Input[3:0]

Global Time
Base Enable

Global Time Base
Bit (GTBE) Output

System
Clock

BIU
IP

Interface

Clock
Prescaler

Output Disable
Control Bus

Channel[15]

Channel[8]

[C]

EMIOS[15]

EMIOS[8]

•
••

•
••

Channel[23]

Channel[16]

[D]

EMIOS[23]

EMIOS[16]

Enhanced Modular I/O System (eMIOS200)

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 641

• Single-action input capture (SAIC)

• Single-action output compare (SAOC)

• Output pulse-width modulation buffered (OPWMB)

• Input period measurement (IPM)

• Input pulse-width measurement (IPWM)

• Double-action output compare (DAOC)

• Modulus counter buffered (MCB)

• Output pulse width and frequency modulation buffered (OPWFMB)

22.2.2 Modes of operation

There are three main operating modes of eMIOS200: run mode, module disable mode, and debug mode.

• Run mode is the normal operation mode.

• Module disable mode is used for MCU power management.

The clock to the non-memory-mapped logic in the eMIOS200 is stopped while in module disable
mode. Module disable mode is entered when EMIOS_MCR[MDIS] = 1.

• Debug mode is individually programmed for each channel.

When entering this mode, the unified channel registers’ contents are frozen but remain available
for read and write access through the IP interface.

22.2.3 Channel configurations

Table 22-1 shows all configurations available in the MPC5644A eMIOS200. These modes are described
in Section 22.5.1.1, Channel modes of operation.

NOTE

Not all configurations are available on all channels. If an unimplemented
mode is selected (by writing a reserved value to MODE[0:6] in a channel’s
EMIOS_CCR[n]) the results are unpredictable. See Section 22.4.3.4,
eMIOS200 Channel Control Register (EMIOS_CCR[n]), for more detail.

Table 22-1. All available MPC5644A eMIOS channel configurations

Description Name Location

General Purpose Input / Output GPIO on page 22-663

Single Action Input Capture SAIC on page 22-663

Single Action Output Compare SAOC on page 22-664

Input Pulse Width Measurement IPWM on page 22-666

Input Period Measurement IPM on page 22-668

Double Action Output Compare DAOC on page 22-669

Modulus Counter Buffered (Up / Down) MCB on page 22-671

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

642 Freescale Semiconductor

22.3 External signals description

Each channel has one external input and one external output signal. Depending on the chip integration, the
input and output signals can be connected to two separate pins, or to a single bidirectional pin. See
Chapter 3 Signal Description for details.

22.4 Memory map/register definition

22.4.1 Memory map

The overall address map organization is shown in Table 22-2.

NOTE

Whenever an access to either an absent register, an absent channel or a
reserved address is performed, the eMIOS200 responds by asserting a
Transfer Error signal from the slave bus (or STAC bus).

Output Pulse Width and Frequency Modulation Buffered OPWFMB on page 22-674

Output Pulse Width Modulation Buffered OPWMB on page 22-679

Table 22-2. MPC5644A eMIOS memory map

Offset from
EMIOS_BASE

(0xC3FA_0000)
Register Location

Global registers

0x0000 EMIOS_MCR—Module Configuration Register on page 22-649

0x0004 EMIOS_GFR—Global FLAG Register on page 22-651

0x0008 EMIOS_OUDR—Output Update Disable Register on page 22-651

0x000C EMIOS_UCDIS—Channel Disable Register on page 22-652

0x000C–0x001F Reserved

Channel 0 registers

0x0020 EMIOS_CADR[0]—Channel A Data Register on page 22-653

0x0024 EMIOS_CBDR[0]—Channel B Data Register on page 22-653

0x0028 EMIOS_CCNTR[0]—Channel Counter Register on page 22-654

0x002C EMIOS_CCR[0]—Channel Control Register on page 22-655

0x0030 EMIOS_CSR[0]—Channel Status Register on page 22-659

0x0034 EMIOS_ALTA[0]1—Alternate A Register on page 22-660

Table 22-1. All available MPC5644A eMIOS channel configurations (continued)

Description Name Location

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 643

0x0038–0x003F Reserved

Channel 1 registers

0x0040 EMIOS_CADR[1]—A Register on page 22-653

0x0044 EMIOS_CBDR[1]—B Register on page 22-653

0x0048 EMIOS_CCNTR[1]—Counter Register on page 22-654

0x004C EMIOS_CCR[1]—Control Register on page 22-655

0x0050 EMIOS_CSR[1]—Status Register on page 22-659

0x0054 EMIOS_ALTA[1]1—Alternate A Register on page 22-660

0x0058–0x005F Reserved

Channel 2 registers

0x0060 EMIOS_CADR[2]—A Register on page 22-653

0x0064 EMIOS_CBDR[2]—B Register on page 22-653

0x0068 EMIOS_CCNTR[2]—Counter Register on page 22-654

0x006C EMIOS_CCR[2]—Control Register on page 22-655

0x0070 EMIOS_CSR[2]—Status Register on page 22-659

0x0074 EMIOS_ALTA[2]1—Alternate A Register on page 22-660

0x0078–0x007F Reserved

Channel 3 registers

0x0080 EMIOS_CADR[3]—A Register on page 22-653

0x0084 EMIOS_CBDR[3]—B Register on page 22-653

0x0088 EMIOS_CCNTR[3]—Counter Register on page 22-654

0x008C EMIOS_CCR[3]—Control Register on page 22-655

0x0090 EMIOS_CSR[3]—Status Register on page 22-659

0x0094 EMIOS_ALTA[3]1—Alternate A Register on page 22-660

0x0098–0x009F Reserved

Channel 4 registers

0x00A0 EMIOS_CADR[4]—A Register on page 22-653

0x00A4 EMIOS_CBDR[4]—B Register on page 22-653

0x00A8 EMIOS_CCNTR[4]—Counter Register on page 22-654

0x00AC EMIOS_CCR[4]—Control Register on page 22-655

0x00B0 EMIOS_CSR[4]—Status Register on page 22-659

Table 22-2. MPC5644A eMIOS memory map (continued)

Offset from
EMIOS_BASE

(0xC3FA_0000)
Register Location

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

644 Freescale Semiconductor

0x00B4 EMIOS_ALTA[4]1—Alternate A Register on page 22-660

0x00B8–0x00BF Reserved

Channel 5 registers

0x00C0 EMIOS_CADR[5]—A Register on page 22-653

0x00C4 EMIOS_CBDR[5]—B Register on page 22-653

0x00C8 EMIOS_CCNTR[5]—Counter Register on page 22-654

0x00CC EMIOS_CCR[5]—Control Register on page 22-655

0x00D0 EMIOS_CSR[5]—Status Register on page 22-659

0x00D4 EMIOS_ALTA[5]1—Alternate A Register on page 22-660

0x00D8–0x00DF Reserved

Channel 6 registers

0x00E0 EMIOS_CADR[6]—A Register on page 22-653

0x00E4 EMIOS_CBDR[6]—B Register on page 22-653

0x00E8 EMIOS_CCNTR[6]—Counter Register on page 22-654

0x00EC EMIOS_CCR[6]—Control Register on page 22-655

0x00F0 EMIOS_CSR[6]—Status Register on page 22-659

0x00F4 EMIOS_ALTA[6]1—Alternate A Register on page 22-660

0x00F8–0x00FF Reserved

Channel 7 registers

0x0100 EMIOS_CADR[7]—A Register on page 22-653

0x0104 EMIOS_CBDR[7]—B Register on page 22-653

0x0108 EMIOS_CCNTR[7]—Counter Register on page 22-654

0x010C EMIOS_CCR[7]—Control Register on page 22-655

0x0110 EMIOS_CSR[7]—Status Register on page 22-659

0x0114 EMIOS_ALTA[7]1—Alternate A Register on page 22-660

0x0118–0x011F Reserved

Channel 8 registers

0x0120 EMIOS_CADR[8]—A Register on page 22-653

0x0124 EMIOS_CBDR[8]—B Register on page 22-653

0x0128 EMIOS_CCNTR[8]—Counter Register on page 22-654

0x012C EMIOS_CCR[8]—Control Register on page 22-655

Table 22-2. MPC5644A eMIOS memory map (continued)

Offset from
EMIOS_BASE

(0xC3FA_0000)
Register Location

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 645

0x0130 EMIOS_CSR[8]—Status Register on page 22-659

0x0134 EMIOS_ALTA[8]1—Alternate A Register on page 22-660

0x0138–0x013F Reserved

Channel 9 registers

0x0140 EMIOS_CADR[9]—A Register on page 22-653

0x0144 EMIOS_CBDR[9]—B Register on page 22-653

0x0148 EMIOS_CCNTR[9]—Counter Register on page 22-654

0x014C EMIOS_CCR[9]—Control Register on page 22-655

0x0150 EMIOS_CSR[9]—Status Register on page 22-659

0x0154 EMIOS_ALTA[9]1—Alternate A Register on page 22-660

0x0158–0x015F Reserved

Channel 10 registers

0x0160 EMIOS_CADR[10]—A Register on page 22-653

0x0164 EMIOS_CBDR[10]—B Register on page 22-653

0x0168 EMIOS_CCNTR[10]—Counter Register on page 22-654

0x016C EMIOS_CCR[10]—Control Register on page 22-655

0x0170 EMIOS_CSR[10]—Status Register on page 22-659

0x0174 EMIOS_ALTA[10]1—Alternate A Register on page 22-660

0x0178–0x017F Reserved

Channel 11 registers

0x0180 EMIOS_CADR[11]—A Register on page 22-653

0x0184 EMIOS_CBDR[11]—B Register on page 22-653

0x0188 EMIOS_CCNTR[11]—Counter Register on page 22-654

0x018C EMIOS_CCR[11]—Control Register on page 22-655

0x0190 EMIOS_CSR[11]—Status Register on page 22-659

0x0194 EMIOS_ALTA[11]1—Alternate A Register on page 22-660

0x0198–0x019F Reserved

Channel 12 registers

0x01A0 EMIOS_CADR[12]—A Register on page 22-653

0x01A4 EMIOS_CBDR[12]—B Register on page 22-653

0x01A8 EMIOS_CCNTR[12]—Counter Register on page 22-654

Table 22-2. MPC5644A eMIOS memory map (continued)

Offset from
EMIOS_BASE

(0xC3FA_0000)
Register Location

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

646 Freescale Semiconductor

0x01AC EMIOS_CCR[12]—Control Register on page 22-655

0x01B0 EMIOS_CSR[12]—Status Register on page 22-659

0x01B4 EMIOS_ALTA[12]1—Alternate A Register on page 22-660

0x01B8–0x01BF Reserved

Channel 13 registers

0x01C0 EMIOS_CADR[13]—A Register on page 22-653

0x01C4 EMIOS_CBDR[13]—B Register on page 22-653

0x01C8 EMIOS_CCNTR[13]—Counter Register on page 22-654

0x01CC EMIOS_CCR[13]—Control Register on page 22-655

0x01D0 EMIOS_CSR[13]—Status Register on page 22-659

0x01D4 EMIOS_ALTA[13]1—Alternate A Register on page 22-660

0x01D8–0x01DF Reserved

Channel 14 registers

0x01E0 EMIOS_CADR[14]—A Register on page 22-653

0x01E4 EMIOS_CBDR[14]—B Register on page 22-653

0x01E8 EMIOS_CCNTR[14]—Counter Register on page 22-654

0x01EC EMIOS_CCR[14]—Control Register on page 22-655

0x01F0 EMIOS_CSR[14]—Status Register on page 22-659

0x01F4 EMIOS_ALTA[14]1—Alternate A Register on page 22-660

0x01F8–0x01FF Reserved

Channel 15 registers

0x0200 EMIOS_CADR[15]—A Register on page 22-653

0x0204 EMIOS_CBDR[15]—B Register on page 22-653

0x0208 EMIOS_CCNTR[15]—Counter Register on page 22-654

0x020C EMIOS_CCR[15]—Control Register on page 22-655

0x0210 EMIOS_CSR[15]—Status Register on page 22-659

0x0214 EMIOS_ALTA[15]1—Alternate A Register on page 22-660

0x0218–0x021F Reserved

Channel 16 registers

0x0220 EMIOS_CADR[16]—A Register on page 22-653

0x0224 EMIOS_CBDR[16]—B Register on page 22-653

Table 22-2. MPC5644A eMIOS memory map (continued)

Offset from
EMIOS_BASE

(0xC3FA_0000)
Register Location

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 647

0x0228 EMIOS_CCNTR[16]—Counter Register on page 22-654

0x022C EMIOS_CCR[16]—Control Register on page 22-655

0x0230 EMIOS_CSR[16]—Status Register on page 22-659

0x0234 EMIOS_ALTA[16]1—Alternate A Register on page 22-660

0x0238–0x023F Reserved

Channel 17 registers

0x0240 EMIOS_CADR[17]—A Register on page 22-653

0x0244 EMIOS_CBDR[17]—B Register on page 22-653

0x0248 EMIOS_CCNTR[17]—Counter Register on page 22-654

0x024C EMIOS_CCR[17]—Control Register on page 22-655

0x0250 EMIOS_CSR[17]—Status Register on page 22-659

0x0254 EMIOS_ALTA[17]1—Alternate A Register on page 22-660

0x0258–0x025F Reserved

Channel 18 registers

0x0260 EMIOS_CADR[18]—A Register on page 22-653

0x0264 EMIOS_CBDR[18]—B Register on page 22-653

0x0268 EMIOS_CCNTR[18]—Counter Register on page 22-654

0x026C EMIOS_CCR[18]—Control Register on page 22-655

0x0270 EMIOS_CSR[18]—Status Register on page 22-659

0x0274 EMIOS_ALTA[18]1—Alternate A Register on page 22-660

0x0278–0x027F Reserved

Channel 19 registers

0x0280 EMIOS_CADR[19]—A Register on page 22-653

0x0284 EMIOS_CBDR[19]—B Register on page 22-653

0x0288 EMIOS_CCNTR[19]—Counter Register on page 22-654

0x028C EMIOS_CCR[19]—Control Register on page 22-655

0x0290 EMIOS_CSR[19]—Status Register on page 22-659

0x0294 EMIOS_ALTA[19]1—Alternate A Register on page 22-660

0x0298–0x029F Reserved

Channel 20 registers

0x02A0 EMIOS_CADR[20]—A Register on page 22-653

Table 22-2. MPC5644A eMIOS memory map (continued)

Offset from
EMIOS_BASE

(0xC3FA_0000)
Register Location

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

648 Freescale Semiconductor

0x02A4 EMIOS_CBDR[20]—B Register on page 22-653

0x02A8 EMIOS_CCNTR[20]—Counter Register on page 22-654

0x02AC EMIOS_CCR[20]—Control Register on page 22-655

0x02B0 EMIOS_CSR[20]—Status Register on page 22-659

0x02B4 EMIOS_ALTA[20]1—Alternate A Register on page 22-660

0x02B8–0x02BF Reserved

Channel 21 registers

0x02C0 EMIOS_CADR[21]—A Register on page 22-653

0x02C4 EMIOS_CBDR[21]—B Register on page 22-653

0x02C8 EMIOS_CCNTR[21]—Counter Register on page 22-654

0x02CC EMIOS_CCR[21]—Control Register on page 22-655

0x02D0 EMIOS_CSR[21]—Status Register on page 22-659

0x02D4 EMIOS_ALTA[21]1—Alternate A Register on page 22-660

0x02D8–0x02DF Reserved

Channel 22 registers

0x02E0 EMIOS_CADR[22]—A Register on page 22-653

0x02E4 EMIOS_CBDR[22]—B Register on page 22-653

0x02E8 EMIOS_CCNTR[22]—Counter Register on page 22-654

0x02EC EMIOS_CCR[22]—Control Register on page 22-655

0x02F0 EMIOS_CSR[22]—Status Register on page 22-659

0x02F4 EMIOS_ALTA[22]1—Alternate A Register on page 22-660

0x02F8–0x02FF Reserved

Channel 23 registers

0x0300 EMIOS_CADR[23]—A Register on page 22-653

0x0304 EMIOS_CBDR[23]—B Register on page 22-653

0x0308 EMIOS_CCNTR[23]—Counter Register on page 22-654

0x030C EMIOS_CCR[23]—Control Register on page 22-655

0x0310 EMIOS_CSR[23]—Status Register on page 22-659

0x0314 EMIOS_ALTA[23]1—Alternate A Register on page 22-660

0x0318–0x3FFF Reserved

Table 22-2. MPC5644A eMIOS memory map (continued)

Offset from
EMIOS_BASE

(0xC3FA_0000)
Register Location

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 649

22.4.2 Global registers

All global control registers are 32-bit wide but some do not use the most significant 8 bits because the
MPC5644A has 24 channels and 24-bit counters.

22.4.2.1 eMIOS200 Module Configuration Register (EMIOS_MCR)

The EMIOS_MCR contains global control bits for the eMIOS200 module.

1 The alternate address register provides and alternate read-only address to access A2 channel
register in GPIO modes. If EMIOS_CADR[n] is used with EMIOS_ALTA[n], both A1 and A2 registers
can be accessed in these modes.

Address: EMIOS_BASE (0xC3FA_0000) + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 MDIS FRZ GTBE ETB GPREN 0 0 0 0 0 0 SRV[0:3]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R GPRE[0:7] 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-2. eMIOS200 Module Configuration Register (EMIOS_MCR)

Table 22-3. EMIOS_MCR field description

Field Description

MDIS Module Disable
Puts the eMIOS200 in low power mode. The MDIS bit is used to stop the clock to the module, except
access to the EMIOS_MCR, EMIOS_OUDR and EMIOS_UCDIS registers.

0 Clock is running
1 Enter low power mode

FRZ Freeze
Enables the eMIOS200 to freeze the channel registers when Debug Mode is requested at the MCU
level. Each channel should have the FREN bit set in its EMIOS_CCR[n] register order to enter the
freeze state. While in Freeze state, the eMIOS200 continues to operate to allow the MCU access
to the channel registers. The channel remains frozen until the FRZ bit is written to zero, the MCU
exits Debug mode or the channel’s FREN bit is cleared.

0 Exit freeze state
1 Stops channels operation when in Debug mode and the FREN bit is set in the EMIOS_CCR[n]

register

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

650 Freescale Semiconductor

GTBE Global Time Base Enable
The GTBE bit is used to export a Global Time Base Enable from the module and provide a method
to start time bases of several blocks simultaneously.

0 Global Time Base Enable Out signal negated
1 Global Time Base Enable Out signal asserted

Note: The Global Time Base Enable input controls the internal counters. When asserted, Internal
counters are enabled. When negated, internal counters disabled.

ETB External Time Base
The ETB bit selects the time base source that drives counter bus[A].

0 Counter bus[A] assigned to eMIOS Channel
1 STAC drives counter bus [A]

Note: If ETB is set to select STAC as the counter bus[A] source, the GTBE must be set to enable
the STAC to counter bus[A]. See the STAC bus configuration register (ETPU_REDCR)
section of the eTPU chapter for more information about the STAC.

GPREN Global Prescaler Enable
The GPREN bit enables the prescaler counter.

0 Prescaler disabled (no clock) and prescaler counter is cleared
1 Prescaler enabled

SRV[0:3] Server time slot
Selects the address of a specific STAC server to which the STAC client submodule is assigned. See
Section 22.5.3, STAC client submodule.

0000 eTPU engine A, TCR1
0001 Reserved
0010 eTPU engine A, TCR2
0011 Reserved
0100–1111 Reserved

GPRE[0:7] Global Prescaler
The GPRE bits select the clock divider value for the global prescaler.

Table 22-3. EMIOS_MCR field description (continued)

Field Description

GPRE Divide ratio

0000_0000 1

0000_0001 2

0000_0010 3

0000_0011 4

.

.

.

.

.

.

1111_1110 255

1111 1111 256

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 651

22.4.2.2 eMIOS200 Global Flag Register (EMIOS_GFR)
-

22.4.2.3 eMIOS200 Output Update Disable Register (EMIOS_OUDR)

Address: EMIOS_BASE (0xC3FA_0000) + 0x0004 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 F23 F22 F21 F20 F19 F18 F17 F16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-3. eMIOS200 Global Flag Register (EMIOS_GFR)

Table 22-4. EMIOS_GFR field description

Field Description

Fn FLAG
The EMIOS_GFR is a read-only register that groups the FLAG bits from all channels. These bits
are mirrors of the FLAG bits of each channel register (EMIOS_CSR[n]). See Section 22.4.3.5,
eMIOS200 Channel Status Register (EMIOS_CSR[n]), for more detail.

Address: EMIOS_BASE (0xC3FA_0000) + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 OU
23

OU
22

OU
21

OU
20

OU
19

OU
18

OU
17

OU
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OU
15

OU
14

OU
13

OU
12

OU
11

OU
10

OU9 OU8 OU7 OU6 OU5 OU4 OU3 OU2 OU1 OU0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-4. eMIOS200 Output Update Disable Register (EMIOS_OUDR)

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

652 Freescale Semiconductor

22.4.2.4 eMIOS200 Channel Disable Register (EMIOS_UCDIS)
-

22.4.3 Channel registers

All channel control registers are 32-bit wide but some do not use the most significant 8 bits because the
MPC5644Ahas 24 channels and 24-bit counters.

Table 22-5. EMIOS_OUDR field description

Field Description

OUn Channel [n] Output Update Disable
When running a channel in MC, MCB, or an output mode, values are written to registers A2 and B2.
OUn bits are used to disable transfers from registers A2 to A1 and B2 to B1. Each bit controls one
channel.

0 Transfer enabled. Depending on the operation mode, transfer may occur immediately or in the
next period. Unless stated otherwise, transfer occurs immediately.

1 Transfers disabled.

Address: EMIOS_BASE (0xC3FA_0000) + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 CHDI
S23

CHDI
S22

CHDI
S21

CHDI
S20

CHDI
S19

CHDI
S18

CHDI
S17

CHDI
S16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CHDI
S15

CHDI
S14

CHDI
S13

CHDI
S12

CHDI
S11

CHDI
S10

CHDI
S9

CHDI
S8

CHDI
S7

CHDI
S6

CHDI
S5

CHDI
S4

CHDI
S3

CHDI
S2

CHDI
S1

CHDI
S0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-5. eMIOS200 Channel Disable Register (EMIOS_UCDIS)

Table 22-6. EMIOS_UCDIS field description

Field Description

CHDISn Disable Channel [n]
The CHDIS[n] bit is used to disable a channel by stopping its respective clock.

0 Channel [n] enabled
1 Channel [n] disabled

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 653

22.4.3.1 eMIOS200 Channel A Data Register (EMIOS_CADR[n])

Depending on the mode of operation, internal registers A1 or A2, used for matches and captures, can be
assigned to address EMIOS_CADR[n]. A1 and A2 are cleared by reset. Table 22-7 summarizes the
EMIOS_CADR[n] write and read accesses for all operation modes. For more information see
Section 22.5.1.1, Channel modes of operation.

22.4.3.2 eMIOS200 Channel B Data Register (EMIOS_CBDR[n])

Depending on the mode of operation, internal registers B1 or B2 can be assigned to address
EMIOS_CBDR[n]. Both B1 and B2 are cleared by reset. Table 22-7 summarizes the EMIOS_CBDR write
and read accesses for all operation modes. For more information see Section 22.5.1.1, Channel modes of
operation.

Depending on the channel’s configuration, it may or may not have the EMIOS_CBDR. This means that if
at least one mode that requires the register is implemented, then the register is present. Otherwise, it is
absent. MPC5644A has register B (EMIOS_CBDR) in all channels.

Offset: UC[n] base address + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
A[0:23]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
A[0:23]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-6. eMIOS200 Channel A Data Register (EMIOS_CADR[n])

Offset: UC[n] base address + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 B[0:23]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R B[0:23]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-7. eMIOS200 Channel B Data Register (EMIOS_CBDR[n])

Table 22-7. EMIOS_CADR[n], EMIOS_CBDR[n], and EMIOS_ALTA[n] values assignment

Operation mode
Register access

write read write read alt write alt read

GPIO A1, A2 A1 B1,B2 B1 A2 A2

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

654 Freescale Semiconductor

22.4.3.3 eMIOS200 Channel Counter Register (EMIOS_CCNTR[n])

The EMIOS_CCNTR[n] contains the value of the internal counter for eMIOS channel n. When GPIO
mode is selected or the channel is frozen the EMIOS_CCNTR[n] is read/write. For all other modes, the
EMIOS_CCNTR[n] is a read-only register. When entering some operation modes, this register is
automatically cleared (refer to Section 22.5.1.1, Channel modes of operation, for details).

Depending on its configuration, a channel may have an internal counter or not. If at least one mode that
requires the counter is implemented, the counter is present, otherwise it is not.

SAIC1 — A2 B2 B2 — —

SAOC1 A2 A1 B2 B2 — —

IPWM — A2 — B1 — —

IPM — A2 — B1 — —

DAOC A2 A1 B2 B1 — —

MCB1 A2 A1 B2 B2 — —

OPWFMB A2 A1 B2 B1 — —

OPWMB A2 A1 B2 B1 — —

1 In this mode, the register EMIOS_CBDR[n] is not used but B2 can be accessed.

Offset: UC[n] base address + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 C[0:23]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R C[0:23]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 In GPIO mode or freeze action, this register is writable.

Figure 22-8. eMIOS200 Channel Counter Register (EMIOS_CCNTR[n])

Table 22-7. EMIOS_CADR[n], EMIOS_CBDR[n], and EMIOS_ALTA[n] values assignment (continued)

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 655

22.4.3.4 eMIOS200 Channel Control Register (EMIOS_CCR[n])

This register contains bits reflecting the status of channel input/output signals, the overflow condition of
the internal counter, and several read/write control bits for eMIOS channel n.

Offset: UC[n] base address + 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FREN ODIS ODISSL UCPRE UC
PREN

DMA 0 IF FCK FEN 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 FORC
MA

FORC
MB

0 BSL ED
SEL

ED
POL

MODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-9. eMIOS200 Channel Control Register (EMIOS_CCR[n])

Table 22-8. EMIOS_CCR field description

Field Description

FREN Freeze Enable
The FREN bit, if set and validated by bit EMIOS_MCR[FRZ], freezes all registers’ values when in
debug mode, allowing the MCU to perform debug functions.

0 Normal operation
1 Freeze unified channel registers’ values

ODIS Output Disable
The ODIS bit allows disabling the output pin when running any of the output modes with the
exception of GPIO mode.

0 The output pin operates normally.
1 The output pin is driven to the value in EDPOL for OPWFMB and OPWMB modes and to the

complement of EDPOL for other modes, but the channel continues to operate normally, that is,
it continues to produce FLAG and matches. When the selected output disable input signal is
negated, the output pin operates normally.

ODISSL Output Disable Select
The ODISSL bits select one of the four output disable input signals.

ODISSL Input signal

00 Output disable input 0

01 Output disable input 1

10 Output disable input 2

11 Output disable input 3

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

656 Freescale Semiconductor

UCPRE Prescaler
The UCPRE bits select the clock divider value for the internal prescaler of the channel controlled by
this register.

UCPREN Prescaler Enable
The UCPREN bit enables the prescaler counter.

0 Prescaler disabled (no clock) and prescaler counter is loaded with UCPRE value
1 Prescaler enabled

DMA Direct Memory Access
The DMA bit selects whether the FLAG generation (see Section 22.4.3.5, eMIOS200 Channel
Status Register (EMIOS_CSR[n])) is used as an interrupt or as a DMA request.

0 FLAG/overrun assigned to interrupt request
1 FLAG/overrun assigned to DMA request

IF Input Filter
The IF bits control the programmable input filter, selecting the minimum input pulse width that can
pass through the filter. For output modes, these bits have no meaning.

FCK Filter Clock Select
The FCK bit selects the clock source for the programmable input filter.

0 Prescaled clock
1 Main clock

Table 22-8. EMIOS_CCR field description (continued)

Field Description

UCPRE Divide ratio

00 1

01 2

10 3

11 4

IF1

1 Filter latency is three clock edges.

Minimum input pulse width
[FLT_CLK periods]

0000 Bypassed2

2 The input signal is synchronized before arriving to the digital filter.

0001 02

0010 04

0100 08

1000 16

All others Reserved

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 657

FEN FLAG Enable
The FEN bit allows the unified channel FLAG bit to generate an interrupt signal or a DMA request
signal (the type of signal to be generated is defined by the DMA bit).

0 Disable (FLAG does not generate an interrupt or DMA request)
1 Enable (FLAG generates an interrupt or DMA request)

FORCMA Force Match A
For output modes, the FORCMA bit is equivalent to a successful comparison on comparator A
(except that the FLAG bit is not set). This bit is cleared by reset and is always read as 0. This bit is
valid for every output operation mode which uses comparator A, otherwise it has no effect.

0 Has no effect
1 Force a match at comparator A

Note: For input modes, the FORCMA bit is not used and writing to it has no effect.

FORCMB Force Match B
For output modes, the FORCMB bit is equivalent to a successful comparison on comparator B
(except that the FLAG bit is not set). This bit is cleared by reset and is always read as 0. This bit is
valid for every output operation mode which uses comparator B, otherwise it has no effect.

0 Has no effect.
1 Force a match at comparator B.

Note: For input modes, the FORCMB bit is not used and writing to it has no effect.

BSL Bus Select
The BSL bits are used to select either one of the counter buses or the internal counter to be used
by the unified channel.

Table 22-8. EMIOS_CCR field description (continued)

Field Description

BSL Selected bus

00 All channels: Counter bus[A].

Note: When BSL = 0, Channel 23 must be in MCB mode.

01 • Counter bus[B] is driven by Channel 0 and can supply
time base to channels 0 to 7.

 • Counter bus[C] is driven by Channel 8 and can supply
time base to channels 8 to 15.

 • Counter bus[D] is driven by channel 16 and can supply
time base to channels 16 to 23.

Note: When BSL = 1, Channels 0, 8 and 16 must be in MCB
mode.

10 Reserved

11 All channels: internal counter

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

658 Freescale Semiconductor

EDSEL Edge Selection
For input modes, the EDSEL bit selects if the internal counter is triggered by both edges of a pulse
or by a single edge only as defined by the EDPOL bit. When not shown in the mode of operation
description, this bit has no effect.

0 Single edge triggering defined by the EDPOL bit.
1 Both edges triggering.

For GPIO in mode, the EDSEL bit selects if a FLAG can be generated.
0 A FLAG is generated as defined by the EDPOL bit.
1 No FLAG is generated.

For SAOC mode, the EDSEL bit selects the behavior of the output flip-flop at each match.
0 The EDPOL value is transferred to the output flip-flop.
1 The output flip-flop is toggled.

EDPOL Edge Polarity
For input modes, the EDPOL bit asserts which edge triggers either the internal counter or an input
capture or a FLAG. When not shown in the mode of operation description, this bit has no effect.
0 Trigger on a falling edge.
1 Trigger on a rising edge.

For output modes, the EDPOL bit is used to select the logic level on the output pin.
0 A match on comparator A clears the output flip-flop, while a match on comparator B sets it.
1 A match on comparator A sets the output flip-flop, while a match on comparator B clears it.

MODE Mode Selection
The MODE bits select the mode of operation of the unified channel, as shown in Table 22-9. Refer
to Table 22-1 for more information on the different modes.

Note: If a reserved value is written to MODE, the results are unpredictable.

Table 22-9. MODE values

MODE[0:6] Mode of operation

0000000 General purpose Input/Output mode (input)

0000001 General purpose Input/Output mode (output)

0000010 Single Action Input Capture

0000011 Single Action Output Compare

0000100 Input Pulse Width Measurement

0000101 Input Period Measurement

0000110 Double Action Output compare (with FLAG set on B match)

0000111 Double Action Output compare (with FLAG set on both match)

0001000 through
1001111

Reserved1

101000b2 Modulus Counter Buffered (Up counter)

Table 22-8. EMIOS_CCR field description (continued)

Field Description

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 659

22.4.3.5 eMIOS200 Channel Status Register (EMIOS_CSR[n])

101001b2 Reserved1

10101bb2 Modulus Counter Buffered (Up/Down counter)

10110b0 Output Pulse Width and Frequency Modulation Buffered

10110b1 – 10111b12 Reserved1

11000b02 Output Pulse Width Modulation Buffered

1100001 through
1111111

Reserved1

1 If a reserved value is written to MODE, the results are unpredictable.
2 b = adjust parameters for the mode of operation. Refer to Section 22.5.1.1, Channel modes of operation, for details.

Address: UC[n] base address + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OVR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OVFL 0 0 0 0 0 0 0 0 0 0 0 0 UCIN UCOUT FLAG

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-10. eMIOS200 Channel Status Register (EMIOS_CSR[n])

Table 22-10. EMIOS_CSR[n] field description

Field Description

OVR Overrun
The OVR bit indicates that FLAG generation occurred when the FLAG bit was already set. This bit
can be cleared by clearing the FLAG bit or by software writing a ‘1’.

0 Overrun has not occurred.
1 Overrun has occurred.

OVFL Overflow
The OVFL bit indicates that an overflow has occurred in the internal counter. This bit must be
cleared by software writing a ‘1’.

0 An overflow has not occurred.
1 An overflow has occurred.

UCIN Unified Channel Input Pin
The UCIN bit reflects the input pin state after being filtered and synchronized.

Table 22-9. MODE values (continued)

MODE[0:6] Mode of operation

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

660 Freescale Semiconductor

22.4.3.6 eMIOS200 UC Alternate A Register (EMIOS_ALTA[n])

The EMIOS_ALTA[n] register provides an alternate read-only address to access A2 channel registers in
GPIO, PEC, WPTA, and OPWMT modes. If the EMIOS_CADR[n] is used with EMIOS_ALTA[n], both
A1 and A2 registers can be accessed in these modes.

22.5 Functional description

The eMIOS200 provides independently operating channels that can be configured and accessed by a host
MCU. The channels are reduced-function versions of Unified Channels. The four time bases can be shared
by the channels through four counter buses and each channel can generate its own time base.

The eMIOS200 block is reset asynchronously. All registers are cleared on reset.

22.5.1 Unified channel (UC)

Figure 22-12 shows the eMIOS200 Unified Channel1 block diagram. Each Unified Channel consists of:

• Counter bus selector, which selects the time base to be used by the channel for all timing functions

UCOUT Unified Channel Output
The UCOUT bit reflects the output pin state.

FLAG FLAG
The FLAG bit is set when an input capture or a match event in the comparators occurred. This bit
must be cleared by software writing a ‘1’.

0 FLAG cleared.
1 FLAG set event has occurred.

Note: When the DMA bit is set, the FLAG bit can be cleared by the DMA controller.

Address: UC[n] base address + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 ALTA[0:23]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ALTA[0:23]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22-11. eMIOS200 UC Alternate A Register (EMIOS_ALTA[n])

1. The eMIOS200 Unified Channel has a reduced set of functions when compared to MPC5500 Unified Channel
implementations.

Table 22-10. EMIOS_CSR[n] field description (continued)

Field Description

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 661

• A programmable clock prescaler

• Two double buffered data registers A and B that allow up to two input capture and/or output
compare events to occur before software intervention is needed.

• Two comparators (equal only) A and B, which compares the selected counter bus with the value in
the data registers

• Internal counter, which can be used as a local time base or to count input events

• Programmable input filter, which ensures that only valid pin transitions are received by channel

• Programmable input edge detector, which detects the rising, falling or either edges

• An output flip-flop, which holds the logic level to be applied to the output pin

• eMIOS200 Status and Control register

• An Output Disable Input selector, which selects the Output Disable Input signal that will be used
as output disable

Figure 22-12. Unified Channel block diagram

Channel Controller

Clock
Prescaler

Programmable
Filter

Channel Data Path

Comparator A

Comparator B

uc_cnt_rd_data[n]

uc_cnt_rd_data[n]

Counter Bus[0]

Counter Bus[1]

Match Logic

Mode Logic

Counter Bus

Unified Channel

Control Signals

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

662 Freescale Semiconductor

Figure 22-13 shows both the Unified Channel Control and Datapath block diagram. The control block is
responsible for the generation of signals to control the multiplexes in the Datapath sub-block. Each mode
is implemented by a dedicated logic independent from others modes, thus allowing to optimize the logic
by disabling the mode and therefore its associated logic. The unused gates are removed during the
synthesis phase. Targeting the logic optimization, a set of registers is shared by the modes thus providing
sequential events to be stored.

The Datapath block provides the channel A and B registers, the internal time base and comparators.
Multiplexors select the input of comparators and data for the registers inputs, thus configuring the datapath
in order to implement the channel modes. The outputs of A and B comparators are connected to the control
block.

Figure 22-13. Unified Channel Control and Datapath block diagrams

A2

B2
B1

A1CNT

local counter bus

global counter bus

A Comparator
BSL[0]

BSL[1]+logic

BSL[1]+logic

BSL[1]+logic

internal counter
[B/C/D]

B Comparator

Datapath

Control Block

co
n

tr
o

l s
ig

n
a

ls

input

filter

input

mode 0
logic

General
Purpose
Registers

mode 1
logic

mode n
logic

MODE

decoder

MODE

register

==

==

[A]

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 663

22.5.1.1 Channel modes of operation

The mode of operation of channel n is determined by the mode select bits MODE[0:6] in the
EMIOS_CCR[n] (see Table 22-9 for details).

When entering an output mode (except for GPIO mode), the output flip-flop is set to disabled state
according to ODIS bit in the EMIOS_CCR[n].

As the internal counter EMIOS_CCNTR[n] continues to run in all modes (except for GPIO mode), it is
possible to use it as a time base if the resource is not used in the current mode.

To provide smooth waveform generation while allowing A and B registers to be asynchronously updated
during UC operation, the double-buffered modes (MCB, OPWFMB and OPWMB) are provided. In these
modes A and B registers are double buffered.

22.5.1.1.1 General purpose input/output mode (GPIO) mode

In GPIO mode, all input capture and output compare functions are disabled, the internal counter
(EMIOS_CCNTR[n]) is cleared and disabled. All control bits remain accessible. In order to prepare the
channel for a new operation mode, writing to registers EMIOS_CADR[n] or EMIOS_CBDR[n] stores the
same value in registers A1/A2 or B1/B2, respectively. Writing to register EMIOS_ALTA[n] stores a value
only in register A2.

The EMIOS_CCR[n]’s MODE[6] bit selects between input (MODE[6] = 0) and output (MODE[6] = 1)
modes.

NOTE

It is required that when changing MODE[0:6], the application software goes
to GPIO mode first in order to reset the channel’s internal functions
properly. Failure to do this could lead to invalid and unexpected output
compare or input capture results or the FLAGs being set incorrectly.

In GPIO input mode (MODE[0:6] = 0000000), FLAG generation is determined according to the
EMIOS_CCR[n]’s EDPOL and EDSEL bits and the input pin status can be determined by reading the
EMIOS_CSR[n]’s UCIN bit.

In GPIO output mode (MODE[0:6] = 0000001), the channel is used as a single output port pin and the
value of the EMIOS_CCR[n]’s EDPOL bit is permanently transferred to the output flip-flop.

When changing the EMIOS_CCR[n]’s MODE bits, the application software must go to GPIO mode first
to reset the channel’s internal functions properly. Failure to do this could lead to invalid and unexpected
output compare or input capture results or the FLAGs being set incorrectly.

22.5.1.1.2 Single action input capture (SAIC) mode

In SAIC mode (MODE[0:6] = 0000010), when a triggering event occurs on the input pin, the value on the
selected time base is captured into register A2. The FLAG bit is set along with the capture event to indicate
that an input capture has occurred. EMIOS_CADR[n] returns the value of register A2. As soon as the
SAIC mode is entered exiting from GPIO mode the channel is ready to capture events. The events are
captured as soon as they occur thus reading register A always returns the value of the latest captured event.

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

664 Freescale Semiconductor

Subsequent captures are enabled with no need of further reads from EMIOS_CADR[n]. The FLAG is set
at any time a new event is captured.

The input capture is triggered by a rising, falling or either edges in the input pin, as configured by EDPOL
and EDSEL bits in EMIOS_CCR[n].

Figure 22-14 and Figure 22-15 show how the Unified Channel can be used for input capture.

Figure 22-14. Single Action Input Capture with rising edge triggering example

Figure 22-15. Single Action Input Capture with both edges triggering example

22.5.1.1.3 Single action output compare (SAOC) mode

In SAOC mode (MODE[0:6] = 0000011) a match value is loaded in register A2 and then immediately
transferred to register A1 to be compared with the selected time base. When a match occurs, the EDSEL
bit selects whether the output flip-flop is toggled or the value in EDPOL is transferred to it. Along with
the match the FLAG bit is set to indicate that the output compare match has occurred. Writing to
EMIOS_CADR[n] stores the value in register A2 and reading to register EMIOS_CADR[n] returns the
value of register A1.

An output compare match can be simulated in software by setting the FORCMA bit in EMIOS_CCR[n].
In this case, the FLAG bit is not set.

When SAOC mode is entered exiting from GPIO mode the output flip-flop is set to the complement of the
EDPOL bit in the EMIOS_CCR[n].

The counter bus can be either internal or external and is selected through BSL[0:1] bits.

selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

FLAG pin/register

A2 (captured) value2 0xxxxxxx 0x001000 0x001250 0x0016A0

input signal1

Edge detect Edge detect Edge detect

Notes: 1. After input filter
2. CADR[n] <= A2

EDSEL = 0

EDPOL = 1

selected counter bus 0x001000 0x001102

FLAG set event

A2 (captured) value20xxxxxxx0x001000

input signal1

Edge detect

Notes: 1. After input filter
2. CADR[n] <= A2

0x001103 0x0011080x0011040x0011050x0011060x0011070x001001

FLAG pin/register

Edge detect

FLAG clear

Edge detect

0x001103 0x001108

EDSEL = 1
EDPOL = x

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 665

Figure 22-16 and Figure 22-17 show how the channel can be used to perform a single output compare with
EDPOL value being transferred to the output flip-flop and toggling the output flip-flop at each match,
respectively. Note that once in SAOC mode the matches are enabled thus the desired match value on
register A1 must be written before the mode is entered. A1 register can be updated at any time thus
modifying the match value which will reflect in the output signal generated by the channel. Subsequent
matches are enabled with no need of further writes to EMIOS_CADR[n]. The FLAG is set at the same
time a match occurs (see Figure 22-18).

NOTE

The channel internal counter in SAOC mode is free-running. It starts
counting as soon as the SAOC mode is entered.

Figure 22-16. SAOC example with EDPOL value being transferred to the output flip-flop

Figure 22-17. SAOC example toggling the output flip-flop

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

output flip-flop

Update to A1

A1 value10xxxxxxx0x001000

FLAG pin/register

0x001000 0x001000 0x001000

A1 match A1 match A1 match

Notes: 1. CADR[n] = A2

EDSEL = 0
EDPOL = 1

A2 = A1 according to OU[n] bit

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

A1 value10xxxxxxx0x001000

output flip-flop

Update to A1

FLAG pin/register

A1 match A1 match A1 match

0x001000 0x001000 0x001000

Notes: 1. CADR[n] = A2

EDSEL = 1
EDPOL = x

A2 = A1 according to OU[n] bit

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

666 Freescale Semiconductor

Figure 22-18. SAOC example with flag behavior

22.5.1.1.4 Input pulse width measurement (IPWM) mode

The IPWM mode (MODE[0:6] = 0000100) allows the measurement of the width of a positive or negative
pulse by capturing the leading edge on register B1 and the trailing edge on register A2. Successive captures
are done on consecutive edges of opposite polarity. The leading edge sensitivity (that is, pulse polarity) is
selected by EDPOL bit in the EMIOS_CCR[n]. Registers EMIOS_CADR[n] and EMIOS_CBDR[n]
return the values in registerS A2 and B1, respectively.

The capture function of register A2 remains disabled until the first leading edge triggers the first input
capture on register B2. When this leading edge is detected, the count value of the selected time base is
latched into register B2; the FLAG bit is not set. When the trailing edge is detected, the count value of the
selected time base is latched into register A2 and, at the same time, the FLAG bit is set and the content of
register B2 is transferred to register B1 and to register A1.

If subsequent input capture events occur while the corresponding FLAG bit is set, registers A2, B1 and A1
will be updated with the latest captured values and the FLAG will remain set. Registers EMIOS_CADR[n]
and EMIOS_CBDR[n] return the value in registers A2 and B1, respectively.

In order to guarantee coherent access, reading EMIOS_CADR[n] forces B1 be updated with the content
of register A1. At the same time transfers between B2 and B1 are disabled until the next read of
EMIOS_CBDR[n]. Reading EMIOS_CBDR[n] forces B1 be updated with A1 register content and
re-enables transfers from B2 to B1, to take effect at the next trailing edge capture. Transfers from B2 to
A1 are not blocked at any time.

The input pulse width is calculated by subtracting the value in B1 from A2.

Figure 22-19 shows how the channel can be used for input pulse width measurement.

selected counter bus 0x0 0x2

FLAG set event

A2 value1 0x1

output flip-flop

Note: 1. CADR[n] <= A2

0x0 0x20x1 0x2 0x0 0x10x1

FLAG pin/register

FLAG clear

EDSEL = 1

System Clock

A1 match

EDPOL = x

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 667

Figure 22-19. Input Pulse Width Measurement example

Figure 22-20 shows the A1 and B1 updates when EMIOS_CADR[n] and EMIOS_CBDR[n] reads occur.
Note that A1 register has always coherent data related to A2 register. Note also that when
EMIOS_CADR[n] read is performed B1 register is loaded with A1 register content. This guarantees that
the data in register B1 has always the coherent data related to the last EMIOS_CADR[n] read. The B1
register updates remain locked until EMIOS_CBDR[n] read occurs. If EMIOS_CADR[n] read is
performed B1 is updated with A1 register content even if B1 update is locked by a previous
EMIOS_CADR[n] read operation.

Figure 22-20. B1 and A1 updates at EMIOS_CADR[n] and EMIOS_CBDR[n] reads

Reading EMIOS_CADR[n] followed by EMIOS_CBDR[n] always provides coherent data. If no coherent
data is required for any reason, the sequence of reads should be inverted, therefore EMIOS_CBDR[n]
should be read prior to EMIOS_CADR[n]. Note that even in this case B1 register updates will be blocked
after EMIOS_CADR[n] read, thus a second EMIOS_CBDR[n] is required in order to release B1 register
updates.

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001100 0x001525

0xxxxxxx 0x001000 0x001250

Input signal1

B A B A B

1. After input filterNotes:

FLAG pin/register

2. CADR[n] = A2
3. CBDR[n] = B1

EDPOL = 1

A1 value3 0xxxxxxx 0x001000 0x001250

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001100 0x001525

0xxxxxxx 0x001000

Input signal1

B A B A B

1. After input filterNotes:

FLAG pin/register

2. CADR[n] = A2

EDPOL = 1

A1 value3 0xxxxxxx 0x001000 0x001250

0x001000 0x001250

Read CADR[n] Read CBDR[n]

3. CBDR[n] = B1

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

668 Freescale Semiconductor

22.5.1.1.5 Input period measurement (IPM) mode

The IPM mode (MODE[0:6] = 0000101) allows the measurement of the period of an input signal by
capturing two consecutive rising edges or two consecutive falling edges. Successive input captures are
done on consecutive edges of the same polarity. The edge polarity is defined by the EDPOL bit in the
EMIOS_CCR[n].

When the first edge of selected polarity is detected, the selected time base is latched into the registers A2
and B2, and the data previously held in register B2 is transferred to register B1. On this first capture the
FLAG line is not set, and the values in registers B1 is meaningless. On the second and subsequent captures,
the FLAG line is set and data in register B2 is transferred to register B1.

When the second edge of the same polarity is detected, the counter bus value is latched into registers A2
and B2, the data previously held in register B2 is transferred to data register B1 and to register A1. The
FLAG bit is set to indicate the start and end points of a complete period have been captured. This sequence
of events is repeated for each subsequent capture. Registers EMIOS_CADR[n] and EMIOS_CBDR[n]
return the values in register A2 and B1, respectively.

In order to allow coherent data, reading EMIOS_CADR[n] forces A1 content be transferred to B1 register
and disables transfers between B2 and B1. These transfers are disabled until the next read of the
EMIOS_CBDR[n]. Reading EMIOS_CBDR[n] forces A1 content to be transferred to B1 and re-enables
transfers from B2 to B1, to take effect at the next edge capture.

The input pulse period is calculated by subtracting the value in B1 from A2.

Figure 22-21 shows how the channel can be used for input period measurement.

Figure 22-21. Input Period Measurement example

Figure 22-22 describes the A1 and B1 register updates when EMIOS_CADR[n] and EMIOS_CBDR[n]
read operations are performed. When EMIOS_CADR[n] read occurs the content of A1 is transferred to B1
thus providing coherent data in A2 and B1 registers. Transfers from B2 to B1 are then blocked until
EMIOS_CBDR[n] is read. After EMIOS_CBDR[n] is read, register A1 content is transferred to register
B1 and the transfers from B2 to B1 are re-enabled to occur at the transfer edges, which is the leading edge
in the Figure 22-22 example.

selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

A1 value

B2 (captured) value

0xxxxxxx 0x001000 0x001250

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001000 0x001250 0x0016A0

Input signal1

EDPOL = 1

FLAG pin register

Notes: 1. After input filter
2. CADR[n] = A2
3. CBDR[n] = B1

A A A

B1 value3 0xxxxxxx 0x001000 0x001250

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 669

Figure 22-22. A1 and B1 updates at EMIOS_CADR[n] and EMIOS_CBDR[n] reads

22.5.1.1.6 Double action output compare (DAOC) mode

In the DAOC mode the leading and trailing edges of the variable pulse width output are generated by
matches occurring on comparators A and B. There is no restriction concerning the order in which A and
B matches occur.

When the DAOC mode is entered, exiting from GPIO mode both comparators are disabled and the output
flip-flop is set to the complement of the EDPOL bit in the EMIOS_CCR[n].

Data written to A2 and B2 are transferred to A1 and B1, respectively, on the next system clock cycle if bit
OU[n] of the EMIOS_OUDR is cleared (see Figure 22-25). The transfer is blocked if OU[n] bit is set.
Comparator A is enabled only after the transfer to A1 register occurs and is disabled on the next A match.
Comparator B is enabled only after the transfer to B1 register occurs and is disabled on the next B match.
Comparators A and B are enabled and disabled independently.

The output flip-flop is set to the value of EDPOL when a match occurs on comparator A and to the
complement of EDPOL when a match occurs on comparator B.

MODE[6] controls if the FLAG is set on both matches (MODE[0:6] = 0000111) or just on the B match
(MODE[0:6] = 0000110). FLAG bit assertion depends on comparator enabling.

If subsequent enabled output compares occur on registers A1 and B1, pulses will continue to be generated,
regardless of the state of the FLAG bit.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a comparison event in comparator A or B, respectively. Note that the FLAG bit is not
affected by these forced operations.

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001000

0xxxxxxx 0x001000

Input signal1

A A A

FLAG pin/register

EDPOL = 1

A1 value 0xxxxxxx 0x001000

0x001000

0x001250

0x001250

Read CADR[n] Read CBDR[n]

0x001250

Notes: 1. After input filter
2. CADR[n] = A2
3. CBDR[n] = B1

0x0016A0

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

670 Freescale Semiconductor

NOTE

 If both registers (A1 and B1) are loaded with the same value, the B match
prevails concerning the output pin state (output flip-flop is set to the
complement of EDPOL), the FLAG bit is set and both comparators are
disabled.

Figure 22-23 and Figure 22-24 show how the channel can be used to generate a single output pulse with
FLAG bit being set on the second match or on both matches, respectively.

Figure 22-23. Double Action Output Compare with FLAG set on the second match

Figure 22-24. Double Action Output Compare with FLAG set on both matches

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100

A1 value1

B1 value20xxxxxxx0x001100 0x001100 0x001100

0xxxxxxx0x001000 0x001000 0x001000

output flip-flop

MODE
A1 match B1 matchUpdate to

A1 and B1

FLAG pin/register

A1 match B1 match
[6] = 0

Notes:1. CADR[n] = A1 (when reading)
2. CBDR[n] = B1 (when reading)

A2 = A1according to OU[n] bit
B2 = B1according to OU[n] bit

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100

A1 value1

B1 value20xxxxxxx0x001100 0x001100 0x001100

0xxxxxxx0x001000 0x001000 0x001000

output flip-flop

A1 match B1 matchUpdate to
A1 and B1

FLAG pin/register

A1 match B1 match

Notes:1. CADR[n] = A1 (when reading)
2. CBDR[n] = B1 (when reading)

A2 = A1according to OU[n] bit
B2 = B1according to OU[n] bit

MODE[6] = 1

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 671

Figure 22-25. DAOC with transfer disabling example

22.5.1.1.7 Modulus counter buffered (MCB) mode

The MCB mode provides a time base which can be shared with other channels through the internal counter
buses. Register A1 is double buffered thus allowing smooth transitions between cycles when changing A2
register value on the fly. A1 register is updated at the cycle boundary, which is defined as when the internal
counter transitions to 0x1.

The internal counter values operates within a range from 0x1 up to register A1 value. If when entering
MCB mode exiting from GPIO mode the internal counter value is not within that range then the A match
will not occur causing the channel internal counter to wrap at the maximum counter value which is
0xFF_FFFF for a 24-bit counter. After the counter wrap occurs it returns to 0x1 and resume normal MCB
mode operation. Thus in order to avoid the counter wrap condition make sure its value is within the 0x1
to A1 register value range when the MCB mode is entered.

MODE[6] bit selects internal clock source if cleared or external if set. When external clock is selected the
input channel pin is used as the channel clock source. The active edge of this clock is defined by EDPOL
and EDSEL bits in the EMIOS_CCR[n].

When entering MCB mode, if the up counter is selected by MODE[4] = 0 (MODE[0:6] = 101000b), the
internal counter starts counting from its current value to up direction until A1 match occurs. The internal
counter is set to 0x1 when its value matches A1 value and a clock tick occurs (either prescaled clock or
input pin event).

selected counter bus 0x0 0x2

FLAG set event

A1 value2 0xx

output flip-flop

2. CADR[n] = A1 (when reading)

0x0 0x20x1 0x2 0x0 0x10x1

FLAG pin/register

FLAG clear

EDSEL = 1

System Clock

enabled A1 match

EDPOL = x

B2 value5 0x2

B1 value4 0xx

A2 value3 0x1

OU1

enabled B1 match

0x1

0xx

0xx

0x2

0x1

write to A2

0x2

0x2

0x1

0x2

0x1

0x1

0x2

write to B2

write to A2

write to B2

write to A2

write to B2

MODE[0] = 1

3. CADR[n] = A2 (when writing)
4. CBDR[n] = B1 (when reading)
5. CBDR[n] = B2 (when writing)

Note: 1. OU[n] bit of the OUDR

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

672 Freescale Semiconductor

If the up/down counter is selected by setting MODE[4] = 1, the counter changes direction at A1 match and
counts down until it reaches the value 0x1. After it has reached 0x1 it is set to count in up direction again.
The B1 register is used to generate a match in order to set the internal counter in up-count direction if
up/down mode is selected. Register B1 cannot be changed while this mode is selected.

Note that differently from the MC mode, the MCB mode counts between 0x1 and the A1 register value.
Only values greater than 0x1 must be written at A1 register. Loading values other than those leads to
unpredictable results. The counter cycle period is equal to A1 value in up counter mode. If in up/down
counter mode, the period is defined by the expression: (2*A1)-2.

Figure 22-26 describes the counter cycle for several A1 values. Register A1 is loaded with the A2 register
value at the cycle boundary. Thus any value written to the A2 register within cycle n will be updated to A1
at the next cycle boundary and therefore will be used on cycle n+1. The cycle boundary between cycle n
and cycle n+1 is defined as when the internal counter transitions from A1 value in cycle n to 0x1 in cycle
n+1. Note that the FLAG is generated at the cycle boundary and has a synchronous operation, meaning
that it is asserted one system clock cycle after the FLAG set event.

Figure 22-26. Modulus Counter Buffered (MCB) Up Count mode

Figure 22-27 describes the MCB in up/down counter mode (MODE[0:6] = 10101bb). The A1 register is
updated at the cycle boundary. If A2 is written in cycle n, this new value will be used in cycle n+1 for A1
match. Flags are generated only at A1 match start if MODE[5] is 0. If MODE[5] is set to 1 flags are also
generated at the cycle boundary.

EMIOSCNT[n]

TIME

write to A2 match A1 match A1 match A1write to A2

0x000001

0x000005
0x000006
0x000007

FLAG set event

A1 value 0x000006 0x000005 0x000007 0x000007

0x000005 0x000007A2 value

FLAG pin/register

Prescaler ratio = 1

cycle n cycle n+1 cycle n+2

FLAG clear

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 673

Figure 22-27. Modulus Counter Buffered (MCB) Up/Down Mode

Figure 22-28 describes in more detail the A1 register update process in up counter mode. The A1 load
signal is generated at the last system clock period of a counter cycle. Thus, A1 is updated with A2 value
at the same time that the counter (EMIOS_CCNTR[n]) is loaded with 0x1. The load signal pulse has the
duration of one system clock period. If A2 is written within cycle n its value is available at A1 at the first
clock of cycle n+1 and the new value is used for match at cycle n+1. The update disable bits OU[n] of
EMIOS_OUDR can be used to control the update of this register, thus allowing to delay the A1 register
update for synchronization purposes.

Figure 22-28. MCB Mode A1 Register Update in Up Counter Mode

Figure 22-29 describes the A1 register update in up/down counter mode. Note that A2 can be written at
any time within cycle n in order to be used in cycle n+1. Thus A1 receives this new value at the next cycle
boundary. Note that the update disable bits OU[n] of EMIOS_OUDR can be used to disable the update of
register A1.

EMIOSCNT[n]

TIME

write to A2
match A1

match A1 write to A2

0x000001

0x000005
0x000006
0x000007

FLAG set event

A1 value 0x000006 0x000005 0x000007

0x000005 0x000007A2 value

FLAG pin/register

Prescaler ratio = 1

cycle n+1 cycle n+2cycle n

FLAG clear

A1 value 0x000008

0x000008

0x000001

internal counter

0x000004

0x000006

A2 value 0x000008 0x000004 0x000006

0x000002

0x000004 0x000006

 write to A2 write to A2

 Match A1 Match A1

A1 load signal

8

4

6

 Match A1

Counter = A1
Time

cycle n cycle n+1 cycle n+2

Prescaler ratio = 2

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

674 Freescale Semiconductor

Figure 22-29. MCB Mode A1 Register Update in Up/Down Counter Mode

22.5.1.1.8 Output pulse width and frequency modulation buffered (OPWFMB) mode

This mode (MODE[0:6] = 10110b0) provides waveforms with variable duty cycle and frequency. The
internal channel counter is automatically selected as the time base when this mode is selected. The A1
register indicates the duty cycle and B1 register the frequency. Both A1 and B1 registers are double
buffered to allow smooth signal generation when changing the registers values on the fly. 0% and 100%
duty cycles are supported.

At OPWFMB mode entry the output flip-flop is set to the value of the EDPOL bit in the EMIOS_CCR[n].

In order to provide smooth and consistent channel operation this mode differs substantially from the
OPWFM mode. The main differences reside in the A1 and B1 registers update, on the delay from the A1
match to the output pin transition and on the range of the internal counter values which starts from 0x1 up
to B1 register value.

If when entering OPWFMB mode exiting from GPIO mode the internal counter value is not within that
range then the B match will not occur causing the channel internal counter to wrap at the maximum counter
value which is 0xFF_FFFF for a 24-bit counter. After the counter wrap occurs it returns to 0x1 and resume
normal OPWFMB mode operation. Thus in order to avoid the counter wrap condition make sure its value
is within the 0x1 to B1 register value range when the OPWFMB mode is entered.

When a match on comparator A occurs the output register is set to the value of EDPOL. When a match on
comparator B occurs the output register is set to the complement of EDPOL. B1 match also causes the
internal counter to transition to 0x1, thus restarting the counter cycle.

Only values greater than 0x1 are allowed to be written to B1 register. Loading values other than those leads
to unpredictable results.

Figure 22-30 describes the operation of the OPWFMB mode regarding output pin transitions and A1/B1
registers match events. Note that the output pin transition occurs when the A1 or B1 match signal is
deasserted which is indicated by the A1 match negedge detection signal. If register A1 is set to 0x4 the
output pin transitions four counter periods after the cycle had started, plus one system clock cycle. Note
that in the example shown in Figure 22-30 the internal counter prescaler has a ratio of two.

A1 value0x000006

A2 value0x000006 0x000005 0x000006

0x000005

A1 load signal

Counter = 2

EMIOSCNT[n]

TIME

write to A2
match A1

match A1
write to A2

0x000001

0x000005
0x000006

0x000006

cycle n cycle n+1 cycle n+2

Prescaler ratio = 2

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 675

Figure 22-30. OPWFMB A1 and B1 match to Output Register Delay

Figure 22-31 describes the generated output signal if A1 is set to 0x0. Since the counter does not reach
zero in this mode, the channel internal logic infers a match as if A1 = 0x1 with the difference that in this
case, the posedge of the match signal is used to trigger the output pin transition instead of the negedge used
when A1 = 0x1. Note that A1 posedge match signal from cycle n+1 occurs at the same time as B1 negedge
match signal from cycle n. This allows using the A1 posedge match to mask the B1 negedge match when
they occur at the same time. The result is that no transition occurs on the output flip-flop and a 0% duty
cycle is generated.

8

1

4

match A1 negedge detection

5

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

EMIOSCNT

TIME

match B1 negedge detection
B1 match

B1 match negedge detection

B1 value 0x000008

system clock

prescaler

Prescaler ratio = 2

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

676 Freescale Semiconductor

Figure 22-31. OPWFMB Mode with A1 = 0 (0% duty cycle)

Figure 22-32 describes the timing for the A1 and B1 registers load. The A1 and B1 load use the same signal
which is generated at the last system clock period of a counter cycle. Thus, A1 and B1 are updated
respectively with A2 and B2 values at the same time that the counter (EMIOS_CCNTR[n]) is loaded with
0x1. This event is defined as the cycle boundary. The load signal pulse has the duration of one system clock
period. If A2 and B2 are written within cycle n their values are available at A1 and B1, respectively, at the
first clock of cycle n+1 and the new values are used for matches at cycle n+1. The update disable bits
OU[n] of EMIOS_OUDR can be used to control the update of these registers, thus allowing to delay the
A1 and B1 registers update for synchronization purposes.

In Figure 22-32 it is assumed that both the channel and global prescalers are set to 0x1 (each divide ratio
is two), meaning that the channel internal counter transitions at every four system clock cycles. FLAGs
can be generated only on B1 matches when MODE[5] is cleared, or on both A1 and B1 matches when
MODE[5] is set. Since B1 flag occurs at the cycle boundary, this flag can be used to indicate that A2 or
B2 data written on cycle n were loaded to A1 or B1, respectively, thus generating matches in cycle n+1.
Note that the FLAG has a synchronous operation, meaning that it is asserted one system clock cycle after
the FLAG set event.

1

4

match A1 negedge detection

5

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

EMIOSCNT

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000008

system clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

no transition at this point

1

cycle n cycle n+1

Prescaler ratio = 2

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 677

Figure 22-32. OPWFMB A1 and B1 registers update and flags

Figure 22-33 describes the operation of the Output Disable feature in OPWFMB mode. Differently from
the OPWFM mode, the output disable forces the channel output flip-flop to EDPOL bit value. This
functionality targets applications that use active high signals and a high to low transition at A1 match. In
this case EDPOL should be set to 0. Note that both the channel and global prescalers are set to 0x0 (each
divide ratio is one), meaning that the channel internal counter transitions at every system clock cycle.

EDPOL = 0

cycle n cycle n+1 cycle n+2

A1 value1

B1 value

B2 value

0x8

0x2

0x6

0x8

0x1

internal counter

0x4

0x6

MODE[6] = 1

A2 value1 0x2 0x4 0x6

0x2

0x4 0x6

0x8 0x6

Output pin

 write to B2

 write to A2 write to A2

 Match A1 Match A1 Match B1 Match B1 Match B1

A1/B1 load signal

due to B1 match cycle n-1

FLAG set event

FLAG pin/register

Prescaler ratio = 4

FLAG clear

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

678 Freescale Semiconductor

Figure 22-33. OPWFMB mode with active output disable

Note that the output disable has a synchronous operation, meaning that the assertion of the Output Disable
input pin causes the channel output flip-flop to transition to EDPOL at the next system clock cycle. If the
Output Disable input is deasserted the output pin transition at the following A1 or B1 match.

In Figure 22-33 it is assumed that the Output Disable input is enabled and selected for the Channel. Please,
refer to Section 22.4.3.4, eMIOS200 Channel Control Register (EMIOS_CCR[n]), for a detailed
description about the ODIS and ODISSL bits, respectively enable and selection of the Output Disable
inputs.

The FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on comparators A or B respectively. Similarly to a B1 match FORCMB sets the
internal counter to 0x1. The FLAG bit is not set by the FORCMA or FORCMB bits being asserted.

Figure 22-34 describes the generation of 100% and 0% duty cycle signals. It is assumed EDPOL = 0 and
the resultant prescaler value is 1. Initially A1 = 0x8 and B1 = 0x8. In this case, B1 match has precedence
over A1 match, thus the output flip-flop is set to the complement of EDPOL bit. This cycle corresponds
to a 100% duty cycle signal. The same output signal can be generated for any A1 value greater or equal to
B1.

EDPOL = 0

cycle n cycle n+1 cycle n+2

A1 value

B1 value

B2 value

0x000008

0x000002

0x000006

0x000008

0x000001

internal counter

0x000004

0x000006

MODE[6] = 1

A2 value 0x000002 0x000004 0x000006

0x000002

0x000004 0x000006

0x000008 0x000006

Output pin

 write to B2

 write to A2 write to A2

 Match A1 Match A1 Match B1 Match B1 Match B1

due to B1 match cycle n-1

FLAG set event

Output Disable

FLAG pin/register

Prescaler ratio = 1

FLAG set event

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 679

Figure 22-34. OPWFMB mode from 100% to 0% duty cycle

A 0% duty cycle signal is generated if A1 = 0x0 as shown in Figure 22-34 cycle 9. In this case B1 = 0x8
match from cycle 8 occurs at the same time as the A1 = 0x0 match from cycle 9. Please, refer to
Figure 22-31 for a description of the A1 and B1 match generation. In this case A1 match has precedence
over B1 match and the output signal transitions to EDPOL.

22.5.1.1.9 Output pulse width modulation buffered (OPWMB) mode

OPWMB mode (MODE[0:6] = 11000b0) is used to generate pulses with programmable leading and
trailing edge placement. An external counter driven in MCB Up mode must be selected from one of the
counter buses. A1 register value defines the first edge and B1 the second edge. The output signal polarity
is defined by the EDPOL bit. If EDPOL is zero, a negative edge occurs when A1 matches the selected
counter bus and a positive edge occurs when B1 matches the selected counter bus.

The A1 and B1 registers are double buffered and updated from A2 and B2, respectively, at the cycle
boundary. The load operation is similar to the OPWFMB mode. Please refer to Figure 22-32 for more
information about A1 and B1 registers update.

FLAG can be generated at B1 matches, when MODE[5] is cleared, or in both A1 and B1 matches, when
MODE[5] is set. If subsequent matches occur on comparators A and B, the PWM pulses continue to be
generated, regardless of the state of the FLAG bit.

FORCMA and FORCMB bits allow the software to force the output flip-flop to the level corresponding
to a match on A1 or B1 respectively. FLAG bit is not set by the FORCMA and FORCMB operations.

At OPWMB mode entry the output flip-flop is set to the value of the EDPOL bit in the EMIOS_CCR[n].

Some rules applicable to the OPWMB mode are listed as follows:

• B1 matches have precedence over A1 matches if they occur at the same time within the same
counter cycle

• A1 = 0 match from cycle n has precedence over B1 match from cycle n-1

• A1 matches are masked out if they occur after B1 match within the same cycle

• Any value written to A2 or B2 on cycle n is loaded to A1 and B1 registers at the following cycle
boundary (assuming OU[n] bit of EMIOS_OUDR is not asserted). Thus the new values will be
used for A1 and B1 matches in cycle n+1.

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

EMIOSCNT

EDPOL = 0

A1 value

B1 value

Output pin

0x000008

Prescaler ratio = 1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8 cycle 9

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 value

0x000008

0x000001

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

680 Freescale Semiconductor

Figure 22-35 describes the operation of the OPWMB mode regarding A1 and B1 matches and the
transition of the channel output pin. In this example EDPOL is set to zero.

Figure 22-35. OPWMB mode matches and flags

Note that the output pin transitions are based on the negedges of the A1 and B1 match signals.
Figure 22-35 shows in cycle n+1 the value of A1 register being set to zero. In this case the match posedge
is used instead of the negedge to transition the output flip-flop.

Figure 22-36 describes the channel operation for 0% duty cycle. Note that the A1 match posedge signal
occurs at the same time as the B1 = 0x8 negedge signal. In this case A1 match has precedence over B1
match, causing the output pin to remain at EDPOL bit value, thus generating a 0% duty cycle signal.

1

4

match A1 negedge detection

6

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000006

clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

1

cycle n cycle n+1

86

FLAG set event

Selected
counter bus

FLAG pin/register

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 681

Figure 22-36. OPWMB mode with 0% duty cycle

Figure 22-37 describes the operation of the OPWMB mode with the Output Disable signal being asserted.
The Output Disable forces a transition in the output pin to the EDPOL bit value. After deasserted, the
output disable allows the output pin to transition at the following A1 or B1 match. Note that the Output
Disable does not modify the Flag bit behavior. Note that there is one system clock delay between the
assertion of the output disable signal and the transition of the output pin to EDPOL.

1

4

match A1 negedge detection

8

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

Selected

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000008

clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

1

cycle n cycle n+1

8
counter bus

FLAG set event

FLAG pin/register

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

682 Freescale Semiconductor

Figure 22-37. OPWMB mode with active output disable

Figure 22-38 shows a waveform changing from 100% to 0% duty cycle. EDPOL in this case is zero. In
this example B1 is programmed to the same value as the period of the external selected time base.

Figure 22-38. OPWMB mode from 100% to 0% duty cycle

In Figure 22-38 if B1 is set to a value lower than 0x8 it is not possible to achieve 0% duty cycle by only
changing A1 register value. Since B1 matches have precedence over A1 matches the output pin transitions
to the opposite of EDPOL bit at B1 match. Note also that if B1 is set to 0x9, for instance, B1 match does
not occur, thus a 0% duty cycle signal is generated.

22.5.1.2 Input programmable filter (IPF)

The IPF ensures that only valid input pin transitions are received by the channel edge detector. A block
diagram of the IPF is shown in Figure 22-39.

EDPOL = 0

cycle n cycle n+1 cycle n+2

A1 value

B1 value

B2 value

0x000008

0x000002

0x000006

0x000008

0x000001

Selected

0x000004

0x000006

MODE[6] = 1

A2 value 0x000002 0x000004 0x000006

0x000002

0x000004 0x000006

0x000008 0x000006

Output pin

 write to B2 write to A2
 write to A2

 Match A1

 Match A1

 Match B1 Match B1 Match B1

due to B1 match cycle n-1

FLAG set event

Output Disable

Counter Bus

FLAG pin/register

FLAG clear

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

Selected

EDPOL = 0

A1 value

B1 value

Output pin

0x000008

Prescaler = 1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8 cycle 9
counter bus

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 value

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 683

The IPF is a 5-bit programmable up counter that is incremented by the selected clock source, according to
bits IF[0:3] in EMIOS_CCR[n].

Figure 22-39. lnput programmable filter submodule diagram

The input signal is synchronized by system clock. When a state change occurs in this signal, the 5-bit
counter starts counting up. As long as the new state is stable on the pin, the counter remains incrementing.
If a counter overflows occurs, the new pin value is validated. In this case, it is transmitted as a pulse edge
to the edge detector. If the opposite edge appears on the pin before validation (overflow), the counter is
reset. At the next pin transition, the counter starts counting again. Any pulse that is shorter than a full range
of the masked counter is regarded as a glitch and it is not passed on to the edge detector. A timing diagram
of the input filter is shown in Figure 22-40.

Figure 22-40. Input programmable filter example

The filter is not disabled during either freeze state or negated GTBE input.

22.5.1.3 Clock prescaler (CP)

The CP divides the GCP output signal to generate a clock enable for the internal counter of the Unified
Channels. The GCP output signal is prescaled by the value defined in the UCPRE[0:1] bits in the
EMIOS_CCR[n]. The prescaler is enabled by setting the UCPREN bit in the EMIOS_CCR[n] and can be
stopped at any time by clearing this bit, thereby stopping the internal counter in the channel.

In order to ensure safe working and avoid glitches the following steps must be performed whenever any
update in the prescaling rate is desired:

1. Write ‘0’ at both bit EMIOS_MCR[GPREN] and UCPREN bit in EMIOS_CCR[n], thus disabling
prescalers;

IF3

filter out

ipg_clk

Prescaled Clock

IF2 IF1 IF0

clk

FCK

EMIOSI

5-bit up counter

sy
nc

hr
on

iz
er

clock

Time

selected clock

EMIOSI

5-bit counter

filter out

IF[0:3] = 0010

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

684 Freescale Semiconductor

2. Write the desired value for prescaling rate at UCPRE[0:1] bits in EMIOS_CCR[n];

3. Enable channel prescaler by writing ‘1’ at UCPREN bit in EMIOS_CCR[n];

4. Enable global prescaler by writing ‘1’ at bit EMIOS_MCR[GPREN].

The prescaler is not disabled during either freeze state or negated GTBE input.

22.5.1.4 Effect of freeze on the unified channel

When in debug mode, bit EMIOS_MCR[FRZ] and the FREN bit in the EMIOS_CCR[n] are both set, the
internal counter and channel capture and compare functions are halted. The channel is frozen in its current
state.

During freeze, all registers are accessible. When the channel is operating in an output mode, the force
match functions remain available, allowing the software to force the output to the desired level.

Note that for input modes, any input events that may occur while the channel is frozen are ignored.

When exiting debug mode or freeze enable bit is cleared (bit EMIOS_MCR[FRZ] or FREN in the
EMIOS_CCR[n]), the channel actions resume but may be inconsistent until the channel enters GPIO mode
again.

22.5.2 IP bus interface unit (BIU)

The BIU provides the interface between the Internal Interface Bus (IIB) and the Peripheral Bus, allowing
communication among all submodules and this IP interface.

The BIU allows 8, 16 and 32 bits access. They are performed over a 32-bit data bus in a single cycle clock.

22.5.2.1 Effect of freeze on the BIU

When bit EMIOS_MCR[FRZ] is set and the module is in debug mode, the operation of BIU is not affected.

22.5.3 STAC client submodule

The shared time and angle count (STAC) bus provides access to one external time base, imported from the
STAC bus to the eMIOS unified channels. The eTPU module’s time bases and angle count can be exported
and/or imported through the STAC client submodule interface. Time bases and/or angle information of the
eTPU engine can be exported to the eMIOS module, which is only a STAC client. There are restrictions
on engine export/import targets: an engine cannot export from or import to itself, nor can it import time
base and/or angle count if in angle mode.

The device’s STAC server identification assignment is shown in Table 22-11. The time slot assignment is
fixed, so only time bases running at system clock divided by four or slower can be integrally exported. The
STAC client submodule runs with the system clock, and its time slot timing is synchronized with the eTPU
timing on reset. The time slot sequence is 0-1-2-3.

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 685

Figure 22-41 provides a block diagram for the STAC client submodule.

Figure 22-41. STAC client submodule block diagram

EMIOS_MCR[SRV] bits select the time slot of the STAC output bus. Figure 22-42 shows a timing
diagram for the STAC client submodule.

Figure 22-42. Timing diagram for STAC bus and STAC client submodule output

Every time the selected time slot changes, the STAC client submodule output is updated.

22.5.3.1 Effect of freeze on the STAC client submodule

When bit EMIOS_MCR[FRZ] is set and the module is in debug mode, the operation of the STAC client
submodule is not affected; that is, there is no freeze function in this submodule.

Table 22-11. STAC client submodule server slot assignment

Time base Server ID

TCR1 0

TCR2 2

SRV3 SRV2 SRV1 SRV0

STAC bus Time baseSTAC client submodule
(24-bit wide) output

Time slot selector bits

TS[02]
STAC bus

(submodule input)
TS[00] TS[01] TS[02]

Time base
(submodule output)

TS[01]xx

The SRV bits are set to capture TS[01].

TS[03] TS[00] TS[03] TS[00] TS[01]

System clock

TS[01]

STAC bus (REDC input) TS[00] TS[01] TS[02]

1. Maximum of 16 time slots (TSn)

NOTES:

TS[01]TS[00]TSn1 TS[02]

 Time base (REDC output) TS[01] TS[01]xx

2. The SRV bits capture TS[01]

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

686 Freescale Semiconductor

22.5.4 Global clock prescaler submodule (GCP)

The GCP divides the system clock to generate a clock for the CPs of the channels. The main clock signal
is prescaled by the value defined in the GPRE[0:7] bits in the EMIOS_MCR. The global prescaler is
enabled by setting bit EMIOS_MCR[GPREN] and can be stopped at any time by clearing this bit, thereby
stopping the internal counters in all the channels.

In order to ensure safe working and avoid glitches the following steps must be performed whenever any
update in the prescaling rate is desired:

1. Write ‘0’ at bit EMIOS_MCR[GPREN], thus disabling global prescaler.

2. Write the desired value for prescaling rate at GPRE[0:7] bits in EMIOS_MCR.

3. Enable global prescaler by writing ‘1’ at bit EMIOS_MCR[GPREN].

The prescaler is not disabled during either freeze state or negated GTBE input.

22.5.4.1 Effect of freeze on the GCP

When bit EMIOS_MCR[FRZ] is set and the module is in debug mode, the operation of GCP submodule
is not affected, that is, there is no freeze function in this submodule.

22.6 Initialization/Application information

On resetting the eMIOS200 the channels enter GPIO input mode.

22.6.1 Considerations

Before changing an operating mode, the UC must be programmed to GPIO mode and EMIOS_CADR[n]
and EMIOS_CBDR[n] registers must be updated with the correct values for the next operating mode. Then
the EMIOS_CCR[n] can be written with the new operating mode. If a channel is changed from one mode
to another without performing this procedure, the first operation cycle of the selected time base can be
random, that is, matches can occur in random time if the contents of EMIOS_CADR[n] or
EMIOS_CBDR[n] were not updated with the correct value before the time base matches the previous
contents of EMIOS_CADR[n] or EMIOS_CBDR[n].

When interrupts are enabled, the software must clear the FLAG bits before exiting the interrupt service
routine.

22.6.2 Application information

Correlated output signals can be generated by all output operation modes. Bits OU[n] of the
EMIOS_OUDR can be used to control the update of these output signals.

In order to guarantee that the internal counters of correlated channels are incremented in the same clock
cycle, the internal prescalers must be set up before enabling the global prescaler. If the internal prescalers
are set after enabling the global prescaler, the internal counters may increment in the same ratio but at a
different clock cycle.

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 687

22.6.2.1 Channel/Modes initialization

The following basic steps summarize basic output mode startup, assuming the channels are initially in
GPIO mode:

1. [global] Disable global prescaler.

2. [timebase channel] Disable channel prescaler.

3. [timebase channel] Write initial value at internal counter.

4. [timebase channel] Set A/B register.

5. [timebase channel] Set channel to MCB up mode.

6. [timebase channel] Set prescaler ratio.

7. [timebase channel] Enable channel prescaler.

8. [output channel] Disable channel prescaler.

9. [output channel] Set A/B register.

10. [output channel] Select timebase input through BSL[1:0] bits.

Configurable Enhanced Modular IO Subsystem (eMIOS200)

MPC5644A Microcontroller Reference Manual, Rev. 6

688 Freescale Semiconductor

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 689

Chapter 23
Reaction Module (REACM)

23.1 Introduction

The Reaction Module (REACM) is composed of 6 channels. Each channel contains three outputs. The
primary application of this module is in the area of solenoid control for direct injection systems, valve
control in automatic transmissions and others. It is connected to the on-chip ADC which monitors the
current on the solenoid or valve. Based on that the reaction channel generates a PWM signal that modulates
the current circulating in the solenoid or valve. It is a cost effective solution due to extensive sharing of
several resources among channels and parameterized register banks for adequate dimensioning of
resources and functionality.

23.1.1 Features

The REACM features include:

• Per-channel architecture for independent output control

• Interface with on-chip ADC for fast response times

• Hardware connection with on-chip timer channels with channel routing capability

• Innovative concept of Shared Modulation Control

• Innovative concept of dynamic timer allocation

• 3 outputs per channel to support different driver architectures

• Flexibility to operate based on timing and threshold

• On-the-fly capture of ADC result reference for fast calibration

• Open and short circuit monitoring capability

Note:DMA is not supported in Andorra devices.

23.1.2 Modes of operation

23.1.2.1 Programing Mode

After a reset is applied, the reaction module is in programming mode. In this mode all channels are
disabled and outputs are at logic zero. Note that this state does not necessarily mean that zero is the neutral
state for the channel load, so care must be taken in order to disconnect the channel from the load in this
case.

In the programming mode the host CPU writes all module parameters including:

1. Modulation word data (see Section 23.4.2, Modulation control words bank)

2. Channel control data (see Section 23.3.7, REACM Channel n Configuration Register
(REACM_CHCRn))

3. Threshold data (see Section 23.3.12, REACM Threshold Bank Register (REACM_THBK))

4. Timer bank data (see Section 23.3.10, REACM Shared Timer Bank Registers (REACM_STBK))

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

690 Freescale Semiconductor

5. Hold-off timer bank data (see Section 23.3.11, REACM Hold-off Timer Bank Registers
(REACM_HOTBK))

6. Timer router data (see Section 23.3.9, REACM Channel n Router Register (REACM_CHRRn))

7. ADC router data (see Section 23.3.4, REACM Threshold Router Register (REACM_THRR))

The last action to perform is to enable the channel, after which the channel is able to respond to timer
signals and ADC data, thus able to perform modulation on the output pins. It is recommended to keep the
timer signals inactive until all data to all reaction channel modules are programmed and all channels have
been put in the enabled mode.

23.1.2.2 Low power mode

Coming out of reset all channels are in the disabled state. The channel may also be in low power mode
depending on a parameter that configures the initial state of the MDIS in the REACM module
configuration register (REACM_MCR) (see Figure 23-4). If REACM_MCR[MDIS] = 1 the module clock
may be disabled allowing for a low power state. The low power mode is controlled either by
REACM_MCR[MDIS] or by a global stop signal. There is no explicit clock gating implemented in
hardware within the reaction module.

NOTE

Low power mode must be entered only when all channels are disabled by
REACM_CHCRn[CHEN] = 00.

23.1.2.3 Channel modes

After a channel is in enabled mode that channel is also said to be in the normal mode of operation, which
means it responds to timer signals from the timer inputs connected to the reaction module and also to ADC
results received from the on-chip ADC module. Channel outputs are controlled in accordance with those
inputs in order to perform an output modulation process. When performing a modulation the reaction
channel is said to be in the active state. The modes a reaction channel can be in and the ability to execute
a modulation related to the modes are:

• Disabled: The channel cannot execute modulation.

• Enabled: The channel is able to execute a modulation. It may be in the Active or Inactive state.

— Inactive state: The channel is not executing a modulation.

— Active state: The channel is executing a modulation.

23.1.2.4 Debug mode

The Reaction Module Debug operation is defined by bits FRZ and FREN in the REACM module
configuration register (REACM_MCR) (see Figure 23-4). In debug mode all timers are halted, including
the timers in the Shared Time Bank and Hold-off Timers.

The module can enter debug mode either by software control or by the hardware debug input signal
controlled by the chip logic. In both cases the reaction module only enters debug mode if enabled by bit
REACM_MCR[FREN]:

• If the FREN bit and the FRZ bit are both is asserted the module enters debug mode.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 691

• If the FREN bit is asserted and a global debug signal is issued the module enters debug mode.

In debug mode, the channel outputs are held at HOD (High Output Drive), LOD (Low Output Drive), or
Drive Off (DOFF) state, as determined by the current channel state. When resuming normal operation after
exiting debug mode the channel output is set to DOFF until the next timer control rising edge occurs.

The ADC Maximum Limit Detection (REACM_CHSRn[MAXL]) flag is the only flag that operates in
debug mode. All other flags keep the state present when the module entered debug mode. Note that the
corresponding error flag in the REACM Global Error Flag Register (REACM_GEFR) (Figure 23-8) is
also set.

The REACM ADC Sensor Input Register (REACM_SINR) allows direct access for write to the TAG and
ADC result values input to the reaction module. This software control may be used for module debug
purposes. Please see Figure 23-7.

23.1.3 Block diagram

Figure 23-1 shows the on-chip connections of the reaction module. The ADC module is the source of data
monitored from external sensors, usually voltage information, which is used by the reaction channel
modulation to generate an PWM signal control signal in order to maintain the load current within a certain
predefined boundary. The on-chip eTPU module is commonly used as the source for controlling the
activation of a reaction channel. Alternatively an eMIOS or PIT module can be used to provide that control
signal.

Figure 23-1. Reaction module system interconnection

eTPU
eTPU

Reaction Module

CPU

register access
bus

(eTPU
channels)

device pins

ADC

side
port

ADC sampled
data

Reaction
Channels

rchn_a

rchn_b

rchn_c

System

SDM

(PSI)

can be driven by
CPU

Timer
channels

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

692 Freescale Semiconductor

Each reaction channel has three independently programmable outputs. The outputs do not have a
predefined ON or OFF state meaning that the definition of ON and OFF depends upon the application.

Figure 23-2 illustrates the interconnection between a reaction channel and the blocks in the reaction
module. The indexes next to the blocks indicate the order in which each submodule executes an action
during the modulation process. A simplified sequence of these steps is described as follows:

1. A new ADC result from the eQADC module is received, triggering one reaction channel.

2. The triggered reaction channel generates the Modulation Word address based on the data
programmed in the internal configuration register.

3. A Modulation word is selected by the reaction channel.

4. The selected Modulation Word generates the address for the Threshold Bank.

5. The Threshold bank selected data is compared against the incoming ADC result.

6. The comparison result is sent back to the channel.

7. The reaction channel executes modulation action and updates the channel output.

In order to execute steps 1 through 7 the reaction module takes five module clock cycles.

The reaction channel sets the outputs according to fields HOD or LOD provided by the selected
modulation word.

Figure 23-2. Channel interaction with internal submodules

Modulation
Control Bank

Bank

Timer Timer
Bank

CHn

Comparator

Timer
Channels

eQADC
side port

Timer

Bank
Holdoff

rchn_a

rchn_b

rchn_c

[15:0]

greater or equal

Threshold

1

ADC result

ADC TAG

reaction
channel

Shared Timer Bank

23

4

5
6

7

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 693

Figure 23-3 shows the reaction module internal architecture. The channels are controlled by a Modulation
Control Word provided by the Modulation Control Bank submodule. The Modulation Word has
information about the type of modulation to be executed as well as the addresses for the Threshold and
Timer banks. The channel stores information such as the address of the modulation word and initial values
for the output pins after the channel is enabled.

Note that the modulation process only initiates after the channel is moved to the active state. The following
sections describe this process in more detail.

After the activation, the channel sets the outputs with a predefined value stored in the REACM Channel n
Configuration Register (REACM_CHCRn). Only after this initialization process is the channel ready to
start a modulation process. Note that the channel only considers an ADC result as valid if it is within a
window defined by the timer input, usually connected to the on-chip eTPU. The reaction channel can
access more than one modulation word by incrementing the internal MODULATION_ADDR field in the
REACM_CHCRn. The original value of this field is preserved, thus when a new modulation cycle is
initiated the same modulation address value may be used.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

694 Freescale Semiconductor

Figure 23-3. Reaction module block diagram

Table 23-1 lists the MPC5644A reaction module outputs.
:

Table 23-1. Reaction module outputs

Reaction channel Output pin

rch0_a eTPU14

rch0_b eTPU20

Timer Timer Bank

CH0

CH1

CH2

CH5

Timer

Bank
Hold-off

rch0_a

rch0_b

rch0_c

rch1_a

rch1_b

rch1_c

rch2_a

rch2_b

rch2_c

rch5_a

rch5_b

rch5_c

Modulation
Control Bank

word n

word n+1

word n+2

address

data

allocate
timer

select
timeout

Bank

Comparator



Threshold
address

32-bit

32-bit

ADC RoutereQADC
side port

router info

ADC Data

TAG
ADC TAG

Timer Router

router info

32-bit

ch sel

16

6

Timer
Channels [15:0]

12-bit

16-bit

3 Timers
timer cnt value

hold-off cnt value

(PSI)

reaction
channel

reaction
channel

reaction
channel

reaction
channel

store ADC result

threshold n

threshold n+1

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 695

Timer channels, such as eTPU channel outputs, are connected to the Channel Router. This submodule
routes each timer channel to a reaction channel. Note that one timer channel can be routed to more than
one reaction channel.

The modulation process starts when an ADC result arrives and the time window is active. The ADC Router
sends a trigger signal to all channels indicating that an ADC result is available. The channel address
resolution is based on the TAG field received with the incoming ADC result. After decoding the TAG field
the channel accesses the modulation word using the information stored in the REACM_CHCRn.

The Threshold Bank submodule stores values to be used on the comparison with incoming ADC results.
The address for the stored values is generated by the Modulation Control Word Bank. This address
generation is actually executed in a two-step process since the modulation word is first addressed by the
channel which then generates the address for the Threshold Bank. After having both inputs defined the
Comparator generates the comparison result back to the channels.

The Hold-off Timer Bank address is also stored in the modulation word. The reaction channel uses that
information for the modulation process which requires the output to remain OFF during a certain amount
of time. The hold-off counter itself is located inside each one of the channels.

23.2 Signal description

Table 23-2 shows the chip-level signals for the Reaction Module.

rch0_c eTPU21

rch1_a eTPU15

rch1_b eTPU9

rch1_c eTPU10

rch2_a eTPU16

rch2_b eMIOS2

rch2_c eMIOS4

rch3_a eTPU17

rch3_b eMIOS10

rch3_c eMIOS11

rch4_a eTPU18

rch4_b eTPU11

rch4_c eTPU12

rch5_a eTPU19

rch5_b eTPU28

rch5_c eTPU29

Table 23-1. Reaction module outputs (continued)

Reaction channel Output pin

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

696 Freescale Semiconductor

23.2.1 REACM_RCHn — REACM Channel (n) Output Pin a, b and c

Each reaction channel provides three outputs to be connected to device primary output PADs. These
outputs can be configured as necessary in order to meet application requirements. Thus the active state as
well as overall functionality are defined by the registers within the Reaction Module and the defined
sequence of operation. The reset state for these outputs is zero.

23.3 Memory map and register definition

This section provides a detailed description of all Reaction Module registers accessible to the end user.

23.3.1 Module memory map

Table 23-3 presents the reaction module memory map.

Table 23-2. Signal properties

Name Function

RCHn_a Output pin ‘a’ of reaction channel ‘n’

RCHn_b Output pin ‘b’ of reaction channel ‘n’

RCHn_c Output pin ‘c’ of reaction channel ‘n’

Table 23-3. Reaction module memory map

Offset from REACM
base address

(0xC3FC_7000)
Register name

Size in
words

Location

0x0000 REACM module configuration register (REACM_MCR) 1 on page
23-698

0x0004 REACM Timer Configuration Register (REACM_TCR) 1 on page
23-699

0x0008 REACM Threshold Router Register (REACM_THRR) 1 on page
23-700

0x000C Reserved

0x0010 REACM ADC Sensor Input Register (REACM_SINR) 1 on page
23-701

0x0014 – 0x001F Reserved

0x0020 REACM Global Error Flag Register (REACM_GEFR) 1 on page
23-702

0x0024 – 0x00FF Reserved

0x0100 +
(n*0x10)

REACM Channel n Configuration Register (REACM_CHCRn)
(n = 0–5)

6 on page
23-703

0x0100 +
(n*0x10 + 0x4)

REACM Global Error Flag Register (REACM_GEFR) (n = 0–5) 6 on page
23-706

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 697

23.3.2 REACM module configuration register (REACM_MCR)

The REACM module configuration register (REACM_MCR) contains the control bits to configure the
general operation of the Reaction Module.

0x0100 +
(n*0x10 + 0x8)

REACM Channel n Router Register (REACM_CHRRn) (n = 0–5) 6 on page
23-709

0x0100 +
(n*0x10 + 0xC)

Reserved (n = 0–5)

0x0160 – 0x02FF Reserved

0x0300 – 0x0308 REACM Shared Timer Bank Registers (REACM_STBK) 3 on page
23-710

0x030C – 0x037F Reserved

0x0380 – 0x0388 REACM Hold-off Timer Bank Registers (REACM_HOTBK) 3 on page
23-711

0x038C – 0x03FF Reserved

0x0400 – 0x045C REACM Threshold Bank Register (REACM_THBK) 24 on page
23-711

0x0460 – 0x05FF Reserved

0x0600 REACM ADC result maximum limit check register
(REACM_ADCMAX)

1 on page
23-712

0x0604 – 0x067F Reserved

0x0680 REACM Modulation Range Pulse Width Register
(REACM_RANGEPWD)

1 on page
23-713

0x0684 – 0x06BF Reserved

0x06C0 REACM Modulation Minimum Pulse Width Register
(REACM_MINPWD)

1 on page
23-714

0x06C4 – 0x06FF Reserved

0x0700 – 0x072C REACM Modulation Control Word Bank Registers
(REACM_MWBK)

12 on page
23-714

0x0730 – 0x0FFF Reserved

Table 23-3. Reaction module memory map (continued)

Offset from REACM
base address

(0xC3FC_7000)
Register name

Size in
words

Location

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

698 Freescale Semiconductor

Figure 23-4. REACM module configuration register (REACM_MCR)

Address: REACM_BASE (0xC3FC_7000) + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0

M
D

IS

F
R

Z

0

F
R

E
N

T
P

R
E

N

H
P

R
E

N

G
IE

N

O
V

R
E

N 0 0 0 0 0 0 0

W
O

V
R

C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-4. REACM_MCR field descriptions

Field Description

0
OVRC

Overrun Detection Flag Clear
The OVRC clears the OVR flag if write 0x1. This bit reads always as 0x0. If a set event occurs at the
same time a flag clear is done, the set event has precedence over the clear thus the flag remains set.
0 No action
1 Clears OVR bit

1
MDIS

Module Disable
The MDIS bit puts the Reaction Module in low power mode. Communication through the slave-bus
Interface is ignored in this mode except writes to the REACM_MCR which are allowed, except for the
FRZ and FREN bits. The global debug signal state is not changed internally while in low power mode.
0 Normal Mode
1 Low Power Mode

2
FRZ

Freeze Control
The FRZ bit controls the state of the Reaction Module regarding debug operation. If FREN bit is asserted
and FRZ bit is also asserted the module enters debug mode. In this mode all time bases are halted and
the channels outputs are controlled solely by software. See Section 23.1.2.4, Debug mode. This bit
cannot be written if MDIS bit is asserted or when the Reaction Module is in stopped by a device stop
request.
0 Normal Mode
1 Debug Mode

3 Reserved, should be cleared.

4
FREN

Freeze Enable
The FREN bit enables the Reaction Module to enter debug mode. The debug mode is controlled either
by the FRZ bit or by a global debug signal. This bit cannot be written if MDIS bit is asserted or when the
Reaction Module is in stopped by a device stop request.
0 Debug Mode disabled
1 Debug Mode enable

5
TPREN

Timer Prescaler Enable
The TPREN bit enables the Shared Timer Prescaler in the Reaction Module.
0 Prescaler Disabled
1 Prescaler Enabled

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 699

23.3.3 REACM Timer Configuration Register (REACM_TCR)

The REACM Timer Configuration Register (REACM_TCR) contains the prescaler settings to configure
the operation of the Reaction Module Holdoff Timer and Shared Timers. It is recommended to change the
value of the prescalers either when the prescalers are disabled by its control enable bits HPREN and
TPREN in the REACM_MCR or when the counters are not being used by any channel. Note that the
prescalers are completely independent, thus modifying HPRE does not affect TPRE and modifying TPRE
does not affect HPRE.

Figure 23-5. REACM Timer Configuration Register (REACM_TCR)

6
HPREN

 Hold-off Prescaler Enable
The HPREN bit enables the Hold-off Prescaler in the Reaction Module.
0 Prescaler Disabled
1 Prescaler Enabled

7
GIEN

Global Interrupt Enable
The GIEN bit enables the assertion of the interrupt request to the CPU when any of the channel flags or
the OVR flag are set. The channel error flag bits are: MAXL, OCDF, SCDF and TAER. Note that for the
interrupt to be asserted these flag bits need also to be enabled by the corresponding enable bit defined
in Section 23.3.7, REACM Channel n Configuration Register (REACM_CHCRn).
0 Interrupt disabled
1 Interrupt enabled
Note: The GIEN bit only affects the general interrupt signal, and not the individual channel interrupts.

GIEN=0 does not inhibit the channel interrupts.

8
OVREN

Overrun Detection Interrupt Enable
The OVREN enables the OVR flag, when set, to generate a global interrupt request for the CPU.
0 Interrupt disabled
1 Interrupt enabled

9–31 Reserved, should be cleared.

Address: REACM_BASE (0xC3FC_7000) + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
HPRE[11:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
TPRE[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-4. REACM_MCR field descriptions (continued)

Field Description

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

700 Freescale Semiconductor

23.3.4 REACM Threshold Router Register (REACM_THRR)

The REACM Threshold Router Register (REACM_THRR) routes the ADC result to the Threshold Bank.
Since a TAG is assigned for each ADC result coming from the on-chip ADC module, this TAG is specified
in this register and used for the routing process. These ADC result is written to the Threshold Value Bank
as soon as it is received by the Reaction Module. Note that THRADC0 and THRADC1 TAG values may
also be used by the reaction channels. In this case the results are routed to both, the channel and the
Threshold Bank.

NOTE

Due to the timing in which these parallel events occur, if the channel uses
the same Threshold Bank address in which the incoming ADC result was
written to, this ADC result is used for the channel modulation being
executed.

Figure 23-6. REACM Threshold Router Register (REACM_THRR)

Table 23-5. REACM_TCR field descriptions

Field Description

0–3 Reserved, should be cleared.

4–15
HPRE
[11:0]

Hold-off Timer Prescaler
The HPRE[11:0] field defines the rate of the Hold-off Timers on each reaction channel. If its value is zero
the prescaler is bypassed thus the Hold-off timer operates at the module clock rate. If HPRE = 0x01 the
module operates at module clock divide by two and so forth up to HPRE = 0xFFF which defines system
clock divided by 4096.

16–23 Reserved, should be cleared.

24–31
TPRE
[7:0]

Timer Prescaler
The TPRE[7:0] field defines the rate of the Timers on the Timer bank. If its value is zero the prescaler is
bypassed thus the Timer operates at the module clock rate. If TPRE = 0x01 the Timer operates at
module clock divide by two and so forth up to TPRE = 0xFF which defines module clock divided by 256
as the frequency of operation for the Timer.

Address: REACM_BASE (0xC3FC_7000) + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0

W
R

E
N

1

W
R

E
N

0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
THRADC1[3:0]

0 0 0 0
THRADC0[3:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 701

23.3.5 REACM ADC Sensor Input Register (REACM_SINR)

The REACM ADC Sensor Input Register (REACM_SINR) is used to monitor the ADC Interface (see
Section 23.4.6, ADC interface) and allows the software to define the ADC result and TAG values for the
Reaction Module. Also, ADC values captured after filtering can be transferred to the Reaction Module by
the CPU. Writes to this register overwrite any value coming from the ADC interface, thus it should be used
when no ADC conversion has the Reaction Module as the target. Writing to this register triggers the
reaction channel selected by the TAG value to execute a comparison and to evaluate an eventually new
value for the channel outputs.

Figure 23-7. REACM ADC Sensor Input Register (REACM_SINR)

Table 23-6. REACM_THRR field descriptions

Field Description

0–5 Reserved, should be cleared.

6
WREN1

Write Enable Bit for THRADC1
The WREN1 write enable bit 1 controls if the ADC result having a TAG matching to THRADC1 field
will be written into address one of the Threshold Bank.
1 Write received ADC result to Threshold bank address one
0 Do not write received ADC result to Threshold bank

7
WREN0

Write Enable Bit for THRADC0
The WREN0 write enable bit 0 controls if the ADC result having a TAG matching to THRADC0 field
will be written into address zero of the Threshold Bank.
1 Write received ADC result to Threshold bank address zero
0 Do not write received ADC result to Threshold bank

8–19 Reserved, should be cleared.

20–23
THRADC1

[3:0]

ADC result Router value for Threshold Bank address one
The THRADC1[3:0] field controls the routing from the received ADC result to the Threshold Bank
address one. Any ADC result which TAG matching THRADC1 will be routed to Threshold Bank.

24–27 Reserved, should be cleared.

28–31
THRADC0

[3:0]

ADC result Router for Threshold Bank address zero
The THRADC0[3:0] field controls the routing from the received ADC result to the Threshold Bank
address zero. Any ADC result which TAG matching THRADC0 will be routed to Threshold Bank.

Address: REACM_BASE (0xC3FC_7000) + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0
ADC_TAG[3:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ADC_RESULT[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

702 Freescale Semiconductor

23.3.6 REACM Global Error Flag Register (REACM_GEFR)

The REACM Global Error Flag Register (REACM_GEFR) helps the software in the resolution of error
conditions signaled by the reaction channels. This allows a faster service in error handling. This register
mirrors the Error Flag in the REACM Channel n Status Register (REACM_CHSRn).

Figure 23-8. REACM Global Error Flag Register (REACM_GEFR)

Table 23-7. REACM_SINR field descriptions

Field Description

0–11 Reserved, should be cleared.

12–15
ADC_TAG

[3:0]

TAG value
The ADC_TAG[3:0] represents the TAG for the ADC conversion which is used by the Reaction
Module to select the reaction channel to execute the modulation.

16–31
ADC_RESULT

[15:0]

ADC conversion result value
The ADC_RESULT[15:0] represents the value resulting from an ADC conversion. This value is
used for the Reaction Channel Modulation process or for capturing by the Threshold Bank.

Address: REACM_BASE (0xC3FC_7000) + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OVR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 EF5 EF4 EF3 EF2 EF1 EF0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-8. REACM_GEFR field descriptions

Field Description

0
OVR

Overrun Detection Flag
The OVR flag is used to indicate that an overrun condition was detected at the ADC Interface. See
Section 23.4.6, ADC interface.
1 Overrun detected
0 Overrun not detected

1–25 Reserved, should be cleared.

26–31
EFn

Error Flag
The EFn error flag bit indicates an error condition occurred in channel n. This bit is provided for a
fast channel error resolution in the Reaction module. The condition could be any error indicated by
MAXL, OCDF, SCDF, SQER, RAER, or TAER error flags as described in Section 23.3.8, REACM
Channel n Status Register (REACM_CHSRn). The EFn bit is automatically cleared if the
corresponding channel flags are all cleared.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 703

23.3.7 REACM Channel n Configuration Register (REACM_CHCRn)

The REACM Channel n Configuration Register (REACM_CHCRn) controls the channel behavior.

Figure 23-9. REACM Channel n Configuration Register (REACM_CHCRn)

Address: REACM_BASE (0xC3FC_7000) + 0x0100 + (n* 0x0010 + 0x0000) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

CHEN[1:0]
S

W
M

C

M
A

X
LE

N

O
C

D
F

E
N

S
C

D
F

E
N

TA
E

R
E

N

S
Q

E
R

E
N

R
A

E
R

E
N

D
M

A
E

N

C
H

O
F

F 0 0

DOFF[2:0]W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
BSB[2:0]

0 0
MODULATION _ADDR[5:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-9. REACM_CHCRn field descriptions

Field Description

0–1
CHEN[1:0]

Channel Enable Bits
The CHEN[1:0] bits control the activation of the reaction channel. Once changed from
disabled, CHEN = 00, to any enabled state, the channel reads the first Modulation Word
and initializes itself in order to be ready to execute a modulation as soon as a timer control
window is detected or SWMC = 1, if software modulation control is selected by
CHEN = 11.
00 Channel disabled, meaning that it does not execute any modulation even if a timer

window is detected or SWMC is made active. In this mode DOFF field in the
REACM_CHCR defines the state of the channel outputs.

01 Channel is enabled for timer control only, meaning that as soon as a timer window is
detected a modulation sequence starts.

10 Reserved
11 Channel enabled for software control only, meaning that as soon as SWMC bit is set

a modulation sequence starts.

Note: If CHEN is programed with 01 or 11 enabling a channel, and the eTPU time window
is already active (or SWMC = 1), the reaction channel disregards this window and
waits until the next window activation in order to start the modulation process by
moving to the active state. In order to start a modulation controlled by software, it
is necessary to first write CHEN = 1 and only after that write SWMC = 1.

2
SWMC

Software Modulation Control bit
If this bit is set, the channel initiates a modulation. It is equivalent to the assertion of an
eTPU channel connected to the Reaction module. In order for this functionality to be used
it is required that CHEN[1:0] = 11.
1 Channel executes modulation
0 Channel does not perform modulation

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

704 Freescale Semiconductor

3
MAXLEN

ADC result Maximum Limit Interrupt Enable bit
The MAXLEN enables the MAXL flag, when set, to generate an interrupt request for the
CPU.
1 Interrupt enabled
0 Interrupt disabled

4
OCDFEN

OCDF Interrupt Enable bit
The OCDFEN bit enables the OCDF bit to issue an interrupt request.
1 OCDF interrupt enabled
0 OCDF interrupt disabled

5
SCDFEN

SCDF Interrupt Enable bit
The SCDFEN bit enables the SCDF bit to issue an interrupt request.
1 SCDF interrupt enabled
0 SCDF interrupt disabled

6
TAEREN

TAER Interrupt Enable bit
The TAEREN bit enables the TAER bit to issue an interrupt request.
1 TAER interrupt enabled
0 TAER interrupt disabled

7
SQEREN

Modulation Word Sequence Error Interrupt Enable
The SQEREN bit enables the SQER flag to generate an interrupt request.
1 SQER interrupt enabled
0 SQER interrupt disabled

8
RAEREN

Resource Allocation Error Interrupt Enable
The RAEREN bit enables the RAER flag to generate an interrupt request.
1 RAER interrupt enabled
0 RAER interrupt disabled

9
DMAEN

Direct Memory Access Enable bit
The DMAEN bit enables a DMA request by the channel when an Modulation Word
sequence advance occurs.
1 Enables channel DMA request
0 Disables channel DMA request

10
CHOFF

Output Disable bit
The CHOFF bit allows disabling the output pin. DOFF[2:0] field is used as disable state
for the channel outputs. The output pins will set to DOFF value if CHOFF is asserted.
Note that disabling the channel through CHOFF does not disable the channel operation,
only the channel outputs are forced to DOFF state.
1 Output Disable Enabled
0 Output Disable Disabled

11–12 Reserved, should be cleared.

Table 23-9. REACM_CHCRn field descriptions (continued)

Field Description

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 705

23.3.8 REACM Channel n Status Register (REACM_CHSRn)

The REACM Channel n Status Register (REACM_CHSRn) provides access to the channel flags and flag
clear bits. It also provides access to the current values of the channel output being driven and the
Modulation Word being accessed by the channel.

13–15
DOFF[2:0]

Drive Off Control field
The DOFF[2:0] field defines the reaction channel output disabled state. This condition is
achieved either when CHEN = 00, or after CHEN activation, or when Output is disabled
by CHOFF in the Channel Configuration register.

Note: It is possible to control the channel outputs directly through the software by writing
to the DOFF bits. Refer to Table 23-10. In this case the channel should be in the
disabled state, CHEN = 00. If the DOFF value is changed just after the channel is
enabled, it is not assured the new DOFF value is immediately used in the channel
output.

16–20 Reserved, should be cleared.

21–23
BSB[2:0]

Bank Support Bits
The BSB[2:0] provides control for a banked mode operation of the Reaction Module.
Each bit in this field controls the channel outputs chn_c, chn_b and chn_a respectively.
When asserted the channel output implements an OR with the corresponding output of
the subsequent channel.

24–25 Reserved, should be cleared.

26–31
MODULATION_ADDR

[5:0]

Address for Modulation Control Bank
The MODULATION_ADDR[5:0] field has the address of the Modulation Word in the
Modulation Control Bank. This address is used as a base address for the first modulation
word. The reaction channel can access subsequent words in the Modulation Control
Bank by incrementing the Modulation Address field. Note that this field is not modified by
the reaction channel in this process.

Table 23-10. Output assignment through DOFF

DOFF Channel output Comments

DOFF[0] CHn_a DOFF[0] bit defines CHn_a output pin value

DOFF[1] CHn_b DOFF[1] bit defines CHn_b output pin value

DOFF[2] CHn_c DOFF[2] bit defines CHn_c output pin value

Table 23-9. REACM_CHCRn field descriptions (continued)

Field Description

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

706 Freescale Semiconductor

Figure 23-10. REACM Channel n Status Register (REACM_CHSRn)

Address: REACM_BASE (0xC3FC_7000) + 0x0100 + (n* 0x0010 + 0x0004) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

0 0

M
O

D
A

C
T

M
A

X
L

O
C

D
F

S
C

D
F

TA
E

R

S
Q

E
R

R
A

E
R

CHOUT[2:0] 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 MODULATION_POINTER[5:0]

W

M
A

X
LC

O
C

D
F

C

S
C

D
F

C

TA
E

R
C

S
Q

E
R

C

R
A

E
R

C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-11. REACM_CHSRn field descriptions

Field Description

0–1 Reserved, should be cleared.

2
MODACT

Modulation Active Flag
The MODACT flag indicates that the channel is enabled and active thus executing a modulation
cycle.
1 Channel is active
0 Channel is not active

3
MAXL

ADC Maximum Limit Detection Flag
The MAXL flag indicates that the ADC result which TAG is addressing this channel achieved or
passed the maximum allowed limit specified in the ADCMAX register. This flag is set only if the
channel is in the active state (see Section 23.1.2.3, Channel modes).
1 ADC Maximum Limit Detected
0 Normal operation

4
OCDF

Open Circuit Detection Flag
The OCDF flag indicates that an open circuit was detected in the channel load using the PWM
monitored modulation, as described in Section 23.6, “Monitored modulation. This Flag is set
only of the channel is in the active state.
1 Open Circuit Detected
0 Normal operation

5
SCDF

Short Circuit Detection Flag
The SCDF flag indicates that a short circuit was detected in the channel load using the PWM
monitored modulation, as described in Section 23.6, “Monitored modulation. This Flag is set if
the channel activation window signal is set (eTPU channel or SWMC bit).
1 Short Circuit Detected
0 Normal Operation

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 707

6
TAER

Timer Allocation Error
The Timer Allocation Error bit indicates that the channel tried to allocate a timer counter in the
Shared Timer Bank without success. This situation is an indication that the Timer resources
available in the module are not sufficient to execute the required functionality. This error
indication is used during software development and should not occur during normal use of the
module since it may result in incorrect operation. This Flag is set only of the channel is in the
active state.
1 Error occurred during timer allocation
0 No error occurred during timer allocation.

7
SQER

Modulation Word Sequence Error Flag
The SQER bit indicates a Modulation Sequence error occurred, meaning that the time window
which defines a modulation cycle ended in a premature modulation phase. The correct
modulation phase for the time window to close is when SM field in the Modulation Word indicates
no advance, or SM = 00. This Flag is set only of the channel is in the active state.
1 Modulation Sequence Error occurred
0 Modulation Sequence Error did not occur.

8
RAER

Resource Allocation Error Flag
The RAER bit indicates that a resource allocation error occurred. The possible allocation errors
are: Modulation Control Word address is out of available range (including if the
MODULATION_POINTER increments to an inexistent MCW address or wraps to 0x0),
Threshold Value Bank address is out of available range, Hold-off Timer Bank address is out of
available range, Shared Timer Bank address is out of available range, Channel Input Router
points to an inexistent eTPU channel, and when the Hold-off timer is select for both modulation
and sequence advance at the same time (i.e, SM = 10 and MM = 01). Note that the amount of
hardware resources is configuration dependent thus may vary according to module
instantiations in the SoC. This flag is intended to help on the debug of the Reaction Module
during software development and can be set only if the channel is in the enabled state.
1 Allocation error occurred
0 No allocation error occurred

Note: The condition that sets the RAER bit must be resolved prior to clear the bit, otherwise the
bit can be set again.

9–11
CHOUT[2:0]

Channel Output Monitoring bits
The CHOUT[2:0] Channel Output Monitoring bits provides for the software the ability to monitor
the output provided by the channel. This data is not buffered thus represents the channel output
at the time the CPU read access is done. CHOUT[0] corresponds to the chn_a output,
CHOUT[1] corresponds to the chn_b output and CHOUT[2] corresponds to the chn_c output pin.
These bits are available independent of the channel mode or state.

12–18 Reserved, should be cleared.

19
MAXLC

ADC Maximum Limit Flag Clear
The MAXLC clears the MAXL flag if write 0x1. This bit reads always as 0x0. If a set event occurs
at the same time a flag clear is done, the set event has precedence over the clear thus the flag
remains set.
1 Clears MAXL bit
0 No action

20
OCDFC

Open Circuit Detection Flag Clear
The OCDFC clears the OCDF flag if write 0x1. This bit reads always as 0x0
1 Clears OCDF bit
0 No action

Table 23-11. REACM_CHSRn field descriptions (continued)

Field Description

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

708 Freescale Semiconductor

23.3.9 REACM Channel n Router Register (REACM_CHRRn)

The REACM Channel n Router Register (REACM_CHRRn) controls the channel interconnection to
external timers, such as eTPU and eMIOS and ADC result data. The channels have access to any 16 timer
inputs and any ADC sample tag from 0 to 15. Note that this architecture allows several reaction channels
to point to the same timer channel or to the same ADC result.

21
SCDFC

Short Circuit Detection Flag clear
The SCDFC bit clears the SCDF flag if write ‘1’. This bit is self negated thus read always as ‘0’.
If a set event occurs at the same time a flag clear is done, the set event has precedence over
the clear thus the flag remains set.
1 Clears SCDF
0 No action

22
TAERC

TAER Clear bit
The TAERC bit clears the TAER bit if write ‘1’. This bit is self-negated thus reads always as ‘0’.
If a set event occurs at the same time a flag clear is done, the set event has precedence over
the clear thus the flag remains set.
1 Clears TAER
0 No action

23
SQERC

Modulation Word Sequence Error Flag clear
The SQERC bit clears the SQER flag in the Channel Status register.
1 SQER flag is cleared
0 SQER flag is not cleared

24
RAERC

Resource Allocation Error Flag clear
The RAERC bit clears the RAER flag in the Channel Status register.
1 RAER flag is cleared
0 RAER flag is not cleared

25 Reserved, should be cleared.

26–31
MODULATION_
POINTER[5:0]

Modulation bank address generated by the channel
The MODULATION_POINTER[5:0] gives to the software the information of the current address
being generated by the channel to access the Modulation Word. Note that the address
increments from a base address stored in the channel, MODULATION_ADDR[5:0]. This register
is not buffered thus represents the current address being generated.

Table 23-11. REACM_CHSRn field descriptions (continued)

Field Description

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 709

Figure 23-11. REACM Channel n Router Register (REACM_CHRRn)

Address: REACM_BASE (0xC3FC_7000) + 0x0100 + (n* 0x0010 + 0x0008) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
ADCR[3:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
CHIR[3:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-12. REACM_CHRRn field descriptions

Field Description

0–11 Reserved, should be cleared.

12–15
ADCR[3:0]

ADC result router field
The ADCR[3:0] field selects which ADC result is used by the reaction channel for the modulation.
The TAG[3:0] received along with the ADC result is used for comparison with the ADCR[3:0] field
in order to define if the received result is used by the reaction channel.

16–27 Reserved, should be cleared.

28–31
CHIR[3:0]

Channel Input router field
The CHIR[3:0] field selects which eTPU channel is used by the reaction channel for the
modulation. See Table 23-13 for valid values.

Table 23-13. REACM_CHRRn[CHIR] values

CHIR[3:0] eTPU A channel

0b0000 10

0b0001 11

0b0010 12

0b0011 13

0b0100 14

0b0101 15

0b0110 16

0b0111 17

0b1000 18

0b1001 19

0b1010 20

0b1011 21

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

710 Freescale Semiconductor

23.3.10 REACM Shared Timer Bank Registers (REACM_STBK)

The REACM Shared Timer Bank Registers (REACM_STBK) is a set of registers which define the values
used by the Reaction Module Timer. The timer values are programmed by the host CPU during the
configuration of the Reaction Module. Modulation Word accessed by the reaction channel contains the
address of a specific Timer value stored in the Shared Timer bank. By selecting a Timer value the reaction
channel also selects and enables a counter. When this counter reaches the selected Timer value a timeout
indication is generated for the reaction channel that initiated the counter. This event is used, for example,
to indicate that a next Modulation Word should be used for the modulation.

Figure 23-12. REACM Shared Timer Bank Registers (REACM_STBK)

23.3.11 REACM Hold-off Timer Bank Registers (REACM_HOTBK)

The REACM Hold-off Timer Bank Registers (REACM_HOTBK) is a set of registers that defines the
values used by the reaction channels to measure hold-off time on certain modulation schemes. The timer
values are programmed by software and addressed by the reaction channel based on the data read from a
Modulation Word.

0b1100 to 0b1111 Reserved

Address: REACM_BASE (0xC3FC_7000) + (from 0x0300 to 0x0308) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SHARED_TIMER[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-14. REACM_STBK field descriptions

Field Description

0–15 Reserved, should be cleared.

16–31
SHARED_TIMER

[15:0]

Timer Value
The SHARED_TIMER[15:0] value is one element of the Timer Register Bank. Up to three timer
values can be stored within the Timer Bank.

Note: When using the shared timer for sequence advance, the counted time (considering
prescaler) must be greater than 64 clock cycles.

Table 23-13. REACM_CHRRn[CHIR] values (continued)

CHIR[3:0] eTPU A channel

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 711

Figure 23-13. REACM Hold-off Timer Bank Registers (REACM_HOTBK)

23.3.12 REACM Threshold Bank Register (REACM_THBK)

The REACM Threshold Bank Register (REACM_THBK) holds the value to be used for comparison
against results received from the ADC. Based on that comparison the reaction channel decides the Channel
output value to be either HOD or LOD.

Figure 23-14. REACM Threshold Bank Register (REACM_THBK)

Address: REACM_BASE (0xC3FC_7000) + (from 0x0380 to 0x0388) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
HOLD_OFF[11:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-15. REACM_HOTBK field descriptions

Field Description

0–19 Reserved, should be cleared.

20–31
HOLD_OFF[11:0]

Hold-off Timer Value
The HOLD_OFFT[11:0] value is one element of the Hold-off Timer Register Bank. Up to three
values can be stored within the Hold-off Timer Bank.

Note: When using the hold-off timer for sequence advance, the counted time (considering
prescaler) must be greater than 64 clock cycles.

Address: REACM_BASE (0xC3FC_7000) + (from 0x0400 to 0x045C) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
THRESHOLD_VALUE[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

712 Freescale Semiconductor

23.3.13 REACM ADC result maximum limit check register
(REACM_ADCMAX)

The REACM ADC result maximum limit check register (REACM_ADCMAX) holds the maximum
expected value of the ADC result. If a value greater than ADC_MAX_LIMIT is received the MAXL bit
in the corresponding Channel Status Register Error is asserted.

Figure 23-15. REACM ADC result maximum limit check register (REACM_ADCMAX)

23.3.14 REACM Modulation Range Pulse Width Register
(REACM_RANGEPWD)

The REACM Modulation Range Pulse Width Register (REACM_RANGEPWD) provides the value used
to check if the PWM pulse width generated during the modulation process is larger than a maximum pulse

Table 23-16. REACM_THBK field descriptions

Field Description

0–15 Reserved, should be cleared.

16–31
THRESHOLD_VALUE

[15:0]

Threshold Value
The THRESHOLD_VALUE[15:0] unsigned value is one element of the Threshold
Register register used for a threshold modulation.

Address: REACM_BASE (0xC3FC_7000) + (from 0x0600) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W

Reset

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ADC_MAX_LIMIT[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-17. REACM_ADCMAX field descriptions

Field Description

0–15 Reserved, should be cleared.

16–31
ADC_MAX_LIMIT[15:0]

Maximum Limit allowed for the ADC result
The ADC_MAX_LIMIT[15:0] value indicates the maximum expected value for the ADC
result. The MAXL bit in the corresponding channel Status register is set in case a
greater or equal value is received from the ADC. If set to zero no limit checking is
performed, thus MAXL bit will not be set anyway.

Note: ADC results are always considered unsigned unless specific note states the
contrary. Since ADC received results are 14-bit values a two bit sign extension
must be performed before any comparison is executed.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 713

width specified by (MIN_PWD + RANGE_PWD). The checking is performed by the channel logic during
appropriate time intervals, see Section 23.6, Monitored modulation. This function is implemented by
sharing the use of reaction channel Hold-off counter, thus if the Hold-off timer is used by the channel
sequence mode (SM in the REACM Modulation Control Word Bank Registers (REACM_MWBK)), this
checking function is not active.

Figure 23-16. REACM Modulation Range Pulse Width Register (REACM_RANGEPWD)

23.3.15 REACM Modulation Minimum Pulse Width Register
(REACM_MINPWD)

The REACM Modulation Minimum Pulse Width Register (REACM_MINPWD) provides the value used
to check if the pulse width generated during the PWM modulation process on the channel outputs is shorter
than a minimum pulse width specified by this register. The checking is performed by using the channel
internal Hold-off timer during appropriate times on the channel operation when this counter is not being
used for the hold-off modulation cycle.

Address: REACM_BASE (0xC3FC_7000) + (from 0x0680) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W

Reset

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
RANGE_PWD[11:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-18. REACM_RANGEPWD field descriptions

Field Description

0–19 Reserved, should be cleared.

20–31
RANGE_PWD[11:0]

Range Pulse Width
The RANGE_PWD[11:0] field defines the maximum pulse width allowed by the
channel PWM generation. The checking is performed by the channel internal Hold-off
Timer at appropriate times in the PWM modulation process. The maximum pulse is
defined as (RANGE_PWD + MIN_PWD) (see Section 23.3.15, REACM Modulation
Minimum Pulse Width Register (REACM_MINPWD) for MIN_PWD description). If
RANGE_PWD = 0x00 then no maximum pulse width checking is performed.

Note: The RANGE_PWD value should be calculated considering the prescaler
settings used for the HOLD_OFF counter. For a programmed (RANGE_PWD +
MIN_PWD) value, a pulse narrower than or equal to (RANGE_PWD +
MIN_PWD + 1) does not set the OCDF flag.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

714 Freescale Semiconductor

Figure 23-17. REACM Modulation Minimum Pulse Width Register (REACM_MINPWD)

23.3.16 REACM Modulation Control Word Bank Registers (REACM_MWBK)

The REACM Modulation Control Word Bank Registers (REACM_MWBK) are a set of registers that
controls the Reaction Channel Modulation scheme. These registers are programmed by software and read
by the reaction channels. All the information required by the reaction channels to perform a modulation is
stored in these words. All channels have access to the same words thus sharing of Modulation Words
among channels is possible in this architecture.

Figure 23-18. REACM Modulation Control Word Bank Registers (REACM_MWBK)

Address: REACM_BASE (0xC3FC_7000) + (from 0x06C0) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W

Reset

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MIN_PWD[11:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 23-19. REACM_MINPWD field descriptions

Field Description

0–19 Reserved, should be cleared.

20–31
MIN_PWD[11:0]

Minimum Pulse Width
The MIN_PWD[11:0] field defines the minimum pulse width allowed by the channel
PWM generation. The checking is performed by the channel hold-off timer. If
MIN_PWD[11:0] = 0x00 then no checking is done even for maximum pulse width or
minimum pulse width.

Note: The MIN_PWD value should be calculated considering the prescaler settings
used for the HOLD_OFF counter.For a programmed MIN_PWD value, a pulse
wider than (MIN_PWD + 1) does not set the SCDF flag.

Address: REACM_BASE (0xC3FC_7000) + (from 0x0700 to 0x072C) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

LO
O

P

IO
S

S 0
MM[1:0]

0
SM[1:0]

0
HOD[2:0]

0
LOD[2:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
THRESPT[5:0] STPT[3:0]

0
HDOFFTPT[3:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 715

Table 23-20. REACM_MWBK field descriptions

Field Description

0
LOOP

Loop Control Bit
The LOOP Control bit indicates that the next Modulation Control Word accessed by the
reaction channel when a Modulation Word address increment event occurs should be
the one indicated by the Channel MODULATION_ADDR[5:0] register with no offset.
1 Loop back to initial channel modulation word
0 Increment to the next modulation word

1
IOSS

Initial Output State Selection
The IOSS bit indicates the state of the channel output pin when the Modulation Word
is just accessed by the reaction channel. This access occurs when the channel is
activated by a Timer Input Channel being asserted, by software using SWMC bit in the
REACM_CHCR or when the modulation phase advances, e.g. due to a timer event.
1 HOD[2:0] is initially used for chn_c, chn_b and chn_a respectively
0 LOD[2:0] is initially used for chn_c, chn_b and chn_a respectively
Note: IOSS must not be 0b0 when MM is 0b01(threshold-holdoff).

2 Reserved, should be cleared.

3–4
MM[1:0]

Modulation Mode
The MM[1:0] Modulation Mode field indicates the type of the modulation that is
executed by the channel. Table 23-21 defines the modulation modes.
Note: IOSS must not be 0b0 when MM is 0b01(threshold-holdoff).

5 Reserved, should be cleared.

6–7
SM[1:0]

Sequencer Mode
The SM[1:0] field defines the event that makes the channel address the next
modulation word. This event can be a timer event or a threshold level event. Note that
the channel does not necessarily increment the Modulation Word address thus the
same Modulation Word is executed again in the new modulation sequence.
Table 23-22 defines the Sequencer modes.

Note: For time-out event selections, it is required the related time be greater than 64
clock cycles

8 Reserved, should be cleared.

9–11
HOD[2:0]

High Output Drive
The HOD[2:0] field defines the values driven on the chn_c, chn_b and chn_a channel
output pins, respectively, when the channel is at ON state.
Note: Set HOD[2:0]=LOD[2:0] when using threshold-threshold modulation together

with sequence advance, in order to avoid fast glitches during the sequence
advance

12 Reserved, should be cleared.

13–15
LOD[2:0]

Low Output Drive
The LOD[2:0] field defines the values driven on the chn_c, chn_b and chn_a channel
output pins, respectively, when the channel is at OFF state.
Note: Set HOD[2:0]=LOD[2:0] when using threshold-threshold modulation together

with sequence advance, in order to avoid fast glitches during the sequence
advance

16 Reserved, should be cleared.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

716 Freescale Semiconductor

17–22
THRESPT[5:0]

Threshold Pointer
The THRESPT[5:0] Threshold Pointer is the address of the Threshold Bank that holds
values to be used for ADC result comparisons in the modulation process. This pointer
has the resolution for a 16-bit data stored in the register described in Section 23.3.12,
REACM Threshold Bank Register (REACM_THBK).

23–26
STPT[3:0]

Shared Timer Pointer
The STPT[3:0] Shared Timer Pointer field is the pointer for the Shared Timer Bank. The
Shared Timer is used as timer sequencer defining the advance of Modulation Words.

27 Reserved, should be cleared.

28–31
HDOFFPT[3:0]

Hold-off Pointer
The HDOFFPT[3:0] field is the address of the Hold-off timer value in the Hold-off Timer
Bank that is used in the modulation cycle. Note that there are modulation sequences
that do not require hold-off measurement such as threshold/threshold modulations.

Table 23-21. MM[2:0] configuration: Modulation modes

MM[2:0] Modulation type Modulation description

00 Threshold/Threshold Modulation occurs between two threshold levels defined by
THRESPT upper level threshold pointer and THRESPT +1 which
corresponds to a lower level threshold pointer. Output ON state is
defined by HOD and Output OFF state is defined by LOD.

01 Threshold/Hold-off Modulation occurs between an upper level threshold defined by
THRESPT and a Hold-off time is initiated after that level is
achieved which set channel outputs to an off state.

10 Reserved —

11 Reserved —

Table 23-22. SM[1:0] configuration: Sequencer modes

SM[1:0] Event Event description

00 No advance Current modulation word is used, no advance is performed on any
event. No timer is activated by this modulation word.

01 Timer time-out Advance to the next modulation word when a Timer time-out event
is detected. The Timer is activated when the modulation word is
accessed by the channel.

10 Hold-off timer time-out Advance to the next modulation word when a Hold-off Timer
time-out event is detected. The Hold-off timer is activated when
the modulation word is accessed by the channel.

11 Threshold level
achieved

Advance to the next modulation word when a threshold level is
achieved. The threshold level is defined by the THRESPT pointer.
See section Section 23.10.1, Advancing modulation phase on a
threshold level.

Table 23-20. REACM_MWBK field descriptions (continued)

Field Description

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 717

23.4 Functional description

The following sections describe the Reaction Module functionality.

The Reaction Module is designed to allow a closed feedback loop control over the driver load currents.
The load can be an injector for a direct injection system or an electromagnetic actuator for a robotized
transmission. In both cases it is expected that a solenoid will actually be the load. The module architecture
is based on shared resources submodules that can be used by all six reaction channels. Please refer to
Figure 23-3 for details about the module architecture. The Reaction Module comprises the following
internal submodules:

• Reaction Channel

• Modulation Control Word Bank

• Shared Timer Bank

• Hold-off Bank

• Threshold Bank

The following sections describe each one of these submodules and their combined operation.

23.4.1 Reaction channel

The Reaction Channel is the core of the Reaction Module. Each channel controls three output pins and is
controlled by a Control finite state machine (FSM) that receives parameters to generate a modulated
waveform as well as the timer control window, usually provided by eTPU. The ADC interface indicates
to the channel that a new ADC result is available. If activated by the eTPU channel, the reaction channel
reads the Modulation Word which provides addresses for the Threshold Value bank, Shared Timer Bank
and Hold-off Timer Bank. The date provided by the Threshold Bank is compared with the incoming ADC
result. Based on that comparison the reaction channel state machine selects the values for the output pin
registers. The modulation only occurs if activated by the timer control signal, which can be generated by
eTPU, or can be controlled by software by writing to the SWMC, software modulation control bit, in the
Channel Configuration register. The MM and SM fields in the Modulation Word provide the Modulation
Mode and Sequencer Mode control, respectively. Figure 23-19 describes the internal architecture of the
reaction channel and its interconnection with other submodules.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

718 Freescale Semiconductor

Figure 23-19. Reaction channel architecture simplified diagram

The addresses stored in the Modulation Word are pointers to timers and threshold banks. HOD and LOD
provides the 3-bit field which controls the states, HIGH and LOW, respectively for the reaction channel
output pins. The reaction channel FSM selects the values for the output pins as well as the load signal used
to update those values. The modulation executed by the reaction channel is based on the feedback loop
provided by the ADC results. These results are routed to one side of a comparator while the other
comparator input receives the selected Threshold value from the threshold bank. The comparison result
indicates for the reaction channel FSM if the output pin value should be defined either by HOD or by LOD.
As a result a PWM is generated on the output pins. Note that since there are three independent outputs the
PWM signal can be generated on any output or even on several outputs at the same time. Usually a PWM
signal is generated in one of the outputs only, while the others outputs are used to control power supply
switching, for example.

Three wave forms are shown at the right side of Figure 23-19. On the top there is control signal from eTPU
which defines the boundaries of the modulated waveform. In the middle there is the PWM waveform
which is used to drive the power on and off at the load, thus generating the third waveform which
represents the current passing through the load.

DOFF[2:0] MODULATION_ADDR[5:0]

MM[1:0] SM[1:0]HOD[2:0] LOD[2:0] THRESPT[5:0]HDOFFPT[3:0]

holdoff timer

Threshold value[15:0]

ADC

eTPU

initial value

Low selection

high selection

sequencing mode

modulation mode

FSM

load
sel

time out

compare

new result trigger

address

address

Reaction Channel

activate/deactivate

etpu window

Reaction PWM

Modulated current

output pins

feed back from the controlled load

v

t

t

i

t

v

}

+1

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 719

23.4.2 Modulation control words bank

The Modulation Control Word provides information about the modulation type to be performed and the
addresses for several address banks. Figure 23-18 describes the REACM Modulation Control Word Bank
Registers (REACM_MWBK) and Figure 23-20 describes the interfaces of this submodule with some other
submodules in the Reaction Module. The informations stored in the Modulation Word are:

• Modulation control parameters for the reaction channel

• Threshold Value Register Bank address

• Hold-off bank address

• Shared Timer bank address

• DMA support

All channels share the information stored in the Modulation Control Word Bank, which provides a
size-effective implementation avoiding the duplication of information and allowing flexible
implementation. The sharing of modulation control words allows several channels to execute the same
modulation sequence.

The Modulation Control is designed to be used by all reaction channels as a centralized resource. However,
only one channel is able to access the Modulation bank at a given time. Therefore, there is a priority in the
selection of the channel that will have the access granted, but note that this condition does not occur too
often since ADC results are provided for one channel at a time.

An arbiter in the Modulation Control Word bank selects one of the channels which are requesting access
to a modulation word. The priority criteria is fixed and based on the channel number, considering Channel
0 the highest priority channel. The channel selected by the arbiter receives an acknowledge signal which
indicates that channel was selected and therefore can access the modulation word.

NOTE

In order to avoid an initial delay when processing a timer window start
event, the channel performs a speculative read operation of the first
modulation word when it is enabled (CHEN is configured). Therefore, when
the modulation cycle is triggered by the timer window start event, all needed
information for the modulation is already stored inside the channel.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

720 Freescale Semiconductor

Figure 23-20. Modulation control word bank interfaces

23.4.3 Shared timer bank

The Shared Timer bank is an innovative concept of dynamic timer allocation. Since the number of timers
can be smaller than the number of channels in the Reaction Module, there is a possibility that all timers
are allocated at a certain time. This architecture is based on the low probability of such scenario since the
timer allocation is a sporadic event. The timers in the Shared Timer Bank are usually in IDLE state until
they are allocated by a channel. Any timer can be allocated as soon as it is IDLE. The shared timers work
in conjunction with a timer bank which stores values to be used by the timing measurement.

The Shared Timer Bank block is composed of two submodules:

• Three 16-bit counters

• A bank with maximum of 16 selectable 16-bit time values

If there is an attempt to allocate more than three timers then an error flag TAER (see Figure 23-10) is set
and no timer is allocated by the requesting channel. As a general guideline the system should be
dimensioned in such a way that the timer allocation is always possible.

NOTE

In case of an allocation error the channel forces DOFF to its output pin
preventing any damage to occur to the actuator being controlled. This state
will not change until bit TAER is cleared.

During the timer allocation the channel also provides the TIMERPT pointer which selects a timing value.
The valued pointed by TIMERPT is loaded into one of the three counters which counts down until reaching
zero. At this time a timeout indication is sent to the requesting channel and the timer is deallocate, moving
back to IDLE state.

REQUEST

SEL

ARBITER/

Request[15:1]

Modulation addr

Modulation

LOOP IOSS TIMERPT HDOFFPTTHRESPT

CPU

Control Word Bank

Channel

Reaction

Access granted

Request

other

channels

SMMM HOD LOD

addr for the
Threshold Bank

addr for the
Timer Bank

addr for the
Hold-off Bank

sel addr

Holdoff

Bank

Modulation Word

CH0

Modulation information

Timer

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 721

In case of several timer activation requests being issued at the same time, the logic in the Timer Bank will
prioritize giving higher priority for the channel with lower number, thus channel zero has higher priority
than the others. No flags are set in the case several requests are issued simultaneously unless there are more
requests than the number of available timers. In this case the TAER error flag is set in the requesting
channel status register. Figure 23-21 presents a block diagram of the Timer Bank.

Figure 23-21. Shared timer bank block diagram

23.4.4 Hold-off timer bank

The Hold-off Timer Bank stores time values that are used by the hold-off periods during the modulation
process. This bank is shared among all channels and is addressed based on the HDOFFPT pointer in the
Modulation Control Word. Figure 23-22 shows a block diagram of this bank and its interconnections.

TIMER

ALLOCATION

TIMER0

Channel Timer TIMER1

TIMER2

TIMER

SELECTION

CHANNEL

CHANNEL[15:0]

Timer value Pointer [3:0]

SHARED TIME BANK

Timer Error indication

CPU

allocation Request [15:0]

in case no timer is available

timeout indication

(back to channel)

set channel TAERR flag

ch tag

ch tag

ch tag

4

4

4

allocation req/ack

allocation req/ack

allocation req/ack

4

4

4

timeout

timeout

timeout

sel channel

LOGIC

16 16 16

16

one line per
channel

one line per channel

shared timer 0

shared timer 1

shared timer 2

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

722 Freescale Semiconductor

Figure 23-22. Hold-off timer bank block diagram

The Modulation Control Word generates the address for the Hold-off Timer bank which then generates the
hold-off value for the channels. The channel that addressed the Modulation Word captures the 12-bit value
storing it in the channel Hold-off timer. In Figure 23-22 channel CH0 is requesting access to the
Modulation Word thus receiving the hold-off value from the Hold-off Timer Bank. Each reaction channel
has its own internal hold-off timer.

23.4.5 Threshold bank and comparator

The Threshold bank and comparator contains the threshold levels to be compared against the ADC results.
This submodule also performs the comparison between the ADC result and the selected threshold value.

The Threshold bank can be programmed with up to 64 threshold values depending on the configuration
defined during the module integration.

An ADC result received from the on-chip ADC is connected to the ADC router and then to the comparator.
See Figure 23-23. This result stays at the comparator input until the Reaction Channel and Modulation
Control Word selects the address of the Threshold value. The THRESPT field in the Modulation Control
Word submodule is used as the address for the Threshold Bank. Note that if Threshold/Threshold
modulation mode is used two comparisons need to be executed with two different Threshold values. After
the first comparison is made the THRESPT pointer is incremented and a new comparison is done:

• First comparison: COMP = ADC_DATA  THRESHOLD_VALUE[THRESPT]

• Second comparison: COMP = ADC_DATA < THRESHOLD_VALUE[THRESPT + 1]

The COMP (comparison result) is routed to the channel selected by the received TAG. Once having
received the comparison result the channel takes the appropriate actions in order to execute the modulation
mode as defined by the modulation control word.

TIMER

BANK

HOLD-OFF
HDOFFPT

Hold-off time value[11:0]

12

4

(to all Reaction channels)

CPU

Modulation

Control

hdt hdt hdt

CH0 CH1 CHn

16

Hold-off timer

Reaction Channels

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 723

Figure 23-23. Threshold bank and comparator block diagram

23.4.6 ADC interface

The ADC Interface connects to the eQADC module through a Parallel Side Port also called PSI. Please
refer to Chapter 25, Enhanced Queued Analog-to-Digital Converter (EQADC) for more information about
this interface. The eQADC sends conversion results to the reaction module which are received by the ADC
interface submodule. The ADC interface is capable of distinguishing between ADC results, Time stamps
and Prefill information from eQADC. Only ADC results with no Prefill are considered by the reaction
module as valid ADC samples. The TAG value received with the conversion result indicates which
channel the result is addressed to. The ADC interface is also responsible to indicate for the selected
reaction channel that a new ADC result is available. It is also possible to access the ADC interface data
through the REACM_SINR register.

NOTE

The ADC interface data (ADC_TAG and ADC_RESULT) should not be
updated until all reaction channels (with ADCR = ADC_TAG) process the
received data. The OVR flag is set in the case of an overrun condition
occurs, indicating that at least one ADC data was lost.

23.4.6.1 Input buffer overrun

The OVR flag indicates than an input buffer overrun occurred. This buffer is normally written by the ADC
interface (PSI) but can be written also by the CPU using the REACM_SINR register.

The ADC Interface data (ADC_TAG and ADC_RESULT) should not be updated until all Reaction
Channels (with ADCR = ADC_TAG) process the received data. The OVR flag is set in the case of an

adc_data[15:0]

THRESPT[5:0]

comparison

Comparator

.

.

.Comp

Bank

0

31
RegWrite

Logic

XBAR Master or eTPU

ADC

Router

on-chip
ADC

Modulation

Control

result

Reaction
channel

Threshold
Bank

modulation addr

COMP

received TAG

4

CHn

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

724 Freescale Semiconductor

overrun condition occurs, indicating that at least one ADC data was lost (the input data that caused the
overrun is lost).

The following situations can generate an input overrun:

• Two consecutive sample data are received from ADC or from CPU.

• ADC and CPU sending sample data at the same time (asynchronous events).

• Input buffer is holding sample data that are being processed by some channel and a new sample is
received from ADC or CPU (normal mode of operation).

Figure 23-24. ADC interface block diagram

The maximum throughput supported by the reaction module depends upon the TAG of the incoming ADC
data. If only one reaction channel is addressed by the ADC TAG then the maximum supported ADC data
rate is one sample each five clock cycles. If two reaction channels are addressed by the same ADC TAG,
thus having the same CHRRn ADCR field, and are active at the same time, the maximum supported rate
is one ADC data on each 10 clock cycles. In general if (n) channels share the same TAG and are active at
the same time the maximum supported ADC data rate is 5×(n) clock cycles.

These limitations are related to the sharing of internal reaction module resources such as the Modulation
Word bank. The ADC conversion data should remain stable in the ADC interface until it is used by all
channels which matching TAG and CHRRn ADCR fields.

Note that if all active channels have different CHRRn ADCR fields, that is, are assigned to different TAGs,
the maximum supported ADC rate is five clock cycles. If multiple channels have the same CHRRn ADCR
field but only one is active at a time, then the maximum supported ADC data rate is also five clock cycles.

23.4.6.2 On-the-fly ADC data acquisition

The ADC interface and the threshold bank can operate in a learn mode, meaning that the received ADC
result can be stored in the threshold bank and used for comparisons. This functionality allows the user to

ADC_RESULT

ADC_TAG

ADC Interface

Control

PSI Bus

ADC result for the

Connected to all

Ack

comparison in the
threshold bank
submodule

from eQADC

New result received

4

connected to all channels

reaction channels

XBAR Master
or eTPU

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 725

interactively calibrate the modulation levels or capture on-the-fly levels from the external application
board for debug purposes. The REACM_THRR is used for that purpose. See Figure 23-6 for more details
about the register architecture. Figure 23-25 describes the main connections between the ADC interface
and threshold bank submodules.

The routing of received ADC results to be stored in the threshold bank is independent from the routing of
the same result to the reaction channels (see Figure 23-11). Thus the same ADC result can be used in a
comparison and stored in the threshold bank.

Figure 23-25. ADC interface and threshold bank interconnections

23.4.7 Prescalers

The prescalers provide internal system clock divided signals to be used by internal timers. The reaction
module contains two prescalers: a 12-bit prescaler HPRE[11:0] and an 8-bit prescaler TPRE[7:0]. Both are
defined in the REACM Timer Configuration Register (REACM_TCR) (see Figure 23-5 for details).
Prescaler HPRE[11:0] is dedicated to the Hold-off timers within the reaction channels. Prescaler
TPRE[7:0] is used by the Shared Timer Bank counters. The HPRE[11:0] and TPRE[7:0] prescalers are
enabled by HPREN and TPREN bits, respectively, in the REACM module configuration register
(REACM_MCR) (see Figure 23-4). Note that prescalers operate in a similar way regarding their
activation. Once the prescaler is enabled by HPREN or TPREN bits in the REACM_MCR, it starts a new
count sequence meaning that it is put in reset state and will generate the first prescaler tick after it reaches
the programmed value defined by the HPRE or TPRE fields.

23.4.8 Banked mode support

Banked Mode is a reaction module hardware configuration which allows the sharing of reaction channel
output pins at the device I/O level. The banked mode architecture allows the stacking of up to four reaction
channels. Figure 23-26 shows the connection between two adjacent channels, CH0 and CH1. The
REACM_CHCRn BSB bits are used to control the configuration of channel output logic. Thus if BSB[0]

adc_data[15:0]

Comp

Bank
RegWrite

Logic

CPU

ADC

Interface
on-chip
ADC Threshold

Bank

THRR

write to threshold bank

Threshold Router register

to Comparator

wr_en

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

726 Freescale Semiconductor

in reaction channel [0] is asserted to 1 and the channel is not in the active state, ch0_a output is switched
from CH[0] OUT[0] to CH[1] OUT[0]. If a channel is active, that is, executing a modulation, it takes
control over its outputs independent of the BSB bits setting. The banked mode logic is extended to reaction
channels CH[2] and CH[3] thus defining a group of four channels. For simplification, Figure 23-26 shows
only channels CH[0] and CH[1] logic.

NOTE

When CHEN = 00 for CH0 (channel disabled), the BSB bits do not
influence the channel output, which is driven CH0’s DOFF. Therefore, a
banked injector driven by CH1 will have part of its controls off, even if CH1
is enabled.

To use BSB of CH0 in this case, an option is to program channel CH0 with
CHEN = 11 (channel enabled) and with SWMC = 0 (modulation OFF).

In case of using CH2 in banked mode with CH0, the intermediate channel
CH1 should also be configured with CHEN different from 00.

Figure 23-26. Banked mode showing stacking of channels [0] and [1]

The Banked Mode support hardware is implemented on groups of four channels. The groups are defined
as CH[3:0] and CH[5:4]. Thus CH[3] and CH[5] do not connect to the subsequent channel which are
CH[4] and CH[0] respectively.

CH[0](1)

CH[1]

BSB[0]

BSB[1]

BSB[2]

out[0]

out[1]

out[2]

From channel [2]

och0_a

och0_b

och0_c

och1_a

och1_b

och1_c

active

0
1

0
1

0
1

0
1

0
1

0
1

BSB[0]

BSB[1]

BSB[2]

out[0]

out[1]

out[2]

active
chan

chan

NOTES:
1. CH[0] should be enabled by CHEN to use BSB.

F/F

F/F

F/F

F/F

F/F

F/F

ch0_a

ch0_b

ch0_c

ch1_a

ch1_b

ch1_c

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 727

23.5 Modulation Modes

This section describes the modulation modes provided by the reaction module.

23.5.1 Threshold/Threshold mode

This mode is programmed by using REACM_MCWBx[MM] = 00. In this modulation mode the reaction
channel tries to maintain the ADC results between two threshold limits. The modulation actions are as
follows:

• ADC result  [THRESPT]: The reaction channel turns the outputs off by loading LOD[2:0] to the
channel outputs.

• ADC result < [THRESPT + 1]: The reaction channel turns the outputs on by loading HOD[2:0] to
the channel outputs.

• [THRESPT + 1]  ADC result < [THRESPT]: The reaction channel keeps the outputs unchanged.

Figure 23-27 indicates the threshold/threshold modulation mode.

Figure 23-27. Threshold/threshold modulation mode

There can be overshoots or undershoots in the real application related to the threshold limits. This occurs
due to following:

1. Feedback values are periodically sampled thus can present gaps on the measured values, for
example when the sample occurs the value already passed the range defined by the limits.

2. There is a delay between the sampling of feedback value and the reaction of the reaction channel.
This is mainly caused by the ADC conversion time and its maximum sampling frequency.

23.5.2 Threshold/Hold-off mode

This modulation mode is programmed by using REACM_MCWBx[MM] = 01. In this mode the output
pins are driven with HOD[2:0] until the ADC results matches or is greater than the programmed Threshold.
The output controls are then driven with LOD[2:0] for a fixed amount of time defined by the hold-off
timer. Note that the upper threshold limit and the hold-off timer pointer are indicated by the modulation
word in the REACM_MCR register.

Injector

time

Upper Limit

Lower Limit

feedback
set output to LOD

set output to HOD

I

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

728 Freescale Semiconductor

NOTE

ADC samples are not considered reliable in hold-off time, therefore no
comparison for MAXL or for output definition are performed. If these
comparisons are necessary, the Threshold / Threshold modulation mode can
be used.

Figure 23-28. Threshold/hold-off modulation mode

23.5.3 Limitations on the modulation process

This section describes the Channel limitations on the modulation process such as the width and distance
between consecutive modulation pulses.

23.5.3.1 Minimum distance between consecutive timer control pulses

The control signal generated by the external timer that controls the modulation process in a worst case
scenario has a minimum distance of 64 system clock periods. This is required for the reaction channel state
machine to proper re-start the modulation process and address the correct modulation word. The worst case
scenario considers a Reaction Module with 16 channels and all channels being activated at the same time.
If this minimum distance is violated the modulation on the second pulse will not be executed, meaning that
the channel output will be defined by the DOFF field.

NOTE

No error flag is set if this violation occurs.

Figure 23-29 describes the channel behavior if the minimum time between two consecutive timer control
pulses is violated.

Injector

time

Upper threshold Limit

feedback

hold-off hold-off hold-off hold-off
Time Time Time Time

output is LOD

output is HOD

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 729

Figure 23-29. Limitation on the OFF modulation timing

23.5.3.2 Minimum timer control pulse width

There is no limitation on the Timer Control pulse minimum width. The channel just finishes the
modulation process when the pulse ends even if the Modulation Words did not complete the expected
sequence. Thus if a modulation phase is designed to have four Modulation Words starting from word 0,
and the Timer Pulse ends at the second word (word 1) then the modulation process finishes at this point in
time. The channel output is set to DOFF one clock cycle after the Timer Pulse ends and the flag SQER is
set because the SM bit field for the second modulation word is not 00. This flag occurs to indicate that the
modulation was ended before the last phase of the sequence that uses the modulation word 3 and has
SM = 00.

Figure 23-30 describes the channel behavior when an early end of the Timer Control pulse occurs. Note
that the channel output is driven to DOFF which causes the modulation to end. Note that an early end of
pulse only affects the current modulation cycle. Meaning that on the next modulation cycle the modulation
word 0 is executed first and all subsequent words are executed in the appropriate sequence.

ON

OFF

eTPU CH0

Reaction CH0

time

i

time

timer control

modulated current

ON

minimum distance between
pulses was violated

v

modulation does not
start

channel waits for neg edge
to re-enable modulation

modulation occurs on the next
timer pulse

OFF

ON

<64

>64

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

730 Freescale Semiconductor

Figure 23-30. Early end of Timer Control pulse

NOTE

In some applications the modulation runs continuously and the input timer
control signal is not used as a modulation pulse control but only as an
enabling signal. Therefore, if the modulation is turned off, the REACM can
issue a Modulation Word Sequence Error by setting SQER flag. In this case,
this SQER flag can be ignored (masked) without prejudice.

An option, if the application permits, is to disable the REACM channel
(CHEN = 00), thus avoiding unwanted SQER error.

23.5.3.3 CHOFF behavior during modulation

The CHOFF—channel output disable bit (Figure 23-9) is intended to disable the channel immediately
before a modulation cycle had ended. This is important on error conditions detected by the software, thus
setting the channel outputs to a safe state defined by DOFF. It is important to notice that in order to
reactivate the channel by setting CHOFF = 0 does not implies that the channel outputs immediately returns
to the state defined by HOD and LOD on the modulation word being executed. Instead, the HOD and LOD
are driven to the channel outputs only when one of the following conditions occur:

• a sequence advance event (timeout or threshold, depending on SM).

• a new sample is received (no matter if the comparison matches or not).

• a hold-off timeout.

a b dc e

timer
control
signal

i
time

time

OFF

ON

OFF

m
o

d
ul

a
tio

n
 w

o
rd

 0

m
o

d
ul

a
tio

n
 w

o
rd

 1

m
o

d
ul

a
tio

n
 w

o
rd

 2

m
o

d
ul

a
tio

n
 w

o
rd

 3

early end of pulse

DOFF

Modulation words 3 and 4
are not executed

Modulation word 2 is partially executed

a b dc e

m
o

d
ul

a
tio

n
 w

o
rd

 0

m
o

d
ul

a
tio

n
 w

o
rd

 1

m
o

d
ul

a
tio

n
 w

o
rd

 2

m
o

d
ul

a
tio

n
 w

o
rd

 3

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 731

23.5.3.4 Module initialization

To execute the modulation process the Reaction Module must be initialized with a correct sequence. One
method is described as follows:

1. Make sure eTPU channels are at zero, inactive state.

2. Set up eQADC module.

3. Program the Modulation Words.

4. Program the Threshold Bank.

5. Program the Shared Timer Bank.

6. Program the Holdoff Timer Bank.

7. Program Timer Configuration register.

8. Program the Module Configuration register.

9. Program the Channel Router register.

10. Program the Channel Configuration register.

11. Start eTPU channels.

It is important to notice that the channel activation, by setting CHEN = 01, should be done after all other
registers have been configured and before the input timer control signals are active. Violating this order
may lead to errors when the modulation cycle is executed by the channel.

NOTE

If a glitch is introduced in the input timer control pulse, the channel stops to
modulate and does not operate during the pulse just after the glitch. The
glitch value for wrong operation ranges from 1 system clock to about 5
times the number of channels.

23.6 Monitored modulation

The modulation executed by the reaction channel can be monitored by measuring the width of the PWM
pulses provided by the channel. If the pulse becomes too narrow it means that the load impedance is
probably too low, thus indicating a possible short circuit. If the PWM pulses become too wide it may
indicate an open circuit on the solenoid.

The limits for narrow and wide pulses are defined by RANGE_PWD and MIN_PWD registers (see
Figure 23-16 and Figure 23-17). These values apply to all reaction channels. The PWM pulses are
measured by the Hold-off timers within the reaction channels. This is possible only during idle periods of
this timer, for example from the moment a hold-off timeout occurs until the maximum threshold is reached
when HOD is being used for the channel output pins. During this period the hold-off counter is not used
and thus it can measure pulse widths and compare them against predefined limits defined by
RANGE_PWD and MIN_PWD registers, as shown in Figure 23-31.

NOTE

Consider an uncertainty of (+1) in the value MIN_PWD and (MIN_PWD +
RANGE_PWD) when calculating the pulse width limits. The Hold-off
prescaler contributes to this uncertainty.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

732 Freescale Semiconductor

For a programmed MIN_PWD value, a pulse wider than (MIN_PWD+1)
does not set the SCDF flag.

For a programmed (RANGE_PWD + MIN_PWD) value, a pulse narrower
than or equal to (RANGE_PWD + MIN_PWD + 1) does not set the OCDF
flag.

Figure 23-31. Fails detected by the modulation monitoring

Figure 23-32 describes in more detail an open circuit detection using the Hold-off timer. Note that the
Hold-off timer is used when the output is at the ON state, which means HOD is used to drive the outputs,
thus hold-off functionally is not required at this moment. The Hold-off timer is loaded with MIN_PWD
and starts counting. After a time-out occurs RANGE_PWD value is loaded and the Hold-off counter starts
counting again. An open circuit is detected if the timer times-out on the second RANGE_PWD counting
and the PWM pulse is still high, meaning that the outputs did not switched to LOD. In this case the OCDF
flag is set in the CHSR, Channel Status register, of the corresponding channel. See Figure 23-10.

A - Normal operation

B - open circuit

C - short circuit

wide pulse

narrow pulse

current cannot achieve
predefined limit

current passed
predefined limit

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 733

Figure 23-32. Open circuit detection using hold-off timer

Figure 23-33 describes how the Hold-off timer detects a short circuit. The Hold-off timer is loaded with
MIN_PWD value and enabled. The condition that indicates that a short circuit occurred is the Hold-off
timer still running and LOD is loaded to the channel output pins. That means the PWM pulse are too
narrow and a short circuit have occurred. In this case the SCDF flag is set in the CHSR, Channel Status
register, of the corresponding channel. Figure 23-10.

Figure 23-33. Short circuit detection using hold-off timer

B - open circuit

wide pulse

current cannot achieve
predefined limit

load hdo timer with MIN_PWD

load hdo with RANGE_PWD

hdo timeout
indicating error Set OCDR in the status register to indicate

short circuit

C - short circuit

narrow pulse

current passed
predefined limit

load hdo timer with MIN_PWD

timeout occurred in hdo

transition detected in the PWM pulse
SCDR bit is set in the status register
an interrupt is generated if enabled

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

734 Freescale Semiconductor

NOTE

In order to define RANGE_PWD value it is required to consider that the
Hold-off timer already measured MIN_PWD, thus actually the maximum
allowed pulse width = (MIN_PWD + RANGE_PWD). In other words,
RANGE_PWD = (maximum allowed pulse width  MIN_PWD).

IF MIN_PWD = 0x00 or RANGE_PWD = 0x00 no pulse width is
performed.

The CHSR SCDF flag does not set if the pulse was finished by disabling the modulation (i.e., eTPU
channel = 0 or SWMC = 0) or by disabling the channel, CHEN = 00, even if it ended shorter than
MIN_PWD. However this flag can set in some situations that really indicates a short pulse detection but
it is the result of some internal condition of the reaction module. The known situations are listed below:

• when the shared timer error occurs (TAER flag is set), a narrow pulse can be generated and SCDF
flag is set.

• when the CHCR CHOFF bit is set, a narrow pulse can be generated and SCDF flag is set.

The CHSR OCDF flag only sets when the channel is enabled (CHEN not null) and the eTPU channel
signal or SWMC is active too. However, the OCDF flag can set in some cases when the CHOFF bit is set.
In this case, this OCDF flag should be disregarded because it is a false indication of the detector.

There can be a conflict of resource allocation if the Hold-off timer is used as the timer for the sequencer
mode SM = 10. In this case it is not possible to detected minimum or maximum pulse widths thus the
monitored modulation is deactivated. Which means the use of the Hold-off timer in the sequence mode has
precedence over the monitored modulation. This configuration is not considered an error though, since it
may occur during one of the phases of a modulation cycle and return to a sequence mode where the
monitored modulation is possible. Thus no flags will be set to signal this conflict condition.

23.7 DMA support

The Reaction Module provides supports for one DMA channel per Reaction Channel. The DMA request
signal is controlled by the DMAEN bit in the Channel Configuration Register Figure 23-9 and by the
DMA bit in the Modulation Control Word, Figure 23-18. If the DMAEN = 1 and the DMA = 1 then a
DMA request is issued by the Reaction Channel. Note that the DMA request is deaserted if the DMA done
signal is asserted even though the channel is still pointing to the same Modulation Control Word that
generated the DMA request. In order for a new DMA request be issued after the DMA done is issued, the
Reaction Channel must access a new Modulation Control Word or execute a new modulation cycle
controlled by the timer input signal. Figure 23-34 shows the DMA protocol executed by the Reaction
Channel. The DMA request signal is asserted when the Modulation Word 1 is executed by the channel.
This signal remains asserted until a DMA done signal is issued by the DMA controller.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 735

Figure 23-34. DMA Req/Done protocol

23.8 Reset overview

The Reaction Module is reset whenever any MCU reset occurs. In order to re-initialize the reaction
channels the CHEN, channel enable register should be used. Once disabled the channel output is set to
DOFF state and the channel configuration can be changed safely. The disable/enable operation does not
change the channel setup, thus the configuration registers remain at the state as before the channel was
disabled. The Modulation Control word addressed by the channel after the enable bit is asserted is defined
by the MODULATION ADDR field in the channel configuration register.

23.9 Reaction module interrupts

The Reaction Module issues one global interrupt signal and one interrupt signal per channel. If using the
Global interrupt signal the resolution of the interrupt source need to be performed by reading the Global
Error Flag register to evaluate which channel issued the interrupt. After that the Channel Status register
need to be read to distinguish between the several interrupt sources by evaluating the flags MAXL, OCDF,
SCDF, TAER, and SQER.

D

a b c ed f

timer
control
signal

Current in
Injector

time

time

OFF

ON

OFF

A B C E

m
od

u
la

tio
n

 w
or

d
0

m
od

u
la

tio
n

 w
or

d
1

m
od

u
la

tio
n

 w
or

d
2

m
od

u
la

tio
n

 w
or

d
3

m
od

u
la

tio
n

 w
or

d
4

DMA DONE
signal

time

DMA REQ
signal

time

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

736 Freescale Semiconductor

23.9.1 Interrupt sources

There are several sources of interrupts that indicates a faulty condition:

• MAXL: maximum ADC result value was reached

• OCDF: open circuit detected which indicates an open circuit and thus a potential malfunction in
the circuitry controlled by the Reaction Module. Note that differently from the TAER, this flag
does not indicate a faulty condition in the channel but in the circuit outside the device.

• SCDF: short circuit detected which indicates a short circuit was detected on the off-chip logic
controlled by the reaction channel.

• TAER: timer allocation error which indicates a required Timer resource was not allocated properly
thus leading to faulty operation of the Reaction module.

• SQER: sequencer error occurred meaning that the timer input signal was deasserted in a
modulation phase with SM != 00.

23.10 Use cases

Figure 23-35 shows an example of the Reaction Module used to control an Injector solenoid. Note that this
is a dual injector which is also called banked injector. Two Reaction channels are used to control this
injector.

The injector Boost transistor on the top applies a higher voltage in order to minimize the time necessary
for the injector to start injecting fuel. Transistors A and B control which injector is active in the injector
bank. A sensor resistor is used to feed the current flowing through the solenoid back to the on-chip ADC.
The current is sampled by the ADC and the result is sent to the Reaction Module, allowing closed loop
control.

NOTE

This injector bank architecture does not allow both injectors to operate at the
same time since the sensor in the feedback loop is shared by both injectors.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 737

Figure 23-35. Boosted Banked Direct Injection with Passive Recirculation

Two eTPU channels are used to provide timing control signals, one for CH0 and one for CH1. The on-chip
ADC monitors the sensor current periodically and send the digitalized results to the Reaction Module. In
a banked configuration as shown in this example one ADC channel is used to monitor both injectors
current. Note that only one channel is active at a given time since the eTPU time windows are not active
at the same time for both reaction channels. Please see Figure 23-36 for more details.

Vboost

Vbatt
Boost

ctrl

Inj B top

Inj A top

Injector A Injector B

Inj B bot

Inj A bot

Feedback
to the on-chip ADC

Current Monitor
Resistor

Reaction Module

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

738 Freescale Semiconductor

Figure 23-36. eTPU CH10/1 controlling reaction CH0/1

There are several possible configurations for a banked mode application. The objective on those
configurations is to share hardware resources such as Reaction Module channels, ADC monitor inputs and
MCU pins, among others related to the Injector driver which is not covered in detail in this document.

Figure 23-37 shows a more detailed diagram of the interconnection between the injector bank and the
Reaction Module. Two reaction channels are used in this application. CH0 is used to control Injector A
and CH1 is used to control Injector B. However, the Vboost/Vbatt selection is controlled by CH0 ch0_a
output only since when Vboost driver is switched off Vbatt power source is applied to the injectors by the
direct bias of the diode connecting Vbatt to the injector bank.

time

ON

OFF

eTPU CH0

eTPU CH1

Reaction CH0

Reaction CH1

v

time

v

time

i

i

time

time control

time control

modulated current

modulated current

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 739

Figure 23-37. System level connection in a banked configuration

It is important to notice that even if two reaction channels control different injectors they can share the data
stored in the Modulation Word Control. In this case both channels should execute the same type of

V
bo

o
st

V
b

a
tt

In
je

ct
o

r
A

In
je

ct
or

 B
b

o
o

st
ci

rc
ui

t

T
im

e
r

ch
an

n
e

l
ro

u
te

r

M
o

d
u

la
tio

n
 W

o
rd

C
o

nt
ro

l

A
D

C
In

te
rf

a
ce

R
es

ul
t

B
a

n
k

C
H

0

C
H

1

C
H

2

C
H

5

C
o

m
pa

ra
to

r

ch
0_

a

ch
0_

b

ch
0_

c

ch
1_

a

ch
1_

b

ch
1_

c

ch
2_

a

ch
2_

b

ch
2_

c

ch
5_

a

ch
5_

b

ch
5_

c

eQ
A

D
C

e
T

P
U

ch
1

ch
2

R
e

ac
tio

n
M

od
u

le

S
e

n
so

r

e
T

P
U

 ti
m

e
w

in
do

w
s

si
g

na
ls

M
C

U

B
a

n
k

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

740 Freescale Semiconductor

modulation and use the same threshold values. Note also that the data stored in the Threshold bank in this
case is also shared between these channels. This is an important feature of the Reaction Module
architecture since it allows the sharing of resources and therefore provides savings in size without
compromising the module functionality.

Figure 23-38 shows an example of the required current levels through Injector A and B. In order to
generate this waveform, the Reaction Module uses one Modulation Control Word for each one of the five
phases of the waveform from A through F. In this example the Module should be configured in the
following way:

1. Set the REACM_CHRR0 CHIR[3:0] = 0x0, thus routing eTPU channel 0 to reaction channel 0

2. Set the REACM_CHRR1 CHIR[3:0] = 0x1, thus routing eTPU channel 1 to reaction channel 1

3. Set the REACM_CHRR0 ADCR[3:0] = 0x0, thus routing ADC TAG 0 to reaction channel 0

4. Set the REACM_CHRR1 ADCR[3:0] = 0x0, thus routing ADC TAG 0 to reaction channel 1

5. Program Modulation Word Control bank according to Figure 23-39

6. Program Shared Timer Bank REACM_STBK for addresses from 0 through 3 with timing intervals
related to the duration of phases A,B,C and D respectively.

7. Program appropriate values in the Threshold Bank. Since threshold-threshold modulation is to be
used in this example, four pairs of values should be provided for phases A,B,C and D respectively.
Each pair corresponds to one address of the REACM_THBK starting at address 0x0400.

8. Program configuration registers for both channels, REACM_CHCR0/1. The parameters are
DOFF[2:0] which defines the OFF state of the channel outputs and the
MODULATION_ADDR = 0x0, which defines the address of the Modulation Control word. It is
assumed that the Modulation Word zero is the first word to be accessed by both channels. Since
four Modulation words will be used the addresses will be incremented by the reaction channel as
needed, thus only the address for the first word is required. Note that
MODULATON_ADDR = 0x0 points to the first Modulation Word in the Modulation Word Bank.

9. Program the prescalers HPRE and TPRE in the REACM_TCR register. Also enable the prescalers
by setting the TPREN and HPREN bits in the REACM_MCR register.

10. Enable channels CH0 and CH1 to start the modulation sequence by programing field CHEN = 01
on REACM_CHCR1/0 registers. At this time the Reaction channel CH0 accesses the Modulation
Control word zero and switches to ON state as defined by the data stored HOD[2:0] field. Up to
this point any activity in the eTPU channel or income ADC result is ignored by the Reaction
module. After CHEN field is programed, the reaction channels wait until a timer window is
initiated by eTPU for the modulation process to start.

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 741

Figure 23-38. Modulation phases

The current through the injectors are initially zero since the reaction channel output is in the OFF state as
configured by the DOFF[2:0] field. The eTPU timer window is at the OFF state as well. The modulation
starts when the eTPU channel time window switches to ON state. Modulation phase A starts at this time
as described in Figure 23-38. The modulation word 0 is used. In this application this phase corresponds to
the Boosted Peak phase. This process allows the fuel injection to start sooner because of the sharp edge of
the current which is important for a precise control of the fuel to be injected. Phase A is the setup to execute
a Threshold-Threshold modulation but note that only I0 value is used since the phase advances when a
certain current is achieved. The following is a description of the bit fields in the Modulation word in order
to execute the modulation described in phase A:

• LOOP = 0

• The initial value should be HOD (IOSS = 1)

• Threshold-Threshold modulation mode is obtained with MM = 00

• This phase ends when the threshold value I0 is achieved (SM = 11)

• Necessary to have HOD = 111 for boosted operation and sensor active, LOD setting is not
important in this case since it is not used

• I0 is read from Threshold Bank by using THRESPT = 0x0 that points to address 0 of this bank

• I1 is read from Threshold Bank by using (THRESPT + 1) = 0x1

• Hold-off timer is not used, therefore HDOFFPT can have any value (X)

C

a b c ed

timer
control
signal

Current in
Injector

time

time

OFF

ON

OFF

A B D

m
o

d
ul

a
tio

n
 w

o
rd

 0

m
o

d
ul

a
tio

n
 w

o
rd

 1

m
o

d
ul

a
tio

n
 w

o
rd

 2

m
o

d
ul

a
tio

n
 w

o
rd

 3

I0

I3

I2

I5

I4

eTPU

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

742 Freescale Semiconductor

At point b, phase B is initiated by the threshold being achieved from phase A. CH0 increments the
Modulation Word address to MODULATION_ADDR = 0x1 and the second Modulation Word is read by
the channel. As a result of the second Modulation Word decoding the Vboost voltage is disabled causing
a peak modulation with Vbatt. The phase is called the Peak Vbatt phase. For phase B a
Threshold-Threshold modulation is used with levels I2 and I3 during a period defined by TB. Please see
Figure 23-39.

A timeout event is received from the Shared Timer submodule and a new Modulation Word is read. Phase
C corresponds to the recirculation phase. Energy from the injector is transferred back to the boost circuitry.
In this phase the current can not be measured because there is no current flowing through the sensor
resistor. A Threshold-Threshold modulation mode is used. The Shared Timer is started at the beginning of
this phase and TD delay is measured. The channel outputs are kept in the OFF state.

When the Shared Timer times out after TD delay the Modulation Word address is incremented,
MODULATION_ADDR = 0x4 and the Hold phase is initiated. This phase is typically longer compared to
the other phases and defines the amount of fuel that will be injected. Threshold-Threshold modulation
mode is used between levels I4 and I5 and Vbatt is selected as the power supply. The phase ends based on
the eTPU time window switching to off at point e. At this time the channel outputs are set to OFF and the
channel points to MODULATION_ADDR = 0x0 which is the address of the first Modulation Word. Note
that this address is not necessarily 0x0.

This modulation process is executed by a sequence of Modulation Words as described in Figure 23-39.

23.10.1 Advancing modulation phase on a threshold level

The Modulation Phase may be set to advance when a specific threshold value is reached. The use case for
this scenario is described in Figure 23-40. This functionality is used to assure a specific current level was
achieved before the reaction channel advances to the next modulation phase, thus making sure that the
solenoid had the fastest opening speed.

Modulation Control Words REACM_MCW, see Figure 23-20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fields L I MM SM HOD LOD THRESHPT STPT HDOFFPT

PhaseA 0 1 00 11 111 101 000010 (I0)
000011 (I1)

0001 (TB) X

Phase B 0 0 00 01 011 001 000010 (I2)
000011 (I3)

0010 (TC) X

Phase C 0 0 00 01 000 000 X 1

1 Any value

0011 (TD) X

Phase D 0 0 00 00 011 001 000100 (I4)
000101 (I5)

X X

Figure 23-39. Modulation words for injector application

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 743

Figure 23-40. Advancing modulation phase on a threshold level

In the example shown in Figure 23-40 the Modulation Word 0 has the field SM = 11 meaning that it should
advance if the ADC comparator, which compares ADC results and threshold values, is true. This means
that the ADC result is greater or equal to the threshold value pointed by THRESPT Modulation Word 0
field. The advance from phase A to phase B in Figure 23-40 is described as follows:

• Initially at time a the reaction channel output is loaded with HOD[2:0] as indicated by IOSS value,
both fields of modulation word 0.

• If ADC result  [THRESPT] the reaction channel turns the outputs off by loading LOD[2:0] to the
channel outputs and advance to the next modulation cycle at time b.

NOTE

The advance on threshold, SM = 11, is intended to be used with IOSS = 1,
thus the advance occurs when the level from the ADC is greater or equal to
the value pointed by THRESPT. IOSS = 0 is a reserved value for this bit in
this configuration and should not be used.

23.10.2 Controlling the loop function

The LOOP field in the Modulation Word controls the sequencing of Modulation Words to be executed by
the channel. If LOOP = 1 and a phase is ended the next Modulation Word address returns to the initial

D

a b c ed f

timer
control
signal

Current in
Injector

time

time

OFF

ON

OFF

A B C E

m
od

ul
at

io
n

w
or

d
 0

m
od

ul
at

io
n

w
or

d
 1

m
od

ul
at

io
n

w
or

d
 2

m
od

ul
at

io
n

w
or

d
 3

m
od

ul
at

io
n

w
or

d
 4

i3
i2

i5
i4

eTPU

i0

Reaction Module (REACM)

MPC5644A Microcontroller Reference Manual, Rev. 6

744 Freescale Semiconductor

modulation address programmed in the channel when the cycle was initiated. In this case a loop in the
Modulation Bank is created. This loop ends when the cycle ends.

Figure 23-41 shows the sequence of Modulation Words within a Modulation Cycle if LOOP function is
used. Note that an alternate modulated waveform is generated using only two Modulation Words, in this
case Modulation Word 0 and Modulation Word 1.

Figure 23-41. LOOP function used within a modulation cycle

23.10.3 Banked mode

Figure 23-42 describes the interconnection of four channels controlling two injector banks. Note that two
output pins are not connected since the boost control is shared between channels [0] and [1] and channels
[2] and [3].

Figure 23-42. Four channels controlling two injector banks in banked mode

phase A phase B phase C phase D phase E

modulation cycle

LOOP = 0 LOOP = 1 LOOP = 0 LOOP = 1 LOOP = 0

Modulation Word 0 Modulation Word 1 Modulation Word 0 Modulation Word 1 Modulation Word 0

Vboost

Vbatt

Injector A Injector Bboost
circuit

CH0 ch0_a
ch0_b
ch0_c

Sensor

Vboost

Vbatt

Injector CInjector D

Sensor

banked

logic

CH1 ch1_a
ch1_b
ch1_c

banked

logic

CH2ch2_a
ch2_b
ch2_c

banked

logic

CH3ch3_a
ch3_b
ch3_c

banked

logic

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 745

Chapter 24
Enhanced Time Processing Unit (eTPU2)

24.1 Information specific to this device

This section presents device-specific parameterization and customization information not specifically
referenced in the remainder of this chapter.

24.1.1 Device-specific features

• Single engine, 32 channel

• SCM size: 14 KB, no ECC support

• SDM size: 3 KB, no ECC support

• Nexus class 1 support

• Channels 24 to 29 input sources are selected via SIU IMUX (see Section 16.6.22, IMUX Select
Register 8 (SIU_ISEL8))

• Channel outputs can be serialized through via onboard DSPI

• Channel outputs 26 to 31 can be used to trigger the eQADC

• TCRCLK and Channel 0 are connected together internally on the 176-pin LQFP package

24.2 Introduction

eTPU is an intelligent, semi-autonomous co-processor designed for timing control. Operating in parallel
with the Host CPU, the eTPU processes instructions, real-time input events, performs output waveform
generation, and accesses shared data without Host intervention. Consequently, for each timer event, the
Host CPU setup and service times are minimized or eliminated.

High-level assembler, compiler and documentation allows customers to develop their own functions on
the eTPU.

eTPU is an enhanced version of the TPU module. Although there is no compatibility at microcode level,
eTPU maintains several features of older TPU versions, making it easy to port older applications, at the
same time adding several features listed in Section 24.2.2.2, eTPU enhancements over TPU3.

This document also includes the new features belonging to the version of the eTPU known as eTPU2. The
new features are summarized in Section 24.2.2.3, eTPU2 enhancements over eTPU.

eTPU architecture aims at high resolution timing capabilities. From a system perspective, high resolution
timing is limited by Host CPU overhead required for servicing timing tasks such as period measurement,
pulse measurement, pulse width modulated waveform generation, etc. On the eTPU, high resolution
timing is achieved by three main capabilities:

• Reduced latency: pin actions are immediate.

• Reduce or eliminate host interrupt service time.

• Double action channel capability reducing the channel request rate.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

746 Freescale Semiconductor

eTPU provides higher resolution than the Host CPU can achieve and creates no Host overhead for
servicing timing tasks.

Latency is the interval from occurrence of an event to the start of event servicing. eTPU can service its
own events without interrupting the Host. There are two types of timing events:

• Input pin transition

• Selected Time Base match, that is, a selected Time Base counter reached or exceeded a
preprogrammed value

Service time is the time spent servicing an event. In general, in microcontrollers the service time is
constrained because the instruction set is not optimized for time function synthesis. The eTPU instruction
set is optimized, so that time functions can be implemented with much fewer instructions than the Host
CPU. Instructions execute faster, service time is reduced and program memory compacted.

Instructions executed by the eTPU are connected directly to the eTPU timing hardware and allow
parallelism of hardware related actions.

24.2.1 Overview

Figure 24-1 shows a top-level eTPU block diagram.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 747

Figure 24-1. eTPU block diagram (single-engine)

The eTPU engine is responsible for processing input pin transitions and output pin waveform generation
based on the Time Bases. The eTPU engine has its own microprocessor and dedicated hardware for
processing signals on I/O pins and can also interface with external time bases through the STAC bus.

The eTPU engine CPU, hereafter called the microengine, fetches microinstructions from a Shared Code
Memory (SCM).

Shared Parameter RAM (SPRAM)—holds eTPU application parameters and work data. It is accessed
by Host and the microengine.

Bus Interface Unit (BIU)—allows Host to access eTPU registers, SCM and SPRAM.

eTPU Engine 1
P. RAM

SHARED CODE MEMORY

BIUREGISTERS

SCM

PINS

HOST CPU

Debug If

Slave bus, global signals, interrupt signals, DMA interface signals

P
a

d
-in

te
rf

a
ce

si
g

n
a

ls

STAC signals

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

748 Freescale Semiconductor

Each I/O signal pair is associated with a dedicated Channel, which provides hardware for input signal
processing and output signal generation, in relationship with selected Time Bases.

The eTPU, as a microprocessed subsystem, works much like a typical real-time system: it runs
microengine code from instruction memory (SCM) to handle specific events, accessing data memory
(SPRAM) for parameters, work data and application state info; events may originate from I/O Channels
(due to pin transitions and/or time base matches), Host CPU requests or inter-channel requests; events that
call for local eTPU processing activate the microengine by issuing a Service Request. The Service
Request microcode may set an interrupt to the Host CPU. I/O channel events cannot directly interrupt the
Host CPU.

Each channel is associated with a Function, which defines its behavior: the Function is a software entity
consisting, within the eTPU, of a set of microengine routines that attend to Service Requests. The Function
routines are also responsible for Channel configuration. Function routines reside in SCM, which may
contain several Functions. A Function may be assigned to several Channels, but a Channel can be
associated with just one Function at a given moment. The association between Functions and Channels is
defined by Host CPU, and is explained in detail in Section 24.5.1, Functions and threads.

eTPU hardware supplies resource sharing features that support concurrency:

• a hardware Scheduler dispatches the Service Request microengine routines based on a set of
priorities defined by the Host CPU. Each Channel has its associated priority;

• a Service Request routine cannot be interrupted until it ends. This sequence of uninterrupted
instruction execution is called a Thread.

• Channel-specific context (registers and flags) is automatically switched between the end of a
Thread and the beginning of the next one.

• SPRAM arbitration, a dual-parameter coherency controller and semaphores can be used to ensure
coherent access to eTPU data shared by both eTPU engines and Host CPU.

24.2.1.1 eTPU engine

The eTPU engine consists of two 24-bit time bases, 32 independent timer channels, a task scheduler, a
microengine, and a Host interface and 32-bit Shared Parameter RAM (SPRAM). In dual-engine
implementations of the eTPU, SPRAM is used for both eTPU engine’s data storage and for passing
information between the eTPU engines and the host CPU.

Figure 24-2 shows the block diagram for the eTPU engine.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 749

Figure 24-2. eTPU engine block diagram

eTPU engines 1 and 2 are sometimes called eTPU 1 and eTPU 2 throughout this document.

24.2.1.1.1 Time bases

Two 24-bit counters TCR1 and TCR2 provide reference time bases for all match and input capture events.
Prescalers for both time bases are controlled by the Host CPU through bit fields in the eTPU engine
configuration registers. The eTPU is able to export/import time to/from TCR1 or TCR2 in accordance to
the Red Line bus specification.

The clock for each of TCR1 and TCR2 clock can be independently derived from the system clock or from
an external input via the TCRCLK clock pin. In addition, the TCR2 timebase can be derived from special
angle-clock hardware which enables implementing angle-based functions. This feature is added to support
advanced angle based engine control applications.

For further details refer to Section 24.5.6, Time Bases.

TCR1

TCR2/

MICROENGINE

CODE

IPI

HOST

INTERFACE

CHANNEL
CONTROL

 TIME BASE
CONFIGURATION

ENGINE
CONFIGURATION

SCHEDULER

CONTROL AND DATA

CONTROL

TIMER

CHANNELS

CHANNEL 0

CHANNEL 1

CHANNEL 31

C
H

A
N

N
E

L
CONTROL

TCRCLK
PIN

MDU

ANGLE COUNT

SERVICE REQUESTS

Red Line
INTERFACE

Red Line

(SCM)

PARAMETER

 RAM

SHARED

(SPRAM)

SHARED

MEMORY

FETCH and
DECODE

EXECUTION

D
A

TA

C
O

D
E

DarkBlue
Line

UNIT

DEBUG
INTERFACE

to NDEDI

CONTROL
and DATA

IPI
Indigo
Line

IPI
SkyBlue,

Green

IPI
Purple

Line

(PINS)

Lines

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

750 Freescale Semiconductor

24.2.1.1.2 eTPU timer channels

The eTPU engine has 32 independent channels, each corresponding to an Input/Output signal pair. The
channels time resolution is 24 bits, and are all identical.

Each channel consists of logic which supports two events and output controls. The event logic contains
two 24-bit capture registers, two 24-bit match registers, greater-equal and equal-only comparators.
Supporting two events enables many combinations of double-action functions (for example the channel
can handle two events with a single microcode service).

The channel configuration can be changed by the microengine on the fly. Each channel can perform double
capture, double match and other capture-match combinations. Channel modes available can do ordered or
unordered match. Some modes are also provided that can block one match by the occurrence of the other.
Service request can be generated on one or both of the match events.

Input signal can be separated from output signal in each channel. They can, optionally, be combined in a
single I/O pin driver. An output buffer enable signal, controlled by microcode, is provided for this case.
Digital filters are provided for the input signals, with distinct filtering modes available.

Each channel can use any time base or angle counter for either match or capture operation. For example,
a match on TCR1 can capture the value of TCR2. The channels can request service from the microengine
due to recognized pin transitions (input events) or timebase matches.

The eTPU channels also support the basic single-action operations found on TPU3 functionality with the
exception that time resolution is 24 bits.

Channel configuration combinations:

• Single input capture, no match (TPU3 functionality).

• Single input capture with single match timeout (TPU3 functionality).

• Single input capture with double match timeout with several double match submodes.

• Double input capture with single or double match timeout with several double match submodes.

• Single output match (TPU3 functionality).

• Double output match with several double match submodes.

• Input-dependent output generation.

The double match functionality has various combinations for generation of service request and
determining pin actions. For more details refer to Section 24.5.5, Enhanced Channels.

In addition to the predefined channel configurations above, the user can also program its own channel
configuration, defining how input captures, matches and service-requests are related.

24.2.1.1.3 Host interface

The Host interface allows the Host CPU to control the operation of the eTPU. The Host CPU must
initialize the eTPU by writing to the appropriate Host interface registers to assign a Function and priority
to each channel. In addition, the Host writes to the Host Service Request and channel configuration
registers to further define Function operation for each initialized channel. Refer to Section 24.5.2, Host
interface for a detailed description.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 751

When the SCM is implemented by RAM, the Host must first initialize it with the proper microcode
program prior to enabling any eTPU Function, and then enable eTPU access (which also disables Host
access).

24.2.1.1.4 Shared parameter RAM (SPRAM)

The SPRAM works as data RAM which can be accessed by the Host CPU and up to two eTPU engines.
This memory is used for information transfer between the Host CPU and the eTPU, as data storage for the
eTPU microcode program or for communication between the two eTPU engines. SPRAM width is 32 bits,
and is accessible by the Host as byte, 16-bit or 32-bit wide. eTPU can access it as full 32 bits, lower 24 bits
or upper byte (8-bit).

The host can also access the SPRAM space mirrored in other area with Parameter Signal Extension (PSE).
Parameter Signal Extension accesses differ from the usual host accesses to the original SPRAM area as
follows:

• Writes are effective only to the lower 3 bytes of a word: the word’s most significant byte is kept
unaltered in SPRAM.

• Reads return the lower 3 bytes of a word sign-extended to 32 bits, i.e.: the most significant bit of
the word s 2nd most significant byte is copied in all 8 bits of the most significant read byte.

Each eTPU channel can be associated with a variable number of parameters located in the SPRAM,
according to its selected Function. In addition, the SPRAM can be fully shared between two eTPU engines,
enabling direct communication between them.

High flexibility of the SPRAM utilization is achieved as follows:

• Each channel has a programmable base address pointing to the address of its first parameter with
two parameter granularity. This way the SPRAM can be partitioned according to the actual
function needs.

• The microcode can access the first 128 parameters of the selected channel in channel relative
access mode.

• Each engine can access all the SPRAM address space in indirect addressing mode. Blocks of data
are easily transferred using stack operation.

• Absolute addressing mode can access the first 256 parameters (TPU3 functionality), implementing
a shared pool of parameters holding global variables.

In the Host address space each parameter occupies four bytes. eTPU usage of the upper byte is achieved
by having a 32-bit P register which can access the upper byte, the lower 24 bits or all the 32 bits. The
microcode can switch between access sizes at any time.

Each Function may require a different number of parameters. During the eTPU initialization the Host has
to program channel base addresses, allocating proper parameters for each channel according to its selected
Function.

24.2.1.1.5 Scheduler

Out of reset, all channels are disabled. The Host CPU makes a channel active by assigning it one of three
priorities: high, middle, or low. The Scheduler determines the order in which channels are serviced based

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

752 Freescale Semiconductor

on channel number and assigned priority. The priority mechanism, implemented in hardware, ensures that
all requesting channels are serviced. For additional details refer to Section 24.5.3, Scheduler.

24.2.1.1.6 Microengine

eTPU microengine is a simple VLIW implementation that performs each instruction in a microcycle of
two system clocks, while prefetching the next instruction through an instruction pipeline. Instruction
execution time is constant unless it gets wait states from the SPRAM arbitration. Two eTPU engines share
code memory without having any performance degradation by interleaving their accesses (the Shared
Code Memory has one-clock access time).

Instruction width is 32 bits. The microengine instruction set provides basic arithmetic and logic operations,
flow control (jumps and subroutine calls), SPRAM access, and Channel configuration and control. The
instruction formats are defined in such a way that allow particular combinations of two or three of these
operations with unconflicting resources to be executed in parallel in the same microcycle.

Microengine has also an independent Multiply/Divide/MAC unit that performs these complex operations
in parallel with other microengine instructions.

Channel functionality is tightly integrated to the instruction set through Channel Control operations and
conditional Branch operations, which support jumps/calls on Channel-specific conditions. This allows
quick and terse Channel configuration and control code, contributing to reduced service time.

Detailed description can be found in Section 24.5.8, Microengine.

24.2.1.1.7 Single vs. dual eTPU engine system

An eTPU implementation can include one or two eTPU engines. The number is engines is specific to the
microcontroller design and cannot be changed.

NOTE

The MPC5644A eTPU has one eTPU2 engine.

On devices with two eTPU engines, the eTPU parameter RAM (SPRAM), code memory (SCM) and Bus
Interface Unit (BIU) are shared by both engines, enabling processor core-to-eTPU communication and
eTPU engine-to-engine communication.

In dual-engine eTPUs the shared BIU includes coherency logic which supports dual-parameter (8 bytes)
coherency in transfers between the processor core and eTPU, using a temporary parameter area within the
SPRAM. More details on this can be found on Section 24.5.4, Parameter sharing and coherency.

24.2.2 Features

24.2.2.1 eTPU feature summary

The eTPU includes these distinctive features:

• Up to 32 channels per eTPU engine—each channel is associated with an I/O signal pair.

— Enhanced input digital filters on the input pins for improved noise immunity. The eTPU digital
filter can use 2 samples, 3 samples or work in continuous mode.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 753

— Identical, orthogonal channels, except for channel 0: each channel can perform any time
function. Each time function can be assigned to more than one channel at a given time, so each
signal can have any functionality. Channel 0 has the same capabilities of the others, but can also
work with special Angle Counter logic (see below).

— Link Service Request allows activation of a Channel function by request of another channel,
even between eTPU engines.

— Host Service Request allows activation of a Channel function by Host CPU request

— Each channel has an event mechanism which supports single and double action functionality
in various combinations. It includes two 24-bit capture registers, two 24-bit match registers,
24-bit greater-equal and equal-only comparators.

• 2 independent 24-bit time bases for channel synchronization:

— First time base clocked by system clock with programmable prescaler division from 1 to 512
(in steps of 2), or by output of second time base prescaler.

— First time base can also be clocked by external signal with programmable prescaler division of
1 to 256.

— Second time base clocked by external signal with programmable prescaler division from 1 to
64.

— Second time base external clock source can be replaced by system clock divided by 8.

— Both time bases can be exported or imported via Shared Time and Counter) bus.

— Second time base counter can work as an Angle counter, enabling angle based applications to
match angle instead of time.

— Second time base can also be used as a pulse accumulator gated by external signal.

• Event-Triggered VLIW processor (microengine):

— 2 stage pipeline implementation (fetch and execution), with separate instruction memory -
SCM - and data memory - SPRAM (Harvard architecture)

— Fixed-length instruction execution in two system clock microcycle

— Interleaved SCM access in dual eTPU engine avoids contention in time for instruction memory

— SCM address space of up to 16K positions (64 Kbytes)

— SPRAM with interleaved access in dual eTPU engine avoids contention for data memory

— SPRAM address space of up to 8 Kbytes (both engines).

— Instruction set with embedded Channel support, including specialized Channel control
subinstructions and conditional branching on Channel-specific flags.

— Channel-oriented addressing: channel-bound address mode with Host configured Channel
Base Address allows channel data isolation, independent of microengine application code.

— Channel-bound data address space of up to 128 32-bit parameters (512 bytes)

— Global parameter address mode allows access to common Channel data of up to 256 32-bit
parameters (1024 bytes)

— Support for indirect and stacked data access schemes.

— Parallel execution of: data access, ALU, Channel control and flow control subinstructions in
selected combinations.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

754 Freescale Semiconductor

— 32-bit microengine registers and 24-bit resolution ALU, with 1 microcycle addition and
subtraction, absolute value, bitwise logical operations on 24-bit, 16-bit, or byte operands;
single-bit manipulation, shift operations, sign extension and conditional execution.

— Additional 24-bit Multiply/MAC/Divide unit which supports all signed/unsigned
Multiply/MAC combinations, and unsigned 24-bit Divide. The MAC/Divide unit works in
parallel with the regular microcode commands.

• Resource sharing features support channel sharing of channel registers, memory and microengine
time:

— Hardware Scheduler works as a “task management” unit, dispatching event service routines by
predefined, Host-configured priority.

— Automatic Channel context switch when a “task switch” occurs, i.e., one Function Thread ends
and another begins to service a request from other Channel: Channel-specific registers, flags
and parameter base address are automatically loaded for the next serviced channel.

— Individual channel priority setting in 3 levels: high, middle and low.

— Scheduler priority scheme allows calculation of worst-case latency for event servicing and
ensures servicing all channels by preventing permanent blockage.

— SPRAM shared between Host CPU and both eTPU engines, supporting communication either
between Channels and Host or inter-channel.

— Hardware implementation of 4 Semaphores supports resource sharing between both eTPU
engines.

— Hardware semaphores directly supported by the microengine instruction set.

— Dual-parameter coherency hardware support allows atomic (to host) access to 2 parameters by
microengine(s) in back-to-back accesses.

— Coherent dual-parameter controller allows atomic (to microengines) accesses to 2 parameters
by the host.

• Test and Development support features:

— Nexus class 3 debug support (optional, associated with the eTPU-Nexus Block NDEDI).

— Software breakpoints.

— Debug interface supporting single-step execution, forced microinstruction execution,
Hardware breakpoints and watchpoints on several conditions.

— SCM (code memory) continuous signature-check built-in self test (MISC, or Multiple Input
Signature Calculator), runs concurrently with eTPU normal operation.

24.2.2.2 eTPU enhancements over TPU3

• 32 orthogonal channels with enhanced functionality. Full support for double action with double
match and double transition submode combinations.

• Input and Output features separated in channel logic and microinstructions, allowing input and
output signals to be processed separately or combined.

• Increased time resolution and execution unit to 24 bits

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 755

• Increased linear code memory, shared by two eTPU engines, configurable up to 16K positions (64
Kbytes)

• Increased Parameter RAM address range (8 Kbytes each engine) and width (32 bits per parameter).
The Parameter RAM can be dynamically allocated to support variable number of parameters for
each channel. Each channel can have access to at least 256 parameters.

• The Parameter RAM is fully shared by two eTPU engines (SPRAM), supporting direct
inter-engine communication with the help of hardware semaphores.

• Enhanced arithmetic operations, including add/subtract with carry, absolute value, multiple shift
and rotate, conditional execution with variable operand widths

• Enhanced logic operations, including bitwise operations (and, or, xor) and bit manipulation, with
conditional execution. Support for read-modify-write of any bit in the SPRAM.

• Hardware for Multiply/MAC/Divide, running in parallel to execution of other operations. The
24-bit divide result is available after 13 other unrelated instructions. Multiplication supports any
data width of both operands (8, 16 or 24 bits), signed or unsigned. A 24x24 Multiply/MAC result
is available after four other unrelated instructions. A 24x8 Multiply/MAC result is available after
one other unrelated instruction.

• Supports export/import of time bases from other sources through the real time bus (STAC - Shared
Time and Counter bus). This internal bus is used for sharing real time data between multiple
peripherals.

• Contains angle clock hardware, supported by microcode, which can provide a 24-bit angle bus
instead of time bus. This feature enables the eTPU to run angle based engine control applications.

• More interrupt types. Each eTPU channel can generate a data transfer request interrupt, in addition
to regular interrupts, and one global exception interrupt. Data Transfer requests can be used either
as interrupt sources or DMA requests. This feature takes advantage of DMA peripherals which
offload the Host. Interrupt Overflow status is also provided.

• Improved visibility to the Host (pin states, time bases, serviced channel)

• An edge case of priority inversion on TPU3 Scheduler was resolved.

• Supports channel link requests between eTPU engines

24.2.2.3 eTPU2 enhancements over eTPU

• TCR1, channel logic and digital filters (both channel and TCRCLK) now have an option to run at
divisions of full system clock speed, besides system clock / 2.

• Channels support unordered transitions: transition B can now be detected before transition A.
Related to this enhancement, TDLA and TDLB can now be independently negated by microcode.

• Added a new User Programmable Channel Mode: the blocking, enabling, service request and
capture characteristics of this channel mode can be programmed via microcode.

• Microinstructions now provide an option to issue Interrupt and Data Transfer requests selected by
CHAN. They can also be requested simultaneously at the same instruction.

• Channel Flags 0 and 1 can now be tested for branching, besides selecting the entry point.

• Channel digital filters can be bypassed.

• Scheduler priority-passing mechanism can now be disabled.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

756 Freescale Semiconductor

• New Watchdog mechanism kills threads over a programmable timeout.

• New counter allows microengine load information collection for performance analysis

• Channels 1 and 2 (besides channel 0) can now be selected to control the EAC.

• Timebase prescalers are now reset when the GTBE input is negated, guaranteeing synchronization
with eMIOS in all cases.

• New MISC flag indicates when an SCM signature calculation round is completed. This allows
measuring of the average MISC scan period in a real application situation.

• New channel TCCEA flag allows continuous capture even after TDLA is set, making it fully
compatible with TPU behavior.

• New branch condition PRSS tells the pin state at the time when a channel (match or transition)
service request occurred.

• MRLEA/B can now be negated independently by microcode.

• New engine Relative address mode allows a function to access SDM address space common to one
engine, but distinct between engines.

• Error Correction support for Code (SCM) and Data (SDM) memories (available on selected
MCUs).

• All changes above are upward compatible with the classic eTPU, so that legacy object code (both
Host and microcode) runs on eTPU+ and eTPU2 without modification.

24.2.3 Modes of operation

The eTPU2 is capable of working in the following modes:

• User Configuration Mode

User has the ability to program the eTPU Cores with User Time Functions, having access to the
Shared Code Memory (SCM).

• User Mode

User does not access the eTPU Shared Code Memory:

— Use of predefined eTPU Functions

— No need for eTPU Core programming ability

• Debug Mode

User debugs eTPU code, accessing special Trace/Debug features via Nexus interface:

— Hardware breakpoint/watchpoint setting

— Access to internal registers

— Single-step execution

— Forced instruction execution

— Software breakpoint insertion and removal.

• Module Disable Mode

eTPU engine clocks are stopped through a register write to ETPU_ECR bit MDIS, saving power.
Input sampling stops. eTPU engines can be in Module Disable Mode independently. Module
Disable Mode stops only the engine clock, so that the Shared BIU, and Global Channel registers

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 757

can be accessed, and interrupts and DMAs can be cleared and enabled/disabled. An engine only
enters Module Disable Mode when any currently running thread is finished (see Section 24.5.1,
Functions and threads).

• Stop Mode

Stop Mode is entered when eTPU answers device stop request assertion with stop acknowledge.
The definition of which clocks are stopped is made at the MCU level, which defines whether or not
registers can be accessed, interrupts and DMA requests cleared.

These modes are loosely selected: there is no unique register field or signals to choose between them.
Some features of one mode can be used with features of other mode(s). More on this subject can be found
on Section 24.2.3.1, eTPU mode selection, below.

NOTE

Throughout this document, an engine is said to be “stopped” if it is either in
Module Disable mode or Stop mode.

24.2.3.1 eTPU mode selection

User and User Configuration are the production operating modes, and differ from each other only in access
to SCM. User programmability is only possible with a RAM SCM.

On chips where the SCM is implemented as a RAM, it can either be accessed directly from IP-Bus for code
loading, or for software breakpoint setting. On chips with a ROM SCM, an internal SCM Emulation RAM
may be used, depending on the specific MCU implementation, to replace ROM SCM for test or debug
purposes. SCM Emulation RAM is selected in an MCU-specific way. For more details, see
Section 24.5.10.2.11, SCM emulation.

For more information on SCM access, Debug and Test features, refer to Section 24.5.10, Test and
Development Support.

Debug Mode is characterized by the use of the debug interface features. Debug features may be
implemented using the eTPU-NDEDI internal interface. Specifically, this interface may be used with
Nexus implementation blocks to provide Nexus class 3 debug features. The use of eTPU-NDEDI interface
and Nexus implementation is MCU-dependent.

Module Disable Mode is entered by setting ETPU_ECR bit MDIS. eTPU engines can be individually
stopped going into Module Disable Mode (there is one ETPU_ECR for each engine). Each engine can
leave Module Disable Mode by writing MDIS = 0 (which can only be done if VIS = 0).

Stop Mode is activated by IP-Bus (device stop request). In this case, the eTPU waits for both eTPU engines
to enter in stop mode, and then asserts the stop acknowledge line. eTPU leaves Stop Mode when device
stop request is negated, but only if VIS = 0. If device stop request is negated and VIS = 1, eTPU will leave
Stop Mode as soon as VIS = 0.

NOTE

An engine can stay in Module Disable mode when it leaves Stop Mode if its
bit MDIS = 1, even if the other leaves it.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

758 Freescale Semiconductor

24.3 External signal description

24.3.1 Overview

There are 69 external signals associated with each eTPU engine: 32 channel input signals, 32 channel
output signals, 4 output disable inputs, and TCRCLK clock input, totaling 138 in a dual-engine system.
These signals are described in Table 24-1.

Depending on the MCU integration, the input and output signals of a channel can be tied to one pin. In this
case, the direction of each channel signal, either output or input, is determined by the activation of an
output enable driver signal. eTPU provides one output buffer enable signal for each channel, controlled by
microcode.

The TCRCLK signal is used to clock TCR1/2 counters or gate the TCR2 clock. In Angle Mode it is used
as a tooth signal input. Refer to Section 24.5.6, Time Bases, and Section 24.5.7, EAC – eTPU angle
counter, for proper use of this signal.

24.3.2 Detailed signal descriptions

24.3.2.1 ipp_do_etpuch_[1|2]([0 – 31]) — eTPU channel output signals

Each channel output signal is associated with a channel. The microcode may affect the logic level of an
output signal1 by implementing one of two actions:

• Specify the logic level output to the signal when there is a match or a transition.

Table 24-1. eTPU signal properties

Name Direction Function Reset state Pull up

ipp_ind_etpuch_1(0) to
ipp_ind_etpuch_1(31)

Input eTPU engine 1 channel signals — MCU
dependent

ipp_do_etpuch_1(0) to
ipp_do_etpuch_1(31)

Output eTPU engine 1 channel signals 0 / Hi-Z1

1 Value 0 refers to the reset value of the signal. Hi-Z refers to the state of the pads, if controlled by the eTPU output
buffer Enable signals, i.e., eTPU output buffer Enable resets in negated state.

 MCU
dependent

ipp_ind_etpu_odis_1(0) to
ipp_ind_etpu_odis_1(3)

Input eTPU engine 1 output disable signals — MCU
dependent

ipp_ind_tcrclk_1 Input Clock/gate for eTPU engine 1 TCR counters;
entry of the tooth signal in Angle Mode

— MCU
dependent

ipp_ind_etpuch_2(0) to
ipp_ind_etpuch_2(31)

Input eTPU engine 2 channel signals — MCU
dependent

ipp_do_etpuch_2(0) to
ipp_do_etpuch_2(31)

Output eTPU engine 2 channel signals 0 / Hi-Z1 MCU
dependent

ipp_ind_etpu_odis_2(0) to
ipp_ind_etpu_odis_2(3)

Input eTPU engine 2 output disable signals — MCU
dependent

ipp_ind_tcrclk_2 Input Clock/gate for eTPU engine 2 TCR counters;
entry of the tooth signal in Angle Mode

— MCU
dependent

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 759

• Immediately force a logic level.

The output signal may also be forced to a logic level, independently of the output value from the channel
logic, by one of the four (each engine) output disable input signals ipp_ind_etpuodis (see Section 24.3.2.4,
ipp_ind_etpu_odis_[1|2]([0 – 3]) eTPU Channel Output Disable Signals).

The output signal driver may be, depending on MCU integration, enabled by the output buffer enable
internal signal that comes from eTPU. In this case, the output buffer can be controlled by microcode,
through a specific microinstruction field. There is one independent output buffer Enable signal for each
channel. For more information on output control from microcode, refer to Section 24.5.9.3.3, Transition
detection and pin action control.

24.3.2.2 ipp_ind_etpuch_[1|2]([0 – 31]) — eTPU Channel Input Signals

Each channel input signal is associated with a channel. The microcode can directly control the effect of the
transition edge. Each channel can be programmed to sense a transition when a rising and/or falling edge
is detected. The channel logic can also process two transition events, and relate these events to each other
and to other programmed timer events. The edge sensitivities of the two transition events are configured
independently by microcode. For further information refer to Section 24.5.5, Enhanced Channels, and
Section 24.5.9.3.3, Transition detection and pin action control.

Each channel input signal has an associated synchronizer made of two flip-flops sampling the signal on
every other system clock1, followed by a digital filter. This digital filter can work in three submodes,
whose purpose is to filter out noise pulses that have width less then a programmed value of system clocks,
preventing these transitions from being input to the transition detect logic. The synchronizer and digital
filter are guaranteed to pass pulses that are greater than a programmed value. All channel input filters in
one engine work on the same mode and sampling clock. For more information on channel input filters,
refer to Section 24.5.5.6, Enhanced Digital Filter – EDF. In one of the Angle Modes, the output of the
digital filter of channel 0 is replaced by the output of TCRCLK digital filter (see Section 24.5.7, EAC –
eTPU angle counter).

24.3.2.3 ipp_ind_tcrclk_etpu_[1|2] — Time Base Clock Signal — TCRCLK

TCRCLK is an input signal used to control the Time Bases TCR1 and TCR2. There is one independent
TCRCLK input for each engine. For pulse accumulator operations TCRCLK can be used as a gate for a
counter based on the system clock divided by eight. For Angle operations TCRCLK can be used to get the
tooth transition indications in Angle Mode. Further details can be found on Section 24.5.6, Time Bases,
and Section 24.5.7, EAC – eTPU angle counter.

Like the channel input signals, the TCRCLK signal has an associated synchronizer followed by a digital
filter. This digital filter can work in two submodes, whose purpose is to filter out noise pulses that have
width less then a programmed value of system clocks, preventing these transitions from being input to the
transition detect logic. The synchronizer and digital filter are guaranteed to pass pulses that are greater than

1. Note that the minimum pulse width is one microcycle (two system clocks), and slow 5V pads may not be able to transfer it on
time. For generation of very short pulses the eTPU pads have to be programmed by the system integration for fast operation
mode with the voltage levels defined for fast pad operation in the MCU technology.
1. Sampled on the T4 microcycle phase, see Section 24.7.1, Microcycle and I/O timing.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

760 Freescale Semiconductor

a programmed value. The clock and operation submode of the TCRCLK filter is configured independently
of the other channel input filters, through the field ETPU_TBCR[TCRCF].

For more information on filter submodes, refer to Section 24.5.6.5, TCRCLK digital filter. In one of the
Angle Modes, the output of the digital filter of channel 0 is replaced with the output of TCRCLK signal
digital filter (see Section 24.5.7, EAC – eTPU angle counter).

24.3.2.4 ipp_ind_etpu_odis_[1|2]([0 – 3]) eTPU Channel Output Disable Signals

Each of these four input signals are used to force the outputs of a group of eight channels to an inactive
level. When an ODIS input is active, all the channels in its group of eight that have their bits ODIS = 1 in
ETPU_CxCR have their outputs forced to the opposite of the value specified in bit OPOL of the same
register. Therefore, channels can be individually selected to be affected by the output disable signals, as
well as their disabling forced polarity (see Figure 24-37).

The output disable channel groups are defined in Table 24-2.

In a dual-engine eTPU there are 8 output disable signals for the 64 channels.

24.4 Memory map/register definition

The guideline for the description of all bits and fields throughout Section 24.4, Memory map/register
definition, is to provide only a brief explanation (without examples or method of use) of the features, since
it will be used mainly as a reference for the reader that is studying Section 24.5, Functional description,
where those features are explained in detail.

24.4.1 Memory map

The eTPU System simplified memory map is shown in Table 24-3. Each of the register areas shown may
have their own reserved address areas.

Table 24-4 shows a detailed memory map. Offsets are relative to the eTPU base address, which is
MCU-dependent.

NOTE

For MPC5644A, the eTPU2 base address is 0xC3FC_0000.

Table 24-2. Output disable channel groups

Output disable signal1

1 The ETPU2 output_disable signals ipp_ind_etpu_odis_1(0 to 3) are connected to the EMIOS
channel _flags_ (channel 11 to 8) respectively.

Channels

ipp_ind_etpu_odis_[1|2](0) 0 to 7

ipp_ind_etpu_odis_[1|2](1) 8 to 15

ipp_ind_etpu_odis_[1|2](2) 16 to 23

ipp_ind_etpu_odis_[1|2](3) 24 to 31

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 761

The SCM used area is informed to the eTPU address decoding logic through the plug
etpu_scmsize_plug[4:0]. SCM unused area is decoded and returns a fixed opcode, determined by the
register ETPU_SCMOFFDATAR.

Table 24-3. High level memory map

Offset Use

0x00 – 0x1F System Configuration Registers

0x20 – 0x2F eTPU 1 Time Base Registers

0x30 – 0x3F RESERVED1

1 Reserved addresses must not be used. Access to these memory positions complete with 0-wait-states, but may
cause unpredictable behavior.

0x40 – 0x4F RESERVED1

0x50 – 0x5F RESERVED1

0x60 – 0x6F eTPU 1 Extra Engine Registers

0x70 – 0x7F RESERVED1

0x80 – 0xFF RESERVED1

0x100 – 0x13F RESERVED

0x140 – 0x1FF RESERVED1

0x200 – 0x2FF eTPU 1/2 Global Channel Registers

0x300 – 0x3FF RESERVED1

0x400 – 0x7FF eTPU 1 Channel Registers

0x800 – 0xBFF eTPU 2 Channel Registers

0xC00 – 0x7FFF RESERVED1

0x8000 – 0xBFFF2

2 Actual sizes of SCM and SPRAM are MCU-dependent.

SPRAM

0xC000 – 0xFFFF2 SPRAM PSE mirror 3

3 Parameter Sign Extension access area, see Section 24.5.2.3, Parameter access

0x10000 – 0x1FFFF2 SCM4

4 SCM access is available only when bit VIS = 1 on register ETPU_MCR, under certain conditions (see
Section 24.4.2.1, ETPU_MCR – eTPU Module Configuration Register).

Table 24-4. Detailed memory map

Offset Use Location

0x00 ETPU_MCR – eTPU Module Configuration Register on page
24-767

0x04 ETPU_CDCR – eTPU Coherent Dual-Parameter Controller Register on page
24-771

0x08 RESERVED

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

762 Freescale Semiconductor

0x0C ETPU_MISCCMPR – eTPU MISC Compare Register on page
24-773

0x10 ETPU_SCMOFFDATAR – eTPU SCM Off-range Data Register1 on page
24-774

0x14 ETPU_ECR_1 – eTPU 1 Engine Configuration Register on page
24-776

0x18 RESERVED

0x1C RESERVED

0x20 ETPU_TBCR_1 – eTPU 1 Time Base Configuration Register on page
24-781

0x24 ETPU_TB1R_A – eTPU Time Base 1 (TCR1) Visibility Register on page
24-786

0x28 ETPU_TB2R_A – eTPU Time Base 2 (TCR2) Visibility Register on page
24-787

0x2C ETPU_REDCR_1 - eTPU 1 STAC Configuration Register on page
24-788

0x30 RESERVED

0x34 RESERVED

0x38 RESERVED

0x3C RESERVED

0x40 RESERVED

0x44 RESERVED

0x48 RESERVED

0x4C RESERVED

0x50 RESERVED

0x54 RESERVED

0x58 RESERVED

0x5C RESERVED

0x60 ETPU_WDTR_1 – eTPU 1 Watchdog Timer Register on page
24-790

0x64 RESERVED

0x68 ETPU_IDLE_1 – eTPU 1 Idle Counter Register on page
24-791

0x6C RESERVED

0x70 RESERVED

0x74 RESERVED

Table 24-4. Detailed memory map (continued)

Offset Use Location

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 763

0x78 RESERVED

0x7C RESERVED

0x80 – 0xFF RESERVED

0x100 RESERVED

0x104 RESERVED

0x108 RESERVED

0x10C RESERVED

0x110 RESERVED

0x114 RESERVED

0x118 RESERVED

0x11C RESERVED

0x120 RESERVED

0x124 RESERVED

0x128 RESERVED

0x12C RESERVED

0x130 RESERVED

0x134 RESERVED

0x138 RESERVED

0x13C – 0x1FF RESERVED

0x200 ETPU_CISR_1 – eTPU 1 Channel Interrupt Status Register on page
24-793

0x204 RESERVED

0x208 RESERVED

0x20C RESERVED

0x210 ETPU_CDTRSR_1 – eTPU 1 Channel Data Transfer Request Status Register on page
24-793

0x214 RESERVED

0x218 RESERVED

0x21C RESERVED

0x220 ETPU_CIOSR_1 – eTPU 1 Channel Interrupt Overflow Status Register on page
24-794

0x224 RESERVED

0x228 RESERVED

0x22C RESERVED

Table 24-4. Detailed memory map (continued)

Offset Use Location

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

764 Freescale Semiconductor

0x230 ETPU_CDTROSR_1 – eTPU 1 Channel Data Transfer Request Overflow Status
Register

on page
24-796

0x234 RESERVED

0x238 RESERVED

0x23C RESERVED

0x240 ETPU_CIER_1 – eTPU 1 Channel Interrupt Enable Register on page
24-797

0x244 RESERVED

0x248 RESERVED

0x24C RESERVED

0x250 ETPU_CDTRER_1 – eTPU 1 Channel Data Transfer Request Enable Register on page
24-798

0x254 RESERVED

0x258-0x27F RESERVED

0x280 ETPU_CPSSR_1 – eTPU 1 Channel Pending Service Status Register on page
24-799

0x284 RESERVED

0x288 RESERVED

0x28C RESERVED

0x290 ETPU_CSSR_1 – eTPU 1 Channel Service Status Register on page
24-799

0x294 RESERVED

0x298 RESERVED

0x29C RESERVED

0x300 – 0x3FF RESERVED

0x400 ETPU_C0CR_1 – eTPU 1 Channel 0 Configuration Register on page
24-803

0x404 ETPU_C0SCR_1 – eTPU 1 Channel 0 Status and Control Register on page
24-806

0x408 ETPU_C0HSRR_1 – eTPU 1 Channel 0 Host Service Request Register on page
24-809

0x40C RESERVED

0x410 ETPU_C1CR_1 – eTPU 1 Channel 1 Configuration Register on page
24-803

0x414 ETPU_C1SCR_1 – eTPU 1 Channel 1 Status and Control Register on page
24-806

Table 24-4. Detailed memory map (continued)

Offset Use Location

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 765

0x418 ETPU_C1HSRR_1 – eTPU 1 Channel 1 Host Service Request Register on page
24-809

0x41C RESERVED

.

.

0x5F0 ETPU_C31CR_1 – eTPU 1 Channel 31 Configuration Register on page
24-803

0x5F4 ETPU_C31SCR_1 – eTPU 1 Channel 31 Status and Control Register on page
24-806

0x5F8 ETPU_C31HSRR_1 – eTPU 1 Channel 31 Host Service Request Register on page
24-809

0x5FC – 0x7FF RESERVED

0x800 RESERVED

0x804 RESERVED

0x808 RESERVED

0x80C RESERVED

0x810 RESERVED

0x814 RESERVED

0x818 RESERVED

0x81C RESERVED

.

.

.

0x9F0 RESERVED

0x9F4 RESERVED

0x9F8 RESERVED

0x9FC – 0x7FFF RESERVED

0x8000 – 0xBFFF2 Shared Parameter RAM – SPRAM

0xC000 – 0xFFFF2 Shared Parameter RAM—SPRAM – PSE mirror3

0x10000 – 1FFFF4 Shared Code Memory – SCM5

1 This register is not implemented in some MCUs; see Section 24.4.2.4, ETPU_SCMOFFDATAR – eTPU SCM
Off-range Data Register.

2 The actual SPRAM size is MCU-dependent.
3 Parameter Sign Extension access area, see Section 24.5.2.3, Parameter access
4 The actual SCM size is MCU-dependent. When the size not the maximum, the unused SCM address range returns

the value of the register ETPU_SCMOFFDATAR.
5 SCM access is available only when bit VIS = 1 on register ETPU_MCR, under certain conditions (see

Section 24.4.2.1, ETPU_MCR – eTPU Module Configuration Register). SCM can only be written in 32-bit accesses.

Table 24-4. Detailed memory map (continued)

Offset Use Location

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

766 Freescale Semiconductor

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 767

24.4.2 System configuration registers

24.4.2.1 ETPU_MCR – eTPU Module Configuration Register

This register is global to both eTPU engines, and resides in the Shared BIU. ETPU_MCR gathers global
configuration and status in the eTPU system, including Global Exception. It is also used for configuring
the SCM (Shared Code Memory) operation and test.

Offset: eTPU_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0

S
D

M
E

R
R

W
D

T
O

A

W
D

T
O

B MGE
1

MGE
2

ILF1 ILF2

S
C

M
E

R
R 0 0 SCMSIZE

W GEC

Reset 0 0 0 0 0 0 0 0 0 0 0 SCMSIZE

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0

S
C

M
M

IS
C

S
C

M
M

IS
F

S
C

M
M

IS
E

N

0 0 VIS 0 0 0 0 0

G
T

B
E

W

S
C

M
M

IS
C

C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 24-3. ETPU_MCR Register

Table 24-5. ETPU_MCR field description

Field Description

0 GEC—Global Exception Clear
This write-only bit negates Global Exception request and clears Global Exception status bits MGE1,
MGE2, ILF1, ILF2 and SCMMISF.

1: Negate Global Exception, clear status bits MGE1, MGE2, ILF1, ILF2 and SCMMISF
0: Keep Global Exception request and status bits MGE1, MGE2, ILF1, ILF2 and SCMMISF as is.

GEC works the same way in Module Disable Mode.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

768 Freescale Semiconductor

1 SDMERR—SDM Read Error
This flag indicates that an SDM read error occurred on a microengine read, generating a Global Exception.
Errors from Host reads neither set this flag nor generate Global Exceptions. This bit is cleared by writing
1 to GEC.

1: Global Exception requested by SDM read error is pending.
0: No Global Exception pending because of SDM read error.

2 WDTOA—Watchdog Timeout
Flag WDTOA indicates that a Watchdog Timeout occurred in eTPU engine A, generating a Global
Exception. This bit is cleared by writing 1 to GEC.

1: Global Exception requested by Watchdog timeout
0: No Global Exception pending because of Watchdog timeout.

3 WDTOB—Watchdog Timeout
Flag WDTOB indicates that a Watchdog Timeout occurred in eTPU engine B, generating a Global
Exception. This bit is cleared by writing 1 to GEC.

1: Global Exception requested by Watchdog timeout
0: No Global Exception pending because of Watchdog timeout.

4 MGE1—Microcode Global Exception – Engine A
This bit indicate that a Global Exception was asserted by microcode executed on eTPU engine A. The
determination of the reason why the Global Exception was asserted is application dependent: it can be
coded in an SPRAM status parameter, for instance. This bit is cleared by writing 1 to GEC.
1: Global Exception requested by microcode is pending
0: No microcode-requested Global Exception pending.

5 MGE2—Microcode Global Exception – Engine B
This bit indicate that a Global Exception was asserted by microcode executed on eTPU engine B. The
determination of the reason why the Global Exception was asserted is application dependent: it can be
coded in an SPRAM status parameter, for instance. This bit is cleared by writing 1 to GEC.

1: Global Exception requested by microcode is pending
0: No microcode-requested Global Exception pending.

6 ILF1—Illegal Instruction Flag – eTPU A
The ILF1 bit is set by the microengine to indicate that an illegal instruction was decoded in Engine A. This
bit is cleared by host writing 1 to GEC. See Section 24.5.9.5, Illegal Instructions, for more details.

1: Illegal Instruction detected by eTPU A.
0: Illegal Instruction not detected.

7 ILF2—Illegal Instruction Flag – eTPU B
The ILF2 bit is set by the microengine to indicate that an illegal instruction was decoded in Engine B. This
bit is cleared by host writing 1 to GEC. See Section 24.5.9.5, Illegal Instructions, for more details.

1: Illegal Instruction detected by eTPU B.
0: Illegal Instruction not detected.

Table 24-5. ETPU_MCR field description

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 769

8 SCMERR—SCM Read Error
This flag indicates that an SCM read error occurred on a microengine read, generating a Global Exception.
Errors from Host reads neither set this flag nor generation Global Exceptions. This bit is cleared by writing
1 to GEC.

1: Global Exception requested by SCM read error is pending.
0: No Global Exception pending because of SCM read error.

9-10 Reserved

11-15 SCMSIZE[4:0]—SCM Size
This read-only field holds the number of 2 Kbyte SCM Blocks minus 1. This bit is write protected when any
of the engines are not halted or stopped1. When VIS = 1, the ETPU_ECR MDIS bits are write protected,
and only 32-bit aligned SCM writes are supported. The value written to SCM is unpredictable if other
transfer sizes are used.

16-19 Reserved

20 SCMMISC, SCMMISCC—SCM MISC Complete, SCM MISC Complete Clear
Flag SCMMISC indicates that MISC has completed the evaluation of the SCM signature since reset or the
since the last time it was cleared. SCMMISC is cleared by writing 1 to SCMMISCC (at same bit position),
and is not cleared when MISC is disabled (SCMMISEN = 0). SCMMISC asserts at the end of the SCM
memory scan, either if the signature matches or not.
1: MISC completed at least one SCM signature calculation and compare since the last time SCMMISC
was cleared.
0: MISC has not yet completed an SCM signature calculation and compare since the last time SCMMISC
was cleared.writes are supported. The value written to SCM is unpredictable if other transfer sizes are
used.

21 SCMMISF—SCM MISC Flag
The SCMMISF bit is set by the SCM MISC (Multiple Input Signature Calculator) logic to indicate that the
calculated signature does not match the expected value, at the end of a MISC iteration. See
Section 24.5.10, Test and Development Support, for more details.
1: MISC has read entire SCM array and the expected signature in ETPU_MISCCMPR does not match the
value calculated.
0: Signature mismatch not detected.

This bit is cleared when Global Exception is cleared by writing 1 to GEC.

22 SCMMISEN—SCM MISC Enable
The SCMMISEN bit is used for enabling/disabling the operation of the MISC logic. SCMMISEN is readable
and writable at any time. The MISC logic will only operate when this bit is set to 1. When the bit is reset
the MISC address counter is set to the initial SCM address. When enabled, the MISC will continuously
cycle through the SCM addresses, reading each and calculating a CRC. In order to save power, the MISC
can be disabled by clearing the SCMMISEN bit. See Section 24.5.10, Test and Development Support, for
more details.
1: MISC operation enabled.
0: MISC operation disabled. The MISC logic is reset to its initial state.

SCMMISEN resets automatically when MISC logic detects an error, i.e., when SCMMISF transitions from
0 to 1, disabling the MISC operation.

23-24 Reserved

Table 24-5. ETPU_MCR field description

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

770 Freescale Semiconductor

25 VIS—SCM Visibility Bit
VIS bit turns SCM visible to the IP-Bus and resets MISC state (but SCMMISEN keeps its value).
1: SCM is visible to the slave bus. MISC state is reset.
0: SCM is not visible to the slave bus. Accessing SCM address space issues a bus error, writes are
protected and reads are meaningless.

This bit is write protected when any of the engines are not halted or stopped2. When VIS = 1, the
ETPU_ECR MDIS bits are write protected, and only 32-bit aligned SCM writes are supported. The value
written to SCM is unpredictable if other transfer sizes are used.

26-30 Reserved

31 GTBE–Global Time Base Enable
GTBE enables time bases in both engines, allowing them to be started synchronously.
1: time bases in both engines are enabled to run.
0: time bases in both engines are disabled to run.

Note: Global Time Base Enable action may also depend on other blocks, as explained in Section 24.5.6.4,
GTBE – Global time base enable.

Note: When GTBE is turned off with Angle Mode enabled, the EAC must be reinitialized before GTBE is
turned on again. The EAC reinitialization procedure is described in Section 24.5.7.11, Restarting
angle logic.

1 Engine is stopped in Module Disable or Stop Modes, but accesses to registers in Stop Mode is defined in the MCU
level.

2 Engine is stopped in Module Disable or Stop Modes, but accesses to registers in Stop Mode is defined in the MCU
level.

Table 24-5. ETPU_MCR field description

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 771

24.4.2.2 ETPU_CDCR – eTPU Coherent Dual-Parameter Controller Register

eTPU Shared Parameter RAM (SPRAM) can be accessed by the MCU’s processor core and the eTPU’s
microengine(s) concurrently. In general, there is no guaranteed order by which a group of parameters is
accessed, which may lead to a lack of internal consistency if two or more related parameters are read when
only part of them is updated.

The eTPU provides mechanisms to guarantee parameter coherency, including the use of transfer service
thread mechanism. and a mailbox (or “software semaphore”) mechanism.

A third mechanism, the Coherent Dual-parameter Controller (CDC), is also provided. It is used by the
processor core to coherently transfer pairs of parameters between a parameter buffer located on SPRAM
and locations on SPRAM where parameters are accessed directly by the channels. Coherency is
guaranteed by SPRAM access arbitration. Although limited to two parameters only, it has low latency and
wastes no microengine resources.

This register is used to configure and initiate CDC transfers between the parameter buffer area and the
channel parameter area.

1. The host asserts the STS bit to start the data transfer.

2. CDC contends for the SPRAM and starts the transfer.

3. When the data transfer is complete, STS returns to 0. The host receives wait-states for writing
STS = 1 while CDC contends for SPRAM and during the transfer.

4. The write access ends when CDC finishes the transfer. The host receives wait-states during the
CDC transfer.

NOTE

If the host writes to the ETPU_CDCR with STS = 0 or does not write the
STS bit, the CDC transfer does not occur.

CDC programming can be summarized as follows:

1. If it is a write transfer, i.e., from host to channel, write the two parameters into temporary area.

2. Write the ETPU_CDCR with STS = 1 and the remaining CDC programming parameters:
parameter width (32 or 24 bits, field PWIDTH), transfer direction (read or write, field WR),
temporary parameter area base address (field PBBASE), and the absolute addresses of the
parameters to be transferred (concatenation of the fields CTBASE and PARAM0/1).

3. If it is a read transfer, i.e., from channel to host, read the two parameters from the temporary area
into host memory/registers.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

772 Freescale Semiconductor

Figure 24-4. ETPU_CDCR Register

Offset: eTPU_Base + 0x004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R STS CTBASE PBBASE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PWID
TH

PARAM0 WR PARAM1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-6. ETPU_CDCR field description

Field Description

0 STS—Start Bit

This bit is set by the host in order to start the data transfer between the parameter buffer pointed by
PBBASE and the target addresses selected by the concatenation of fields CTBASE and PARAM0/1. The
host receives wait-states until the data transfer is complete, when this bit is reset by coherency logic (see
Section 24.5.4.3, Coherent Dual-parameter Controller (CDC)). Therefore, host always reads STS as 0.

1: (write) starts a coherent transfer.
0: (write) does not start a coherent transfer.

1-5 CTBASE[4:0]—Channel Transfer Base

This field concatenates with fields PARAM0/PARAM1 to determine the absolute word offset (from the
SPRAM base) of the parameters to be transferred:
Parameter 0 word address = {CTBASE, PARAM0} + SPRAM base word address
Parameter 1 word address = {CTBASE, PARAM1} + SPRAM base word address

6-15 PBBASE[9:0]—Parameter Buffer Base Address

This field points to the base address of the parameter buffer location, with granularity of 2 parameters (8
bytes). The host (byte) address of the first parameter in the buffer is PBBASE*8 + SPRAM Base Byte
Address. The microengine absolute (word) address of the first parameter in the buffer is PBBASE*2.

16 PWIDTH—Parameter Width Selection

This bit selects the width of the parameters to be transferred between the PB and the target address.

1: Transfer 32-bit parameters. All 32 bits of the parameters are written in the destination address.
0: Transfer 24-bit parameters. The upper byte remains unchanged in the destination address.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 773

24.4.2.3 ETPU_MISCCMPR – eTPU MISC Compare Register

The eTPU includes a feature called the Multiple Input Signature Calculator (MISC) which comprises
hardware that sequentially reads all Shared Code Memory (SCM) and calculates a 32-bit CRC signature.
The ETPU_MISCCMPR stores the 32-bit expected value to be compared to the signature generated by the
MISC.

The sequence is as follows:

1. The host loads the ETPU_MISCCMPR with the expected value to be found at the end of the MISC
cycle

2. The host starts signature calculation by writing bit SCMMISEN = 1 in the ETPU_MCR. The
MISC zeroes the signature accumulator and starts reading SCM data and calculating the signature.

3. After last SCM position is read, MISC compares the value in the signature accumulator against the
value in the ETPU_MISCCMPR. If there is a mismatch, the MISC stops, issues a Global Exception
and the SC MM I SF bit in the ETPU_MCR assumes value 1. If no mismatch is found, MISC
repeats the procedure automatically.

17-23 PARAM0[6:0]—Channel Parameter number 0

This field, in concatenation with CTBASE[4:0], determines the word address offset (from the SPRAM
base) of the parameters that are destination or source (defined by WR) of the coherent transfer. The word
SPRAM address offset of the parameters are {CTBASE, PARAM0}.Note that PARAM0 and PARAM1 allow
non-contiguous parameters to be transferred coherently. The parameter pointed by {CTBASE, PARAM0}
is the first transferred.

24 WR—Read/Write selection
This bit selects the direction of the coherent data transfer.

1: Write operation. Data transfer is from the PB to the selected parameter RAM address.
0: Read operation. Data transfer is from the selected parameter RAM address to the PB.

25-31 PARAM1[6:0]—Channel Parameter number 1

This field, in concatenation with CTBASE[4:0] determines the word address offset (from the SPRAM base)
of the parameters that are destination or source (defined by WR) of the coherent transfer. The word
SPRAM address offset of the parameters are {CTBASE, PARAM1}.Note that PARAM0 and PARAM1 allow
non-contiguous parameters to be transferred coherently. The parameter pointed by {CTBASE, PARAM0}
is the first transferred.

Table 24-6. ETPU_CDCR field description

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

774 Freescale Semiconductor

Figure 24-5. ETPU_MISCCMPR Register

24.4.2.4 ETPU_SCMOFFDATAR – eTPU SCM Off-range Data Register

When read accesses are made, either by the host or an eTPU2 microengine, to addresses above the limit
corresponding to the SCMSIZE value in the ETPU_MCR, the value read comes from the
ETPU_SCMOFFDATAR.

The host can program the register at initialization with an opcode value with operations that try to protect
or recover the system from runaway code, for instance: terminate the thread, clear channel flags, disable
match and transition service requests, issue an interrupt, or jump to an error recovery procedure. Writes to
unimplemented addresses do not return an error and can write on unspecified mirror addresses, so they
should be avoided.

The reset value is MCU dependent.

Offset: eTPU_Base + 0x00C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ETPUMISCCMP[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ETPUMISCCMP[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-7. ETPU_MISCCMPR field description

Field Description

0-31 ETPUMISCCMP[31:0]—Expected Multiple Input Signature Register value

See Section 24.5.10.3.1, SCM Test – Multiple input signature calculator.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 775

Offset: eTPU_Base + 0x010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ETPUSCMOFFDATA[31:16]

W

Reset etpu_scm_off_range_data_plug[31:16]1

1 The reset value depends on the MCU, and is usually 0xf3775ffb, an instruction that clears MRLEs, MRLs and TDLs,
disables channel service requests, ends the thread and generates an illegal instruction Global Exception.

Figure 337. ETPU_SCMOFFDATAR Register

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ETPUSCMOFFDATA[15:0]

W

Reset etpu_scm_off_range_data_plug[15:0]

= Unimplemented or Reserved

Table 24-8. ETPU_SCMOFFDATAR field description

Field Description

0-31 ETPUSCMOFFDATA[31:0]—SCM Off-range read data value

See Section 24.5.2.6.3, SCM off-range data.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

776 Freescale Semiconductor

24.4.2.5 ETPU_ECR – eTPU Engine Configuration Register

Each engine has its own ETPU_ECR. ETPU_ECR holds configuration and status fields that are
programmed independently in each engine.

Offset: eTPU_A: eTPU_Base + 0x014; eTPU_B: eTPU_Base + 0x018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEN
D

MDIS 0 STF 0 0 0 0 HLTF 0 0 0 FCS
S

FPSCK

W

Reset 0 0/11

1 The MDIS reset value is MCU-dependent. Please consult the Reference Manual of the specific MCU.

0 0 0 0 0 0 0(12)

2 Engine may go to Debug state (halted) soon after reset, depending on the NDEDI configuration.

Figure 451. ETPU_ECR Register

0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CDFC 0 ERBA SPP
DIS

0 0 ETB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-9. ETPU_ECR field description

Field Description

0 FEND—Force End

FEND assertion terminates any current running thread as if an END instruction have been executed (see
Section 24.5.9.4.1, Ending current thread – END).

1: Ends any ongoing thread.
0: Normal operation.
This bit is self-negating when the thread ends. Writing FEND = 1 is ignored and FEND stays 0 when the
microengine is in TST, halted, stopped, or idle (no thread executing).

Note: Only on rare occasions (e.g., during a long stall, see Section 24.5.10.2.10, Microengine stall) FEND
can be read as 1, because it negates as soon as the end begins execution.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 777

1 MDIS—Module Disable Bit

When MDIS is set, the engine shuts down its internal clocks, going into Module Disable Mode. TCR1 and
TCR2 cease to increment, and input sampling stops. The engine asserts the stop flag (STF) bit to indicate
that it has stopped However, the BIU continues to run, and the Host can access all registers except for the
channel registers (see list of channel registers on Section 24.4.7, Channel configuration and control
registers). After MDIS is set, even before STF asserts, data read from the channel registers is not
meaningful and writes are ineffective, issuing a Bus Error. When the MDIS bit is asserted while the
microcode is executing, the eTPU will stop when the thread is complete.

1: Commands engine to stop its clocks.
0: eTPU engine runs.

Stop completes on the next system clock after the stop condition is valid. The MDIS bit is write-protected
when VIS = 1.

Note: The Timebase registers can still be read with MDIS = 1, but writes are ineffective and a Bus Error is
issued. Global Channel Registers and SPRAM can be accessed normally.

Note: Once MDIS is switched from 1 to 0 or vice versa, it must not be written a different value until STF
changes accordingly.

2 Reserved

3 STF—Stop Flag Bit

The eTPU system is fully stopped after the eTPU engine asserts its stop flag (STF). In case of an IP-Bus
stop, the eTPU acknowledges the stop only after any ongoing thread is complete and the eTPU engine
has stopped.

1: Engine has stopped (after the local MDIS bit has been asserted, or after the IP-Bus stop line has been
asserted).
0: Engine is operating.

Summarizing engine stop conditions, which STF reflects:
STF_1:= (after stop completed) MDIS_1 | device stop request
STF_2:= (after stop completed) MDIS_2 | device stop request
STF_1 and STF_2 mean STF bit from engine 1 and STF bit from engine 2 respectively.

4-7 Reserved

8 HLTF—Halt Mode Flag

If eTPU engine entered halt state, this flag is asserted. The flag remains asserted while the microengine
is in halt state, even during a single-step or forced instruction execution. See Section 24.5.10.2,
Development support features, for further details about entering Halt Mode.

1: eTPU engine is halted
0: eTPU engine is not halted.

9-11 Reserved

Table 24-9. ETPU_ECR field description

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

778 Freescale Semiconductor

12 FCSS—Filter Clock Source Selection

Speeds up the filter clock source before the prescaler, allowing more input capture resolution at minimum
prescaling.

1: use system clock as EDF clock source before prescaler
0: use system clock / 2 as EDF clock source before prescaler.

Note: FCSS = 1 also makes the channel work on T2/T4 timing mode (see Section 24.5.5.7.2, T2/T4
Channel Timing).

13-15 FPSCK[2:0]—Filter Prescaler Clock Control

FPSCK controls the prescaling of the clocks used in digital filters for the channel input signals and
TCRCLK input, as shown in Table 24-10. Filtering can be controlled independently by engine, but all input
digital filters in the same engine have same clock prescaling. For more details see Section 24.5.5.6.5,
Filter Clock Prescaler.

Note: A new value written to FPSCK only becomes effective when the filter prescaler finishes the current
count.

Table 24-9. ETPU_ECR field description

Field Description

Table 24-10. Filter prescaler clock control

Filter control
Sample on system
clock divided by:

000 2

001 4

010 8

011 16

100 32

101 64

110 128

111 256

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 779

16-17 CDFC[1:0]—Channel Digital Filter Control

These bits select a digital filtering mode for the channels when configured as inputs for improved noise
immunity (refer to Table 24-11). The eTPU has three digital filtering modes for the channels which provide
programmable trade-off between signal latency and noise immunity (see Section 24.5.5.6, Enhanced
Digital Filter – EDF). Changing CDFC during eTPU normal input channel operation is not recommended
since it changes the behavior of the transition detection logic while executing its operation.

18 Reserved

19-23 ERBA—Engine Relative Base Address

This field value is concatenated with the AID instruction field in engine relative address mode to form the
SPRAM address (see Section , Engine relative addressing mode).

24 SPPDIS—Schedule Priority Passing Disable

SPPDIS is used to disable the priority passing mechanism of the microengine scheduler (see
Section 24.5.3.2.1, Primary scheme – priority among channels on different levels).

1: Scheduler priority passing mechanism disabled.
0: Scheduler priority passing mechanism enabled.

Note: SPPDIS bit must not be changed while any channel is enabled.

25-26 Reserved

Table 24-9. ETPU_ECR field description

Field Description

Table 24-11. Channel digital filter control

CDFC Selected digital filter

00 TPU2/3 Two Sample Mode: Using the filter clock which is the system clock divided by
(2, 4, 8,.., 256) as a sampling clock (selected by FPSCK field in ETPU_ECR),
comparing two consecutive samples which agree with each other sets the input signal
state. This is the default reset state.

01 eTPU bypass mode: the input signal is taken unfiltered, also making the channels
work on T2/T4 timing mode1.

1 See Section 24.5.5.7.2, T2/T4 Channel Timing

10 eTPU Three Sample Mode: Similar to the TPU2/3 two sample mode, but comparing
three consecutive samples which agree with each other sets the input signal state.

11 eTPU Continuous Mode: Signal need to be stable for the whole filter clock period. This
mode compares all the values at the rate of system clock (FCSS = 1) or system clock
divided by two (FCSS = 0), between two consecutive filter clock pulses. Signal needs
to be continuously stable for the entire period. If all the values agree with each other,
input signal state is updated.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

780 Freescale Semiconductor

27-31 ETB[4:0]—Entry Table Base

The field determines the location of the microcode entry table for the eTPU functions in SCM (see
Section 24.5.1.1, Entry points). Table 24-12 shows the entry table base address options.

Table 24-9. ETPU_ECR field description

Field Description

Table 24-12. Entry table base address options

ETB
Entry table base address for

host address
Entry table base address for

microcode address

00000 0x000 0x000

00001 0x800 0x200

00010 0x1000 0x400

.

.

.

.

.

.

.

.

.

.

.

.

11110 0xF000 0x3C00

11111 0xF800 0x3E00

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 781

24.4.3 Time base registers

Each eTPU2 engine has two internally-generated time bases—Time Counter Registers—TCR1 and TCR2.
They provide 24-bit time bases, shared by all 32 channels of their associated eTPU2 engine. The registers
in the following sections control the configuration and visibility of the time bases. There is one of each of
these registers for each eTPU engine.

NOTE

Writes to this register issue bus error and are ineffective when MDIS = 1.
Reads are always allowed.

24.4.3.1 ETPU_TBCR – eTPU Time Base Configuration Register

This register configures several timebase options.

Figure 24-6. ETPU_TBCR Register

Offset: eTPU_A: eTPU_Base + 0x020 eTPU_B: eTPU_Base + 0x040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TCR2CTL TCRCF AM 0 0 0 TCR2P

W

Reset 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TCR1CTL

T
C

R
1C

S 0 0 0 0 0 TCR1P

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

782 Freescale Semiconductor

Table 24-13. ETPU_TBCR field description

Field Description

0-2 TCR2CTL[2:0]—TCR2 Clock/Gate Control

These bits are part of the TCR2 clocking system (see Section 24.5.6, Time Bases). They determine the
clock source for TCR2 before the prescaler. TCR2 can count on any detected edge of the TCRCLK signal
or use it for gating system clock divided by 8. After reset - TCRCLK signal rising edge is selected. TCR2
can also be clocked by an internal peripheral timebase signal or system clock divided by 8. TCR2CTL also
determines the TCRCLK edge selected for angle tooth detection in angle mode. See Table 24-14.

Table 24-14. TCR2 clock source

TCR2CTL
AM = 0 AM = 1

TCR2 Clock before prescaler Angle tooth detection

000 Gated DIV8 clock (system clock / 8). In
this case, when the external TCRCLK
signal is low, the DIV8 clock is blocked,
preventing it from incrementing the TCR2
prescaler. When the external TCRCLK
signal is high, TCR2 prescaler is
incremented at the frequency of the
system clock divided by 8.

do not use with AM = 1

001 Rise transition on TCRCLK signal
increments the TCR2 prescaler.

rise edge

010 Fall transition on TCRCLK signal
increments the TCR2 prescaler.

fall edge

011 Rise or Fall transition on TCRCLK signal
increments the TCR2 prescaler.

both edges

100 DIV8 clock (system clock / 8) do not use with AM = 1

101 Peripheral Timebase clock source

110 do not use with AM = 0 no edge1

1 TCRCLK edges are not detected by the EAC logic, but they can still be detected by the
channel 0 logic if AM = 01.

111 TCR2 frozen, except as STAC client do not use with AM = 1

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 783

3-4 TCRCF[1:0]—TCRCLK Signal Filter Control

This field controls the TCRCLK digital filter (see Section 24.5.6.5, TCRCLK digital filter), determining
whether the TCRCLK signal input (after a synchronizer) is filtered with the same filter clock as the channel
input signals (see Section 24.5.5.6, Enhanced Digital Filter – EDF) or uses the system clock divided by 2,
and also whether the TCRCLK digital filter works in integrator mode or two sample mode (see
Table 24-15).

5-6 AM—Angle Mode Selection

This field enables the Enhanced Angle Counter logic to generate angle information (see Section 24.5.7,
EAC – eTPU angle counter), and also select the tooth signal input and the channel used to process it, as
shown in Table 24-16. When EAC is not disabled by AM and neither TCR1 nor TCR2 are STAC Clients,
the EAC (eTPU Angle Clock) hardware provides angle information to the channels using the TCR2 bus.
When AM is reset (non-angle mode), the EAC operation is disabled, and its internal registers can be used
as general purpose. For more information, see Section 24.5.7, EAC – eTPU angle counter.

If TCR1 or TCR2 is a STAC Bus Client (see Section 24.5.6.3, STAC Interface), the EAC operation is
forbidden, and if AM is set the Angle Logic does not work properly.

Note: Changing AM may cause spurious transition detections on the channel selected by AM, depending
on the channel mode and state (see Section 24.5.5.3, Transition Detection and Time Base Capture).
If AM must be changed with GTBE = 1, the recommended procedure is described in
Section 24.5.7.11, Restarting angle logic.

7-9 Reserved

Table 24-13. ETPU_TBCR field description (continued)

Field Description

Table 24-15. TCRCLK filter clock/mode

TCRCF Filter clock Filter mode

00 system clock divided by 2 two sample

01 filter clock of the channels two sample

10 system clock divided by 2 integrator

11 filter clock of the channels integrator

Table 24-16. AM - angle mode selection

Valu
e

TCR2 value Tooth signal
Tooth

processing
channel

0 0 Timebase (EAC operation disabled) not applicable

0 1
Angle Ticks

TCRCLK input 0

1 0 channel 1 input 1

1 1 channel 2 input 2

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

784 Freescale Semiconductor

10-15 TCR2P[5:0]—Timer Count Register 2 Prescaler Control

These bits are part of the TCR2 clocking system (see Section 24.5.6, Time Bases). TCR2 is clocked from
the output of a prescaler. The prescaler divides its input by (TCR2P+1) allowing frequency divisions from
1 to 64. The prescaler input is the system clock divided by 8 (in gated or non-gated clock mode), or Internal
Timebase input, or TCRCLK filtered input. This field has no effect on TCR2 in Angle Mode.

16-17 TCR1CTL—TCR1 Clock/Gate Control

TCR1CTL is part of the TCR1 clocking system (see Section 24.5.6, Time Bases). It determines, together
with TCR1CS, the clock source for TCR1. TCR1 can count on detected rising edge of the TCRCLK signal,
a Peripheral Timebase source, system clock, or the system clock divided by 2 (see Table 24-17). After
reset TCRCLK signal is selected

18 TCR1CS—TCR1 Clock Source

TCR1CS provides the option to double the TCR1 incrementing speed, using system clock as its clock
source instead of system clock / 2.

1: use system clock as TCR1 clock source before the prescaler; can only be set in specific combinations
with TCR1CTL (see Table 24-17).
0: use system clock / 2 as TCR1 clock source before the prescaler, if that clock source is selected by
TCR1CTL.

Note: TCR1CS = 1 also makes the channel work on T2/T4 timing mode (see Section 24.5.5.7.2, T2/T4
Channel Timing).

Note: The clock source of the EAC angle tick generator will still be an even division of system clock if
TCR1CS = 1, obeying to the fields TCR1P as if TCR1CS = 0 (see Section 24.5.7.4, Angle tick
generator).

19-23 Reserved

Table 24-13. ETPU_TBCR field description (continued)

Field Description

Table 24-17. TCR1 clock source

TCR1CTL TCR1CS1

1 All other combinations of TCR1CTL and TCR1CS are reserved.

TCR1 Clock before prescaler

00 0 selects TCRCLK as clock source for the TCR1 prescaler2

2 This selection must not be used in Angle Mode.

01 0 selects Peripheral Timebase clock as source for the TCR1
prescaler

10 0 selects system clock divided by 2 as clock source for the
TCR1 prescaler

10 1 selects system clock as clock source for the TCR1 prescaler

11 0 TCR1 frozen, except as a STAC client;

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 785

24-31 TCR1P[7:0]—Timer Count Register 1 Prescaler Control

TCR1 is clocked from the output of a prescaler. The input to the prescaler is the internal eTPU system
clock divided by 2, system clock, or the output of TCRCLK filter, or Peripheral Timebase input. The
prescaler divides this input by (TCR1P+1) allowing frequency divisions from 1 up to 256.

Table 24-13. ETPU_TBCR field description (continued)

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

786 Freescale Semiconductor

24.4.3.2 ETPU_TB1R – eTPU Time Base 1 (TCR1) Visibility Register

This register provides visibility of the TCR1 time base for host read access (see Section 24.5.6, Time
Bases). This register is read-only. The value of the TCR1 time base shown can be driven by the TCR1
counter or imported from STAC bus, depending on the configuration set in ETPU_REDCR.

Figure 24-7. ETPU_TB1R Register

Offset: eTPU_A: eTPU_Base + 0x024; eTPU_B: eTPU_Base + 0x044 Access: User read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 TCR1[23:7]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TCR1[8:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-18. ETPU_TB1R field description

Field Description

0-7 Reserved

8-31 TCR1[23:0]—TCR1 value

TCR1 value used on matches and captures. See Section 24.5.6, Time Bases.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 787

24.4.3.3 ETPU_TB2R – eTPU Time Base 2 (TCR2) Visibility Register

This register provides visibility of the TCR2 time base for host read access (see Section 24.5.6, Time
Bases). This register is read-only. The value of the TCR2 time base shown can be driven by the TCR2
counter, the Angle Mode logic, or imported from STAC, depending on Angle Mode and STAC
configurations set in registers ETPU_TBCR and ETPU_REDCR.

Figure 24-8. ETPU_TB2R Register

Offset: eTPU_A: eTPU_Base + 0x028; eTPU_B: eTPU_Base + 0x048 Access: User read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 TCR2[23:7]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TCR2[8:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-19. ETPU_TB2R field description

Field Description

0-7 Reserved

8-31 TCR2[23:0]—TCR2 value
TCR2 value used on matches and captures. See Section 24.5.6, Time Bases.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

788 Freescale Semiconductor

24.4.3.4 ETPU_REDCR – eTPU STAC Configuration Register

This register configures the eTPU STAC bus operation as a STAC Server/Client module (see
Section 24.5.6.3, STAC Interface).

Figure 24-9. ETPU_REDCR Register

Offset: eTPU_A: eTPU_Base + 0x02C; eTPU_B: eTPU_Base + 0x04C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REN
1

RSC
1

0 0 SERVER_ID1 0 0 0 0 SRV1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REN
2

RSC
2

0 0 SERVER_ID2 0 0 0 0 SRV2

W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-20. ETPU_REDCR field description

Field Description

0 REN1—TCR1 Resource1 Client/Server Operation Enable Bits

This bit enables or disables Client/Server operation to eTPU STAC resources. REN1 enables TCR1 STAC
bus operations.

1: Server/Client Operation for resource 1 is enabled.
0: Server/Client Operation for resource 1 is disabled.

1 RSC1—TCR1 Resource Server/Client Assignment Bits

This bit selects the eTPU data resource assignment to be used as Servers or Clients. RSC1 selects the
functionality of TCR1. For Server mode, external plugging determines the unique server address assigned
to each TCR. For a Client mode, the SRV1 field determines the Server address to which the Client listens.

1: Resource Server operation.
0: Resource Client operation.

Note: When TCR1 is configured as a STAC Bus Client (REN2 = 1, RSC2 = 0) the eTPU Angle Clock
hardware cannot be used.

Note: RSC1 must not be changed when the respective REN1 bit is asserted.

2-3 Reserved

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 789

4-7 SERVER_ID1—STAC Id 1

STAC Server Id (read-only plug values) used for TCR1 when STAC servers.

12-15 SRV1—TCR1 Resource Server

These bits select the address of the specific STAC Server to which the local TCR1 listens when configured
as a STAC Client. SRV1 selects the STAC Server of TCR1.

16 REN2—TCR2 Resource2 Client/Server Operation Enable Bits

This bit enables or disables Client/Server operation to eTPU STAC resources. REN2 enables TCR2 STAC
bus operations.

1: Server/Client Operation for resource 2 is enabled.
0: Server/Client Operation for resource 2 is disabled.

17 RSC2—TCR2 Resource Server/Client Assignment Bits

This bit selects the eTPU data resource assignment to be used as Servers or Clients. RSC2 selects the
functionality of TCR2. For Server mode, external plugging determines the unique server address assigned
to each TCR. For a Client mode, the SRV2 field determines the Server address to which the Client listens.

1: Resource Server operation.
0: Resource Client operation.

Note: When TCR1 or TCR2 is configured as a STAC Bus Client (REN2 = 1, RSC2 = 0) the eTPU Angle
Clock hardware cannot be used.

 RSC2 must not be changed when the respective REN1,2 bit is asserted.

18-19 Reserved

20-23 SERVER_ID2—STAC Id 2

STAC Server Id (read-only plug values) used for TCR2 when STAC servers.

24-27 Reserved

28-31 SRV2—TCR2 Resource Server

These bits select the address of the specific STAC Server to which the local TCR2 listens when configured
as a STAC Client. SRV2 selects the STAC Server of TCR2.

1 resource identifies any parameter that changes along the time and can be exported / imported from other device.
In eTPU context, a resource can be TCR1 or TCR2 (either Time or Angle values).

2 resource identifies any parameter that changes along the time and can be exported / imported from other device.
In eTPU context, a resource can be TCR1 or TCR2 (either Time or Angle values).

Table 24-20. ETPU_REDCR field description

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

790 Freescale Semiconductor

24.4.4 Engine related registers

This section gathers registers that are engine-related, other than ETPU_ECR (see Section 24.4.2.5,
ETPU_ECR – eTPU Engine Configuration Register).

24.4.4.1 ETPU_WDTR – eTPU Watchdog Timer Register

This register configures the watchdog timer for the engine.

Figure 24-10. ETPU_WDTR Register

Offset: eTPU_A: eTPU_Base + 0x060; eTPU_B: eTPU_Base + 0x070 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R WDM 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R WDCNT[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-21. ETPU_WDTR field description

Field Description

0-1 WDM—Watchdog Mode

WDM selects the Watchdog operation mode, as shown below. For more information on the Watchdog
operation, see Section 24.5.1.4, Watchdog.

00: disabled
01: reserved
10: thread length
11: busy length

Note: The watchdog must be disabled first before a new mode is configured.

2-15 Reserved

16-31 WDCNT[15:0]—Watchdog Count
This field indicates the maximum number of microcyles allowed for a thread (in thread length mode) or a
sequence of threads (in busy length mode) before the current running thread is forced to end. For more
information on Watchdog operation, see Section 24.5.1.4, Watchdog.

Note: The TST microcycles are also counted by the watchdog.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 791

24.4.4.2 ETPU_IDLE – eTPU Idle Register

The Idle Counter Register (ETPU_IDLE) continuously counts microcycles in which the microengine is
not busy with channel service. It can be used to measure the microengine utilization by rating the count
measured during a period of time to the number of microcycles contained in the period. The Idle counter
does not count microcycles when the engine is stopped, or is in TST or halt states.

Each eTPU2 engine has an associated ETPU_IDLE register.

Figure 24-11. ETPU_IDLE Register

Offset: eTPU_A: eTPU_Base + 0x068; eTPU_B: eTPU_Base + 0x078 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R IDLE_CNT[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IDLE_CNT[15:0]

W ICLR

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-22. ETPU_IDLE field description

Field Description

0-31 IDLE_CNT[31:0]—Idle Count

This is a freerunning count of the number of idle microcycles in the microengine. For more information on
idle counter operation, see Section 24.5.10.4.1, Idle Counter.

31 ICLR—Idle Clear

This write-only bit is used to clear the idle count IDLE_CNT.

1: Clear the idle count IDLE_CNT
0: Do not clear idle count IDLE_CNT

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

792 Freescale Semiconductor

24.4.5 Channel registers layout

The channel registers area is shown in Figure 24-12 and detailed in the next sections for eTPU systems of
32 channels per engine. Reserved areas are placed to allow doubling the number of channels to 64 for each
eTPU engine.

Figure 24-12. Channel registers area

24.4.6 Global channel registers

The registers in this section group, by type, the interrupt status and enable bits from all the channels. This
organization eases management of all channels or groups of channels by a single interrupt handler routine.
These bits, except the service and watchdog status, are mirrored in the individual channel registers,
grouped by channel.

Global Channel Registers

RESERVED

Engine 1 Channel Registers

RESERVED

Engine 2 Channel Registers

RESERVED

0x200

0x26C

0x400

0x600

0x800

0xA00

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 793

24.4.6.1 ETPU_CISR – eTPU Channel Interrupt Status Register

Host interrupt status (see Section 24.5.2.2, Interrupts and data transfer requests) from all channels are
grouped in ETPU_CISR. Their bits are mirrored from the Channel Status/Control registers (see
Section 24.4.7, Channel configuration and control registers) and Host must write 1 to clear a status bit.

Figure 24-13. ETPU_CISR Register

24.4.6.2 ETPU_CDTRSR – eTPU Channel Data Transfer Request Status Register

Data Transfer request status (see Section 24.5.2.2, Interrupts and data transfer requests) from all channels
are grouped in ETPU_CDTRSR. Their bits are mirrored from the Channel Status/Control registers (see
Section 24.4.7.2, ETPU_CxSCR – eTPU Channel x Status Control Register).

Offset: eTPU_A: eTPU_Base + 0x200; eTPU_B: eTPU_Base + 0x204 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIS3
1

CIS3
0

CIS2
9

CIS2
8

CIS2
7

CIS2
6

CIS2
5

CIS2
4

CIS2
3

CIS2
2

CIS2
1

CIS2
0

CIS1
9

CIS1
8

CIS1
7

CIS1
6

W CIC3
1

CIC3
0

CIC2
9

CIC2
8

CIC2
7

CIC2
6

CIC2
5

CIC2
4

CIC2
3

CIC2
2

CIC2
1

CIC2
0

CIC1
9

CIC1
8

CIC1
7

CIC1
6

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIS1
5

CIS1
4

CIS1
3

CIS1
2

CIS1
1

CIS1
0

CIS9 CIS8 CIS7 CIS6 CIS5 CIS4 CIS3 CIS2 CIS1 CIS0

W CIC1
5

CIC1
4

CIC1
3

CIC1
2

CIC1
1

CIC1
0

CIC9 CIC8 CIC7 CIC6 CIC5 CIC4 CIC3 CIC2 CIC1 CIC0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-23. ETPU_CISR field description

Field Description

0-31 CISx—Channel x Interrupt Status

1: indicates that channel x has a pending interrupt to the Host CPU.
0: indicates that channel x has no pending interrupt to the Host CPU.

0-31 CICx—Channel x Interrupt Clear

1: clear interrupt status bit.
0: keep interrupt status bit unaltered.

For details about interrupts see Section 24.5.9.3.10, Channel interrupt and data transfer requests.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

794 Freescale Semiconductor

Figure 24-14. ETPU_CDTRSR Register

24.4.6.3 ETPU_CIOSR – eTPU Channel Interrupt Overflow Status Register

Interrupt Overflow status (see Section 24.5.2.2, Interrupts and data transfer requests) from all channels is
grouped in the ETPU_CIOSR. Their bits are mirrored from the Channel Status/Control registers (see
Section 24.4.7.2, ETPU_CxSCR – eTPU Channel x Status Control Register) and a write of ‘1’ clears a
status bit.

Offset: eTPU_A: eTPU_Base + 0x210; eTPU_B: eTPU_Base + 0x214 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DTR
S
31

DTR
S
30

DTR
S
29

DTR
S
28

DTR
S
27

DTR
S
26

DTR
S
25

DTR
S
24

DTR
S
23

DTR
S
22

DTR
S
21

DTR
S
20

DTR
S
19

DTR
S
18

DTR
S
17

DTR
S
16

W DTR
C
31

DTR
C
30

DTR
C
29

DTR
C
28

DTR
C
27

DTR
C
26

DTR
C
25

DTR
C
24

DTR
C
23

DTR
C
22

DTR
C
21

DTR
C
20

DTR
C
19

DTR
C
18

DTR
C
17

DTR
C
16

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DTR
S
15

DTR
S
14

DTR
S
13

DTR
S
12

DTR
S
11

DTR
S
10

DTR
S
9

DTR
S
8

DTR
S
7

DTR
S
6

DTR
S
5

DTR
S
4

DTR
S
3

DTR
S
2

DTR
S
1

DTR
S
0

W DTR
C
15

DTR
C
14

DTR
C
13

DTR
C
12

DTR
C
11

DTR
C
10

DTR
C
9

DTR
C
8

DTR
C
7

DTR
C
6

DTR
C
5

DTR
C
4

DTR
C
3

DTR
C
2

DTR
C
1

DTR
C
0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-24. ETPU_CDTRSR field description

Field Description

0-31 DTRSx—Channel x Data Transfer Request Status

These bits mimic the corresponding ETPU DMA requests. DTRSx can be cleared by software (writing 1
to DTRCx) or by the assertion of corresponding DMA completion acknowledge line.

1: Indicates that channel x has a pending data transfer request.
0: Indicates that channel x has no pending data transfer request.

0-31 DTRCx—Channel x Data Transfer Request Clear

1: Clear status bit.
0: Keep status bit unaltered

For details about interrupts see Section 24.5.9.3.10, Channel interrupt and data transfer requests.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 795

Figure 24-15. ETPU_CIOSR Register

Offset: eTPU_A: eTPU_Base + 0x220; eTPU_B: eTPU_Base + 0x224 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIOS
31

CIOS
30

CIOS
29

CIOS
28

CIOS
27

CIOS
26

CIOS
25

CIOS
24

CIOS
23

CIOS
22

CIOS
21

CIOS
20

CIOS
19

CIOS
18

CIOS
17

CIOS
16

W CIOC
31

CIOC
30

CIOC
29

CIO
C
28

CIO
C
27

CIO
C
26

CIO
C
25

CIO
C
24

CIOC
23

CIOC
22

CIO
C
21

CIO
C
20

CIO
C
19

CIO
C
18

CIO
C
17

CIO
C
16

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIOS
15

CIOS
14

CIOS
13

CIOS
12

CIOS
11

CIOS
10

CIOS
9

CIOS
8

CIOS
7

CIOS
6

CIOS
5

CIOS
4

CIOS
3

CIOS
2

CIOS
1

CIOS
0

W CIOC
15

CIOC
14

CIOC
13

CIO
C
12

CIO
C
11

CIO
C
10

CIO
C
9

CIO
C
8

CIOC
7

CIOC
6

CIO
C
5

CIO
C
4

CIO
C
3

CIO
C
2

CIO
C
1

CIO
C
0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-25. ETPU_CIOSR field description

Field Description

0-31 CIOSx—Channel x Interrupt Overflow Status
1: indicates that interrupt overflow occurred in the channel.
0: indicates that no interrupt overflow occurred in the channel.

0-31 CIOCx—Channel x Interrupt Overflow Clear
1: clear status bit.
0: keep status bit unaltered.
For details about interrupt overflow, see Section 24.5.2.2.2, Interrupt and data transfer request overflow.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

796 Freescale Semiconductor

24.4.6.4 ETPU_CDTROSR – eTPU Channel Data Transfer Request Overflow
Status Register

Data Transfer Request Overflow status (see Section 24.5.2.2, Interrupts and data transfer requests) from
all channels is grouped in the ETPU_CDTROSR. Their bits are mirrored from the Channel Status/Control
registers (see Section 24.4.7.2, ETPU_CxSCR – eTPU Channel x Status Control Register) and a write of
‘1’ clears a status bit.

Figure 24-16. ETPU_CDTROSR Register

Offset: eTPU_A: eTPU_Base + 0x230; eTPU_B: eTPU_Base + 0x234 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DTR
OS
31

DTR
OS
30

DTR
OS
29

DTR
OS
28

DTR
OS
27

DTR
OS
26

DTR
OS
25

DTR
OS
24

DTR
OS
23

DTR
OS
22

DTR
OS
21

DTR
OS
20

DTR
OS
19

DTR
OS
18

DTR
OS
17

DTR
OS
16

W DTR
OC
31

DTR
OC
30

DTR
OC
29

DTR
OC
28

DTR
OC
27

DTR
OC
26

DTR
OC
25

DTR
OC
24

DTR
OC
23

DTR
OC
22

DTR
OC
21

DTR
OC
20

DTR
OC
19

DTR
OC
18

DTR
OC
17

DTR
OC
16

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DTR
OS
15

DTR
OS
14

DTR
OS
13

DTR
OS
12

DTR
OS
11

DTR
OS
10

DTR
OS
9

DTR
OS
8

DTR
OS
7

DTR
OS
6

DTR
OS
5

DTR
OS
4

DTR
OS
3

DTR
OS
2

DTR
OS
1

DTR
OS
0

W DTR
OC
15

DTR
OC
14

DTR
OC
13

DTR
OC
12

DTR
OC
11

DTR
OC
10

DTR
OC
9

DTR
OC
8

DTR
OC
7

DTR
OC
6

DTR
OC
5

DTR
OC
4

DTR
OC
3

DTR
OC
2

DTR
OC
1

DTR
OC
0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-26. ETPU_CDTROSR field description

Field Description

0-31 DTROSx—Channel x Data Transfer Request Overflow Status
1: indicates that data transfer request overflow occurred in the channel.
0: indicates that no data transfer request overflow occurred in the channel.

0-31 DTROCx—Channel x Data Transfer Request Overflow Clear
1: clear status bit.
0: keep status bit unaltered.

For details about data transfer request overflow, see Section 24.5.2.2.2, Interrupt and data transfer request
overflow.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 797

24.4.6.5 ETPU_CIER – eTPU Channel Interrupt Enable Register

Host interrupt enable (see Section 24.5.2.2, Interrupts and data transfer requests) from all channels are
grouped in ETPU_CIER. Their bits are mirrored from the Channel Configuration registers (see
Section 24.4.7.1, ETPU_CxCR – eTPU Channel x Configuration Register).

Figure 24-17. ETPU_CIER Register

Offset: eTPU_A: eTPU_Base + 0x240; eTPU_B: eTPU_Base + 0x244 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIE
31

CIE
30

CIE
29

CIE
28

CIE
27

CIE
26

CIE
25

CIE
24

CIE
23

CIE
22

CIE
21

CIE
20

CIE
19

CIE
18

CIE
17

CIE
16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIE
15

CIE
14

CIE
13

CIE
12

CIE
11

CIE
10

CIE
9

CIE
8

CIE
7

CIE
6

CIE
5

CIE
4

CIE
3

CIE
2

CIE
1

CIE
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-27. ETPU_CIER field description

Field Description

0-31 CIEx—Channel x Interrupt Enable

1: interrupt enabled for channel x
0: interrupt disabled for channel x.

For details about interrupts see Section 24.5.9.3.10, Channel interrupt and data transfer requests.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

798 Freescale Semiconductor

24.4.6.6 ETPU_CDTRER – eTPU Channel Data Transfer Request Enable Register

Data Transfer request enable (see Section 24.5.2.2, Interrupts and data transfer requests) from all channels
are grouped in ETPU_CDTRER. These bits are mirrored from the Channel Configuration registers (see
Section 24.4.7.1, ETPU_CxCR – eTPU Channel x Configuration Register).

Figure 24-18. ETPU_CDTRER Register

Offset: eTPU_A: eTPU_Base + 0x250; eTPU_B: eTPU_Base + 0x254 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DTR
E
31

DTR
E
30

DTR
E
29

DTR
E
28

DTR
E
27

DTR
E
26

DTR
E
25

DTR
E
24

DTR
E
23

DTR
E
22

DTR
E
21

DTR
E
20

DTR
E
19

DTR
E
18

DTR
E
17

DTR
E
16W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DTR
E
15

DTR
E
14

DTR
E
13

DTR
E
12

DTR
E
11

DTR
E
10

DTR
E
9

DTR
E
8

DTR
E
7

DTR
E
6

DTR
E
5

DTR
E
4

DTR
E
3

DTR
E
2

DTR
E
1

DTR
E
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-28. ETPU_CDTRER field description

Field Description

0-31 DTREx—Channel x Data Transfer Request Enable

1: Data Transfer request enabled for channel x.
0: Data Transfer request disabled for channel x.

For details about interrupts see Section 24.5.9.3.10, Channel interrupt and data transfer requests.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 799

24.4.6.7 ETPU_CPSSR – eTPU Channel Pending Service Status Register

ETPU_CPSSR is a read-only register that holds the status of the pending Channel Service Requests (see
Section 24.5.1, Functions and threads).

Figure 24-19. ETPU_CPSSR Register

24.4.6.8 ETPU_CSSR – eTPU Channel Service Status Register

ETPU_CSSR holds the current channel service status on whether it is being serviced or not (see
Section 24.5.1, Functions and threads). Only one bit may be asserted in this register at a given time. When
no channel is being serviced the register read value is 0x00000000. ETPU_CSSR is a read-only register.
The register can be read during normal eTPU operation for monitoring the scheduler activity.

Offset: eTPU_A: eTPU_Base + 0x280; eTPU_B: eTPU_Base + 0x284 Access: User read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SR31 SR30 SR29 SR2
8

SR2
7

SR2
6

SR2
5

SR2
4

SR23 SR22 SR2
1

SR2
0

SR1
9

SR1
8

SR1
7

SR1
6

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SR15 SR14 SR13 SR1
2

SR11 SR1
0

SR9 SR8 SR7 SR6 SR5 SR4 SR3 SR2 SR1 SR0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-29. ETPU_CPSSR field description

Field Description

0-31 SRx—Pending Service Request x

Indicates a pending Service Request for channel x.
1: pending Service Request for channel x
0: no Service Request pending for channel x

Pending SR status is a logic OR of all service requests pending: if only HSR is active, SRx clears only at
the end of the thread. SRx clear due to the other request sources is microcode dependent.

Note:

The pending service status bit for a channel is 1 when a Service Request is pending, even if the Channel
is disabled (CPRx = 0).

There can be a delay of one clock between writing HSR > 0 in register ETPU_CxHSRR of a channel and
its respective bit being asserted in ETPU_CPSSR.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

800 Freescale Semiconductor

NOTE

Channel Service Status does not always reflect decoding of the CHAN
register, since the later can be changed by the service thread microcode.

Figure 24-20. ETPU_CSSR Register

Offset: eTPU_A: eTPU_Base + 0x290; eTPU_B: eTPU_Base + 0x294 Access: User read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SS31 SS30 SS29 SS28 SS27 SS26 SS25 SS24 SS23 SS22 SS21 SS20 SS19 SS18 SS17 SS16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SS15 SS14 SS13 SS12 SS11 SS10 SS9 SS8 SS7 SS6 SS5 SS4 SS3 SS2 SS1 SS0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-30. ETPU_CSSR field description

Field Description

0-31 SSx—Service Status x

Indicates that channel x is currently being serviced. It is updated at the 1st microcycle of a Time Slot
Transition (see Section 24.5.1.2, Time slot transition), or when the microengine ends the thread.

1: channel x is currently being serviced
0: channel x is not currently being serviced

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 801

24.4.7 Channel configuration and control registers

Each channel has a group of three registers used to control, configure and check status of that channel as
shown in Table 24-31. This organization eases individual channel management.

NOTE

1. A bus error is issued on read or write accesses to these registers when ETPU_ECR bit MDIS = 1.
Writes are ineffective on bus error.

2. The SIU_ISEL8 Register is used to multiplex the eTPU[24:29] inputs. When SIU_SEL8 is in its
default state eTPU channels 24–29 will not be connected to their respective output pin, irrespective
of the SIU_PCR[PA] field. See Section 16.6.22, IMUX Select Register 8 (SIU_ISEL8).

One contiguous area is used to map all channel registers of each eTPU engine as shown in Table 24-32.

There are 64 structures defined, one for each available channel in the eTPU System (32 for each engine).
The base address for the structure presented can be calculated by using the following equation:

Table 24-31. Channel registers structure

Channel offset Register name

0x00 ETPU_CxCR – eTPU Channel Configuration Register

0x04 ETPU_CxSCR – eTPU Channel Status/Control Register

0x08 ETPU_CxHSRR – eTPU Channel Host Service Request Register

0x0C RESERVED

Table 24-32. Channel registers map

Offset Registers structure

0x400 eTPU 1 Channel 0 Registers Structure

0x410 eTPU 1 Channel 1 Registers Structure

0x420 eTPU 1 Channel 2 Registers Structure

0x430 .
.

0x5E0 eTPU 1 Channel 30 Registers Structure

0x5F0 eTPU 1 Channel 31 Registers Structure

0x600 RESERVED

0x800 eTPU 2 Channel 0 Registers Structure

0x810 eTPU 2 Channel 1 Registers Structure

0x820 .
.

0x9E0 eTPU 2 Channel 30 Registers Structure

0x9F0 eTPU 2 Channel 31 Registers Structure

0xA00 RESERVED

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

802 Freescale Semiconductor

Channel_Register_Base = ETPU_Engine_Channel_Base + (channel_number * 0x10)

where:

ETPU_Engine_Channel_Base = ETPU_Base + 0x400 for Engine 1

ETPU_Engine_Channel_Base = ETPU_Base + 0x800 for Engine 2

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 803

24.4.7.1 ETPU_CxCR – eTPU Channel x Configuration Register

ETPU_CxCR gathers configurations set individually per channel.

Figure 24-21. ETPU_CxCR Register

Offset: Channel_Register_Base + 0x0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIE DTR
E

CPR 0 0 ETP
D

ETC
S

0 0 0 CFS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ODIS OPO
L

0 0 0 CPBA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-33. ETPU_CxCR field description

Field Description

31 CIE—Channel Interrupt Enable

(This bit is mirrored from ETPU_CIER – see Section 24.4.6.5, ETPU_CIER – eTPU Channel Interrupt
Enable Register.)

1: Enable interrupt for this channel.
0: Disable interrupt for this channel.

See Section 24.5.9.3.10, Channel interrupt and data transfer requests.

30 DTRE—Channel Data Transfer Request Enable

(This bit is mirrored from ETPU_CDTRER – see Section 24.4.6.6, ETPU_CDTRER – eTPU Channel Data
Transfer Request Enable Register.)

1: Enable data transfer request for this channel.
0: Disable data transfer request for this channel.

See Section 24.5.9.3.10, Channel interrupt and data transfer requests.

2-3 CPR[1:0]—Channel Priority

This field defines the priority level for the channel, used by the Hardware Scheduler (see Section 24.5.3,
Scheduler).

00: Disabled
01: Low
10: Middle
11: High

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

804 Freescale Semiconductor

4-5 Reserved

6 ETPD—Entry Table Pin Direction

This bit selects which channel signal, input or output, is used in the Entry Point selection. The ETPD value
has to be compatible with the function chosen for the channel, selected in the field CFS. For details about
Entry Table and condition encoding schemes, refer to Section 24.5.1.1, Entry points.

1: use PSTO for Entry Point selection.
0: use PSTI for Entry Point selection.

7 ETCS—Entry Table Condition Select

This bit determines the channel condition encoding scheme that selects, according to channel conditions,
the Entry Point to be taken in an Entry Table. ETCS value has to be compatible with the function chosen
for the channel, selected in field CFS. Two condition encoding schemes are available. For details about
Entry Table and condition encoding schemes, refer to Section 24.5.1.1, Entry points.

1: select Alternate Entry Table Condition encoding scheme.
0: select Standard Entry Table Condition encoding scheme.

Note: The fields ETCS, CFS and CPBA must only be changed while the channel is disabled (field
CPR = 00).

8-10 Reserved

11-15 CFS[4:0]—Channel Function Select

This field defines the function to be performed by the channel (see Section 24.5.1, Functions and threads).
The Function assigned to the channel has to be compatible with the channel condition encoding scheme,
selected by field ETCS.

Note: The fields ETCS, CFS and CPBA must only be changed while the channel is disabled (field
CPR = 00).

16 ODIS—Output Disable

This bit enables the channel to have its output forced to the value opposite to OPOL when the output
disable input signal corresponding to the channel group that it belongs is active. See Section 24.3.2.4,
ipp_ind_etpu_odis_[1|2]([0 – 3]) eTPU Channel Output Disable Signals and Figure 24-37.

1: turns on the output disable feature for the channel
0: turns off the output disable feature for the channel.

17 OPOL—Output Polarity

Determines the output signal polarity. The activation of the output disable signal forces, when enabled by
the ODIS bit, the channel output signal to the opposite of this polarity (see Figure 24-37).

1: output active high (output disable drives output to low)
0: output active low (output disable drives output to high)

18-20 Reserved

Table 24-33. ETPU_CxCR field description

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 805

21-31 CPBA[10:0]—Channel x Parameter Base Address

The value of this field times 8 specifies the SPRAM parameter base host (byte) address for channel x
(2-parameter granularity; see Section 24.5.2.4, SPRAM organization). As seen by the Host, the channel
parameter base (byte) address is:
without parameter sign extension: ETPU_Base + 0x8000 + CPBA*8
with parameter sign extension: ETPU_Base + 0xC000 + CPBA*8

Note: The fields ETCS, CFS and CPBA must only be changed while the channel is disabled (field
CPR = 00).

Table 24-33. ETPU_CxCR field description

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

806 Freescale Semiconductor

24.4.7.2 ETPU_CxSCR – eTPU Channel x Status Control Register

ETPU_CxSCR gathers the interrupt status bits of the channel, and also the Function Mode definition
(read-write). Bits CIS, CIOS and DTRS for each channel can be also accessed from ETPU_CISR,
ETPU_CIOSR and ETPU_CDTRSR registers respectively (see Section 24.4.6, Global channel registers).
Host must write 1 to clear a status bit.

Figure 24-22. ETPU_CxSCR Register

Offset: Channel_Register_Base + 0x4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIS CIOS 0 0 0 0 0 0 DTR
S

DTR
OS

0 0 0 0 0 0

W CIC CIOC DTR
C

DTR
OC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R IPS OPS OBE 0 0 0 0 0 0 0 0 0 0 0 FM

W

Reset 0/11

1 The IPS value after reset is MCU dependent

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-34. ETPU_CxSCR field description

Field Description

31 CIS—Channel Interrupt Status

1: channel has a pending interrupt to the Host CPU.
0: channel has no pending interrupt to the Host CPU.

31 CIC—Channel Interrupt Clear

1: clear interrupt status bit.
0: keep interrupt status bit unaltered.

These bits are mirrored in ETPU_CISR – see Section 24.4.6.1, ETPU_CISR – eTPU Channel Interrupt
Status Register. See also Section 24.5.9.3.10, Channel interrupt and data transfer requests.

30 CIOS—Channel Interrupt Overflow Status

1: interrupt overflow asserted for this channel
0: interrupt overflow negated for this channel

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 807

30 CIOC—Channel Interrupt Overflow Clear

1: clear status bit.
0: keep status bit unaltered.

These bits are mirrored in ETPU_CIOSR – see Section 24.4.6.3, ETPU_CIOSR – eTPU Channel Interrupt
Overflow Status Register. See also Section 24.5.2.2.2, Interrupt and data transfer request overflow.

2-7 Reserved

8 DTRS—Data Transfer Request Status

1: Channel has a pending data transfer request.
0: Channel has no pending data transfer request.

8 DTRC—Data Transfer Request Clear

1: clear status bit.
0: keep status bit unaltered

These bits are mirrored in ETPU_CISR – see Section 24.4.6.2, ETPU_CDTRSR – eTPU Channel Data
Transfer Request Status Register. See also Section 24.5.9.3.10, Channel interrupt and data transfer
requests.

9 DTROS—Data Transfer Request Overflow Status

1: data transfer request overflow asserted for this channel
data transfer request overflow negated for this channel

9 DTROC—Data Transfer Request Overflow Clear

1: clear status bit.
keep status bit unaltered.

These bits are mirrored in ETPU_CDTROSR – see Section 24.4.6.4, ETPU_CDTROSR – eTPU Channel
Data Transfer Request Overflow Status Register. See also Section 24.5.2.2.2, Interrupt and data transfer
request overflow.

10-15 Reserved

16 IPS—Channel Input Pin State

This bit shows the current value of the filtered channel input signal state

17 OPS—Channel Output Pin State

This bit shows the current value driven in the channel output signal, including the effect of the external
output disable feature (see Section 24.3.2.4, ipp_ind_etpu_odis_[1|2]([0 – 3]) eTPU Channel Output
Disable Signals. If the channel input and output signals are connected to the same pad, OPS reflects the
value driven to the pad (if OBE = 1). This is not necessarily the actual pad value, which drives the value in
the bit IPS.

Table 24-34. ETPU_CxSCR field description

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

808 Freescale Semiconductor

18 OBE—Output Buffer Enable

This bit shows the state of the channel output buffer enable signal, controlled by microcode.

19-29 Reserved

30-31 FM[1:0]—Channel Function Mode1

Each function uses this field for specific configuration. These bits can be tested by microengine code (see
Section , Conditional/Unconditional branch).

1 These bits are equivalent to the TPU/TPU2/TPU3 Host Sequence (HSQ) bits.

Table 24-34. ETPU_CxSCR field description

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 809

24.4.7.3 ETPU_CxHSRR – eTPU Channel x Host Service Request Register

ETPU_CxHSRR is used by the Host to issue service requests to the channel.

Figure 24-23. ETPU_CxHSRR Register

Offset: Channel_Register_Base + 0x8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 HSR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 24-35. ETPU_CxHSRR field description

Field Description

0-28 Reserved

29-31 HSR[2:0]—Host Service Request
This field is used by the Host CPU to request service to the channel (see Section 24.5.2.5, Host service
requests).

HSR = 000: no Host Service Request pending
HSR > 000: function-dependent Host Service Request pending.

HSR value turns to 000 automatically at the end of microengine service for that channel, but only if the
thread started due to an HSR. Host should write HSR > 0 only when HSR = 0. Writing HSR = 000
withdraws a pending request if scheduler did not begin to resolve the Entry Point yet, but it does not abort
the service thread from that point on. For more details, see Section 24.5.1.1, Entry points, and
Section 24.5.2.5, Host service requests.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

810 Freescale Semiconductor

24.5 Functional description

24.5.1 Functions and threads

eTPU processing is event-driven, in the sense that eTPU microcode only runs to service a request from an
event. Service Requests may result from the occurrence of any of the following events:

• Host CPU writing a non-zero value to the channel HSR (Host Service Request) field in
ETPU_CxHSR.

• occurrence of a time base match, an input signal transition, or a specific combination of them
(depending on the Channel Mode currently configured).

• a Link Service Request.

A given event is always associated to only one Channel:

• There is one HSR register field for each Channel

• Each signal is associated with only one Channel, which has its own Match registers and
independent mode configuration.

• Each Link Service Request can have only one Channel as a target.

Service Request processing is done by a set of microengine routines. A set of related routines that
implement a specific channel application is called a Function. One or more Functions reside on SCM,
limited only by the SCM space available, size of microcode Functions and the number of entry points
available. Each engine can be controlled by up to 32 Functions at a time.

A Function can be assigned to several channels, but only one Function can be assigned to a given Channel
at a time. This is defined by the Host through the Channel Configuration Registers (see Section 24.4.7,
Channel configuration and control registers).

The term Thread will be used hereafter to refer to a service routine of a Function, or its execution. A
Thread is constructed of a specific number of microinstructions, typically the code necessary to calculate
the next phase of waveform to be input to, or output from, a given channel. Once a Thread begins, its
execution cannot be interrupted. A Thread normally finishes when an END microinstruction is executed.

A given Thread is selected and called by the Scheduler depending on the following:

• the type of event that generated the service request.

• the Function assigned to the target channel.

• target channel pin state.

• the state of the channel logic.

• the priority assigned to the target channel, relative to the priorities of other channels with pending
service requests

The mechanism to select a thread based on the channel Function and type of event is described in the
Section 24.5.1.1, Entry points.

The priority mechanism that determines the order of Thread execution amongst pending service requests
is described in Section 24.5.3, Scheduler.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 811

24.5.1.1 Entry points

24.5.1.1.1 Entry table

Each Thread has its Entry Point, which contains the SCM address of its first instruction, besides other
information. For a complete Entry Point description, see Section 24.5.1.1.5, Entry point format.

Once the Scheduler chooses a channel among pending Service Requests, the Entry Point is taken from an
Entry Table, based on the Function assigned for the channel and other conditions. Entry Table layout is
shown in Figure 24-24.

Figure 24-24. Entry Table

The Entry Table is organized by Functions. Each Function can have up to 32 Entry Points of 16 bits each,
corresponding to 32 possible Threads per Function. Each Entry Point location in the table corresponds to
a combination of events and channel states (see Section 24.5.1.1.2, Entry point address generation). A
single Thread can be associated to more than one combination, having its Entry Point repeated in the table.
Each 32-bit word in the Entry Table holds two Entry Points.

Note that the Entry Table can be placed in any SCM address multiple of the Entry Table size, determined
by the field ETB[4:0] in the register ETPU_ECR. However, it is recommended to place the Entry Table at
the start of the SCM to get continuous code memory and to ease the eventual migration of the code from
larger parts down to smaller ones without rearranging the binary image, but this is not a restriction. Unused
Entry Points may be used for microcode, so this organization extends the microcode continuous area to the

CODE

01FF

03FF

05FF

code
addr. host addr.

SCM

7FC

FFC

17FC

07FF 1FFC

09FF

0BFF

0DFF

0FFF

27FC

2FFC

37FC

3FFC

Function 0
entry points 0-31

Function 1
entry points 0-31

Function 2
entry points 0-31

Function 31
entry points 0-31

0,0 0,1

0,30 0,31
1,0 1,1

1,30 1,31
2,0 2,1

2,30 2,31

31,0 31,1

31,30 31,31

32 bits

ENTRY TABLE ORGANIZATION

0E00

0E10

0E20

0E30

0FF0

0E0F

0E1F

0E2F

0FEF

0FFF

code
addr.

ENTRY TABLE 0E00

11FF

13FF

15FF

47FC

4FFC

57FC

17FF 5FFC

19FF

1BFF

1DFF

1FFF

67FC

6FFC

77FC

7FFC

CODE

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

812 Freescale Semiconductor

unused area of the Entry Table. For this purpose, Function numbers should be selected from 0 up to 31. If,
for example, only 8 functions are implemented, only the Entry Table locations for Functions 0 to 7 are
used, and the Entry Table locations for functions 8 to 31 can be used as microinstruction memory (adding
extra continuous 1536 bytes for microprogram usage).

One way of implementing different sets of Functions is having more than one Entry Table, and configuring
the eTPU with the appropriate one for the application by changing field ETPU_ECR[ETB]. Note that the
engines can use different Entry Tables, with or without the same set of Functions.

24.5.1.1.2 Entry point address generation

The Entry Point address within the Entry Table is determined by the Function assigned to the Channel, the
state of the Channel, the type of event, and the condition encoding scheme. Together with the Entry Table
base address, they form the Entry Point Address at the SCM, as shown in Figure 24-25.

Figure 24-25. Entry Point Address (host address offset)

The type of event and channel state are coded in the Encoded Channel Conditions field C[4:0], according
to one of two encoding schemes:

• Standard Entry Table Condition encoding scheme, shown in Table 24-36, which privileges Host
Service Requests.

• Alternate Entry Table Condition encoding scheme, shown in Table 24-37, which focus on other
events and state decoding.

The events that take part on condition encoding generate a Service Request, and have four origins:

1. Match Recognition (caused by greater/equal match, or equal-only, between the value TCR1/2 and
the value stored in the channel match registers). eTPU channels support single and double match
in various modes of match recognition; see Section 24.5.5.2, Match Recognition.

2. Transition Detect Service Request (channel input signal transition detection of a selected edge).
The eTPU channels support single and double transition, which together with the double match
options provide various modes of transition detection; see Section 24.5.5.3, Transition Detection
and Time Base Capture.

3. Channel Linking Service Request (microcode writing the channel number to the LINK register).
Link service request allows one channel to activate another (see Section 24.5.5.5, Channel Link).

4. Host Service Request (Host writes a non-zero value to the HSR bits of the channel; see
Section 24.5.2.5, Host service requests).

ETB[4:0]
(ETPU_ECR) (ETPU_CxCR)

Encoded

(C4-C1)

Channel
ConditionsCFS[4:0]

Encoded

(C0)

Channel
Conditions

A5-A2A10-A6 A1A15-A11

Half-word SelectWord Address

A0 = 0

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 813

NOTE

Even if a Transition or Match Service Request is inhibited (by channel
mode/state or SRI), the Transition Detection and Match Recognition are
taken into account for condition encoding. That is, the MRLA/B and
TDLA/B flags are used, not their respective Service Requests.

Columns Host Request Bits, Link Request, MatchA/TransB, and MatchB/TransA determine the type of
event. A non-zero value in these columns represents the recognition of the event, while “x” indicates that
its recognition is irrelevant. Values 1 and 0 mean that event was recognized or not, respectively. Note that
Match and Transition events may occur and not be recognized, and in this case it assumes value 0 for the
condition encoding. The recognition of such an occurred event depends on the channel mode assigned and
other conditions, as described in Section 24.5.5, Enhanced Channels.

The Host Service Request Bits column refers to the value written by the Host CPU to the Host Service
Request Register (ETPU_CxHSRR) of the Channel being serviced. Note that the bits on this row are coded
(3-bit representation). If the value of HSR is not zero, then the Host actually requested service.

The Link Request column refers to the occurrence of a Channel Link request.

The MatchA/TransB column refers to the recognition of either a Match event specified by MatchA
channel register or the detection of a channel input signal event specified by the IPACB configuration
register (see Section 24.5.5.1.2, Pin Control Registers).

The MatchB/TransA column refers to the recognition of either a Match event specified by MatchB
channel register or the detection of a channel input signal event specified by the IPACA configuration
register (see Section 24.5.5.1.2, Pin Control Registers).

For the channel input signal, MatchA and MatchB provide double timeout conditions which depend on the
channel mode programming (see Section 24.5.5.4, Channel Modes). If the channel is used for output only,
there are no transition detections, so the MatchB/TransA column represents only Match B, and
MatchA/TransB column the Match A. In this case Match A and Match B are separated to give better state
resolution in double match output functions. For more information about channel requests refer to
Section 24.5.5, Enhanced Channels.

Besides those events, the following channel state conditions help to determine the Entry Point:

1. Channel Flags 0 and 1: these are channel-internal flags (not in SPRAM) associated with a channel.
Their values are set by microcode (see Section 24.5.9.3.1, Channel flags operations).

2. Input Pin state or Output Flip Flop: the state (0 or 1) of the channel input signal after the Enhanced
Filter (see Section 24.5.5.6, Enhanced Digital Filter – EDF), or the state driven to the output signal.
Which one (input or output) is used is selected by the ETPU_CxCR bit ETPD.

The two Entry Table Condition encoding schemes combine events and state conditions differently, as
detailed in the following sections.

24.5.1.1.3 Standard condition encoding scheme

In this scheme, shown in Table 24-36, all seven HSR combinations are used and other event type columns
are marked “x” when HSR is non-zero, indicating that Host Service Request has priority over any other

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

814 Freescale Semiconductor

type of event. However, when an HSR service thread is called (entry numbers 0 to 9), other events may
also have been recognized, and it is microcode responsibility to check them.

When HSR is 0, i.e., Host did not issue a Service Request to the channel, the other event conditions, the
input signal state and channel flags determine the Entry Point. Note that channel flag 1 does not influence
the encoding in this scheme.

Table 24-36. Standard channel condition encoding scheme

No.

Encoded
channel

condition
s [C4-C0]

Host
service
request

bits

Link
request

MatchA /
TransB

Match.2 /
TransA

In/Output
pin state1

Channel
flag1

Channel
flag0

0 00000 001 x x x 0 x 0

1 00001 001 x x x 0 x 1

2 00010 001 x x x 1 x 0

3 00011 001 x x x 1 x 1

4 00100 010 x x x x x x

5 00101 011 x x x x x x

6 00110 100 x x x x x x

7 00111 101 x x x x x x

8 01000 110 x x x x x x

9 01001 111 x x x x x x

10 01010 000 1 1 1 x x 0

11 01011 000 1 1 1 x x 1

12 01100 000 0 0 1 0 x 0

13 01101 000 0 0 1 0 x 1

14 01110 000 0 0 1 1 x 0

15 01111 000 0 0 1 1 x 1

16 10000 000 0 1 0 0 x 0

17 10001 000 0 1 0 0 x 1

18 10010 000 0 1 0 1 x 0

19 10011 000 0 1 0 1 x 1

20 10100 000 0 1 1 0 x 0

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 815

24.5.1.1.4 Alternate condition encoding scheme

This scheme is shown in Table 24-37. Because the HSR bits cannot be tested by microcode, only three
distinct Host Service Request can be used:

1. HSR = 010 or 011, which are coded into the same Entry Points (0 to 3)

2. HSR = 100,101 or 001, which are all coded into Entry Point 4

3. HSR = 110 or 111, which are both coded into Entry Point 5

The remaining Entry Points use both channel flags for better state decoding, making this scheme better
suited for Functions which need more states and/or faster state decoding, without needing many HSRs.

21 10101 000 0 1 1 0 x 1

22 10110 000 0 1 1 1 x 0

23 10111 000 0 1 1 1 x 1

24 11000 000 1 0 0 0 x 0

25 11001 000 1 0 0 0 x 1

26 11010 000 1 0 0 1 x 0

27 11011 000 1 0 0 1 x 1

28 11100 000 1 0 1 x x 0

29 11101 000 1 0 1 x x 1

30 11110 000 1 1 0 x x 0

31 11111 000 1 1 0 x x 1

Host Service Request

1 The ETPU_CxCR bit ETPD selects between input and output pin state.

Table 24-36. Standard channel condition encoding scheme (continued)

No.

Encoded
channel

condition
s [C4-C0]

Host
service
request

bits

Link
request

MatchA /
TransB

Match.2 /
TransA

In/Output
pin state1

Channel
flag1

Channel
flag0

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

816 Freescale Semiconductor

Table 24-37. Alternate channel condition encoding scheme

No.

Encoded
Channel

Condition
s [C4-C0]

Host
Service
Request

Bits

Link
Request

MatchA /
TransB

Match.2 /
TransA

In/Output
Pin State1

Channel
Flag1

Channel
Flag0

0 00000 01x x x x 0 x 0

1 00001 01x x x x 0 x 1

2 00010 01x x x x 1 x 0

3 00011 01x x x x 1 x 1

4 00100 10x/001 x x x x x x

5 00101 11x x x x x x x

6 00110 000 1 0 0 0 x x

7 00111 000 1 0 0 1 x x

8 01000 000 x 1 0 0 0 0

9 01001 000 x 1 0 0 0 1

10 01010 000 x 1 0 0 1 0

11 01011 000 x 1 0 0 1 1

12 01100 000 x 1 0 1 0 0

13 01101 000 x 1 0 1 0 1

14 01110 000 x 1 0 1 1 0

15 01111 000 x 1 0 1 1 1

16 10000 000 x 0 1 0 0 0

17 10001 000 x 0 1 0 0 1

18 10010 000 x 0 1 0 1 0

19 10011 000 x 0 1 0 1 1

20 10100 000 x 0 1 1 0 0

21 10101 000 x 0 1 1 0 1

22 10110 000 x 0 1 1 1 0

23 10111 000 x 0 1 1 1 1

24 11000 000 x 1 1 0 0 0

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 817

24.5.1.1.5 Entry point format

Entry Point information includes a Preload-Parameter selection field, a Match Enable field, and the first
microcode address of the thread. The Entry Point format is illustrated in Figure 24-26.

Figure 24-26. Entry Point Format

PP—Preload Parameter

25 11001 000 x 1 1 0 0 1

26 11010 000 x 1 1 0 1 0

27 11011 000 x 1 1 0 1 1

28 11100 000 x 1 1 1 0 0

29 11101 000 x 1 1 1 0 1

30 11110 000 x 1 1 1 1 0

31 11111 000 x 1 1 1 1 1

Host Service Request

1 The ETPU_CxCR bit ETPD selects between input and output pin state.

Field Description

0-13

MICROCODE
ADDRESS

 Microcode Address
This field specifies the microcode address on which the thread is to begin execution

Table 24-37. Alternate channel condition encoding scheme (continued)

No.

Encoded
Channel

Condition
s [C4-C0]

Host
Service
Request

Bits

Link
Request

MatchA /
TransB

Match.2 /
TransA

In/Output
Pin State1

Channel
Flag1

Channel
Flag0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PP ME MICROCODE ADDRESS

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

818 Freescale Semiconductor

24.5.1.2 Time slot transition

The Time Slot Transition period (also called TST for short) is the interval between the servicing of two
channels, during which all Channel-specific context is loaded for the new serviced Channel. The primary
tasks completed during this period include:

• Set MEF for the first microcycle plus eventual wait-states.

• Reset the MEF for one microcycle after the first microcycle plus wait-states.

• Update of the CHAN register with the number of the new channel to be serviced.

• Parallel update of ERTA and ERTB from CaptureA and CaptureB registers of the new serviced
channel.

• Sampling of the branch conditions of the new channel to be serviced into the branch logic (this
means flags TDLA/B, MRLA/B, LSR, FM[1], FM[0], and PSS). The branch conditions are
coherent with the timebase capture values sampled into ERTA/B (if MRLA/B, TDLA/B are set at
the same time of the sampling, either both old flag state and capture values are sampled, or both
new values are sampled).

• Formation of the entry point address.

• Copy the ME bit in the Entry Point into MEF.

• Access to the entry point location and getting the first microinstruction address.

14
ME

Match Enable
ME specifies whether match event recognitions are enabled or disabled for the thread associated with the
entry point during the thread execution. If they are disabled, a match recognition can only occur after
channel service. For more details refer to Section 24.5.5.2, Match Recognition.
Matches are disabled during the thread.
Matches are enabled during the thread.
The disabling of Match A/B recognition by MEF is dependent on IPACA/B configuration on the serviced
channel (see Section 24.5.5.1.2, Pin Control Registers). If IPACA = 1xx, Match A is not disabled by
ME = 0. Likewise, IPACB = 1xx overrides the effect of ME on Match B to “always on” If IPACA/B = 0xx,
Match A/B is disabled for one microcycle during TST (see Section 24.5.1.2, Time slot transition) and is
re-enabled when Entry Point is loaded, if ME = 1. Note that if the comparator is in equal-only mode and
the time base reaches the value of the Match register during the time that recognition is disabled
(beginning of TST, plus whole thread if ME = 0), the match recognition is lost. If the comparator is in
greater-equal mode, the match event may be recognized after the disabling period if it satisfies the
“greater-than” condition.

15

PP
Preload Parameter
PP indicates which pair of channel parameters are loaded into registers P and DIOB from the SPRAM prior
to the execution of a thread. Preloading occurs during the time-slot transition period (see Section 24.5.1.2,
Time slot transition)
Microengine register P is preloaded from parameter 0 and DIOB from parameter 1.
Microengine register P is preloaded from parameter 2 and DIOB from parameter 3.
The parameter numbers are offsets from the channel parameter base address. For more info, see
Section 24.5.2.3, Parameter access.

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 819

• Preload of two parameters from the SPRAM into P (32 bits) and DIOB (24 bits).

• Fetch the first instruction of the thread to be executed for the new channel.

• Preset the RAR value (see Section 24.5.8.1.7, RAR – Report Address Register).

The preload operation is 32-bit wide for P and 24-bit wide for DIOB. The P register is loaded with all the
32-bit parameter. The DIOB register is loaded with the lower 24-bits of the parameter. The microcode can
switch at any time to access the lower 24-bits, upper byte, or all the 32-bits of any parameter in the
SPRAM. Preload of P-DIOB pair of parameters is atomic with respect to Host and CDC accesses, and so
are coherent with their dual-parameter coherent transfers. For more details see Section 24.5.4, Parameter
sharing and coherency.

No instructions are executed at the engine where the time slot transition period occurs, but the other engine
can execute normally. Match A/B is unconditionally disabled on the second TST microcycle, if
IPACA/B = 0xx (respectively). During the rest of time slot transition, match recognition can be disabled
or not, depending on IPACA/B field and ME. See Section 24.5.5.2, Match Recognition.

Time Slot Transition takes a minimum of 3 microcycles (6 system clocks), which may be extended due to
SPRAM arbitration wait-states for the first preload access (see Section 24.5.4.5, SPRAM Arbitration).
When no wait-states are received (Figure 24-27), DIOB is preloaded twice, one for each PP value, and the
correct value remains in DIOB when the Entry Point is loaded. Figure 24-28and Figure 24-29show the
timing for one and two wait-states, respectively.

Registers B, C, D and SR are not altered by TST and keep their values from the previous thread. The values
of registers A, MACL and MACH are not guaranteed at the thread start.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

820 Freescale Semiconductor

Figure 24-27. TST Timing – No Wait-states

System Clock

CHAN Register

END Signal

ERTA, ERTB

Preload

PC

INST

SPRAM Wait

T2 T4 T2 T4 T2 T4 T2 T4 T2 T4 T2 T4 T2 T4

DIOB

END

Y Entry Addr Y1st Inst Addr

Entry Point Y 1st Inst

CHANNEL X CHANNEL Y

X END TST1 TST2 TST3 Y 3rd Inst

Preload
 P

DIOBPP=1

Pentry point PP

TIME SLOT TRANSITION

DIOBPP=0 DIOBentry point PP

Y2nd Inst Addr

MEF

Y 1st Inst Y 2nd Inst

Y 2nd Inst Y 3rd Inst

Y 3rd Inst Addr Y4th Inst Addr

HSR sampled for

Flags for Entry Point

Entry Point

and Branch Condition

X Y

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 821

Figure 24-28. TST Timing – 1 Wait-State

System Clock

CHAN Register

END Signal

ERTA, ERTB

Preload

HSR sampled for

Flags for Entry Point

PC

INST

SPRAM Wait

T2 T4 T2 T4 T2 T4 T2 T4 T2 T4 T2 T4 T2 T4

DIOB

Entry Point

and Branch Condition

END

Y Entry Addr Y1st Inst Addr

Entry Point Y 1st Inst

CHANNEL X CHANNEL Y

X END TST1 wait TST1 TST2 TST3

Preload
 P

TIME SLOT TRANSITION

Y2nd Inst Addr

MEF

DIOBPP=1DIOBPP=0

Y 1st Inst

Pentry point PP

DIOBentry point PP

X Y

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

822 Freescale Semiconductor

Figure 24-29. TST Timing – 2 Wait-states

For more information on Channel-specific registers and flags, refer to Section 24.5.5, Enhanced Channels.
For more information on P, ERTA/B and DIOB registers refer to Section 24.5.8.1, Registers.

24.5.1.3 Thread ending

Threads can finish by either:

• An instruction with the END field active (see Section 24.5.9.4.1, Ending current thread – END).

• A forced END by host writing to the ETPU_ECR bit FEND (see Section 24.4.2.5, ETPU_ECR –
eTPU Engine Configuration Register).

• A forced END caused by Watchdog timeout (see Section 24.5.1.4, Watchdog).

System Clock

CHAN Register

END Signal

ERTA, ERTB

Preload

SPRAM Wait

T2 T4 T2 T4 T2 T4 T2 T4 T2 T4 T2 T4 T2 T4

DIOB

CHANNEL X CHANNEL Y

X END TST1 wait TST1 wait TST1 TST2 TST3 Y 1st Inst

Preload
 P

TIME SLOT TRANSITION

MEF

PC

INST END

Y Entry Addr Y1st Inst Addr

Entry Point Y 1st Inst

Y2nd Inst Addr

HSR sampled for

Flags for Entry Point

Entry Point

and Branch Condition

DIOBPP=1DIOBPP=0

Pentry point PP

DIOBentry point PP

X Y

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 823

24.5.1.4 Watchdog

Each engine has a watchdog mechanism to prevent a thread or a sequence of threads from running too long,
impacting the latency of the other channel services. The watchdog is configured through the register
ETPU_WDTR (see Section 24.4.4.1, ETPU_WDTR – eTPU Watchdog Timer Register). When the
watchdog is enabled, an internal counter increments on each microcycle when a thread is executing. If the
count is greater than the value specified in the ETPU_WDTR field WDCNT and a thread is still executing,
the watchdog:

1. Forces an END of the thread

2. Issues a Global Exception and sets the ETPU_MCR bit WDTO (see Section 24.4.2.1, ETPU_MCR
– eTPU Module Configuration Register).

The watchdog can be configured in one of the following modes, defining how the internal watchdog count
is reset:

• Thread Length Mode: the watchdog count is reset at the end of each thread.

• Busy Length Mode: the watchdog count is reset when the microengine goes idle. A sequence of
threads, one right after another, keeps the count running. The counter is also reinitialized when a
thread is forced to end, so that a new count begins if another TST initiates at the following
microcycle.

The following applies to the watchdog mechanism:

• Microcycles during TST and SDM access wait-states (on TST or instruction execution) are
counted.

• If the watchdog count equals WDCNT in the last microinstruction (with SDM wait-states or not)
of a thread servicing a channel.

• If the watchdog count expires (gets greater than WDCNT) during the TST, the thread is forced end
on its first instruction.

• The watchdog count does not wrap, so that a thread (in thread length mode) or a thread sequence
(in busy length mode) that lasts for more than the maximum value of WDCNT does get a forced
end.

NOTE

Watchdog must not be enabled when the microengine enters halt mode.

The counter does not run when the engine is stopped, and resets when the
watchdog is disabled.

24.5.2 Host interface

24.5.2.1 System configuration

System Configuration Registers are described in Section 24.4.2, System configuration registers. Detailed
explanation on the configured functionalities is found throughout Section 24.5, Functional description,
and a specification for the initial configuration sequence is found on Section 24.6.1, Configuration
sequence.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

824 Freescale Semiconductor

24.5.2.2 Interrupts and data transfer requests

24.5.2.2.1 Interrupt types and sources

Each one of the eTPU channels can be a source of two requests: Channel Interrupt request and Data
Transfer Request. Channel Interrupts are targeted to a Host CPU. Data Transfer Requests may be targeted
to a data transfer module (e.g., a DMA controller). Interrupt and Data Transfer registers are used by the
Host to enable interrupts and data transfer requests, indicate their status and service them. Interrupt and
Data Transfer requests have the same sets of registers and external signals, and are handled in the same
way. They differ only by the fact that Data Transfer Requests are also cleared by the assertion of respective
DMA completion acknowledge line. Data Transfer Requests can be used as another source for Host
interrupts at MCU integration if not used with a DMA.

NOTE

Interrupt and Data Transfer requests can be cleared even when engines are
in Module Disable Mode, through the Global Channel Registers, and also
DMA completion for Data Transfer requests.

Channel Interrupts and Data Transfer Requests can only be issued by eTPU microcode, through one of the
Channel Control instruction fields (see Section 24.5.9.3.10, Channel interrupt and data transfer requests).

Both Channel Interrupt and Data Transfer requests can be individually enabled for each channel.

eTPU Interrupt and Data Transfer Registers are mirrored in two organizations: grouped by Channel and
grouped by type (interrupt status, interrupt enable, data transfer status, data transfer enable). This allows
either “channel-oriented” or “bundled channel” Host interrupt service schemes, or a combination of them.
For a detailed description, refer to Section 24.4.5, Channel registers layout, and Section 24.4.6, Global
channel registers.

eTPU can also assert a Global Exception interrupt indicating a global illegal state. There are three possible
sources for a Global Exception:

• Execution of an illegal instruction by the microengine (see Section 24.5.9.5, Illegal Instructions).
This Global Exception source is flagged by the bits ILF1 and ILF2 in register ETPU_MCR.

• An SCM signature mismatch detected by the Multiple Input Signature Calculator (MISC). See
Section 24.5.10.3.1, SCM Test – Multiple input signature calculator. This source is flagged by the
bit SCMMISF in register ETPU_MCR.

• Microcode request, through microinstruction field CIRC (see Section 24.5.9.3.10, Channel
interrupt and data transfer requests). This Global Exception source is flagged by bits
MGE1(Engine 1) and MGE2(Engine 2) in register ETPU_MCR. The cause of this illegal state is
application-dependent. The microcode may write an error code into the SPRAM to indicate the
cause of the exception, for instance.

• An SDM or SCM non-correctable error due to a microengine access

Global Exceptions cannot be directly disabled within eTPU, except by disabling its sources (MISC and
microcode), and it is cleared by writing 1 to the GEC bit in ETPU_MCR. Clearing Global Exception clears
all Global Exception source status bits (ILF1, ILF2, SCMMISF, MGE1, MGE2). If GEC is written 1 at the
same time any of the sources issues a Global Exception, both the interrupt and the status bit of that source

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 825

remains asserted. The assertion of Global Exception by one of the sources above does not prevent the
others from asserting it too, so any number of them, in any combination, can be flagged.

NOTE

There can be a race between the clear of a Global Exception and occurrence
of a new set condition, such that the set happens just before the clear and
cannot be sensed by the Host. Therefore, Global Exception cannot be used
as a normal interrupt source: it should only be used for emergency
procedures.

24.5.2.2.2 Interrupt and data transfer request overflow

If a Channel Interrupt was issued, its status bit is still set, and microcode issues another Channel Interrupt,
the Interrupt Overflow status bit is set for that channel. Interrupt Overflow status can be checked by the
Host in Channel Status register ETPU_CxSCR bit CIOS (Section 24.4.7.2, ETPU_CxSCR – eTPU
Channel x Status Control Register), mirrored in register ETPU_CIOSR (Section 24.4.6.3, ETPU_CIOSR
– eTPU Channel Interrupt Overflow Status Register). Interrupt Overflow status is not cleared
automatically when Interrupt Status is cleared. The same mechanism and respective registers
(ETPU_CDTROSR) are available for Data Transfer Requests.

If interrupt is set and cleared at the same time, set prevails and overflow is not altered (keeps the same state
as it was before, asserted or not).

Global Exception has no overflow status.

24.5.2.3 Parameter access

24.5.2.3.1 Parameter access widths

From the Host side the SPRAM address space is mapped in bytes, and each 32-bit parameter occupies 4
contiguous, aligned bytes. The Host can read/write the SPRAM by 8-, 16-, or 32-bit accesses in aligned
addresses.

In 32-bit access, Host can access all 32 bits or only the lower 24 bits with an automatic sign extension (see
Section 24.5.2.3.4, Parameter sign extension area).

24.5.2.3.2 Parameter addresses and endianness

To access parameter number xxx, eTPU Microengine(s) would select address xxx. The Host would add
(xxx*4) to the SPRAM base address to access the same parameter. For example, parameter 0x101 is seen
by the Host in (SPRAM base address +0x404). An example of SPRAM memory map is shown in
Figure 24-30. The Host can access the SPRAM with a 32-bit-wide bus cycle to a four-byte aligned address,
16-bit-wide bus cycle to a two-byte aligned address, or 8-bit wide bus cycle to any byte address.

The address of the 24-bit parameters and the most significant byte depends on the endianness of the MCU.
For more details, see the Section 24.6.6, Endianness.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

826 Freescale Semiconductor

24.5.2.3.3 Parameter concurrency

Host accesses to parameters may occur in parallel with eTPU Microengine accesses. Readings taken from
a group of parameters while they are being simultaneously updated may lack coherency. eTPU provides
mechanisms to ensure parameter coherency in accesses from both Host side and Microengine side,
including the use of a coherent dual-parameter transfer mechanism, described in detail on Section 24.5.4,
Parameter sharing and coherency.

24.5.2.3.4 Parameter sign extension area

The SPRAM address space to the Host is mirrored in a Parameter Sign Extension (PSE) area (see
Section 24.4.1, Memory map). Accesses from the Host to the PSE area differ from accesses to the standard
SPRAM address space as follows:

• Writes: the most significant byte of the parameters is not written, and the SPRAM retains the old
byte value, regardless of the Host access size.

• Reads: the most significant bit of the 24-bit parameter (that is, the msbit of the second most
significant 32-bit parameter byte) is repeated in the 8 most significant bits of the read value on all
32-bit reads and most significant 16- and 8-bit reads.

The same parameters written in the standard SPRAM address space are read from the PSE area with the
same offsets, and vice-versa. See Table 24-128 for a reference of the address offsets in big and little endian
machines.

This feature reliefs the Host from extending the signal of 24-bit eTPU parameters before calculations, and
from read-modify-write accesses to modify 24-bit parameters at the SPRAM.

24.5.2.4 SPRAM organization

The SPRAM internal partition for channel allocation is dynamic and programmed in the Channel Registers
(see Section 24.4.7.1, ETPU_CxCR – eTPU Channel x Configuration Register).

The Host application is responsible for allocating a different parameter base address to each channel during
the initial eTPU configuration, and to allocate enough parameters for the selected function, with no
unintentional overlapping between parameters of different functions.

Besides channel parameters, global areas may have to be allocated for parameters that are shared by more
than one channel, in one or both engines. Also, temporary parameter areas should be reserved to be used
by the coherent parameter transfer mechanisms described in Section 24.5.4, Parameter sharing and
coherency, if necessary.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 827

Figure 24-30. SPRAM organization example

A single-engine eTPU or dual-engine eTPU system may require less parameters than the maximum
number provided by the SPRAM. Since the SPRAM partition is fully dynamic, there is no limitation of
fixed channel addresses, and the reduced array can be fully utilized.

24.5.2.5 Host service requests

Host CPU can request immediate service from a channel by writing a non-zero value to the Host Service
Request register field HSR (see Section 24.4.7.3, ETPU_CxHSRR – eTPU Channel x Host Service

eTPU 2eTPU 1

SPRAM

0x000

ETPU_C0CR[CPBA]->0x014

ETPU_C1CR[CPBA]->0x018

ETPU_C2CR[CPBA]->0x168

ETPU_C3CR[CPBA]->0x172

ETPU_C30CR[CPBA]->0x180

ETPU_C31CR[CPBA]->0x16E

ETPU2 Channel 3 Parameters

ETPU2 Channel 0 Parameters

ETPU1 Channel 0 Parameters

ETPU1 Channel 1 Parameters

ETPU2 Channel 30 Parameters

ETPU2 Channel 2 Parameters

ETPU1 Channel 2 Parameters

ETPU1 Channel 31 Parameters

ETPU1 Channel 3 Parameters

ETPU1 Channel 30 Parameters

ETPU2 Channel 31 Parameters

0x200

Real Parameter Number

0x014

0x020

0x028

0x030

0x2A0

0x2C0

0x1B0

0x2D0

0x2DC

0x2E4

0x300

Host Parameter Offset

0x000

0x800

0x050

0x080

0x0A0

0x0C0

0xA80

0xB00

0x6C0

0xB40

0xB70

0xB90

0xC00

HOST

ETPU2 Channel 1 Parameters

Parameters 0x000 - 0x07F can
be used as “shared pool” for
eTPU absolute addressing mode.

0x3FF0xFFC

ETPU_C0CR[CPBA]->0x010

ETPU_C1CR[CPBA]->0x150

ETPU_C2CR[CPBA]->0x160

ETPU_C3CR[CPBA]->0x00A

ETPU_C30CR[CPBA]->0x100

ETPU_C31CR[CPBA]->0x0D8

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

828 Freescale Semiconductor

Request Register). There is one HSR field for each channel, so that writing to it generates a Service
Request to the respective channel only. A zero value in HSR means no Host Service Request is pending
for the channel.

HSR value turns to 000 automatically at the end of microengine service for that channel, but only if the
thread started due to an HSR.

The meaning of a non-zero HSR value depends on the Function assigned for the channel. These bits are
part of the conditions which select the Function entry point, and cannot be tested by microcode. For more
details, refer to Section 24.5.1.1, Entry points.

If Host writes HSR = 000 when a thread for the same channel is already running, the thread runs until the
end and is not aborted. If Host writes HSR>000 when an HSR thread for the same channel is already
running, HSR value resets at the end of the thread, and no new HSR will be pending. If HSR is written
before its value is resolved by the scheduler during TST, the entry point will obey the new HSR value, and
if this new value is 000, no service thread is executed for the HSR.

The scheduling of HSRs is completely asynchronous with Host accesses, and there is no race-free manner
to change an HSR value before service thread execution, so generally the safe way is: write HSR>0 only
when HSR = 0. Error recovery or emergency host procedures may require one to the safely abort service
and reset channel state when an HSR is already pending or executing. In these cases, the procedure below
should be followed:

1. Disable the channel, writing CPR = 00 in register ETPU_CxCR. That will prevent any pending
HSR to be serviced.

2. Check if the channel is currently being serviced, reading its service status bit in register
ETPU_CSSR. If it is, wait for the time necessary to finish the service pending, or check again until
HSR == 0, or channel service bit in ETPU_CSSR is cleared.

3. Write HSR with the error recover value. This value should, possibly combined with other
host-defined flags in SPRAM or FM bits, initiate a channel reset or error recovery procedure.

4. Re-enable the channel, writing CPR value > 0 in register ETPU_CxCR.

24.5.2.6 SCM access

Only Host can access SCM as data. Depending on the specific device, SCM may be implemented as a
RAM or ROM. This determines Host accesses to the SCM as shown below.

24.5.2.6.1 SCM RAM implementations

When SCM is implemented as RAM, the Host may read or write to SCM by setting ETPU_MCR bit
VIS = 1. If VIS = 0 and Host tries to access SCM space, a bus error is issued, writes are ineffective and
read data is meaningless. Both engines must be stopped or halted to set VIS = 1.

Only 32-bit aligned writes are allowed to SCM from the Host. Write accesses of other sizes store
unpredictable values into SCM.

NOTE

It is necessary to turn VIS bit on to set software breakpoints (see
Section 24.5.10.2.5, Software breakpoints).

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 829

24.5.2.6.2 SCM low power

SCM turns off its internal clocks when both engines are stopped (ETPU_ECR bit STF asserted), VIS = 0
at ETPU_MCR, and MISC is not enabled (SCMMISEN = 0). The SCM clocks are automatically turned
on if either one of the STF bits is negated or VIS turns to 1, or SCMMISEN turns to 1.

SCM clocks are not turned off if any of the engines is not stopped, even if they are both halted.

The conditions for SCM Clocks and MISC activation are summarized in Table 24-38.

24.5.2.6.3 SCM off-range data

When read accesses are made, either by the Host or by a microengine, to addresses above the limit
corresponding to the SCMSIZE value in ETPU_MCR, the value read comes from the register
ETPU_SCMOFFDATAR. The Host can program the register at initialization with an opcode value with
operations that try to protect or recover the system from runaway code, for instance: terminate the thread,
clear channel flags, disable match and transition service requests, issue an interrupt, jump to an error
recovery procedure1. Writes to unimplemented addresses do not return error and can write on unspecified
mirror addresses, so they should be avoided.

24.5.3 Scheduler

Every Function is composed of one or more Threads. A Thread consists of a group of instructions that,
once begins execution, cannot be interrupted by host or channel events. Each active channel intents to be
serviced, being granted time for Thread execution. Since one microengine handles several channels
operating concurrently, the Function threads must be executed serially.

Table 24-38. SCM clocks and MISC activation

ETPU_ECR_1
STF

ETPU_ECR_2
STF

ETPU_MCR
VIS

ETPU_MCR
SCMMISEN

SCM clocks MISC

0 x 01

1 VIS cannot be written 1 if ETPU_ECR_1 bit STF = 0 or ETPU_ECR_2 bit STF = 0, and both HLTF bits are 0.

1 On On

0 x 01 0 On off

x 0 01 1 On On

x 0 01 0 On off

1 1 0 0 off off

1 1 0 1 On On

12

2 If VIS = 1, neither MDIS can be written 0 nor the engine leave Stop Mode, regardless of device stop request.

12 1 0 On off

12 12 1 1 On off3

3 MISC resets and stays so when VIS = 1, restarting automatically when VIS goes 0 if SCMMISEN = 1.

0 0 x 0 On off

0 0 x 1 On On

1. Only part of these suggested operations can be parallelized in a single instruction, see Section 24.5.9.7, Microinstruction
formats.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

830 Freescale Semiconductor

The task of the Scheduler is to recognize and prioritize the channels needing service and to grant execution
time to each channel. The time given to an individual Thread for execution or service is called a Time Slot.
The duration of a time slot is determined by the number of instructions executed in the Thread plus
SPRAM wait-states received, and varies in length.

At any time, an arbitrary number of channels can require service. To request service, channel logic, eTPU
microcode or Host application notifies the Scheduler by issuing a Service Request.

24.5.3.1 Channel enabling and priority assignment

Every channel is assigned one of three priority levels—high, middle, or low—by the Host CPU, through
the Channel Configuration Register field CPR (see Section 24.4.7.1, ETPU_CxCR – eTPU Channel x
Configuration Register). These registers are also used to disable the channel, which is equivalent to
assigning it a “null” priority. In this case, the Scheduler does not grant any of its Service Requests.

It is possible to change the channel priority level or disable it dynamically. If the Host disables a channel
when it is currently being serviced, channel service thread will complete. This means that it is possible for
the output level of a channel signal to change, or a Host interrupt occur, even after its priority register was
written to “null”. For instance, if an output transition is scheduled, the transition will occur even after the
channel is disabled.

Service requests previously pending or that occur while a channel is disabled remain asserted while the
channel is disabled, and are serviced if the channel is enabled again, in due time determined by the priority
scheme and concurrent requests from other channels. Channels are disabled after reset, and it is
recommended to configure a Host Service Request for initialization of a channel before that channel is
enabled to active priority (see Section 24.6, Initialization/Application information).

24.5.3.2 Channel priority schemes

The Scheduler holds a Service Grant register with one bit for each channel. Once the Scheduler grants a
time slot to channel, the Service Grant bit for that channel is asserted in the Service Grant register. When
the Service Grant bit of a channel is set, the channel may request new service but is not serviced again
before its Service Grant bit is cleared.

When all channels in a same priority level are serviced, their Service Grant bits are cleared at the end of
the thread, one system clock before the next serviced channel is calculated, according to the scheme
below1:

• Clear all grant bits of priority High if all channels of that priority that are requesting have their grant
bits in 1.

• Clear all grant bits of priority Medium if all channels of that priority that are requesting have their
grant bits in 1.

• Clear all grant bits of priority Low if all channels of that priority that are requesting have their grant
bits in 1.

• Clear all grant bits of disabled channels.

1. Grant bits are also cleared in the next clock, when the service channel is chosen, or when the microengine is idle, using the
same scheme.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 831

This scheme assures that no channel is left with its grant bit forever asserted (preventing it from being
serviced again), even if the channel priorities are reassigned during the execution.

Priority level is determined based on the maximum latency desired for each channel. A channel having a
Function that requires the most frequent or more immediate service should be allocated a high priority
level.

The eTPU employs a primary and a secondary priority scheme. These two schemes ensure frequent
servicing of high-demand Functions and ensure a minimum time allocation to all channels requesting
service, regardless of their priority level. The primary scheme prioritizes requesting channels that have
different priority levels; the secondary scheme prioritizes requesting channels that have the same priority
level.

Initially, a channel requests service and is granted a time slot by the Scheduler: Service Grant bit is
asserted. If only high-level channels constantly receive service first because of their priority level, middle-
and low-level channels would only be serviced by default, i.e., if no high-level channels request service.
To ensure that each priority level receives an opportunity for servicing, every time slot has a fixed priority
level that the Scheduler honors first. Divided into sets of seven, time slots are numbered from one to seven.
Figure 24-31 illustrates the numbered time slots in sets of seven (fields A and B) and identifies their
assigned default priority level. The high level has more time slots than the middle and low levels. Out of
every seven time slots available, four are assigned to honor high-level channels first, two are assigned to
honor middle-level channels first, and one is assigned to honor low-level channels first. Only one request
(in each engine) is serviced per time slot. When no channel requests service and the microengine is idle
the priority scheme is initialized to time slot one, to prevent priority inversion on the next request1.

Figure 24-31. Time Slot Priority levels

24.5.3.2.1 Primary scheme – priority among channels on different levels

Although time slot priority assignment is fixed, the servicing priority is not. The primary scheme
acknowledges the priority level assigned to a time slot, granting service first to a channel having the same

1. Priority inversion would occur in the following situation: no channel is requesting service, and the current time slot is primarily
assigned to a low-priority channel. If the Scheduler was not reset to time slot one and two channels requested service at the same
time, one with high priority and the other with low priority, the channel to be serviced would be the low-priority channel.

1 2 3 4 5 6 7 1 2 3

H M H L H M H H M H

4 5

L H

HIGH

MIDDLE

LOW

A B

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

832 Freescale Semiconductor

priority. In Figure 24-31, time slot one has a high-level assignment; therefore, a high-level channel
requesting service is recognized first. However, if no high-level channel requests service, the Scheduler
recognizes a requesting middle-level channel. If this level has no request, the Scheduler continues to the
low-level. If no requests occur, the Scheduler truncates the seven state cycle and starts a new cycle at time
slot one, waiting for the first request. Granting service to a different-level channel is called priority passing.
The order of passing always gives the highest priority to the assigned level, and the second priority to the
higher of the remaining requesting priority levels as shown in Table 24-39.

When priority is passed to another level, that level is serviced and the fixed-priority-level sequence is
resumed with the next time slot.

Figure 24-32. Priority Passing Example

Examples of priority passing are shown in Figure 24-32. Each cycle contains seven time slots (or less if
no service request exist). In cycle B, no high-level or middle-level service requests are present before time
slot three which is assigned by default to high-level priority. Thus, time slot three is passed to the low level.
In cycle B there are also no middle-level service requests before time slot six, so it passes the priority to a
requesting high-level channel. During time slot six no more high level requests are left, but two new

Table 24-39. Priority passing

Assigned
priority level

Next
priority level

Next
priority level

High  Middle  Low

Middle  High  Low

Low  High  Middle

SLOT Number 6 7 1 2 3 4 5 6 1 2 3 1

M H H M H L H M H H M H H

High Pend Count

Service High

2 1

0 1 0

20

- X New Service Requests Arrive at a Specific Priority Level

2 0

X

2

2 2

1

1

1 0

0 0 1

2

2

1 02

2

7

DH DMDH H>L DL DH M>HDM H>M H>M M>L H>L

1 0

DH, DH, DL - Default Service High, Middle or Low
H>L, H>M, M>H, M>L - Priority Passing Scheme
ID - Idle (no service request)

IDSlot Assignment

SLOT ASSIGNMENTS:

Reset Slot

Fixed Priority Level

Middle Pend Count

Service Middle

Low Pend Count

Service Low

Number
Cycle A Cycle B Cycle C (truncated) Cycle D

2 3

M H

1

1

1
1

0 1

1

0

0

1

H

H>M DM DH

1

H

ID

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 833

middle-level requests arrive, and there are also three low level pending service requests. Thus, time slot
seven of cycle B and time slot one of cycle C are passed to the middle-level which is the next priority level
after high. Time slots two and three of cycle C are passed to the low level which contains the three
remaining channel service requests. At time slot three of cycle C the last low level request is serviced, and
the Scheduler passes to idle state. At this point the cycle C is truncated and the Scheduler passes to time
slot one of cycle D.

24.5.3.2.2 Priority passing disabling

The priority passing scheme allows a case where a high priority channel looses to a lower priority one right
after another lower priority has been serviced, exemplified in the Cycle D on Figure 24-32. A middle
priority channel wins time slot 1 due to priority passing from high to middle. While it is being serviced,
two new service requests arrive, one high and one middle priority. The high priority request looses to the
middle one on next time slot 2 by default priority assignment.

This priority inversion can be avoided by setting the ETPU_ECR bit SPPDIS (see Section 24.4.2.5,
ETPU_ECR – eTPU Engine Configuration Register), which disables the priority passing mechanism.
When priority passing is disabled, at the end of the thread the slot number is incremented until a time slot
that matches the priority of one of the requesting channel(s). The time slot advance takes no extra clocks.
If no channel requests service, the time slot counter stays at time slot 1. The priority selection scheme with
disabled priority passing is summarized in Table 24-40.

An example of the priority passing disabling scheme is illustrated in Figure 24-33. The sequence of service
requests is the same as in the example of Figure 24-32, and although the time slot incrementing differs, the
priorities granted are the same for cycle B. Cycle C has one of the low priority channels serviced before
the second middle one. Cycle D, however, no longer has the priority inversion.

In cycle B, after the time slot 2 only a low priority request remains, so the time slot count advances directly
to 4, which has a low priority assigned. Time slot keeps on 4 for the next service, as only a low priority
request remains also, and only time slot 4 is assigned to low. Two high priority services contend for the
next time slot 5 (assigned to High). The second high priority channel is serviced on the next time slot,
jumped to 7 because there is no middle request, ending cycle B. Cycle C starts with time slot 2, as there

Table 24-40. Priority Passing Disabling

At the end
of time

slot

servicin
g

priority

if any
request

of priority

service
it on time

slot

else
if any

request
of priority

service
it on time

slot

else
if any

request
of priority

service
it on time

slot

1 High Medium 2 High 3 Low 4

2 Medium High 3 Low 4 Medium 6

3 High Low 4 High 5 Medium 6

4 Low High 5 Medium 6 Low 4

5 High Medium 6 High 7 Low 4

6 Medium High 7 Medium 2 Low 4

7 High High 1 Medium 2 Low 4

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

834 Freescale Semiconductor

are no high priority requests and two middle and two low ones. After the first middle service, time slot
count skips 3 assigned to high (no high requests), and services a low priority channel on time slot 4. It
follows the same scheme until there are no other requests and cycle C is truncated, resetting the time slot
counter to 1.

Cycle D begins with a middle request, jumping to time slot 2. During this service two requests arrive, one
high and one middle. Unlike what happened with priority passing, the next serviced is the high priority
channel, as the time slot increments to 3. The second middle priority channel request in cycle D is finally
serviced next, on time slot 5.

Figure 24-33. Priority Passing Disabling Example

24.5.3.2.3 Secondary scheme – priority among channels on the same level

Because channels can randomly request service, channels having the same priority level will inevitably
request service simultaneously. A secondary scheme prioritizes these requests. The Scheduler services
channels on each of the three priority levels, beginning with the lowest numbered channel on that level.

24.5.3.2.4 Priority scheme example

The overall priority scheme simultaneously incorporates both primary and secondary schemes. Combining
both schemes in the following example conveys their correlation.

1. One high-priority and one low priority channels request service, while the Scheduler is in time slot
one. Having its service request bit asserted, a single high-level channel is granted the time slot,
which has high-level priority (primary scheme) and its service grant bit is asserted. At the end of
the thread, the service grant bit is negated (no more requests of high priority level channels).

SLOT Number 6 7 1 2 4 4 5 7 4 6 4 1 2

M H H M L L H H M L M L H M

High Pend Count

Service High

2 1

0 1 0

20

- X New Service Requests Arrive at a Specific Priority Level

2 0

X

2

2 2

1

1

1 0

0 0 1

2

2

1 02

2

2

DH DMDH DL DL DH DHDM DM DL DM DL

1

ID

0

DH, DH, DL - Default Service High, Middle or Low

ID - Idle (no service request)

IDSlot Assignment

SLOT ASSIGNMENTS:

Fixed Priority Level

Middle Pend Count

Service Middle

Low Pend Count

Service Low

Cycle A Cycle B Cycle C (truncated) Cycle D

3 5

H M

1

1

1

1

0 1

1

0

0

1

H

DM DH DM

Reset Slot
Number

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 835

2. The Scheduler proceeds to time slot two, which has middle-level priority; however, no
middle-level channel is requesting service. Priority is passed to the high level, but no high-level
channel is requesting service; therefore, priority is passed again, and service is granted to the single
requesting low-level channel. Once serviced, this channel’s grant bit is negated (no more low-level
requests).

3. The Scheduler resumes with the fixed-priority sequence on time slot three; however, no channels
are requesting service. The Scheduler returns to time slot one, waiting for requests.

4. Two high-level and two middle-level channels simultaneously request service. Being in time slot
one which is assigned high priority, the Scheduler finds the lowest numbered high-level channel
(secondary scheme) and selects it for service. This channel’s service grant bit is asserted.

5. The Scheduler continues to time slot two, which has middle priority (primary scheme), and
allocates the slot to the lowest numbered middle-level channel requesting service (secondary
scheme). The Scheduler notes the still unserviced middle-level channel and proceeds to time slot
three.

6. Time slot three is allocated for high priority. The slot is allocated to the remaining unserviced
high-priority channel, and the channel’s service grant bit is asserted. The Scheduler checks again
at the end of the thread. All service grant bits of high-level requested channels are asserted;
therefore, all high-priority channels that requested have been allocated execution time. Under this
condition, all service grant bits of the high-level serviced channels are negated. The Scheduler
proceeds to time slot four.

7. Time slot four is allocated for low-priority channel; however, no low-level channel is requesting
service. Priority is passed to the high level, but no high-level channel is requesting service;
therefore, priority is passed again, and service is granted to the remaining middle-level channel
which requests service. This channel’s service grant bit is asserted. The Scheduler checks again at
the end of the thread. All grant bits of middle-level requested channels are asserted; therefore, all
middle-priority channels have been allocated execution time. Under this condition, all service grant
bits of the middle-level serviced channels are negated. The Scheduler proceeds to time slot five.
Meanwhile a low priority channel requests service.

8. Time slot five is allocated for high-priority channels, but there are no more requests from
high-priority or middle priority channels. The single low-level channel which required service is
granted time slot five. Once serviced, the channel’s service grant bit is asserted. Next, the service
grant bit is negated (no more requests of low priority level channels).

9. The Scheduler resumes with the fixed-priority sequence on time slot six; however, no channels are
requesting service. The Scheduler returns to time slot one and waits for requests.

24.5.3.3 Time Slot Latency

Latency is the amount of time between a service request and the beginning of service on that channel. The
following factors affect latency:

• Number of active channels

• Number of channels on a priority level

• Number of available time slots on a priority level

• Number of microcycles required to execute a thread of a Function

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

836 Freescale Semiconductor

• Number of parameter RAM accesses during execution of a Function thread

• System clock frequency.

Each time slot may require a different number of microcycles, depending on the thread of a Function to be
executed. This variation is shown in Figure 24-34.

For more details on latency evaluation, see Section 24.6.5, Estimating worst-case latency.

Figure 24-34. Time-slot variation

24.5.4 Parameter sharing and coherency

SPRAM can be concurrently accessed by Host and Microengines (two in a dual eTPU engine system). In
general, there is no guaranteed order by which a group of parameters is accessed, which may lead to a lack
of internal consistency if two or more related parameters are read when only part of them is updated.

eTPU provides mechanisms to guarantee parameter coherency. The most generic mechanisms for
Host-eTPU coherency, suitable for any number of parameters, are:

• the use of Transfer Service Thread mechanism.

• the mailbox (or “software semaphore”) mechanism.

These mechanisms, described in Section 24.6.3, Multiple parameter coherency methods, use microcode to
transfer parameters from temporary buffers in SPRAM to their definitive locations (or vice-versa). These
methods have the disadvantage of wasting processing and code memory resources.

eTPU also provides a Coherent Dual-parameter Controller (CDC) mechanism. It is used by Host to
coherently transfer pairs of parameters from/to a parameter buffer located on SPRAM to/from the
locations on SPRAM where parameters are accessed directly by the channels. Coherency is guaranteed by
SPRAM access arbitration. Although limited to two parameters only, it has lower latency and wastes no
microengine resources1. CDC usage is described in Section 24.5.4.3, Coherent Dual-parameter Controller
(CDC).

For parameters shared by both engines, eTPU provides Hardware Semaphores. Coherency is assured
given the semaphores are used to prevent concurrent access to the changing parameters. Microengine can
request semaphores using specific microinstructions (see Section 24.5.9.1.7, Semaphore operations).
Hardware Semaphores are described in detail in Section 24.5.4.4, Hardware Semaphores.

Neither Host nor CDC have access to the hardware semaphores, but they can be combined with microcode
transfer mechanisms if Host must coherently access parameters which are also shared by both engines.

1. A microengine access to the SPRAM in the moment CDC is performing the transfer may suffer a maximum of two wait-states.

Microcycles

Time Slot

Fixed Priority Level

1 2 3 4 5

H M H L H

6

M

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 837

In order to ensure coherent access to a group of parameters by two or more contenders, each contender
must have atomic access to the shared parameters. Atomicity conditions are discussed in
Section 24.5.4.1, Host Side Atomic Access, and Section 24.5.4.2, Microengine Side Atomic Accesses.

24.5.4.1 Host Side Atomic Access

Host side atomic accesses can be achieved by either of following ways:

• For one parameter, the SPRAM should be accessed by 32-bit-wide data transfers to ensure
coherency

• For two parameters only, using the Coherent Dual-Parameter Controller.

indirectly, for any number of parameters, by requesting microcode to coherently access SPRAM in its
behalf. The host side atomicity problem becomes, then, a microengine side atomicity problem. Some
methods that use this approach to achieve coherency are described in Section 24.6.3, Multiple parameter
coherency methods.

24.5.4.2 Microengine Side Atomic Accesses

24.5.4.2.1 Microengine single-parameter atomicity

SPRAM should be accessed by 32-bit-wide data transfers to ensure atomicity for 32-bit parameters. This
applies either to Host-Microengine coherency or Microengine-Microengine coherency in a dual eTPU
engine system.

24.5.4.2.2 Microengine dual-parameter atomicity

Microengine has the ability to access two parameters coherently in back-to-back accesses, at random
addresses: once it accesses SPRAM, it has priority over Host for another access in the next microcycle (see
Section 24.5.4.5, SPRAM Arbitration). Note that it applies only to Microengine-Host coherency. For
Microengine-Microengine coherency in a dual eTPU engine system, one must use Hardware Semaphores
(see Section 24.5.4.4, Hardware Semaphores).

Microengine dual back-to-back accesses are guaranteed to be atomic in relation to Host slave accesses or
Coherent Dual-parameter Controller, regardless of semaphore usage: Host or CDC accesses cannot
break-up a back-to-back Microengine access, neither Microengine can break a CDC transfer, due to the
SPRAM arbitration mechanism described in Section 24.5.4.5, SPRAM Arbitration.

Atomicity is not guaranteed if microengine enters halt state in the middle of a back-to-back access (see
Section 24.5.10.2.2, Microengine halt state): Host can access SPRAM while microengine is halted in the
middle of a back-to-back access.

24.5.4.2.3 Microengine Side Multiple Atomicity

Hardware Semaphores must be used for Microengine-Microengine coherency (more than 1 parameter)
since two or more accesses from one Microengine are not atomic with respect to the other.

For multiple Microengine-Host coherency, the software methods described in Section 24.6.3, Multiple
parameter coherency methods, or similar ones, must be used. Some of these methods rely on the fact that

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

838 Freescale Semiconductor

parameter access of a thread is atomic in relation to another thread in the same engine, since a thread
cannot be suspended (pre-empted).

For 1 parameter coherent access, or dual-parameter coherency between only one Microengine and Host,
the alternatives shown in previous sections apply.

24.5.4.3 Coherent Dual-parameter Controller (CDC)

Dual-parameter coherency is supported by a Coherent Dual-parameter Controller hardware (CDC), which
contends with microengine for SPRAM access. CDC atomically transfers, upon Host’s command, two
parameters from one area of the SPRAM to another. One area is a temporary (buffer) area, where the two
parameters are directly read or written by the Host. This temporary area has to begin in an SPRAM address
multiple of 2 words, and the two parameters must be sequential. The other area is the channel parameter
area where the microcode normally accesses the parameters, usually with the channel relative address
mode (see Section 24.5.9.1.1, SPRAM Addressing Modes). In this area, the parameters transferred by
CDC don’t have to be sequential. A transfer from the temporary area to the channel area, when the Host
sends data to the channel, is called a write transfer. Inversely, in a read transfer the parameters are copied
from the channel area to the temporary area (channel to Host).

Coherency is guaranteed by the SPRAM access contention rules implemented in the SPRAM arbiter (see
Section 24.5.4.5, SPRAM Arbitration). CDC transfers are coherent in respect to the two engines, so the
target parameters in the channel area may be shared by channels on them both. During CDC operation, the
Host may suffer from 3 up to 11 system clocks wait states1, and the Microengine(s) may suffer up to 2
microcycle wait-states2. CDC accesses are atomic with respect to Microengine(s) accesses to the SPRAM.
Even when neither engine is in TST, CDC may suffer up to 4 system clock internal wait-states from
SPRAM arbiter, meaning 9 slave wait-states to Host, so that it does not break atomic back-to-back accesses
from microengine(s). CDC also cannot break TST preload accesses. Host can initiate CDC back-to-back
transfers: there is no need of idle slave cycles between two transfers.

24.5.4.3.1 CDC Programming

The Coherent Dual-parameter Controller Register (see Section 24.4.2.2, ETPU_CDCR – eTPU Coherent
Dual-Parameter Controller Register) is used to configure and initiate CDC transfers between the
temporary area and channel parameter area. Host asserts STS bit in order to start the data transfer. CDC
then contends for the SPRAM and starts the transfer. When the data transfer is complete, STS returns to 0.
Host receives wait-states for writing STS = 1 while CDC contends for SPRAM and during the transfer.
The write access ends when CDC finishes the transfer. Host receives wait-states during the CDC transfer.
If Host writes ETPU_CDCR with STS = 0 or does not write the STS byte, the CDC transfer does not occur.
CDC programming can be summarized as follows:

1. If it is a write transfer, i.e., from Host to channel, write the two parameters into temporary area.

1. The maximum number of Host wait states on CDC occurs when both microengines overlap their TSTs, delayed 3 system
clocks from each other.
2. One microcycle takes two system clocks. Microengines get wait-states in multiples of microcycles, while Host and CDC
wait-states are multiples of system clocks.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 839

2. Write ETPU_CDCR with STS = 1 and the remaining CDC programming parameters: parameter
width (32 or 24 bits, field PWIDTH), transfer direction (read or write, field WR), temporary
parameter area base address (field PBBASE), and the absolute addresses of the parameters to be
transferred (concatenation of the fields CTBASE and PARAM0/1).

3. If it is a read transfer, i.e., from channel to host, read the two parameters from the temporary area
into Host memory/registers.

24.5.4.4 Hardware Semaphores

eTPU provides Hardware Semaphores accessible by the Microengine only. It is the responsibility of the
application to ensure proper use of the semaphores (i.e., agree upon a specific semaphore and use it
properly, to ensure coherency).

The eTPU microinstruction set has support for locking and freeing the semaphores, described in
Section 24.5.9.1.7, Semaphore operations, and this is the only way to access them.

There are four semaphores available, which reduces the amount of collisions by assigning unrelated data
transfers to different semaphores. Semaphores are used for parameters which can be shared by channels in
different engines, and for engine-to-engine synchronization. Semaphores are also the only way to ensure
coherent access to parameters shared between the two Microengines.

Attempting to lock one semaphore (even not successfully) frees the other locked by the same engine,
ensuring one can lock just one semaphore at a time. That prevents deadlock conditions between the two
engines.

Microcode END command or engine being in idle state (no thread executing) automatically releases all
semaphores from one engine side, even if a semaphore lock is done in parallel. However, it is
recommended to write the microcode in a way which locks semaphores for the shortest required period,
and frees them without waiting for the END command, to improve the performance of the other
microengine. Semaphores are free after reset. An engine can only free a sempaphore locked by itself.

Semaphore lock requests are always non-blocking, in the sense that they do not suspend the requester in
case the semaphore is already locked. The semaphore status after the lock request—indicating if it was
successfully locked or not—must be tested through the SMLCK microengine branch condition (see
Section 24.5.8.4, Branch Conditions).

24.5.4.5 SPRAM Arbitration

Up to four entities can access SPRAM:

• Two Microengines (in a dual eTPU engine system)

• The Coherent Dual-parameter Controller (CDC)

• The Host CPU (direct memory-mapped access)

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

840 Freescale Semiconductor

The following rules specify the access priorities for contended access. They keep compatibility with the
TPU3 dual-parameter access atomicity, but only between the microengine and CDC (not Host accesses
through slave bus).

1. Microengine accesses from the two eTPU engines are interleaved between each other, but not with
Host or CDC accesses;

2. The eTPU microengine(s) gives priority for SPRAM accesses to either the Host CPU or the CDC
under any of the following conditions:

a) The microengine has completed accessing the second parameter in a back-to-back SPRAM
access1.

b) The SPRAM was not accessed during the last arbitration slot for the microengine and the host
does not loose the access to the other engine in the current arbitration slot2.

c) CDC is transferring data, after its first (read) access. Note that the CDC can be in middle of a
data transfer of another pair of parameters, unrelated to the ones that microengine tries to
access.

3. The eTPU microengine takes priority for SPRAM accesses under either of the following
conditions:

a) The Host CPU or CDC has done a data transfer during the last access arbitration slot for the
engine2. Also, the Host CPU does not hold a pending access against the other eTPU
microengine.

b) The microengine is arbitrating for the access of its second parameter in a back-to-back access1.
All pairs of back-to-back parameter accesses are coherent with respect to Host and CDC (not
to the other microengine).

The direction (read or write) of any individual access by Host or microengine is irrelevant to the
arbitration. The use of Normal or PSE SPRAM area by the Host is also irrelevant to the arbitration.

The first parameter preloading in a TST is considered first access by the arbiter, regardless of any access
made at the END microinstruction of the previous thread, i.e.: the last access of a thread and the first
preload are never considered a back-to-back access. On the other hand, the TST preload accesses are
considered back-to-back and are, therefore, atomic with respect to Host or CDC.

NOTE

The Zero SPRAM operation (see Section 24.5.9.1.5, Zero SPRAM
operation) is considered an SPRAM access for arbitration purposes both on
writes and reads; the fact that read SPRAM data is discarded is irrelevant for
arbitration.

24.5.5 Enhanced Channels

Enhanced Channels comprise hardware support for input digital signal processing and output signal
generation. Each Channel is associated with one input and one output signal. Enhanced Channel logic is

1. If microengine tries to access the SPRAM in the following microcycles, the third and fourth consecutive accesses are
considered the first and second of a new back-to-back dual access.
2. The microengine access slot is between its own T4 and T2 edges (see Section 24.7.1, Microcycle and I/O timing).

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 841

combined with Function microcode (and optionally Angle Mode logic) to implement Channel I/O
functionality.

eTPU’s Enhanced Channels are capable of dual action, meaning that each channel logic can handle two
events at different times and/or cause two separated actions—these actions and events can be mutually
dependent (with the first either blocking or enabling the other), or both independent, depending on the
programmed Channel Mode.

Each Enhanced Channel contains event logic containing two Event Register sets, each set supporting one
input and/or output action, the pair implementing dual-action support. Each Event Register set contains
two 24 bit registers: Match and Capture. The Match register holds the pending match value which is
compared against one of the two time bases by an equal-only/greater-equal comparator. The Capture
register captures one of the two time bases as a result of a Match or Transition detection. Service Requests
are issued on particular combination of match and capture events, defined by the selected Channel Mode.

In the context of the eTPU channels, a Match is a comparison between a time base value and a channel
Match register. If those two values are coincident, or the time base value is greater than the value of the
Match register, a Match Event occurs. Depending on the channel mode of operation and current state of
the channel logic, the match event may be recognized, i.e., change the state of the channel, or be ignored.
A match event recognized by the channel logic is called a Match Recognition. Match Recognitions can
cause, also depending on Channel Mode and current state, the channel to request service, configuring a
Match Service Request.

eTPU uses two kinds of comparator to assert a Match Event: an Equal comparator, in which both the
Match Register and the value of the selected time base must match exactly, and a Greater-Equal
comparator. The Greater-Equal comparator considers any time base value between the range [N:
N+0x800000-1] as a valid match against the value of N in the Match Register, even when the value
N+0x800000-1 wraps around the point of origin (0x0). Refer to Figure 24-35 for an illustration of the
matching values on a Greater-Equal comparator.

The second source of events for the eTPU channel is a Transition detected at the corresponding channel’s
input signal. Two distinct Transition detections can be programmed individually for each channel,
allowing recognition of all possible combinations of edge detection. It is also possible to check the
sampled state of an input signal upon the occurrence of a Match: the sampling of the expected value is
treated as a Transition, even if the input signal did not necessarily toggled at the time of the Match, or at
any time at all.

Like Match Events, Transitions Events may or not be recognized by the channel logic. When they are, a
Transition Detection occurs. As well as Match Recognitions, Transition Detections can issue a Channel
Service Request, depending on Channel Mode and current state.

Transition Detections and Match Recognitions are sometimes simply called Transitions and Matches
throughout this document, for short.

Input and output signals can be processed separately by the channel logic and microcode, and can also be
combined such that Matches and Transitions are used to cause output signal actions. The output signals
can also be directly controlled by microcode. Many event combinations are allowed for a channel, given
the possibility of configuring pairs of matches and transitions for the dual-action logic, where each event

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

842 Freescale Semiconductor

is able to block or enable the next one. There is a full set of Channel Modes described in Section 24.5.5.4,
Channel Modes, exploring all the capabilities mentioned here.

Each channel has its own set of registers and flags. They are selected, and made accessible to the
Microengine, according to the value written into the microengine CHAN Register that points to the
desired channel. Every time the CHAN register is written, even if with the same previous value, a channel
is selected and its flags and registers are updated. For further detail, see Section , Channel Selection
Register – CHAN.

Figure 24-35. Greater-Equal Comparator

Beyond the request of services due to the signal and timing internal to each channel, one eTPU channel
microcode can explicitly request service from another channel through the microengine LINK Register.
A microcode write to the LINK Register asserts a service request to the channel whose number matches
the contents of LINK. Refer to Section 24.5.5.5, Channel Link for a complete description of this
mechanism.

These service requests originated in the eTPU Enhanced Channels (either time base match, input signal
transition, or link service request) result in a call to the corresponding channel service routine, which is the
sequence of microinstructions that is called a Thread. For further detail, refer to Section 24.5.1, Functions
and threads.

In addition to Event Logic, each Channel has an Output Buffer Enable signal, controlled by microcode,
and an Enhanced Digital Filter, which eliminates spurious glitches on input pin signal. Output Buffer
Enable is meant to control output MCU pad signal driver.

A high level diagram of Channel logic and registers is shown in Figure 24-36.

NOTE: the value opposed to N (N+0x800000) does not cause a match.

Greater-Equal area

0

N

N + 0x800000

TCR1/2

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 843

Figure 24-36. Channel Logic Block Diagram

Input Signal

TCR1

TCR2

CaptureA

MatchA

TBSA[0] TBSA[1]

ER1 Bus

TBSA[2] 0: >=

1: ==

MRLEA

MRLA

TDLA

ucode ERWA & CMW=1

Set
Rst

ucode
MRLA

Rst Set

Rst

ucode MRLE

Set

Action Logic 1

Trans.A

Match A

to service request

Transition
Event
Logic

OPACA

IPACA

Capture 2

MatchB

TBSB[0]TBSB[1]

ER2 Bus

TBSB[2]0: >=

1: ==

MRLEB

MRLB

TDLB

ucode ERWB

Set
Rst

ucode
MRLB

RstSet

Rst

ucode MRLE

Set

Action Logic 2

Trans.B

Match B

OPACB

IPACB

EDF
Output FF

Output
Logic

Set Rst

OBE
FF

ucode TBSA[2:0]

PDCM

SRISRI

ucode
MTD

RstSet

ucode PDCM

ucode IPACA ucode IPACB

ucode
OPACA

ucode
OPACB

Output SignalOutput Buffer Enable

ETPU_TBCR[CDCF]

to branch
PSTI

to branch
PSTO

PSC, PSCS
ucode

Channel
Flags

Flag0

Flag1

ucode FLC

Comparator Comparator

ODIS

OPOL

Microengine Microengine

MEF

(Filter)

ucodeTDL

ucode
TDL

to service request

to branch
TDLB

to branch
MRLB

to branch
TDLA

to branch
MRLA

control

Transition
Event
Logic

Match
Recognition

Match
Recognition

ETPU_ECR[FPSCK]

TCRCLK
Filter

Input Signal

= Channel 0 only

AM

ipp_obe_etpuch

AM

Synchr. Synchr.

UDCM

mode

decoding

ucode ERWA
& CMW=0

TCRCLKchannel input

channel output

TCCEAucode
MTD

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

844 Freescale Semiconductor

24.5.5.1 Channel Registers and Flags

Channel configuration and control registers can be divided in the following groups:

• Host Configuration and Control registers, which define channel Function and parameter
allocation in SPRAM, input signal filtering, manage Host interrupts, and are used for Host Service
Requests; they can only be accessed by Host, except for the Function Mode bits which can be also
tested by microcode.

• Event Registers, which can only be accessed by eTPU Microengine, through dedicated Channel
Control microinstruction operations (see Section 24.5.9.3, Channel control and configuration
microoperations); these registers are directly used to implement channel functionality, and include
channel event status latches which can be directly tested by Microengine branch instructions.

• Pin Control registers, which basically define pin state and transition polarity (but not input signal
filtering); they are accessible only by dedicated Channel Control microinstruction operations.

• Link registers, which implement the channel link mechanism that allows one channel to request
service to another one; they are accessible only by microinstruction operations.

• General Channel registers: CHAN, SRI, Flag0/1, PDCM, UDCM.

Most of those registers are channel exclusive, i.e., there is one copy of them for each channel. Microcode
can access registers from only one channel at a time. The Channel Selection (CHAN) register (see Section ,
Channel Selection Register – CHAN), accessible only by microcode, defines the channel whose registers
are being accessed, with exception of link register and function mode. CHAN register assumes the value
of the channel to be serviced at the beginning of TST.

The Service Request Inhibit (SRI) register controls the generation of Service Requests on matches and
transitions, also affecting channel logic behavior. For a full description see Section , SRI –
Match/Transition Service Request Inhibit Latch. Flag0/1 are used to select channel service threads based
on channel software state. See Section , Flag1,Flag0 – Channel “state resolution” flags, for more details.

Host Configuration and Control registers are described in Section 24.4.7, Channel configuration and
control registers.

Time Base configuration is common to all channels, and described in Section 24.5.6, Time Bases. Time
Base selection for matches and captures, however, is individual to each channel, and is part of the Event
Registers.

Link registers are described in Section 24.5.5.5, Channel Link.

The following sections describe the Event Registers and Pin Control registers.

24.5.5.1.1 ER – Event Registers

Each channel contains two identical Event Register sets, named ERA and ERB, corresponding to the two
actions supported. Each Event Register set contains:

• A 24-bit Match register (Match A or Match B), which holds a match value. This value is compared
against the selected match time base (TCR1 or TCR2).

• A 24-bit Capture register (CaptureA or CaptureB), which samples the selected capture time base
(TCR1 or TCR2)

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 845

• A Time Base Selection register (TBSA or TBSB)

• A Match Recognition status flag (or latch) (MRLA or MRLB)

• A Match Recognition Enable latch (MRLEA or MRLEB)

• A Transition Detection flag (or latch) (TDLA or TDLB)

• A Transition Continuous Capture enable (TCCEA only)

ERA and ERB are associated with the first and second events in double action modes, not necessarily in
that order. The order of Match events associated with ERA and ERB depends on the programmed channel
mode, the MatchA and MatchB values, and the timebases selected by TBSA and TBSB. Similarly, the
order of Transition events associated with ERA and ERB depends on the programmed channel mode, and
the transition detection selected by IPACA and IPACB.

These registers are directly or indirectly accessed by the microcode. TBSA and TBSB registers are defined
in Section , TBSA and TBSB – Time Base Selection Registers. The other registers are explained in
Section 24.5.5.2, Match Recognition and Section 24.5.5.3, Transition Detection and Time Base Capture.

Access to the Event Registers is qualified by the channel currently selected by the microengine (i.e., the
channel value currently in the CHAN register). During the channel transition period (automatic CHAN
assignment), or whenever CHAN is written by microcode, Capture values of the new selected channel are
sampled into Microengine registers ERTA and ERTB, therefore becoming visible to the microcode. At the
same time, updated values of MRLA, MRLB, TDLA and TDLB are sampled into the branch logic, making
the register values and the flags coherent with respect to each other and with the thread selected by the
Scheduler1.

NOTE

The Function Mode bits are also sampled from the Host interface on Time
Slot Transition, so that they remain constant to microengine even when Host
changes them.

During service, the microcode can access updated values of the Event Registers of any channel by writing
the channel number to CHAN. Writing CHAN with the same value (CHAN := CHAN) updates ERTA and
ERTB with the new captured values, the branch logic with updated MRLA/B and TDLA/B flags. Writing
CHAN with a different value does the same with the values from the newly selected channel.

Match values are also accessed through ERTA and ERTB Microengine registers, which are copied to/from
the channel MatchA and MatchB registers by specific microinstruction operations.

Microcode writes to the flags and selections (MRLA/B, TDLA/B and TBSA/B) are immediately effective
to the channel. The MRLA/B and TDLA/B branch conditions are also immediately reset when their
correspondent flags are reset by microcode. Match registers are indirectly written by microcode through
ERTA/B. MRLEA/B is unconditionally asserted when respective Match register is updated from ERTA/B,
and its negation is immediate.

Table 24-41 summarizes Event Registers accesses.

1. The thread selected is determined by the Entry Point which, in turn, is determined partially by the channel latches. See
Section 24.5.1.1.2, Entry point address generation.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

846 Freescale Semiconductor

MatchA and MatchB Registers

MatchA and MatchB registers hold a match value to be compared against the selected channel time base.
A match value can only be written into the Match register by microcode, through ERTA/B microengine
registers (see Section 24.5.9.3.5, Write Channel Match and UDCM Registers). Microcode can also read
the Match register as a special T4ABS source operation, when T4ABS = 0101, and the source for T4ABS
is selected from the second register set. In this operation, MatchA/B registers are copied into ERTA/B
registers (see Section 24.5.9.2.2, Selecting sources and destination). For more information on time base
matches, see Section 24.5.5.2, Match Recognition.

CaptureA and CaptureB Registers

CaptureA and CaptureB registers capture the selected channel time base. CaptureA/B registers cannot be
directly written or read by microcode. During the Time Slot Transition (TST) or during CHAN assignment,
CaptureA/B registers are copied into ERTA/B microengine registers. For more information, see
Section 24.5.5.3, Transition Detection and Time Base Capture.

TBSA and TBSB – Time Base Selection Registers

TBSA/B are 3-bit registers which have the following effect on channel configuration:

• Selection of the timebase (TCR1 or TCR2) to be compared against the match values in MatchA
and/or MatchB registers.

Table 24-41. Event Registers microcode accesses

Register Access Type
Sampled from

channel
Update to
channel

Microcode
fields1

1 See Section 24.5.9, Microinstruction set.

Reset
value2

2 n.a. means that value of the register is undetermined after reset.

CaptureA, CaptureB read through ERTA/B to ERTA/B on
CHAN assignment

no T2ABD n.a.

MatchA, MatchB read and write through ERTA/B to ERTA/B
by microcode

from ERTA/B
by microcode

ERWA,
CMW,
ERWB,
T4ABS

n.a.

MRLEA, MRLEB write to 0 (negate) directly;
write to 1 (assert) upon

MatchA/B update from ERTA/B

no immediate MRLE,
ERWA,
ERWB

0, 0

TBSA, TBSB write only no immediate TBSA,
TBSB

000,
000

MRLA, MRLB flag test on branch,
write to 0 (negate) only

on CHAN
assignment

immediate BCC (test)
MRLA,
MRLB
(reset)

0, 0

TDLA, TDLB flag test on branch,
write to 0 (negate) only

on CHAN
assignment

immediate BCC (test)
TDL (reset)

0, 0

TCCEA write only no immediate MTD 0

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 847

• Selection of the timebase (TCR1 or TCR2) to be captured in the CaptureA and/or CaptureB
registers by a match or transition detection event.

• Selection of comparator mode to be used with MatchA and MatchB registers: equal-only or
greater-equal.

After reset TBSA/B are 000. Table 24-42 shows values of TBSA and TBSB for configuration selection.
Note that the time base selection for capture is independent of the time base selected for matches.

TBSA/B are written through the microcode fields TBSA/B (see Section 24.5.9.3.2, Comparator and time
base selection). Note that microcode field TBSA is also used to control the OBE pin control register (see
Section 24.5.5.1.2, Pin Control Registers), which is separate from the TBSA register.

MRLA/B – Match Recognition Latches

See Section 24.5.5.2.1, MRLA/B – Match Recognition Latches.

MRLEA/B – Match Recognition Latch Enable

See Section 24.5.5.2.3, MRLEA/B – Match Recognition Latch Enable.

TDLA/B – Transition Detection Latch

See Section 24.5.5.3.1, TDLA/B – Transition Detect Latches.

TCCEA – Transition Continuous Capture Enable

See Section 24.5.5.3.2, TCCEA – Transition Continuous Capture Enable.

24.5.5.1.2 Pin Control Registers

Pin Control Registers are replicated one per channel, accessed only by microcode and qualified by the
CHAN register in the same way as Event Registers. Table 24-43 lists Pin Control Registers, explained in
following subsections, and their accesses.

Table 24-42. TBSA/B Programming States

TBS bit 2 1 0

Bit
value

Comparator
selection

Capture time base
selection

Match time base
selection

0 greater or equal TCR1 TCR1

1 equal-only TCR2 TCR2

Table 24-43. Pin Control Registers microcode accesses

Register Access Type
Sampled

from channel
Update to
channel

Microcode
fields1

Reset
value

IPACA, IPACB write only no immediate IPACA, IPACB 000,000

OPACA, OPACB write only no immediate OPACA, OPACB 000,000

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

848 Freescale Semiconductor

IPACA,IPACB and OPACA,OPACB – Input and Output Pin Action Control Registers

These registers determine the transition detections and output pin actions which takes place due to match
or transition events. Each field is three bit wide. After reset, the IPACA/B and OPACA/B registers are set
to 000. IPACA and IPACB registers are mutually independent and have identical encoding, and so do
OPACA and OPACB. Table 24-44 shows IPAC and OPAC encoding. Note that transition detections are
independent from the output actions, but some options of output actions are triggered by transition
detections. Output actions can also be triggered by Matches. For a detailed definition of Transition
Detections, see Section 24.5.5.3, Transition Detection and Time Base Capture.

IPACA/B define the Transition events treated by channel logic. Although the name “transition” is
generically used for the transition detections, IPAC options 100 and 101 do not really detect transitions:
they actually sample the state of the input signal at the occurrence of the corresponding Match (Match A
used for IPACA, Match B used for IPACB).

PSTI flag test on branch no no BCC 0

PSTO flag test on branch, write no immediate BCC (test)
PSC, PSCS (set)

0

OBE write only no immediate TBSA values
1000,1001

0
(negated)

PSS flag test on branch on CHAN
assignment

no BCC n.a.2

PRSS flag test on branch on CHAN
assignment

no BCC n.a.3

1 See Section 24.5.9, Microinstruction set.
2 PSS is PSTI or PSTO sampled on CHAN assignments and at thread start.
3 PRSS is PSTI sampled on channel service request.

Table 24-44. IPACA/B and OPACA/B Encoding

 Value IPAC meaning OPAC meaning

000 Do not detect transitions Do not change output signal

001 Detect rising edge only Match1 sets output signal high

010 Detect falling edge only Match1 sets output signal low

011 Detect either edge Match1 toggles output signal

100 Detect input signal = 0 on Match1

1 Match A is used for IPACA/OPACA, and Match B for IPACB/OPACB.

Transition sets output signal low

101 Detect input signal = 1 on Match1 Transition detection sets output signal high

110 reserved Transition detection toggles output signal

111 n.a.2 n.a.2

Table 24-43. Pin Control Registers microcode accesses

Register Access Type
Sampled

from channel
Update to
channel

Microcode
fields1

Reset
value

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 849

Output Pin Control Logic and Pin State Output Register – PSTO

The output signal control logic uses OPACA/B, the Pre-defined Channel Mode (PDCM) and the User
Defined Channel Mode (UDCM), and the microcode Pin State Control (PSC and PSCS) fields. It is
responsible for setting the Pin State Output (PSTO) register to the specified logic value required by
microcode, by input events, or by Match A and/or Match B events. The PSTO register stores the driven
pin state determined by the Pin Control logic. The Output Buffer Enable signal, if used at MCU
integration, must be set by microcode (using TBSA field) to make the pad propagate the PSTO register
output to the actual pin.

PSTO register output also goes to the microengine branch logic, enabling branching on the driven pin state
(see Figure 24-37). PSTO is set to 0 on reset.

The PSC and PSCS microcode fields are used for setting the PSTO register to a fixed value, or to the value
specified by the OPACA or OPACB microcode field, as shown in Table 24-45.

For details refer to Section 24.5.9.3, Channel control and configuration microoperations.

On occurrence of match recognitions or transition detections, the pin control logic sets PSTO value
according to the event number (Match A/Transition A or Match B/Transition B) and the contents of
OPACA/IPACA or OPACB/IPACB registers. There are cases in which two match or transition events may
occur at the same time, each of them trying to force a different pin action. The resolution of the selected
match event which sets the value depends on the Pre-defined Channel Mode (PDCM) register and the User
Defined Channel Mode (UDCM). For details refer to Section , Match/Transition Pin Action Conflict
Resolution.

PSTI and PSS – Pin State Input and Pin Sampled State Registers

During the time slot transition period, or whenever the CHAN register is written by microcode, the
filtered1 input signal PSTI or output signal PSTO (selected by the ETPU_CxCR bit ETPD) is sampled into
the branch logic as the PSS flag (see Figure 24-37 and Table 24-113). The microcode can then branch on
either the currently driven (PSTO) or input (PSTI) pin state, or on sampled pin state (PSS, which is stable
as long as CHAN does not change).

2 On the microinstruction fields IPACA/B and OPACA/B this value is neutral, meaning that
IPAC/OPAC register values are not changed.

Table 24-45. PSC and PSCS encoding

PSC Output Pin Action

00 Force pin state according to
OPACA (PSCS = 0) or OPACB (PSCS = 1).

01 Force pin high.

10 Force pin low.

11 Do not change pin state.

1. The filter can be bypassed.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

850 Freescale Semiconductor

NOTE

If a transition occurs simultaneously (after the filter) with the CHAN
assignment, PSS samples the new pin value. Therefore, if TDLA/B is
cleared simultaneously with the assignment CHAN := CHAN, the
occurrence of a transition at this very moment can still be tested with PSS.

PRSS – Pin Request Service Sample

Channel logic can, depending on its state and programmed mode, request service to the eTPU microengine
(see Section 24.5.1, Functions and threads). When the channel logic issues a service request, the filtered
input signal PSTI is sampled into an internal channel flag PRSS. There is one such PRSS flag for each
channel (see Figure 24-37). Channel PRSS keeps its value until all its service request sources are cleared
and until a new service request rises.

The channel PRSS flag is sampled into the branch logic as the PRSS flag (see Table 24-113) during the
time slot transition period, or whenever the CHAN register is written by microcode.

OBE – Output Buffer Enable control latch

OBE latch drives the Output Buffer Enable signal, which can be used (depending on MCU integration) to
control the output signal pad driver. Channel output comes disabled from reset. If ipp_obe_[1|2]([0-31])1
from eTPU is used on MCU integration and a signal is desired to be output in a channel, OBE signal must
be set by microcode. Microcode field TBSA is used to set/reset the Output Buffer Enable control when
microcode field TBSA bit 3 is 1, according to Table 24-46

.

1. Output Buffer Enable: there is one independent OBE signal for each channel.

Table 24-46. TBSA Output Buffer control

Microcode TBSA[2:0] meaning when TBSA[3] = 1

000 enable output buffer

001 disable output buffer

111 do nothing

other values reserved

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 851

Figure 24-37. Pin State Input/Output Logic

24.5.5.1.3 General Channel Registers

These registers control other aspects of channel logic. Except for CHAN, they are unique per channel.
Table 24-47 summarizes the registers and access options.

DIGITAL
FILTER

Q D

CHAN Transition

QS

R

from output logic

to branch logic

PSTO

PSS
to branch logic

PSTI

Input Pad

PSTI

QS

R
from TBSA

eTPU MCU Integration

Output Pad

and ETPU_CxCSR

OBE
to ETPU_CxCSR

ODIS

OPOL

fromETPU_CxCR

0

0

1

1

Set Reset

0

1

fromETPU_CxCR
ETPD

SYNCH.

1

0

CDFC==01

OBE

channel input

channel output

ODIS

Q D

CHAN Transition

PRSS
to branch logic Q D

channel
service request

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

852 Freescale Semiconductor

Channel Selection Register – CHAN

CHAN is the register that holds the number of the channel that qualifies the context of most Channel
Registers, including Pin Control and ER accesses, and is common to all channels in a same engine.

When a thread starts to be executed, the contents of CHAN register is automatically updated on Time Slot
transition to the number of the channel to be serviced. Serviced channel is constant during channel
servicing, but the selected channel can be changed any time by microengine writing into CHAN register.

Some microinstructions are affected by the serviced channel instead of CHAN. These are:

• Conditional branch using LSR (see Section 24.5.8.1.6, LINK Register) or Function Mode
(Section 24.4.7.2, ETPU_CxSCR – eTPU Channel x Status Control Register).

• Negate channel flag LSR, Interrupt CPU and Data Transfer Request (see Section 24.5.9.3.10,
Channel interrupt and data transfer requests).

When CHAN register is written, accesses are qualified by the new CHAN register value from the
instruction following CHAN assignment on, except CaptureA/B sampling into ERTA/B and Match
register writing from ERTA/B (see Section 24.5.9.6.5, CHAN assignment, Read Match and ERWA/B).

Writing CHAN (including with the same value, CHAN:= CHAN) updates ERTA and ERTB with the new
captured values, the branch logic with updated MRLA/B and TDLA/B flags.

Table 24-48 shows the commands, flags and registers selected by the CHAN register value

Table 24-47. General Channel registers microcode access

Register Access type
Sampled from

channel
Update to
channel

Microcode
fields1

1 See Section 24.5.9, Microinstruction set.

Reset value

CHAN read/write n.a.2

2 CHAN is common to all channels in the engine.

n.a.2 T4ABS, T4BBS,
T2ABD

defaults to
serviced channel

at thread start

PDCM write only no immediate PDCM 1100
(sm_st)

UDCM write only no from ERTA by
microcode

CMW, ERWA parameter value
defined at
integration

SRI write only no immediate MTD 1

Flag1,Flag0 branch flag test,
write

no immediate BCC,FLC 0, 0

Table 24-48. CHAN-selected features

Feature used
Selected by

CHAN

Channel-relative SPRAM access YES

Branch using PSS, PRSS, PSTI and PSTO channel flags YES

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 853

PDCM – Predefined Channel Mode

PDCM determines the channel mode assigned to the channel. Channel mode defines much of the channel
logic behavior, specially how matches blocks and enables transitions and vice-versa, as well as occurrence
of time base captures and service requests based on matches and transitions. For a complete description
see Section 24.5.5.4, Channel Modes.

PDCM is a 4-bit register set by the microcode field of the same name (see Section 24.5.9.3.9, Predefined
channel modes), and cannot be read or tested in branch instructions. Table 24-49 relates the PDCM value
with channel modes. The second column specifies the mnemonic used to reference the mode, introduced
in Section 24.5.5.4.2, Channel modes overview. There is one PDCM for each channel, initialized with
1100 on reset.

PDCM is also used to select the User Programmable Channel Mode. If this selection is made, the channel
behavior is defined by the settings of the UDCM register (see Section , UDCM – User Defined Channel
Mode).

Branch using MRLA/B, TDLA/B, Flag0/11 YES

Branch on all other conditions2 No

ERTA/B value YES

Configure (selected) channel YES

Channel commands applied to: MRLA/B, TDLA/B, TBSA/B, IPACA/B,OPACA/B, PSC, PSCS, OBE,
PDCM, MRLE, Flag0/1

YES

Channel command: set/reset SRI YES

Channel command: write to Match registers (ERWA/B) YES3

Channel command: read Match registers into ERTA/B YES

Clear LSR No

Channel interrupts and data transfer requests (CIRC) opTionally

1 In TPU, these conditions retained the old values.
2 Refer to Section 24.5.9.4.2, Branch operations
3 If write Match (ERWA/B) occurs at the same time of a CHAN assignment, the channel which is target of the write

is the one selected by the new CHAN value. See Section 24.5.9.6.5, CHAN assignment, Read Match and ERWA/B.

Table 24-49. PDCM encoding

PDCM Channel mode

0000 em_b_st

0001 em_b_dt

0010 em_nb_st

0011 em_nb_dt

Table 24-48. CHAN-selected features

Feature used
Selected by

CHAN

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

854 Freescale Semiconductor

UDCM – User Defined Channel Mode

UDCM holds the control signals that define the channel logic behavior in terms of Match and Transition
blocking and enabling, captures and service requests triggered by events. The register layout is defined in
Figure 24-38. The individual fields are defined in Section 24.5.5.4.1, Channel Mode Logic and Event
Flags. There is one UDCM register for each channel, which can be independently programmed.

UDCM can only be written into the Match register by microcode, through ERTA/B microengine registers
(see Section 24.5.9.3.5, Write Channel Match and UDCM Registers).

Figure 24-38. UDCM Register

SRI – Match/Transition Service Request Inhibit Latch

SRI blocks channel service requests due to the assertion of MRLA/B and/or TDLA/B. SRI does not affect
recognition of Link Service Requests or Host Service Requests, neither MRLA/B or TDLA/B microcode
branch tests nor Entry Table selection1. SRI is asserted during reset and is controlled by microcode field
MTD.

0100 m2_st

0101 m2_dt

0110 bm_st

0111 bm_dt

1000 m2_o_st

1001 m2_o_dt

1010 User Defined Channel Mode

1011 reserved

1100 sm_st1

1101 sm_dt

1110 sm_st_e

1111 n.a.2

1 This is the reset value, also compatible with TPU channel behavior.
2 This value is used as a neutral (do not change) value in the PDCM microinstruction field.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R Reser

ved
Reser
ved

MSR MCA
P

M1ET M1EM
2

M1BM
2

M2BM
1

M2B
T

T1BM
1

T2BM
1

TBM
2

T1ET
2

TSR TCAP

W

1. In TPU, SRI also blocked TDL and MDL branches and enabled any transition to capture time base.

Table 24-49. PDCM encoding (continued)

PDCM Channel mode

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 855

To unburden the microengine, SRI asserted configures a channel “dumb” regarding the servicing of match
and capture channel service requests. Even with SRI = 1, TDLA/B and MRLA/B can still be asserted, and
the level specified by the OPAC (Output Pin Action Control) registers will be output to the pin.

Flag1,Flag0 – Channel “state resolution” flags

Each channel has a pair of flags, simply called Flag0 and Flag1, that can be set/reset by microcode through
microinstruction field FLC. FLC sets/resets Flag0/1 of the channel selected by CHAN. These flags can be
tested by microcode, and are also used to resolve the microcode entry point for the channel service (see
Section 24.5.1.1, Entry points). Flag0 and Flag1 are, so, typically used for fast state resolution. FLC
microinstruction field also allows Flag1,Flag0 to be copied from selected bits of P register high byte,
which is also meant to be used to hold application state. Flag0 and Flag1 are both zero out of reset.

24.5.5.2 Match Recognition

The match operation is performed every microcycle by comparing the channel MatchA and MatchB
registers against the value of the TCR bus specified for each match. TCR1 or TCR2 bus is selected
according to TBSA and TBSB fields. Both results have effect on the next clock cycle (see Section 24.7.1,
Microcycle and I/O timing).

A Match A/B event is qualified by a set of match enabling conditions to the Match Recognition Registers
MRLA/B. To recognize the match and assert these registers, the following match enabling conditions are
required:

• For IPACA/B = 0xx, Match Enable Flag (MEF), qualified by the channel currently being serviced
must be asserted. For IPACA/B = 1xx, Match A/B is always enabled (even during Time Slot
Transition (TST)), regardless of the state of the Match Enable Flag (MEF). See Section 24.5.5.2.2,
MEF – Match Enable Flag for the conditions of MEF assertion.

• Match Recognition Latch Enable 1/2 (MRLEA/B) is asserted. A match event recognition may only
occur if its corresponding MRLEA/B bit is set, which only happens upon a write to a channel match
register by the microcode, copied from ERTA/B. MRLEA/B is negated when the respective match
occurs or, in some double match channel modes, when a match for the other Match register occurs.
It ensures that the greater-equal comparison will not cause additional matches1.

• In selected modes (see Section 24.5.5.4, Channel Modes), the particular conditions of MRL and
TDL flags of the other event, i.e:

— MRLA, TDLA enable or block MRLB;

— MRLB, TDLB enable or block MRLA.

• The respective MRL is negated.

• In selected modes (see Section 24.5.5.4, Channel Modes), the state of its respective TDL flag.

If the Match A and/or Match B conditions are met, the channel immediately forces the pin state if specified
by the appropriate OPACA/B registers (Output Pin Action Control 1/2) and, in some cases, by IPACA/B
registers. Refer to Section , IPACA,IPACB and OPACA,OPACB – Input and Output Pin Action Control
Registers.

1. Microcode can also negate MRLEA/B.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

856 Freescale Semiconductor

If both Match A and Match B events occur at the same time, with conflicting pin actions, the priority over
the pin action is mode dependent. For further details on pin action resolution refer to Section ,
Match/Transition Pin Action Conflict Resolution.

24.5.5.2.1 MRLA/B – Match Recognition Latches

MRLA/B indicate the recognition of a match event detected by the comparator. They can be asserted either
on T2 or T4 (see Section 24.7.1, Microcycle and I/O timing). Assertion of MRLA/B issues a match Service
Request in specific channel modes, depending on previous events and state of SRI. After reset MRLA and
MRLB are both negated.

When MRLA or MRLB is asserted, it may change the output signal level according to the Input and Output
Pin Action Control registers (refer to Section , IPACA,IPACB and OPACA,OPACB – Input and Output
Pin Action Control Registers). Assertion of MRLA/B causes a capture of one or two time bases, according
to the selected mode capturing scheme (see Section 24.5.5.3, Transition Detection and Time Base
Capture).

A match recognition is self-blocking, regardless of Channel Mode: once MRLA (MRLB) has been
asserted, it negates its associated MRLEA (MRLEB) register, preventing future match recognitions, until
the associated match register is rewritten by microcode. The microcode has to enable new matches by
updating the new match value in the MatchA (MatchB) register1. In addition, assertion of MRLA/B can
block its twin MRLB/A, depending on the channel mode. In some double match blocking channel modes,
Match A/B event blocks the occurrence of Match B/A in a “first win” scheme.

It is the transition from 0 to 1 in MRL that causes the Match actions: apart from MRLEA/B negation(s),
no action due to a Match occurs if MRL was already set to 1, even if the other MRL assert conditions are
satisfied. However, if a Match and a microoperation negating its corresponding MRL occur at the same
time, MRL negation by microcode overrides its assertion, but any dependable captures and pin action
occurs anyway (if MRL was already negated before), and also the negation of MRLE(s) (the respective
one and, in some channel modes, the other, regardless of MRL state before). Note that MRLE must have
been set before (by writing a new Match value).

24.5.5.2.2 MEF – Match Enable Flag

MEF is a one-bit latch that is unique for all channels in an engine.

MEF can selectively enable assertion of MRLA/B, depending on the IPACA/B field. For IPACA/B = 0xx,
MEF = 1 enables assertion of MRLA/B for the scheduled channel during service. For IPACA/B = 1xx,
Match A/B is always enabled, regardless the state of the MEF, but it still depends on the other Match
recognition conditions. Matches of channels not being serviced are never disabled by MEF.

MEF is not accessible by Microengine or Host. MEF is negated for one microcycle in the middle of the
time slot transition period. After two microcycles (plus wait-states) into TST, the ME bit in the entry point
is copied to MEF to allow selective enabling of MRL for each thread (refer to Section 24.5.1.2, Time slot
transition). MEF is asserted unconditionally soon after a thread ends.

1. Before that, microcode should also negate MRLA (MRLB), otherwise an old match may be recognized by the scheduler and
serviced as a new one

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 857

If a channel service needs to postpone a programmed match, MEF assures that microcode wins the race
against match event after time slot transition (only for IPAC = 0xx).

Note that a match event may be lost during the periods when MEF is negated only if:

• the match comparator is configured for “equal-only” behavior, and

• IPACA/B = 0xx, and

• TCR increments at the rate of system clock divided by 2 or faster.

When the comparator is configured as “greater-equal”, the match event that occurred when MEF was
negated may be recognized after MEF is asserted again, due to the “greater than” condition.

24.5.5.2.3 MRLEA/B – Match Recognition Latch Enable

MRLEA/B is negated upon the assertion of its respective MRLA/B. In blocking match channel modes it
may also be negated together with the assertion of the twin MRLB/A. The MRLEA/B bits ensure that data
captured due to the first match event will not be overwritten when MRLA/B is negated: due to
greater-equal comparison, the match condition continues to be true, but should not cause another capture
event.

In addition to negation by local match event, the microcode can negate both MRLEA and MRLEB, to
block pending matches, and also MRLA/B, individually. This action will prevent future match events from
the selected channel.

Writing the MatchA/B registers by microcode to schedule the next match values sets MRLEA and/or
MRLEB and enables new matches. This setting overrides the MRLE negation conditions due to channel
logic or microcode (see Section 24.5.5.4, Channel Modes). By combining write to Match A/B with
MRLEA/B negation microinstructions, the microcode can negate one MRLE while asserting the other.

NOTE

If the MRLE negation conditions continue after writing MatchA/B registers,
the respective MRLE does not keep asserted. For instance, if MRL = 1 and
a match is programmed for a time value in the past during a thread with
MEF = 1, then MRLE will be cleared soon after MatchA/B is written, even
though a match does not occur (because MRL was already asserted, neither
captures nor pin toggles occur).

When the match register is updated (with MRLE already asserted before) and field MRLA/B = 1 (no clear,
see Section 24.5.9.3.6, Clear transition/match event registers) and MRLA/B flag is zero, the eTPU behaves
exactly as the TPU, that is: a match that comes concurrently with the rewrite of the match register,
matching the old value, sets the MRL, as if the setting of the MRLE due to match register write had
precedence over its clear by the match at that moment. After this simultaneous operation, the MRLE value
stays at 1, and the captured time base value, if any, reflects the match value.

When the match register is updated (with MRLE already asserted before) and field MRLA/B = 0 (clear
MRL, see Section 24.5.9.3.6, Clear transition/match event registers) and MRLA/B flag is zero, the match
captures will occur, the MRLA/B flag will keep negated, and MRLE will stay asserted. If a match is
reprogrammed on TCR1 running at T2/T4 timing (TCR1CS = 1, see Section 24.4.3.1, ETPU_TBCR –
eTPU Time Base Configuration Register), a match can occur after MRLA/B is cleared, together with the

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

858 Freescale Semiconductor

set of MRLE. In this case, both MRL and MRLE will be set, and a match service request will occur if
enabled. However, the match happened on the old match value, not on the new (reprogrammed) one. In
order to prevent this ambiguity to the code that services the match, it is advisable to clear the MRLE
(besides MRL) together with the match reprogramming, avoiding the match on the old value to occur while
the new match value is being written. The set of the MRLE due to match reprogramming prevails over the
MRLE clear, thus allowing the new programmed match to occur.

24.5.5.3 Transition Detection and Time Base Capture

Time Base Capture(s) occur when the value of a specified TCR is sampled into the CaptureA and/or
CaptureB register. TBSA[1] and TBSB[1] select which TCR will be captured in CaptureA and CaptureB,
respectively.

A capture event may occur due to either of the following events:

• The assertion condition of Match Recognition Latch (MRL), even if MRL is simultaneously
negated by microcode

• The assertion condition of Transition Detection Latch (TDL), even if TDL is simultaneously
negated by microcode.

• Any Transition Event specified by IPACA if both the Transition Detection Latch TDLA and
Transition Continuous Capture Enable TCCEA are asserted.

A capture event occurs together with the assertion of MRL or TDL either on T2 or T4 positive edges, and
captures the time-base value that caused the match, even if TCR1/2 increments concurrently with the
assertion (see Section 24.7.1, Microcycle and I/O timing)1. MRLA/B and TDLA may, depending on the
channel mode, inhibit the capture of the second event’s TCR into CaptureA/B. As a general rule, values
captured by signal transitions are not overwritten by values captured by match events.

When the enable bit TCCEA is asserted, captures due to Transition Events also occur after TDLA is
asserted. Those captures happen on transition events specified by IPACA, and the TCR value is saved into
CaptureA register only.

The capturing scheme is defined by the Channel Mode programmed at register PDCM, or at register
UDCM when User Defined Channel Mode is selected. For more information on mode-dependent capture
schemes refer to Section 24.5.5.4, Channel Modes.

24.5.5.3.1 TDLA/B – Transition Detect Latches

TDLA/B indicate detection of specific transition occurrences on a channel input signal. TDLA and TDLB
assertion causes service request in single and double transition predefined modes, respectively. TDLB
assertion does not cause Service Request in single transition predefined modes, and TDLA assertion does
not cause Service request in double transition predefined modes. In single transition channel predefined
modes TDLB can be asserted on the second transition, but does not generate Service Request. Yet on
predefined modes, TDLB assertion is enabled only if TDLA is asserted to detect an ordered input signal
double transition. All the restrictions above, however, may be overridden by using the User Defined
Channel Mode. The IPACA and IPACB registers indicate the programmed edges of the first and second
detected transition, respectively.

1. In TPU3, when TCR1 was counting at maximum rate of system clock divided by 2, the next value was captured.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 859

The sampling of a determined value (0 or 1) on the input signal due the occurrence of a Match is also
treated as a “transition”, depending on IPACA/B programming (see Section , IPACA,IPACB and
OPACA,OPACB – Input and Output Pin Action Control Registers). When using a channel mode where
the transition1 is initially blocked and IPACA is programmed to detect such “transitions”, the occurrence
of a Match A only unblocks the transition after the sampling. It means that the transition on the first Match
(IPACA configurations 100 and 101) is not effective on predefined modes where Transition A is enabled
by Match A (m2_st, m2_dt, m2_o_st and m2_o_dt) or user-defined modes with UDCM bit M1ET
asserted. A Transition A can still happen after the Match A, however, if MatchA register is reprogrammed
without clearing MRLA.

TDLA/B assertion conditions initiates a capture event of one or both selected TCR buses. TDLA or TDLB
transition event generates a Service Request, depending on channel mode, previous events and the state of
SRI. For more information on the service request scheme, refer to Section 24.5.1.1.2, Entry point address
generation, and Section 24.5.5.4, Channel Modes.

Assertion of TDLA/B occurs on either T2 or T4 positive edges. The capture event occurs on the same
clock, and captures the time base value present when TDLA/B was asserted1. TDLA and TDLB are
negated during reset and may also be negated independently by microcode. TDLA/B is reset by no way
other than reset and microcode.

It is the transition from 0 to 1 in TDL that causes the Transition actions: even if TDL assert conditions are
satisfied, no action due to a Transition occurs if TDL was already set to 1. However, if a Transition and a
microoperation negating TDLs occur at the same time and TDL was already negated, TDL negation by
microcode overrides its assertion, but any dependable captures and pin action occurs anyway.

24.5.5.3.2 TCCEA – Transition Continuous Capture Enable

TCCEA enables capture from transitions after the TDLA flag is set. TCCEA is negated on reset, so that a
capture occurs only when TDLA asserts. TCCEA can be set and reset by microcode only, through the
instruction field MTD (see Section 24.5.9.3.8, Disable match and transition service requests). It can only
be set together with inhibiting of the channel service requests (SRI = 1)1.

When TCCEA is asserted, the transition events specified by IPACA that occur after TDLA is set also cause
captures into the CaptureA register only. However, output actions related to transition events are still
blocked by TDLA.

24.5.5.4 Channel Modes

The Enhanced Channels support various modes of operation combining Match A/B recognition and
transition detection events which set MRLA/B and TDLA/B. The channel mode is individually set for each
channel by eTPU microcode, through the PDCM register (see Section , PDCM – Predefined Channel
Mode). The PDCM register selects among a set of 13 predefined channel modes, and also a user-defined
channel mode.

The order in which events occur, combined with assigned channel mode, establish which following event
detections are inhibited and/or enabled, as well as the actions taken: Time Base capture, flag setting
(MRLA/B, TDLA/B), match disabling (MRLEA/B), output signal transition, and Service Request. Those

1.TCCEA provides compatibility with TPU when service request is inhibited.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

860 Freescale Semiconductor

channel mode characteristics are fixed in the predefined modes, but can be individually programmed in
the user-defined channel mode.

A generic description of channel modes from the usage point of view can be found in Section 24.5.5.4.2,
Channel modes overview. Each mode is named with a mnemonic acronym for terse reference. The
individual programmed attributes of the user-programmable channel mode are also described.

The modes are used differently for input and output signals, as explained in Section 24.5.5.4.3, Predefined
Channel Modes on Input Signal Processing, and Section 24.5.5.4.4, Channel Modes on Output Signal
Generation. Modes also allow combining input processing and output generation in a single channel, as
exemplified in Section 24.5.5.4.5, Combining Input and Output Signals.

Section 24.5.5.4.1, Channel Mode Logic and Event Flags, shows a structural definition of channel logic
and its relation to channel modes. A dynamic, event-oriented view of each channel mode can be found in
Section 24.7.3, Predefined channel mode summary.

24.5.5.4.1 Channel Mode Logic and Event Flags

Figure 24-39 shows a more detailed diagram of channel mode logic. The logic shown here is not
necessarily identical to the actual channel logic implementation, but is equivalent with respect to
conditions for event blocking, enabling, capture, and service requests.

Signals MSR, TSR, MCAP, TCAP, M1ET, M1EM2, M1BM2, M2BM1, M2BT, T1BM1, T2BM1, TBM2
and T1ET2 are decoded from programmed channel mode PDCM in predefined modes, and come directly
from the UDCM register when user-defined mode is selected:

• TSR (1 bit) defines Service Requests issued by Transitions, as shown in Table 24-51.

• MSR (2 bits) defines Service Requests issued by Matches, as shown in Table 24-50.

• TCAP (1 bit) defines time base captures caused by Transitions, as shown in Table 24-51.

• MCAP (1bit) defines time base captures caused by Matches, as shown in Table 24-52.

• M1ET, M1EM2, M1BM2, M2BM1, M2BT, T1BM1, T2BM1, TBM2, T1ET2 (1 bit each) define
Match and Transition reciprocal blocking and enabling, as well as Transition ordering, as shown in
Table 24-53 and Table 24-54.

Table 24-55 shows the decoded values of those control signals for each predefined channel mode. The first
column shows the mnemonic reference for the predefined channel modes described in the following
sections.

Changing PDCM or the UDCM when user mode is selected may set or reset any of the channel flags, or
issue captures and service requests, so it is advisable to switch channel modes only in a quiescent channel
state, with channel flags MRLEA/B, TDLA/B, MRLA/B cleared. Furthermore, an event flag asserted in
one mode may keep asserted after the mode programming change, even if the flag is impossible to be set
in the new mode.

Table 24-50. MSR[1:0] signals – Match Service Requests

Value MSR

00 issue no Service Requests on Matches

01 issue Service Request on Match B only

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 861

10 issue Service Request on 2nd1 Match

11 issue Service Request on both Matches

1 2nd Match means the Match that happens after the 1st Match in time, either Match A or Match B.

Table 24-51. TCAP and TSR signals – Transition Captures and Service Requests

Value TCAP TSR

0 1st1 Transition captures Time Bases corresponding to
Transition A and Transition B2

Transition A captures corresponding Time Base if it is the second
transition;

Transition B captures corresponding Time Base if it is the second
transition.

1 1st Transition means the Transition that happens first in time, either Transition A or Transition B.
2 Match capture(s) never overwrites a Transition capture. Transition captures can always override a Match capture.

issue Service Request on the
1st1 Transition

 1 Transition A captures corresponding Time Base.
Transition B captures corresponding Time Base.

issue Service Request on the
2nd3 Transition

3 2nd Transition means the Transition that happens second in time, either Transition A or Transition B

Table 24-52. MCAP signal – Match Capture

Value MCAP

0 Match A captures corresponding Time Base;
Match B captures corresponding Time Base

1 either Match captures Time Bases corresponding to Match A and Match B1

1 Match capture(s) never overrides a Transition capture. Transition captures can always override a
Match capture.

Table 24-53. TBM2 signal – Transition Blocks Match B

Value TBM2

0 Transition A Blocks Match B

1 Transition B Blocks Match B

Table 24-54. M1ET, M1EM2, M1BM2, M2BM1, M2BT signals

Signal Active value meaning

M1ET
(Match A Enable Transitions)

Transitions are initially blocked,
and Match A enables Transitions

M1EM2
(Match A Enables Match B)

Match B is initially blocked1,
and Match A enables Match B

Table 24-50. MSR[1:0] signals – Match Service Requests

Value MSR

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

862 Freescale Semiconductor

M1BM22

(Match A Blocks Match B)
Match B is initially enabled1,

and Match A blocks Match B3

M2BM12

(Match B Blocks Match A)
Match A is initially enabled,

and Match B blocks Match A3

M2BT
(Match B Blocks Transitions)

Match B blocks Transitions

T1BM1
(Transition A Blocks Match A)

Transition A blocks Match A

T2BM1
(Transition B Blocks Match A)

Transition B blocks Match A

T1ET2
(Transition A Enables Transition B)

Transition B is initially blocked, and Transition A enables
Transition B

1 The initial condition of M1EM2 prevails over M1BM2, while M1BM2 blocking prevails over M1EM2
enabling, so that Match B stays always blocked when both M1BM2 and M1EM2 are active. This
combination is used in single-match modes (sm_*).

2 Blocking of one Match by the other is done through MRLEs.
3 Matches always block themselves by resetting their own MRLEs (Match A always blocks Match A,

Match B always blocks Match B)

Table 24-55. Predefined channel mode control signals decoding

Predefined
mode

MSR MCAP M1ET M1EM2 M1BM2 M2BM1 M2BT T1BM1 T2BM1 TBM21 T1ET2 TSR1

1 Signals TSR, TCAP and TBM2 replace the signal DTM used in previous eTPU versions.

TCAP1

em_nb_st 11 0 off off off off off On off 0 On 0 0

em_nb_dt 11 0 off off off off off On off 1 On 1 1

em_b_st 11 1 off off On On off On off 0 On 0 0

em_b_dt 11 1 off off On On off On off 1 On 1 1

bm_st 10 0 off off off off off On off 0 On 0 0

bm_dt2

2 bm_dt and sm_dt are exceptions in the match blocking logic by transitions. See Section , Both Match Request Modes
(bm_st, bm_dt), and Section , Single match modes (sm_st, sm_dt).

10 0 off off off off off off On 1 On 1 1

m2_st 01 0 On off off On off On off 0 On 0 0

m2_dt 01 0 On off off On off On off 1 On 1 1

m2_o_st 01 0 On On off off On On off 0 On 0 0

m2_o_dt 01 0 On On off off On On off 1 On 1 1

sm_st 11 1 off On On On off On off 0 On 0 0

sm_dt2 11 1 off On On On off off On 1 On 1 1

sm_st_e3 11 0 off On On On off On off 0 On 0 0

Table 24-54. M1ET, M1EM2, M1BM2, M2BM1, M2BT signals

Signal Active value meaning

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 863

3 sm_st_e is an exception in the capture scheme. See Section , Single match enhanced mode (sm_st_e).

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

864 Freescale Semiconductor

Figure 24-39. Channel Mode Logic and Event Flags

S

R

Q

TDLA

sysclk

S

R

Q

MRLA

sysclk

T4S

R

Q

MRLEA

sysclk

Comparator A

ucode ERWA

M2BM1

SRI

ucode TDL

Trans. Event A

M
1E

T

M
2B

T

S

R

Q

TDLB

sysclk

S

R

Q

MRLB

sysclk

T4S

R

Q

MRLEB

sysclk

Comparator B

ucode ERWB

M1BM2

ucode TDL

ucode
MRLA

ucode
MRLB

M1EM2

Match A SR Match B SRTransA SR TransB SR

MSR[1]

MSR[0]

MSR[0]

MSR[1]

TCAP

 CaptureB

MCAP

NOTE: all flip-flops but MRLE reset-dominant

load enable

CaptureA
MCAPload enable

sm_st_e

MEF

Channel
Service

Non-filtered Trans.
Detection B

1

0

TBM2

T1BM1

all control signals active high.

IPACA[2]

MEF

Channel
Service

IPACB[2]
ucode

clr MRLEA

clr MRLEB

sm_st_e

TSE1

1

0

TSR

TSE1

TSE2

Angle Tooth
Detection
Window

(channel 0 only)

Trans. Event B

TSE2

TS2TS1

TS1 TS2

(see figure 59)

T2BM1

T1ET2

TCAP

T
S

R

T
S

R

TCAP

TCAP

S

R

Q

TCCEA

T2

ucode
MTD

ucode
MTD

1

0

TSR

TS1

TS2

Tooth
Detection

(see figure 59)

(channels 1, 2 only)

Trans.
Event A

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 865

24.5.5.4.2 Channel modes overview

Predefined channel modes are divided according to the way they treat transitions in two basic modes:

• Single Transition Modes (mnemonic suffix _st): In these modes the first transition (flagged in
TDLA) issues a service request, and captures both time bases (selected by TBSA[1] and TBSB[1])
except on sm_st_e. The second transition (flagged in TDLB) does not issue a service request, but
it captures time base selected by TBSB[1], except on sm_st_e.

• Double Transition Modes (mnemonic suffix _dt): In these modes the second transition (flagged
in TDLB) issues a service request, and each transition captures its own selected time base
(Transition A and Transition B capture time bases selected by TBSA[1] and TBSB[1],
respectively).

In predefined modes, Transition B is always (but not only) enabled by Transition A, so that transitions are
always ordered: TDLA is set on the first transition and TDLB on the second. Unordered transitions are
possible with user-defined mode, when UDCM bit T1ET2 = 0. Matches are generally not ordered, except
on specific ordered match modes m2_o_st and m2_o_dt. Match capture(s) never overrides a Transition
capture, while Transition captures can always override a Match capture, either in predefined or
user-defined modes.

The following general rules apply to both predefined and user-defined modes:

• Blocking of one Match by the other, when it occurs, is done through MRLEs.

• Matches always block themselves by resetting their own MRLEs (Match A always blocks Match
A, Match B always blocks Match B).

Predefined modes differ mostly by the way matches affects and are affected by other matches and
transitions, as explained in next sections. However, some general rules on Match blocking apply:

• Match B is blocked by first transition (TDLA) in single transition modes, and by second transition
(TDLB) in double transition modes.

• Both Matches are blocked by first transition in single transition modes.

NOTE

The rules above and in following sections may be overruled by the state of
the channel latches if they are set/reset by microcode or if channel mode is
changed. Care must be taken to change channel modes, and is advisable to
reset channel flags MRLA/B, TDLA/B and MRLEA/B before writing
PDCM, or to UDCM when user-defined mode is selected.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

866 Freescale Semiconductor

Either Match, Blocking Modes (em_b_st, em_b_dt)

In these modes the first match recognition that occurs blocks the other match recognition and generates a
service request. They end up with one service request for two programmed match recognitions where only
the first match recognition has an actual effect. If both match recognitions occur at the same time, both
MRLA and MRLB are set, before the mutual blocking takes effect.

Figure 24-40. Either Match, Blocking Modes (em_b_st, em_b_dt)

S

R

Q

TDLA

T2

S

R

Q

MRLA

T2

T4S

R

Q

MRLEA

sysclk

Comparator A

ucode ERWA

SRI

Trans. Event A
S

R

Q

TDLB

T2

S

R

Q

MRLB

T2

T4S

R

Q

MRLEB

sysclk

Comparator B

ucode ERWB

ucode TDL

Trans. Event B

ucode
MRLA

ucode
MRLB

Match A SR Match B SRTransA SR TransB SR

 CaptureB
load enable

CaptureA
load enable

MEF

Channel
Service

Double Trans.

1

0

Double Trans.

D
ou

bl
e

Tr
an

s.

NOTE: all flip-flops but MRLE reset-dominant;
 all control signals active high.

IPACA[2]

MEF

Channel
Service

IPACB[2]

TS1 TS2

TS1 TS2

ucode TDL

Trans.Event A
TCCEA

ucode clr
MRLEA

ucode clr
MRLEB

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 867

Either Match, Non Blocking Modes (em_nb_st, em_nb_dt)

In these modes both match recognitions are independent and each of them generates service request. Each
match recognition captures its related time base and does not block the other.

Figure 24-41. Either Match, Non Blocking Modes (em_nb_st, em_nb_dt)

S

R

Q

TDLA

T2

S

R

Q

MRLA

T2

T4S

R

Q

MRLEA

sysclk

Comparator A

ucode ERWA

SRI

Trans. Event A
S

R

Q

TDLB

T2

S

R

Q

MRLB

T2

T4S

R

Q

MRLEB

sysclk

Comparator B

ucode ERWB

ucode TDL

Trans. Event B

ucode
MRLA

ucode
MRLB

Match A SR Match B SRTransA SR TransB SR

 CaptureB
load enable

CaptureA
load enable

Double Trans.

1

0

Double Trans.

D
ou

bl
e

Tr
an

s.

NOTE: all flip-flops but MRLE reset-dominant;
 all control signals active high.

MEF

Channel
Service

IPACA[2]

MEF

Channel
Service

IPACB[2]

TS1

TS1 TS2

TS2

ucode TDL

Trans.Event A
TCCEA

ucode clr
MRLEA

ucode clr
MRLEB

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

868 Freescale Semiconductor

Match B Request Modes (m2_st, m2_dt)

In these modes transitions are initially blocked, and are enabled by Match A. Match B recognition
generates the match service request and disables Match A recognition. Each match recognition captures
its own programmed timebase. In case of simultaneous match recognition, both MRLA and MRLB are set,
and OPACB register has priority over OPACA for selecting the pin action.

Figure 24-42. Match B Request Modes (m2_st, m2_dt)

Both Match Request Modes (bm_st, bm_dt)

In these modes, match service request is generated only after both match recognitions occurred. By
definition this is a non-blocking match mode: match recognitions do not block each other, implementing

S

R

Q

TDLA

T2

S

R

Q

MRLA

T2

T4S

R

Q

MRLEA

sysclk

Comparator A

ucode ERWA

SRI

Trans. Event A
S

R

Q

TDLB

T2

S

R

Q

MRLB

T2

T4S

R

Q

MRLEB

sysclk

Comparator B

ucode ERWB

ucode TDL

Trans. Event B

ucode
MRLA

ucode
MRLB

Match B SRTransA SR TransB SR

Double Trans.

 CaptureB
load enable

CaptureA
load enable

D
o

u
b

le
 T

ra
n

s.

1

0

Double Trans.

NOTE: all flip-flops but MRLE reset-dominant;
 all control signals active high.

MEF

Channel
Service

IPACA[2]

MEF

Channel
Service

IPACB[2]

TS1

TS1 TS2

TS2

ucode TDL

Trans.Event A
TCCEA

ucode clr
MRLEA ucode clr

MRLEB

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 869

a last-served scheme. Unlike other double transition modes, bm_dt blocks Match A with Transition B (not
with Transition A), so that the second transition blocks both matches.

Figure 24-43. Both Match Request Modes (bm_st, bm_dt)

Ordered Modes with Match B Request (m2_o_st, m2_o_dt)

These are ordered match modes on which Match A recognition must precede Match B recognition
(ordered 1->2). Match A asserts MRLA and enables Match B and transitions. Match B asserts MRLB,
generates a match service request, and blocks both transitions.

S

R

Q

TDLA

T2

S

R

Q

MRLA

T2

T4S

R

Q

MRLEA

sysclk

Comparator A

ucode ERWA

SRI

Trans. Event A
S

R

Q

TDLB

T2

S

R

Q

MRLB

T2

T4S

R

Q

MRLEB

sysclk

Comparator B

ucode ERWB

ucode TDL

Trans. Event B

ucode
MRLA

ucode
MRLB

Match A SR Match B SRTransA SR TransB SR

 CaptureB
load enable

CaptureA
load enable Double Trans.

1

0

Double Trans.

D
ou

bl
e

Tr
an

s.

1

0

Double Trans.

NOTE: all flip-flops but MRLE reset-dominant;
 all control signals active high.

MEF

Channel
Service

IPACA[2]

MEF

Channel
Service

IPACB[2]

TS1

TS1

TS2

TS2

ucode TDL

Trans.Event A
TCCEA

ucode clr
MRLEA

ucode clr
MRLEB

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

870 Freescale Semiconductor

Figure 24-44. Ordered Modes with Match B Request (m2_o_st, m2_o_dt)

Single match modes (sm_st, sm_dt)

Single match modes support single or double transition with single match recognition. MRLB is never set,
and MRLEB has no effect.

1

0

Double Trans.

S

R

Q

TDLA

T2

S

R

Q

MRLA

T2

T4S

R

Q

MRLEA

sysclk

Comparator A

ucode ERWA

SRI

Trans. Event A
S

R

Q

TDLB

T2

S

R

Q

MRLB

T2

T4S

R

Q

MRLEB

sysclk

Comparator B

ucode ERWB

ucode TDL

Trans. Event B

ucode
MRLA

ucode
MRLB

Match B SRTransA SR TransB SR

Double Trans.

 CaptureB
load enable

CaptureA
load enable

D
o

u
b

le
 T

ra
n

s.

NOTE: all flip-flops but MRLE reset-dominant;
 all control signals active high.

MEF

Channel
Service

IPACA[2]

MEF

Channel
Service

IPACB[2]

TS1

TS1 TS2

TS2

ucode TDL

Trans.Event A
TCCEA

ucode clr
MRLEA

ucode clr
MRLEB

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 871

Figure 24-45. Single match modes (sm_st, sm_dt)

S

R

Q

TDLA

T2

S

R

Q

MRLA

T2

T4S

R

Q

MRLEA

sysclk

Comparator A

ucode ERWA

SRI

Trans. Event A
S

R

Q

TDLB

T2

T4S

R

Q

MRLEB

sysclk

ucode ERWB

ucode TDL

Trans. Event B

ucode
MRLA

Match A SR Match B SRTransA SR TransB SR

 CaptureB
load enable

CaptureA
load enable

Double Trans.

D
ou

bl
e

Tr
an

s.
S

R

Q

MRLB

T2

ucode
MRLB

0

NOTE: all flip-flops but MRLE reset-dominant;
 all control signals active high.

MEF

Channel
Service

IPACA[2]

1

0

Double Trans.

TS1

TS1 TS2

TS2

ucode TDL

Trans.Event A
TCCEA

ucode clr
MRLEA

ucode clr
MRLEB

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

872 Freescale Semiconductor

Single match enhanced mode (sm_st_e)

This is an enhanced single transition and single capture mode, which provides non-filtered input captures
in addition to the single capture, allowing one to measure the delay of the digital filter. In an output
channel, it has the same functionality of sm_st (captures both time bases at once due to a match
recognition).

Figure 24-46. Single match enhanced mode (sm_st_e)

S

R

Q

TDLA

T2

S

R

Q

MRLA

T2

T4S

R

Q

MRLEA

sysclk

Comparator A

ucode ERWA

SRI

Trans. Event A
S

R

Q

TDLB

T2

T4S

R

Q

MRLEB

sysclk

ucode ERWB

ucode TDL

ucode
MRLA

Match A SR Match B SRTransA SR

 CaptureB
load enable

CaptureA
load enable

S

R

Q

MRLB

T2

ucode
MRLB

0

0

Non-filtered Trans.
event

NOTE: all flip-flops but MRLE reset-dominant;
 all control signals active high.

MEF

Channel
Service

IPACA[2]

TS1

TS1

ucode TDL

Trans.Event A
TCCEA

ucode clr
MRLEA

ucode clr
MRLEB

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 873

24.5.5.4.3 Predefined Channel Modes on Input Signal Processing

When processing an input signal, the predefined channel modes can be classified in the following primary
mode groups:

• Single Transition, Single Match: em_b_st, sm_st, sm_st_e

• Single Transition, Double Match: em_nb_st, bm_st, m2_st, m2_o_st

• Double Transition, Single Match: em_b_dt, sm_dt

• Double Transition, Double Match: em_nb_dt, bm_dt, m2_dt, m2_o_dt

In single transition modes, TDLA assertion may capture both time bases at once, while in double transition
modes each transition captures its related time base in its related capture register.

Double transition is always ordered, i.e TDLB is enabled by TDLA and generates the service request.

The channel logic supports various input modes with combinations of single/double transition and
single/double match, explained in the following subsections.

Either Match, Blocking, Single Transition (em_b_st)

On an input signal, this mode provides double timeout mechanism on a programmed transition edge with
two timebases. The signal transition blocks both pending matches, indicating that no timeout condition
occurred. The two match recognitions block each other, giving good separation in the entry table as to
which match recognition caused the first timeout condition, and generating only one service request. Either
match performs timebase captures which do not overwrite captures by transitions.

Either Match, Blocking, Double Transition (em_b_dt)

In double transition mode each transition is related to one match recognition. TDLA assertion captures its
related timebase, blocks Match A and enables TDLB. TDLB assertion blocks Match B, captures its related
timebase and generates a service request. Match recognitions block each other, so if there is a match
timeout condition on TDLA, only one match service request is generated. This mode is good for qualifying
two signal transitions by match timeout mechanisms, with one service request. Note that although TDLA
assertion does not block Match B recognition, the value captured in CaptureA by TDLA assertion is not
overwritten by this recognition. The second transition blocks Match B. Either match performs timebase
captures which do not overwrite captures by transitions.

Either Match, Non Blocking, Single Transition (em_nb_st)

On an input signal, this is a double timeout mechanism of independent match recognitions of two different
timebases. The match recognitions do not block each other, such that the microcode can check if one or
two match recognitions occurred before their related signal transition. The signal transition detection (by
IPACA) asserts TDLA, blocks both matches, captures both time bases and generates a transition service
request, indicating that none of the two timeout conditions occurred. Any combination can be easily
resolved by microcode (for example, signal transition after Match A and before Match B, or signal
transition after both Match A and Match B).

Another possible use of this mode is allocating one match recognition for transition timeout and the other
for another non-critical timed task, adding functionality to a single channel. Since the transition detection

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

874 Freescale Semiconductor

blocks both match recognitions, the match recognition of the other timed task is based on the fact that the
comparator checks greater-equal conditions. It may be delayed if it occurs in the period between the signal
transition detection (which blocks it) and the time TDLA is negated by microcode. If matches are enabled
during the service, the same code can check if the match recognition of the timed task occurred in this
period, by negating TDLA and writing to the CHAN register its own value (in order to update the MRLA
flag in the branch logic).

Either Match, Non Blocking, Double Transition (em_nb_dt)

In this mode each transition is related to one match recognition, and the match recognitions are
independent of each other. This mode can be used to give independent timeout conditions for the first and
the second signal transition recognitions, and call service in any case of any timeout condition.

The first transition detection programmed in IPACA sets TDLA, captures its related timebase, blocks
Match A recognition and enables TDLB assertion. The second transition detection programmed in IPACB
sets TDLB, blocks Match B recognition, captures its related timebase and generates a service request. Any
match recognition that occurs captures its related time base and generates a match service request,
independent on the other match recognition.

Match B Request, Single Transition (m2_st)

On an input signal, this mode provides an open window filter for a single signal transition. MRLA
assertion opens the window, and enables transition detection on TDLA from this time on. MRLB assertion
blocks Match A (by negating MRLEA), providing conditional window opening, because transitions are
indirectly blocked. It also generates service request, but if it happens after Match A it does not block
transitions, providing a non-blocking timeout mechanism for the estimated signal transition time (typically
it indicates a missing transition, or mis-prediction of the transition time).

Transitions can be detected from the microcycle following MRLA assertion. The Transition A detection
asserts TDLA, blocks both matches, captures both timebases and generates service request.

Using this mode, the channel can replace software open window filtering of qualified transitions with the
channel hardware window. The window opening and timeout can be scheduled for any of the two time
bases or combination of them. Typically, Match A will be used to open a prediction window, and Match B
will be used as a timeout condition which does not close the prediction window. This configuration
improves noise immunity from early signal transitions, and reduces the probability for blocking late signal
transitions due to timeout mis-prediction.

Using these conditions, the microcode can easily resolve the state:

• If TDLA and MRLA are asserted and MRLB negated, signal transition is in the expected range.

• If MRLA and MRLB are both asserted, and TDLA is asserted, the signal transition had a timeout
condition due to Match B mis-prediction.

• If MRLB is asserted and TDLA negated, a timeout condition occurred, and the expected signal
transition had not occurred yet.

• If MRLA is negated and MRLB is asserted, the conditional window did not open at all (for
example: a time window is open only after a specific angle, otherwise it is not opened).

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 875

Match B Request, Double Transition (m2_dt)

This mode is used as an open window filter for two signal transitions. In this case the Match A recognition
opens the window (unless Match B recognition occurred first), and Match B recognition blocks Match A
and generates a match service request. It is similar to m2_st, but in this case, it is the second transition that
blocks Match B. MRLB assertion is a global timeout condition for the two pulses. Like m2_st, MRLB can
conditionally eliminate the window from opening.

Using the TDLA, TDLB, MRLA and MRLB conditions, the microcode can easily resolve the state, in a
similar manner as m2_st, with additional information on the second transition (TDLB).

Both Match Request, Single Transition (bm_st)

On an input signal, this is a double timeout mechanism on two different time bases. Both match
recognitions must occur before the signal transition to generate a match timeout service request. Assertion
of TDLA blocks both Match A and Match B recognitions, and captures both time bases, indicating there
was no double timeout condition from both time bases.

Using the same timebase implements two timeout conditions, the first only sets its related MRL and the
second generates a service request. Using these flags allows the microcode to check if one or both match
recognitions precede the signal transition.

Both Match Request, Double Transition (bm_dt)

In this mode the first transition detection does not block matches, since both match recognitions are
required to generate a match service request. The second transition detection asserts TDLB, blocks Match
A and Match B, captures its related timebase and generates transition service request. In this mode, a
Match A recognition which occurs after the assertion of TDLA does not capture a new value in CaptureA,
to preserve the actual signal transition time. Assertion of TDLA, however, always captures its related
timebase.

This mode allows putting a double match timeout condition on the second transition. Typically, a pulse
trailing edge timing can be checked against two time bases, to indicate if the pulse has not ended when
both MRLA and MRLB are asserted. When a transition service request is generated by TDLB assertion,
the state of MRLA and MRLB indicates which timeout condition occurred, if any.

Ordered Mode with Match B Request, Single Transition (m2_o_st)

On an input channel, this mode provides a closing window filter for a single signal transition. Match A
assertion captures its programmed time base in CaptureA, opens the filter window (enables assertion of
TDLA), and enables assertion of MRLB. Match B recognition captures its related timebase, closes the
window (disables assertion of TDLA) and generates a service request. Due to Match A and Match B
ordering, the window is opened for at least one microcycle. Match B recognition indicates a window
timeout condition which blocks late signal transitions, outside the prediction window. Transition detection
blocks both matches, indicating the transition occurred inside the estimated window. Transitions can be
detected from the microcycle following MRLA assertion until the microcycle on which MRLB is asserted.
When TDLA is asserted inside the window range it disables both matches, captures both time bases and
generates a transition service request.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

876 Freescale Semiconductor

Using this mode, the channel can replace software window filtering of qualified transitions with the
channel hardware window. The window opening and closing time can be scheduled for any of the two time
bases or a combination of them.

Ordered Mode with Match B Request, Double Transition (m2_o_dt)

In this mode the channel logic implements a window filter for two detected signal transitions. MRLA
assertion captures its related timebase and enables the assertion of both TDLA and TDLB. MRLB
assertion captures its related timebase and disables the assertion of both TDLA and TDLB. Transitions can
be detected from the microcycle following MRLA assertion until the microcycle on which MRLB is
asserted. The first signal transition (following MRLA assertion) asserts TDLA, captures its related
timebase and enables assertion of TDLB. The second signal transition detection asserts TDLB, blocks
Match B, captures its related timebase and generates the service request.

If both signal transitions occur inside the scheduled window, Match B recognition is blocked. If one or
both signal transitions do not occur inside the scheduled window, Match B recognition generates a match
service request and blocks further transition detections. The microcode can resolve the state using MRLA,
MRLB, TDLA and TDLB, which affect the entry point selection.

Single Match Enhanced Mode (sm_st_e)

This is an enhanced single transition and single match channel mode which provides timing information
of the digital filter delay.

The CaptureA register captures the timebase selected by TBSA due to transition detection specified by
IPACA or match recognition, as in sm_st mode. Initially, the CaptureB register continuously captures the
unfiltered IPACB-selected signal transitions from the digital filter input, directly from the signal
synchronizer. When an IPACA-qualified, filtered transition detection occurs, TDLA is set, MRLA
assertion is blocked, and, in addition, captures into CaptureB are also blocked. On service, CaptureA and
CaptureB (copied into ERTA and ERTB) holds the time of the qualified transition detection (ERTA), and
the time of the last signal transition at the input of the digital filter (ERTB). Subtracting the time in ERTB
from the time in ERTA provides the delay of the digital filter.

In a quiet environment, the two captures provide the accurate delay of the digital filter in granularity of
two system clocks. In a noisy environment, false transitions may be detected at the input of the digital filter
due to the noise, and the delay measurement may be reduced, especially if IPACB selects both edge
detection. The microcode can do sanity checks on this value to recognize noise effects (for example:
calculated delay is less than the minimum delay of the digital filter).

NOTE

In Channel 0, if ETPU_TBCR field AM = 01 (Angle Mode), the unfiltered
input comes from TCRCLK input and the filtered input comes from the
TCRCLK filter output. The edge is selected by IPACA/B, and is
independent of the edge selection by ETPU_TBCR field TCR2CTL.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 877

Single Match, Single Transition (sm_st)

In this mode the channel logic is functionally back-compatible to a TPU3 single action channel, but a
match or transition detection captures at once both timebases. The mode recognizes a single transition with
single match timeout. Either TDLA or MRLA generates service request and captures both timebases.
Assertion of TDLA blocks future assertions of MRLA.

Single Match, Double Transition (sm_dt)

In this mode, the first transition detection asserts TDLA, captures a timebase in CaptureA and enables
TDLB. The second signal transition asserts TDLB, blocks Match A, captures a timebase in CaptureB and
generates a service request.

Match A (before TDLB) captures into CaptureB the timebase selected by TBSA, in order not to overwrite
the captured value of TDLA.

This mode is used for scheduling one timeout condition on two input signal transitions (pulse timeout).

24.5.5.4.4 Channel Modes on Output Signal Generation

Since channel logic can generate output signal transitions based on Matches, the channel can be viewed as
working in the following primary mode groups for signal generation:

• Single Match: em_b_st, sm_st, sm_st_e, em_b_dt, sm_dt

• Double Match: em_nb_st, bm_st, m2_st, m2_o_st, em_nb_dt, bm_dt, m2_dt, m2_o_dt

The channel logic supports various match channel modes with single/double match, as explained in the
following subsections.

Either Match, Blocking Modes (em_b_st, em_b_dt)

On an output signal these modes are useful when using two different time bases to set a required signal
transition. The first match condition which is met sets a required pin action, captures both time bases,
blocks any effects of the other recognition, and generates a service request. Because the first match
recognition blocks the other, the microcode can get good separation in the function entry table as to which
match caused the timeout first, and both time bases are captured, enabling the microcode to compare one
timebase to the other at the moment of the match recognition. These modes can be used for:

• Scheduling a required pin action to the first match recognition of two different time bases.

• Cancelling a programmed pin action scheduled on one time base by match on another timebase (as
a consequence of Table 24-56). Microcode has to set the OPAC register of the cancelling match to
no-action and the OPAC register of the other match to the required pin action which may be
blocked. If Match A is the cancelling match, it blocks the pin action also in case of two matches at
the same time, since it has priority in this case. If Match B is the cancelling match, it does not block
the pin action in case of two matches at the same time.

Either Match, Non Blocking Modes (em_nb_st, em_nb_dt)

On an output signal these modes are useful in combination with the ME bit set on the entry point, to define
an interlaced operation. For example, each match recognition can set a pin action, and the second pin

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

878 Freescale Semiconductor

action is not sensitive to microcode latency (ME bit asserted). Example for usage is PWM interlaced
function on which the latency is determined by the period and not the duty cycle.

Another possibility is using one match for pin actions and the other match for an unrelated timed task
without pin action (double the functionality of a single channel).

Match B Request Modes (m2_st, m2_dt)

On an output signal, these modes can generate narrow pulses or do conditional pin actions. A conditional
pin action means that the pin state is changed only if the match recognitions occurred in the correct order,
since the Match B recognition which generates the service request also has priority over the pin action and
blocks future Match A recognitions.

Setting OPACA to a desired pin action and OPACB to no-action, and using different time bases for Match
A and Match B defines a conditional OPACA pin action which can be blocked by Match B recognition.
For example, setting Match A on time and Match B on angle can limit the pin action to a maximum angle
value.

When pulses are generated, the service is requested at the trailing edge of the pulse, after MRLB is
asserted.

Both Match Request Modes (bm_st, bm_dt)

On an output signal, each match recognition can affect the pin state, and capture its programmed time base.
This way the pin action can be programmed separately for both match recognitions. For example, both
match recognitions can negate the signal, and service request is generated after both conditions are met.
This mechanism can set two conditions to do a required pin action, and the first recognition changes the
signal, but service is called only after both conditions occur.

When using the same time base, these modes can generate narrow pulses in any required order. For
example, in a PWM function, when duty cycle is below 50% the function can get service on the low time
and program the pulse to the required duty cycle of the high time. When duty cycle is equal or above 50%,
the function can get service on the high time and program a negative pulse with the width of the required
low time. To switch between the two states the function can program once the same transition time to
MatchA and Match B with a required pin action, and on the next service program double match for the
new state.

Another usage is generating a required pin action on one programmed time and service request later on
another time, after the second match recognition occurs, or capturing some timebase on one time and
generating a required signal transition and service request later.

Ordered Modes with Match B Request (m2_o_st, m2_o_dt)

The order of the match recognitions imply that OPACA register programmed pin action always precede
the OPACB register pin action. Setting OPACA to no-action, based on the greater-equal comparator,
enables using Match A on one time base to delay the signal effect of Match B on the other time base. This
method implements a conditional pulse extension or conditional delay on signal transition.

These modes can also be used for deferred pulse generation with microcode service request after its trailing
edge (if Match A condition comes after Match B condition). Another option is having Match A recognition

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 879

associated with output pin actions and Match B recognition for a timed microcode task which has to be
scheduled at a programmed time which may be delayed by the Match A pin action.

Single Match Modes (sm_st, sm_dt, sm_st_e)

There is no difference between plain and enhanced single match modes on an output signal.

In this mode the channel logic is functionally back-compatible to a TPU3 single match output channel.
Match A recognition generates service request and sets the pin state according to OPACA register. It
captures at once the timebase selected by TBSA in CaptureA and the timebase selected by TBSB in
CaptureB.

Match/Transition Pin Action Conflict Resolution

In output signals, matches and/or transitions automatically cause pin actions defined by the OPACA/B
and/or IPACA/B channel control registers (see Section 24.5.5.1.2, Pin Control Registers). Simultaneous
matches/transitions may be associated with different, possibly contradictory, pin actions. These conflicts
are resolved according to the Table 24-56.

If an OPACA/B = 000 (no action) prevails over non-zero OPAC according to Table 24-56, then if Match
A/Transition A and Match B/Transition B occur simultaneously, no output pin action occurs, that is: a
match on the action logic with OPAC = 000 inhibits simultaneous actions of the other OPAC, if prevailing
according to Table 24-56. That also applies when output actions are caused by inputs (OPAC = 1xx).

24.5.5.4.5 Combining Input and Output Signals

The processing of input signal can be combined with output signal generation. A detected input transition
can trigger an output signal edge, even without microcode intervention, by using OPAC options 1xx.

The channel set-up examples below show these two capabilities combined (see Figure 24-47).

The first example implements a fast (no microcode intervention) short-circuit protection feedback
mechanism for driving high-current output devices. The signal after the high-current driver feeds back to
the channel input. The input signal is normally delayed from the output signal by the device turn-on delay.
After the channel output turns on, the channel logic must check if the driver output (connected to the
channel input) follows the driven value after the maximum device turn-on delay. If it does not, the driver
output is probably shorted, and the channel output must be turned off immediately to avoid damaging the
device.

Table 24-56. Simultaneous match pin action priority

Channel mode Priority

em_nb_st / em_nb_dt OPACA

em_b_st / em_b_dt OPACA

bm_st / bm_dt OPACA

m2_st / m2_dt OPACB

m2_o_st / m2_o_dt In these modes there is no possibility of simultaneous matches

user-defined OPACB if M2BM1 = 1 and M1BM2 = 0, OPACA otherwise

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

880 Freescale Semiconductor

Match A causes the output to be driven high (for simplicity the output and input signals are shown as
positive logic). It also causes a transition A, because IPACA = 100 and the input is still low. Match B
occurs after the expected driver delay, and causes a service request. If the output is shorted, a Transition B
occurs on Match B because IPACB = 100. This will cause the output to go low immediately, because
OPACB = 100.

In the second example, an output pulse is generated from an input transition without microcode
intervention. Match A opens a window for transitions and also enables Match B. A rising edge on input
sets output high. On Match B the window closes, and input signal is checked: if sampled high, the output
resets; otherwise it stays high.

In the third example, a pulse is generated depending on the value sampled on the input signal at a
predetermined time. Match A samples the input signal, causing a Transition. Low level on input sets output
low, otherwise it stays high. Match B sets output high. In both cases a service request is issued (microcode
intervention), at the beginning and at the end of the pulse (Match B), if required (SRI := 0).

NOTE

When IPAC = 1xx, a match event can cause simultaneously a Match
recognition and a Transition detection. Depending on the Channel Mode,
these Match and Transition may have conflicting effects on other
Transition/Match blocking or enabling. In these cases, blocking always
prevails over enabling, effective on the next microcycle.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 881

Figure 24-47. Input/Output combination

Input signal

Output signal

Match A Match B

IPACA := 001; OPACA := 101; MatchA:= window open time;
IPACB:= 101; OPACB:= 100; MatchB:= window close time, input sampling;

PDCM:= m2_o_dt;

enables

Match A Match B

Input signal

Output signal

IPACA:= 100; OPACA:= 100; MatchA:= window open time,input sampling;
IPACB:= 000; OPACB:= 001; MatchB:= window close time = MatchA + pulse width;

PDCM:= em_nb_dt;

Example 2: Pulse generation on windowed input transition

Example 3: Pulse generation on input sampling

Example 1: Short-circuit protection feedback
IPACA:= 100; OPACA:= 001; MatchA:= output activate time;
IPACB:= 100; OPACB:= 100; MatchB:= MatchA + max. high-current driver turn-on delay;

PDCM:= bm_dt;

Match A

Match B

Input signal

Output signal

output short

enables

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

882 Freescale Semiconductor

24.5.5.5 Channel Link

A channel can issue service requests to other channels through microcode, by assigning to the write-only
microengine register LINK (refer to Section 24.5.8.1.6, LINK Register) a value which specifies the target
channel of the Link Service Request, as shown in Figure 24-48.

Writing to the LINK register issues a link request to the target channel, setting its LSR flag. Each channel
has its own LSR flag, which can be tested as a microcode branch condition (see Section ,
Conditional/Unconditional branch) and reset through the microcode field LSR (see Section 24.5.9.3.11,
Clear link service request). The link branch condition samples, at the TST start, the value used to calculate
the Entry Point.

Writing LINK with another channel target value in the same thread issues a Link Service Request to the
new target, without negating the service request to the former one. This allows a channel to issue service
requests to any number of channels, including itself. Neither LINK nor LSR microengine accesses are
qualified by the CHAN register, i.e., they always access the serviced channel LINK and LSR, regardless
of the value written in CHAN.

If microcode executes an instruction with field LSR = 0 (clear Link Service Request), the link branch
condition is cleared. However, the link service request itself is cleared only if no link was received by the
serviced channel during the same thread1. If microengine clears LSR of its channel and, simultaneously,
Link Service Request is issued to the current serviced channel, the branch condition is cleared but the link
service request remains pending.

Figure 24-48. Microengine LINK Register

A channel can issue Link Service Requests to channels in any of two engines, determined by the LINK
register field Engine Selection (2 bits), as shown in Table 24-57. In a single-engine eTPU, Link is ignored
when sent to the other engine, or engine 2.

The engine which receives the link cannot distinguish where the link comes from, except by some
user-programmed protocol using SPRAM parameters. All links are negated on reset.

1. That can only happen if the link service request came from the other engine or from the serviced channel itself.

7 6 5 4 3 2 1 0
Engine Selection reserved1

1 Reserved bit must be written 0.

Channel Number

Table 24-57. LINK engine selection

Engine selection Description

00 this Engine

01 Engine 1

101

1 Ignored in single-engine eTPU

Engine 2

111 the other Engine

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 883

24.5.5.6 Enhanced Digital Filter – EDF

The EDF eliminates passing of signal transitions which are caused by noise. Its purpose is to eliminate
false transition service requests caused by noise pulses which are shorter than a programmed width.

The EDF has three modes of operations, selected by the CDFC field in the ETPU_ECR (see
Section 24.4.2.5, ETPU_ECR – eTPU Engine Configuration Register). These modes offer selections of
trade-off between noise immunity and signal latency. CDFC also allows the filter to be bypassed.
Table 24-58 gives an example of minimum detected signal pulse and maximum filtered noise pulse in the
three EDF operation modes. In Angle Mode, if AM = 01, the EDF in channel 0 is replaced with the digital
filter and synchronizer of the TCRCLK signal. In this mode, channel 0 works in combination with the
Angle Counter logic, and their operation is fully synchronized.

Following subsections provide the functional description of the eTPU channel digital filter.

24.5.5.6.1 Two-Sample Mode

In this mode the EDF works like the TPU2/3 digital filter. It uses the filter clock which is the system clock
divided by (2, 4, 8,.., 256) as a sampling clock. The filter clock is selected by the FPSCK field in the Engine
Configuration Register (ETPU_ECR) (see Section 24.4.2.5, ETPU_ECR – eTPU Engine Configuration
Register). The EDF compares two consecutive samples. If both samples have the same value, the input
signal state is updated. Note that when the FPSCK field selects the system clock divided by two, the EDF
works like the TPU1 four-clock digital filter.

24.5.5.6.2 Three-Sample Mode

In this mode, like in the TPU2/3 mode, the EDF uses the filter clock as a sampling clock. The EDF
compares three consecutive samples. If all three samples have the same value, the input signal state is
updated.

The Three-Sample mode gives more signal latency than the Two-Sample mode, but also better noise
immunity and better ratio between minimum detected signal pulse to maximum filtered noise pulse. When
a certain filter clock frequency is selected for Two-sample mode, double filter clock frequency can be
selected to get better latency in Three-sample mode.

24.5.5.6.3 Continuous Mode

In this mode the EDF compares all the values sampled at the rate of system clock divided by two, between
two consecutive filter clock pulses. If the signal is continuously stable for the entire digital filter clock
period (i.e all the samples have the same signal value), the input signal state is updated.

This method gives the same latency and the same ratio between minimum detected signal pulse to
maximum filtered noise pulse, as the Two-Sample mode, as long as there is no noise. Each sampled noise
delays the signal transition detection by at least a whole digital filter clock period.

The Continuous mode gives the best noise immunity by comparing multiple samples of the noise. On the
other hand, when a short noise pulse appears in the middle of the filter clock period at the same time of a
real signal transition, the Continuous mode may reject a real signal transition and delay the response to the

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

884 Freescale Semiconductor

first filter clock period in which the signal is continuously stable. This may add to the latency and also to
the minimum detected signal pulse in a noisy environment.

24.5.5.6.4 Bypass Mode

In bypass mode the signal that feeds the edge detection comes directly from the output of the synchronizer,
not filtered. Bypass mode automatically makes the channel logic work in T2/T4 timing mode (see
Section 24.5.5.7, Channel Timing Modes).

24.5.5.6.5 Filter Clock Prescaler

The TCRCLK signal and each channel configured as an input have an associated synchronizer followed
by a digital filter connected to the signal that samples signal transitions. After reset, the digital filter filters
out high and low pulse widths smaller than the period of two system clocks with ETPU_ECR bit FCSS = 0,
or 1 system clock with FCSS = 1, preventing these transitions from being input to the transition detect
logic. For FPSCK = 0 and FCSS = 0, the synchronizer and digital filter are guaranteed to pass pulses that
are as wide as or wider than four system clocks, meaning a minimum period of eight system clocks. These
figures are halved by setting FCSS = 1. By changing the FPSCK field in register ETPU_ECR the user can
select a lower clock rate for the filter signal to define wider valid pulses and filter out wider noise pulses.
The filter prescaler clock control is a division of the system clock. To guarantee pulse detection by the
digital filter, the pulse must cover at least the stated number of samples at the filter clock rate. For example,
a two sample digital filter must sample two points in the pulse to detect it. Table 24-58 shows the minimum
guaranteed detected pulse width and the maximum filtered noise pulse width. The table refers only to the
digital filter operation. The external pulses may have to be wider (to ensure detection) or narrower (to
ensure filtering) depending on the rise/fall delay differences in the MCU receivers and internal logic.
Delays introduced by synchronizer, filter and edge detection logic are explained in Section 24.7.1.2,
Input/Output signal delays.

Table 24-58. Pulse Widths and Delays

Filter Control
(FPSCK) Sample on

system clock
divided by:

Min. Width Guaranteed Detected / Max. Width filtered
(Min. Filter Delay / Max. Filter Delay)1

1 This table shows pulse widths and delays in number of periods of the system clock.

FCSS = 0 FCSS = 1 Two-Sample or Continuous
Mode

Three-Sample or Integrator2
Mode

not avail. 000 1 2 / 1 (2 / 3) 3 / 2 (3 / 4)

000 001 2 4 / 2 (3 / 3) 6 / 4 (5 / 5)

001 010 4 8 / 4 (5 / 7) 12 / 8 (9 / 11)

010 011 8 16 / 8 (9 / 15) 24 / 16 (17 / 23)

011 100 16 32 / 16 (17 / 31) 48 / 32 (33 / 47)

100 101 32 64 / 32 (33 / 63) 96 / 64 (65 / 95)

101 110 64 128 / 64 (65 / 127) 192 / 128 (129 / 191)

110 111 128 256 / 128 (129 / 255) 384 / 256 (257 / 383)

111 not avail. 256 512 / 256 (257 / 511) 768 / 512 (513 / 767)

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 885

NOTE

If the ETPU_TBCR field TCRCF selects the filter clock of the channels (see
Section 24.4.3.1, ETPU_TBCR – eTPU Time Base Configuration
Register), the TCRCLK filter will be clocked as if FCSS = 0 always
dividing system clock /2 using FPSCK, regardless if FCSS is 0 or 1.

24.5.5.7 Channel Timing Modes

Channels can work on two different timing schemes, defining the period of channel clocking, tied to T2
and T4 microengine phases, as explained in subsections below. Microengine T2 and T4 phases are shown
in Section 24.7.1, Microcycle and I/O timing.

24.5.5.7.1 T2 Channel Timing

In T2 timing mode the channel event state can only be updated every two system clocks (see Figure 24-75).
Pin state, TDLs, MRLs and Capture registers are updated on the microengine’s T2 clock phase. MRLE
clears also happen on T2, but MRLE setting occurs on T4, together with the Match register write by
microcode (see Section 24.5.9.3.5, Write Channel Match and UDCM Registers).

Channels work in T2 timing mode when all the following conditions are true:

• ETPU_TBCR bit TCR1CS is 0 (see Section 24.4.3.1, ETPU_TBCR – eTPU Time Base
Configuration Register).

• the Enhanced Digital Filter is not configured as bypass (see Section 24.5.5.6, Enhanced Digital
Filter – EDF).

• ETPU_ECR bit FCSS is 0 (see Section 24.5.5.6.5, Filter Clock Prescaler).

24.5.5.7.2 T2/T4 Channel Timing

In T2/T4 timing mode the channel event state can be updated on any system clock (see Figure 24-76). Pin
state, TDLs, MRLs, MRLEs, and Capture registers are updated either on microengine’s T2 or T4 clock
phases. MRLE clears can happen on T2 or T4, but MRLE setting occurs on T4 only, together with the
Match register write by microcode (see Section 24.5.9.3.5, Write Channel Match and UDCM Registers).

Channels work in T2/T4 timing mode when either one the following conditions are true:

• ETPU_TBCR bit TCR1CS is 1 (see Section 24.4.3.1, ETPU_TBCR – eTPU Time Base
Configuration Register).

• the Enhanced Digital Filter is configured as bypass (see Section 24.5.5.6, Enhanced Digital Filter
– EDF).

• ETPU_ECR bit FCSS is 1 (see Section 24.5.5.6.5, Filter Clock Prescaler).

24.5.6 Time Bases

Each eTPU engine has two Time Counter Registers, TCR1 and TCR2. They provide 24-bit time bases,
shared by all 32 channels. Any channel can use both time bases to:

2 Integrator mode is available for TCRCLK filtering only, see Section 24.5.6.5, TCRCLK digital filter.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

886 Freescale Semiconductor

• Match channel’s internal registers MatchA or MatchB;

• Capture time base value to channel’s internal registers, CaptureA and/or CaptureB, when a match
recognition or an Input transition detection occurs. For more information on channel events refer
to Section 24.5.5, Enhanced Channels.

The TCR1 and TCR2 counters are accessible by the microcode for read and write operations. Its current
value is used for getting the current time, and the captured values are used for channel relative time
calculations of future events. When they are written at the same time they are incremented from any clock
source, the written value prevails.

TCR1 with ETPU_TBCR[TCR1CS] = 0 and TCR2 values are updated in T2 and read in T4 (see
Section 24.7.1, Microcycle and I/O timing). TCR1 can also work at full-speed system clock, and so be
updated on both T2 and T4, when ETPU_TBCR[TCR1CS] = 1. Both TCR1 and TCR2 values can be
imported from or exported to the STAC bus. When their values are imported (STAC Clients), these
registers are written from the STAC bus and can only be read by microcode. For information on STAC
bus protocol and definition of STAC modules refer to IPI STAC and Section 24.5.6.3, STAC Interface.

The TCR2 counters between the two engines are out of phase by 1 system clock, even when Time Bases
are shared between them through STAC. It also applies to TCR1 counters if ETPU_TBCR[TCR1CS] = 0,
but they can be in phase otherwise.

24.5.6.1 Timer Count Register 1 – TCR1

TCR1 can be used in the following modes:

• Internally Clocked Mode

• Externally Clocked Mode

• STAC Bus Client Mode

The host program can read TCR1 time base through the ETPU_TB1R (see Section 24.4.3.2, ETPU_TB1R
– eTPU Time Base 1 (TCR1) Visibility Register).

The TCR1 bus runs through all the local engine channels. In channels which select TCR1 as MatchA
and/or MatchB source, when its value is greater or equal to the programmed match value, a Match A and/or
Match B event occurs on that channel. A recognized match event sets its related Match Recognition Latch
1 or 2, and according to the Predefined Channel Modes (PDCM) it may generate a channel service request.
For details on eTPU channels refer to Section 24.5.5, Enhanced Channels.

24.5.6.1.1 Externally clocked mode

TCR1 can be driven externally by the TCRCLK input, after the digital filter. The TCR1 clock source is
configured by the TCR1CTL bit, as shown in Figure 24-49. For more information on clock source
selection, please refer to Section 24.4.3.1, ETPU_TBCR – eTPU Time Base Configuration Register.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 887

Figure 24-49. TCR1 Clock Selection

24.5.6.1.2 Internally clocked mode

TCR1 can be driven by the system clock or system clock divided by 2, before the prescaler. TCR1 can also
be clocked by a Peripheral Timebase Clock generated within the MCU, also selected by TCR1CTL. The
maximum frequency of the Peripheral Timebase Clock is system clock divided by two. TCR1 advances
only on the rising edges of the Peripheral Timebase Clock. The use of this clock is MCU-dependent.
TCR1CTL can also be used to freeze TCR1 clock independently of TCR2 (unlike GTBE).

24.5.6.1.3 TCR1 clock prescaling

Any clock source selected by TCR1CTL is prescaled by a factor of 1 to 256, selected by ETPU_TBCR
field TCR1P. For more information on prescaler configuration refer to Section 24.4.3.1, ETPU_TBCR –
eTPU Time Base Configuration Register. The TCR1 Prescaler resets when etpu_gtbe_in is negated. After
reset, it starts counting up to TCR1P when etpu_gtbe_in is asserted. When TCR1 increments
(etpu_gtbe_in = 1), the prescaler starts a new count and the new TCR1P becomes effective. When TCR1
is written by microcode, the prescaler is reloaded with TCR1P and it becomes effective, if etpu_gtbe_in is
asserted.

24.5.6.1.4 STAC bus client mode

In this mode the TCR1 register is continuously updated from the STAC bus, and the clock selection and
prescaling logic becomes ineffective. It is not writable by the microcode, and when read, it reflects the
STAC bus imported value. The use of EAC is forbidden in client mode. This mode is configured through
the register ETPU_REDCR (see Section 24.4.3.4, ETPU_REDCR – eTPU STAC Configuration Register).

24.5.6.1.5 STAC bus server mode

TCR1 bus can be exported to the STAC bus as a server, providing time information to other peripherals.
This mode is configured through the register ETPU_REDCR (see Section 24.4.3.4, ETPU_REDCR –
eTPU STAC Configuration Register).

24.5.6.2 Timer Count Register 2 – TCR2

The TCR2 is a 24-bit counter which can be used in the following modes:

• Pin Transition Mode: Count the rise, fall or both transitions of TCRCLK signal.

TCR1CTL

TCR1

System
10

00

TCRCLK Prescaler
Input Originated

TCR1
Prescaler

In TCRCLK pin,
after the filter

1,2,3,..,256

TCR1P

8

01
Peripheral Timebase Clock

Red Line (STAC) bus

11no clock
0

1

div 2

TCR1CS

Clock

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

888 Freescale Semiconductor

• Angle Clock Mode: Count internal tooth angle in combination with the eTPU Angle Counter
(EAC) hardware which implements an Angle PLL, and generates angle information to the
channels. This mode is targeted for angle based applications.

• STAC (STAC) Bus Client Mode: TCR2 is driven by an external source (see Section 24.5.6.2.4,
STAC bus client mode).

• Gated Mode: Count with rate derived from the system clock divided by eight. The TCRCLK signal
is used to gate this count, enabling pulse accumulator operations.

• Internally Clocked Modes: TCR2 is driven by internal clock, with count rate either system clock
divided by eight or driven from the rising edge of a Peripheral Timebase Clock defined at MCU
integration. The use and rate of the Peripheral Timebase Clock is MCU-dependent, but must not
exceed system clock divided by two.

All clock sources pass through a prescaler. In addition, the TCR2 count can be originated from the EAC
which is a hardware angle clock and angle counter. Figure 24-50 shows the diagram for TCR2 clock
control. When TCR2 is not driven by the EAC or STAC, the ETPU_TBCR field TCR2CTL selects the
clock source, also allowing TCR2 to be frozen independently of TCR1 (see Section 24.4.3.1,
ETPU_TBCR – eTPU Time Base Configuration Register). When in Angle Mode, TCR2CTL selects the
TCRCLK edge sensitivity.

Figure 24-50. TCR2 Clock Control

The TCRCLK signal input is passed through a synchronizer and a programmable digital filter. In Angle
Mode with AM = 01, synchronizer and filter are also used in Channel 0, replacing its input synchronizer
and filter, to get the same timing in the EAC and Channel 0. The TCRCLK synchronizer is an improved
filter that provides best latency while maintaining proper noise filtering (see Section 24.4.3.1,
ETPU_TBCR – eTPU Time Base Configuration Register, field TCRCF[1:0]—TCRCLK Signal Filter
Control).

SYNC.

SYSTEM CLK / 8

ETPU_TBCR

TCR2
0 23TCR2

PRESC.

TCRCLK
PROGRAMMABLE

DIGITAL
FILTER

ETPU_TBCR

000

001

010
011

1, 2, . . . , 64

FILTER
CLOCK

SYSTEM
CLOCK/2

0

1

6

2 samp

Integr.

3

ETPU_ECR[FPSCK]

ETPU_TBCR[TCRCF1]

GEN.

FILTER CLOCK

eTPU ANGLE

Angle Mode
ETPU_TBCR[AM]

1

0

 COUNTER

 Pin

[TCR2CTL]

3

[TCR2P]

 (EAC)

to Channel 0 input on Angle Mode (AM = 01)

101PERIPHERAL TIMEBASE
CLOCK

Filtered signal for TCR1 clock

ETPU_TBCR[TCRCF0] 10

to all channel filter
clocks

111no clock

100

STAC bus

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 889

The TCR2 bus runs through all the local engine channels. It transitions on clock T2 (see Section 24.7.1,
Microcycle and I/O timing). In channels which select TCR2 as MatchA and/or MatchB source, TCR2
value is compared against MatchA and/or MatchB registers. A recognized match event sets its related
Match Recognition Latch 1 or 2, and according to the Predefined Channel Modes (PDCM) it may generate
a channel service request. For details on eTPU channels refer to Section 24.5.5, Enhanced Channels.

The TCR2 counter is accessible by the microcode for read and write operations. Its current value is used
for getting the current counter value (representing signal transitions, time or angle), and the captured
values are used for channel relative count calculations of future events. The TCR2 value is readable to the
host through the ETPU_TB2R (refer to Section 24.4.3.3, ETPU_TB2R – eTPU Time Base 2 (TCR2)
Visibility Register). When the TCR2 bus value is imported from the STAC bus (STAC client mode), TCR2
is not writable by the microcode, and read access from the microcode or from the host reflect the imported
TCR2 value.

24.5.6.2.1 TCR2 clock prescaling

Except in Angle Mode, any clock source selected by TCR2CTL is prescaled by a factor of 1 to 64, selected
by ETPU_TBCR field TCR2P. For more information on prescaler configuration refer to Section 24.4.3.1,
ETPU_TBCR – eTPU Time Base Configuration Register. The TCR2 Prescaler resets when etpu_gtbe_in
is negated. After reset, it starts counting up to TCR2P when etpu_gtbe_in is asserted. When TCR2
increments (etpu_gtbe_in = 1), the prescaler starts a new count and the new TCR2P becomes effective.
When TCR2 is written by microcode, the prescaler is reloaded with TCR2P and it becomes effective, if
etpu_gtbe_in is asserted.

The counter that divides the system clock by 8 before the prescaler also resets when etpu_gtbe_in is
negated, or when TCR2 is written by microcode.

24.5.6.2.2 TCR2 gated mode

TCR2 Gated mode is selected in field TCR2CTL of register ETPU_TBCR. In this mode the TCRCLK
signal enables or disables transfer of the system clock divided by 8 to the TCR2 prescaler. By
programming the prescaler, TCR2 can run at rates from system clock divided by eight down to system
clock divided by 512, in steps of eight system clock divisions. For more information refer to
Section 24.4.3.1, ETPU_TBCR – eTPU Time Base Configuration Register.

24.5.6.2.3 TCR2 signal transition modes

These modes are selected when the TCR2CTL field in ETPU_TBCR is set to rise, fall or “rise-and-fall”.
In these modes the TCRCLK signal is the TCR2 clock source, and its maximum transition rate depends
on the TCRCLK digital filter mode of operation. The TCRCLK digital filter can be programmed to use
the system clock divided by two, or use the same filter clock of the channels, controlled by the TCRCF
field in ETPU_TBCR. It contains an up-down counter which operates as a digital integrator, optimizing
signal latency in the selected mode and clock rate.

When system clock divided by two is selected, the synchronizer and the digital filter are guaranteed to pass
pulses that are wider than four system clocks (two filter clocks). Otherwise the TCRCLK is filtered with
the same filter clock as the channel input signals. For details on TCRCLK and channels digital filter

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

890 Freescale Semiconductor

control refer to Section 24.4.3.1, ETPU_TBCR – eTPU Time Base Configuration Register, and
Section 24.5.5.6, Enhanced Digital Filter – EDF.

24.5.6.2.4 STAC bus client mode

In this mode the TCR2 register is continuously updated from the STAC bus, and the clock selection and
prescaling logic becomes ineffective. It is not write accessible for the microcode, and when read, it reflects
the STAC bus imported value. The use of EAC is forbidden in client mode. This mode is configured
through the register ETPU_REDCR (see Section 24.4.3.4, ETPU_REDCR – eTPU STAC Configuration
Register).

24.5.6.2.5 STAC bus server mode

When TCR2 bus is exported to the STAC bus as a server, it can provide either time or angle bus to other
peripherals, according to its operation mode. This mode is configured through the register ETPU_REDCR
(see Section 24.4.3.4, ETPU_REDCR – eTPU STAC Configuration Register). To provide sequential
update of the STAC clients, the Angle tick rate must not be faster than the STAC programmed update rate.
This requirement puts a limitation on the angle clock count rate on high rate mode. In this case the Angle
and Angle Fraction accumulator (see Section 24.5.7.4, Angle tick generator, and Figure 24-56) are
advanced at rate of system clock divided by eight. Therefore, the STAC update rate for the Angle Bus must
not be slower than eight system clocks.

24.5.6.2.6 TCR2 bus in angle clock mode

In this mode the TCR2 counter operates as part of the eTPU Angle Counter (EAC). The TCR2 bus value
reflects this angle representation in which it counts Angle Ticks. Angle Mode is selected when the AM bit
is set in ETPU_TBCR.

Note that when TCR2 works in Angle Mode, it does not count directly from the TCR2 clock input which
indicates tooth signal transition. Its Angle counter is controlled by the Count Control and High Rate logic
(see Section 24.5.7.5, Count control and high rate logic), which provides the interpolated pin position, and
handle cases of missing tooth, acceleration, de-acceleration and mechanical corrections.

The EAC uses the TCRCLK signal to get the tooth transition indications. The TCR2CTL field in
ETPU_TBCR has to be set for the appropriate tooth edge detection rise, fall, “rise-and-fall” or none. TCR2
count clock comes from the EAC control and not directly from the physical tooth. This way the EAC
control processes the signal transitions and handles missing teeth and flywheel mechanical corrections.
Note that when TCR2CTL selects “none” for tooth edge selection, the TCR2 is not necessarily frozen, but
can still be incremented by the EAC logic.

In Angle Mode, eTPU channel 0, 1 or 2 operation is combined with the EAC operation. When channel 0
is selected for EAC operation, the TCRCLK digital filter is used both by the EAC and by channel 0 to get
full synchronization between the two logics.

The eTPU Angle Counter (EAC) logic runs continuously and updates the TCR2 Angle counter,
eliminating the microcode latency in updating the TCR2 value.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 891

24.5.6.3 STAC Interface

Both time bases TCR1 and TCR2 can be shared between the engines and with other blocks in the same
MCU. Each one of both eTPU engines can drive their time bases to the STAC (Shared Time and Count)
bus, acting as a server, while any other block can capture the value into its resources and behave like a
client. For further reference about the STAC bus operation refer to Section 24.4.3.4, ETPU_REDCR –
eTPU STAC Configuration Register.

The eTPU can export to the STAC bus or import from the STAC bus the following internal resources:

• TCR1: Can be exported to or imported from the STAC bus. TCR1 can only be imported from
STAC bus when the engine is not in Angle Mode. When TCR1 is imported from the STAC bus, it
becomes read-only for the microcode and reflects the imported values. For details refer to
Section 24.5.6.1, Timer Count Register 1 – TCR1.

• TCR2: Can be exported to or imported from the STAC bus. TCR2 can only be imported from the
STAC bus when engine is not in Angle Mode. When TCR2 is imported from the STAC bus, it
becomes read-only for the microcode, and reflects the imported values. When exported to the
STAC bus, TCR2 can work in either Angle Mode or as a free running counter associated with the
TCRCLK signal. For details refer to Section 24.5.7, EAC – eTPU angle counter.

Proper configuration of the following bits is necessary to determine what can drive the STAC bus:
ETPU_TBCR[AM] and ETPU_REDCR[REN2, RSC2], according to Table 24-59.

Note that Angle Mode is not available for STAC bus clients: configuring both at the same time brings
unpredictable results. When TCR2 is a stand-alone counter or a STAC Bus server, the same value that is
driven to the internal TCR2 bus is also exported to the STAC bus (either Time Count or Angle).

STAC bus configuration is provided by the ETPU_REDCR bits REN1/2 and RSC1/2. REN1/2 enable the
STAC interface to interact with the resource (either TCR1 or TCR2 bus). RSC1/2 configure the resource
(either TCR1 or TCR2 bus) as Server or Client.

Each time base / angle count resource from each engine receives a unique 4-bit hard-wired address that
identifies it as a potential server. This address is used by the STAC Controller to coordinate which resource
will drive the bus at a given STAC time-slot. For any time-slot there is a server driving the bus upon
selection of the STAC Controller, and there may be a client linked to that server by the ETPU_REDCR
bits SRV1/2 on each engine. When the server address on the STAC bus matches the value in SRV1/2, the

Table 24-59. STAC Bus and Host Read Sources

AM
(ETPU_TBCR)

REN2,RSC2
(ETPU_REDCR)

TCR2 Bus Source
(Host read of
ETPU_TB2R)

STAC
Bus Driver

00 0x (disabled) TCR2/Time x

01, 10 or 11 0x (disabled) TCR2/Angle x

00 11 (Server) TCR2/Time TCR2/Time

01, 10 or 11 11 (Server) TCR2/Angle TCR2/Angle

01, 10 or 11 10 (Client) Forbidden1

1 STAC client configuration in Angle Mode is also forbidden for TCR1.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

892 Freescale Semiconductor

client will load the STAC information into the appropriate resource. For information on eTPU STAC Bus
configuration refer to Section 24.4.3.4, ETPU_REDCR – eTPU STAC Configuration Register.

The eTPU does not include a STAC Controller module, which is instantiated once in the system
integration.

NOTE

Setting a timebase as client of itself is forbidden, and results are
unpredictable.

24.5.6.4 GTBE – Global time base enable

The GTBE bit in ETPU_MCR enables time bases in both engines, allowing them to be started
synchronously. GTBE is divided in two block interface signals: etpu_gtbe_out and etpu_gtbe_in. GTBE
bit sets etpu_gtbe_out, and etpu_gtbe_in enables time bases to start. The etpu_gtbe_out signal can be used
by MCU integration for synchronization between eTPU time bases and time bases from other modules. If
the GTBE bit in ETPU_MCR must enable only the eTPU time bases, etpu_gtbe_out is simply connected
to etpu_gtbe_in. These two cases are shown in Figure 24-51. Synchronization logic can be as simple as an
OR or an AND logic gate.

Once etpu_gtbe_in transitions to 1, the Engine 1 Time Bases start one system clock earlier than Time Bases
in Engine 2, except when TCRCLK is selected as clock source or TCR1 when
ETPU_TBCR[TCR1CS] = 1. This happens independently of prescaler values as long as they are the same
for both engines, because the prescalers also freeze when etpu_gtbe_in = 0. Microcode can always write
to TCR1/2 registers, with either value of etpu_gtbe_in.

NOTE

The timebase prescalers are reset when the GTBE input is negated.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 893

Figure 24-51. Time base synchronization

24.5.6.5 TCRCLK digital filter

The TCRCLK signal has an improved integrating digital filter with a 2-bit up-down counter. The counter
counts up to 3 when a high signal level is detected, or down to 0 when a low level is detected. The signal
state is updated to one when the counter stops at 3, or zero when the counter stops at 0. The field TCRCF
in register ETPU_TBCR (see Section 24.4.3.1, ETPU_TBCR – eTPU Time Base Configuration Register)
determines whether the TCRCLK signal input (after a synchronizer) is filtered with the same filter clock
as the channel input signals (see Section 24.5.5.6, Enhanced Digital Filter – EDF) or uses the system clock
divided by 2, and also whether the TCRCLK digital filter works in integrator mode or the same two sample
mode as the channel filters (see Table 24-15).

The TCRCLK filter delay and prescaling determines the minimum detectable TCRCLK pulse widths and,
therefore, its maximum frequency, as shown in Section 24.5.5.6.5, Filter Clock Prescaler, and Table 24-58.
The TCRCLK signal delay from the module input to TCR1/TCR2 incrementing or detection in the EAC
logic is explained in Section 24.7.1.2, Input/Output signal delays.

24.5.7 EAC – eTPU angle counter

24.5.7.1 General

The EAC logic contains a mechanism which follows the flywheel angle, based on the tooth rate. This
hardware works in combination with the TCRCLK signal, the TCR2 counter and Channel 0, 1 or 2
(depending on the ETPU_TBCR field AM) to generate angle information on the TCR2 bus which is passed
to all the local engine channels. The EAC helps to implement a digital angle PLL (see Table 24-55), which

eTPU SYSTEM

etpu_gtbe_outetpu_gtbe_in

ETPU_MCR[GTBE]

eTPU SYSTEM

etpu_gtbe_outetpu_gtbe_in

MODULE X

gtbe_out gtbe_in

SYNCHRONIZATION

LOGIC

SYNCHRONIZATION

BETWEEN eTPU TIME

BASES ONLY

SYNCHRONIZATION BETWEEN eTPU TIME

BASES AND OTHER MODULE TIME BASES

ETPU_MCR[GTBE]

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

894 Freescale Semiconductor

combines hardware with microcode processing at channel 0, 1 or 2. The angle measurement is based on
history knowledge of the tooth period, for predicting the period of the next tooth. The tooth period is
partitioned into a programmable number of Angle Ticks. The eTPU application will use the divider in the
MAC/Divide unit to calculate an integer and a fraction part of the angle tick such that the full tooth period
gets the correct programmed number of angle ticks with no accumulated error.

Each single tooth can be divided in angle ticks, up to 1024. In a 60-tooth flywheel, 128 Angle Ticks per
tooth provide resolution of ~0.05 degrees per tick, which meets the accuracy requirement of 0.1 degrees
in current automotive applications.

The measurement of one tooth in angle ticks is independent on engine RPM; it is the tooth period itself
(and the corresponding tick period) that is re-calculated for each new tooth, based on the difference
between the estimated tooth and the actual detection.

For these applications, one of the eTPU channels 0, 1 or 2 is dedicated to service the physical tooth
detection. Channel 0 shares the same filtered input as the TCRCLK signal to get the same timing as the
EAC. The TCRCLK edge detection is selected by ETPU_TBCR field TCR2CTL for the EAC, and by
IPACA/B on channel 0, which must be set to detect the same edge(s). When channels 1 or 2 are selected
to work with the EAC, IPACA/B is used to select the tooth signal edge detection for both the channel and
the EAC, and the tooth signal that feeds the EAC is the same filtered input which feeds the channel.

Channel 0, 1 or 2 generates the signal transition service request, and can also be used for generation of a
window filter on this transition, to qualify TCR2 clocks. For this purpose, the selected channel should be
configured with double match window filtering mode (refer to Section 24.5.5.4, Channel Modes).
Depending on the channel mode set for the channel, Match A recognition opens the window, and Match
B recognition may close it or leave it open. See Section 24.5.7.10, Angle logic and channel modes, for
details. Match B also generates a time-out service request. Its input signal transition comes from the tooth.
The window can be defined by microcode to open at a predefined point inside the tooth period, and stay
open for a desired percentage to the tooth period. The window can be measured in angle or time This
method improves the noise immunity by allowing transition detection only on an expected period, a feature
which was software responsibility in previous TPU versions.

The EAC supports deceleration, acceleration, last tooth and missing tooth scenarios. The large range of
angle ticks per tooth can be used to cover longer tick counts caused by one or more missing teeth, or to
provide extra resolution for future application requirements. In case of a missing tooth, the EAC can be
configured to insert a dummy tooth or to simply measure a longer tooth.

Figure 24-56 shows the block diagram of the Angle Counter system. TCR1 is used as a time base which
measures the tooth period and is used for partitioning the period to angle ticks.

24.5.7.2 Angle mode registers

In Angle Mode, the registers described below control eTPU angle operations. They are accessible only by
microengine as source and destination registers in microinstructions. When eTPU is not in angle mode
(AM bit is negated in ETPU_TBCR), all angle mode registers can be used as general purpose registers.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 895

24.5.7.2.1 TPR – Tooth program register

TPR provides configuration for the Angle Counter circuit. In this register, the microcode can properly
adjust the tooth count (controlling last tooth, missing teeth, dummy tooth insertion, halt until tooth
detection) and the number of angle ticks per tooth (field TICKS). Note that this register is sampled into a
temporary register in the EAC logic when the High Rate Mode is detected (see Section 24.5.7.5.3, High
rate mode (Acceleration), and Section 24.5.7.12.1, TPR buffering), which means that changes to this
register may take effect only for the next tooth.

Refer to Section 24.5.7.5, Count control and high rate logic, and to Section 24.5.7.6, Special cases of
missing teeth and last tooth, until Section 24.5.7.9, Handling false tooth detection, for a detailed
explanation about the use of this register. Figure 24-52 provides a detailed description of the TPR.

Several conflict issues on TPR writes are explained in Section 24.5.7.12, Special TPR write cases.

Figure 24-52. TPR Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R LAST MISS

CNT
IPH HOL

D
TPR
10

TICK
S

W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Field Description

[9:0]
TICKS

Angle Ticks Number in the Current Tooth
This field defines the number of angle ticks in the current physical tooth. It partitions the tooth period to the
required number of angle ticks. The actual number of angle ticks in a tooth is (TICKS+1).

In High Rate mode (see Section 24.5.7.5.3, High rate mode (Acceleration)), TPR writes are immediately
effective only for bits IPH and HOLD. All other fields changes are “buffered” and become effective when
EAC leaves High Rate mode. See also Section 24.5.7.12, Special TPR write cases.

Bits LAST, IPH and HOLD must not be asserted all at once.

10
TPR

TPR register
Reserved bit. In Angle Mode, must always be written 0 by the user, but holds the value written, so that TPR
can be used as a general purpose register bit when angle mode is off.

11
HOLD

Force EAC Hold
This bit forces the EAC to halt its operation in a special EAC freeze mode until a new physical tooth (a real
one or emulated with IPH = 1) is detected. Assertion of this bit immediately freezes the EAC in the middle
of the tooth period. When a new physical tooth is detected, the bit is automatically negated by the EAC.
The HOLD bit can be used for synchronizing the EAC tooth count, in case that a false physical tooth is
detected due to noise.
Normal Operation.
Force EAC to halt until detection of a physical tooth.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

896 Freescale Semiconductor

24.5.7.2.2 TCR2 – Timer Counter 2

In Angle Mode TCR2 counts angle ticks instead of time.

12
IPH

Insert Physical Tooth
This bit generates a dummy physical tooth which has the same effect as a real physical tooth, and resets
itself subsequently. If EAC is in Halt mode, it switches back to Normal mode1. If EAC is in Normal Mode,
it switches to High Rate Mode. If Angle Logic is frozen by HOLD = 1 (see below), it returns to the state it
was at the freezing moment.
No Operation.
Insert dummy physical tooth.

IPH reads as 1 in the next microinstruction after it is asserted, negating subsequently. However, it can be
set twice in two consecutive microinstructions to generate two teeth and make the EAC go from Halt to
Normal to High Rate Mode.

13-14
MISSCNT

Missing Tooth Counter
Decremented on each estimated tooth, stops at zero. Used for generation of “Dummy Tooth” whenever it
holds a non-zero value.
00No missing tooth
01One missing tooth
10Two missing teeth
11Three missing teeth

If the tooth is detected or inserted before the missing tooth tick count completes (going High Rate mode,
see Section 24.5.7.5.3, High rate mode (Acceleration)), MISSCNT resets immediately, but missing teeth
count continues in High Rate mode (see Section 24.5.7.12.1, TPR buffering).

15
LAST

Last Tooth Indication
Asserted by microcode and negated when a tooth is detected or inserted via IPH.
Not Last Tooth.
Last Tooth - reset TCR2 Counter at the end of the tooth tick count (after physical tooth or IPH = 1) when
MISSCNT = 0.
If the tooth is detected or inserted before the tooth tick count completes (going High Rate mode, see
Section 24.5.7.5.3, High rate mode (Acceleration)), LAST resets immediately, but TCR2 resets only when
the tooth count completes and MISSCNT = 0

1 Missing a physical tooth naturally causes EAC to get into Halt mode.

Field Description

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 897

Figure 24-53. TCR2 in Angle Mode

This 24-bit free-running counter is used to generate an accumulated Angle Fraction value. It is updated by
the Angle Tick Generator (refer to Section 24.5.7.4, Angle tick generator, for more details). Refer to
Section 24.5.7.5, Count control and high rate logic, for a detailed explanation about the use of this register
in Angle Mode.

TCR2 provides continuous count of the angle in units of angle ticks. The Angle Tick Counter in TCR2 can
be reset due to “Last Tooth” microcode indication. TCR2 Prescaling is disregarded in Angle Mode:
physical tooth detection is done by EAC regardless of the value set in TCR2P.

24.5.7.2.3 TRR – Tick Rate Register

The exact period of the Angle Tick is programmed in the Tick Rate Register by microcode. The period of
the Angle Tick is given in units of TCR1 clocks as system clocks divided by 2*(TCR1P + 1), even if
TCR1CS = 1 (see Section 24.4.3.1, ETPU_TBCR – eTPU Time Base Configuration Register). Refer to
Section 24.5.7.4.1, Calculating the angle tick period integer and fraction, for a complete description about
the mechanism to calculate the value to be written into this register.

Figure 24-54. TRR Register

INTEGER[14:0]—The integer part of TCR1 clocks in one Angle Tick.

This number, decremented by one, works as a down-counter preload value. A value of INTEGER = 0
represents an integer of 32768. A new value written is reloaded into the counter (becoming effective)
when a new tick starts or a tooth is detected or inserted via IPH.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R 0 0 0 0 0 0 0 0 Angle Tick Counter[23:16]
W

Reset 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R Angle Tick Counter[15:0]
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 26 27 26 25 24 23 22 21 20 19 18 17 16
R 0 0 0 0 0 0 0 0 INTEGER[14:7]
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R INTEGER[6:0] FRACTION
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

898 Freescale Semiconductor

FRACTION[8:0]—Nine-bit fractional part of TCR1 clocks in one angle tick.

The FRACTION value is accumulated in the EAC Fraction Accumulator, and whenever the result
overflows (i.e., the accumulated fraction added up to an integer), the Tick Prescaler is halted for one
TCR1 clock.

Figure 24-55. EAC “PLL”

 “FILTER”
TCR1 clock
 divided by
 TRR

 TICK
COUNTER

+

-

MICROCODE

Estimated Tooth Time

New TRR

Tick clock

TCR1 clock

PHYSICAL TOOTH

(CAPTURED TCR1)

TICKS

TOOTH TICKS

 TCR2

 TIME

EAC CHANNEL
 CAPTURE1:=TCR1

 EAC CHANNEL
 CAPTURE1:=TCR1

EAC CHANNEL
 CAPTURE1:=TCR1

EAC CHANNEL
 CAPTURE1:=TCR1

TCR1>estimated tooth time

ESTIMATED
 TOOTH
 TIME
(end of ticks)

ESTIMATED
 TOOTH
 TIME
(end of ticks)

0 0 0 0N NN

N TICKS HALT MODE HIGH RATE MODE

TCR1>estimated tooth time --> DECELERATION
TCR1<estimated tooth time --> ACCELERATION

PHYSICAL TOOTH

TCR1<estimated tooth t

Angle Tick
Generator

 TCR2
COUNTER

reset

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 899

Figure 24-56. eTPU angle counter system

TCR2 Filtering

Tooth Tick Counter

Microengine A-Bus

TCR2 Time Base

Tooth

Angle Tick Count

24
24

Tick Rate Register

Clock System &

Dummy Tooth Count

9

10 Count Contol &
High Rate Logic

Programmable Window
from Channel 0 in Angle Mode

Angle Mode

Tooth Program Register

24

Integer Fraction

+

Fraction Accumulator

9

9

Carry

9

Tick Prescaler

15

Angle Tick

TCR1
 Clock

HoldDin

24

10

24

Angle Tick Generator

Angle Counter Logic

H.Rate

Load

Angle Tick Inc/Hold

Angle Mode

Ticks

Angle Tick Reset

2

Last Tooth

AM (ETPU_TBCR)

AM (ETPU_TBCR)

To Channel 0 Edge Detection (override its digital filter)

Edge Detect

Count

Filtered Pin Level

TCRCLK
 PIN

(TSE1 or TSE2 from figure 42)

TCR2

TCR2 Reset

AM

01

10

11
(TS1 or TS2 from figure 42)

Channel 1 edge detection

Channel 2 edge detection

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

900 Freescale Semiconductor

24.5.7.3 Acceleration and deceleration

Acceleration and deceleration affect the new tooth period relative to the known period of the last tooth.
Changes in tooth period may be extreme at very low engine RPM (such as cold start and warm start). The
worst case of tooth period changes is caused during missing teeth, since there is more time for changes in
angular velocity to be unnoticed by the EAC hardware. For example, on cold start (~20 RPM) there may
be extreme acceleration: the ratio between a known tooth period before two missing teeth and the new
tooth period after the missing teeth can be very high (up to a factor of 75). Acceleration and deceleration
effects from tooth to tooth are less extreme as the engine climbs to high RPM.

In case of deceleration, the estimated tooth period ends before the actual tooth detection arrives. In this
case, the EAC hardware waits at the end of the current tooth period, when it is said to be in Halt mode,
until the real tooth indication is received, then continues with normal operation (Normal mode). See
Table 24-55.

In case of acceleration, the actual tooth period is shorter than the estimated tooth period. As a result, a new
physical tooth indication arrives before the end of the estimated tooth period. In this case the EAC closes
the gap on High Rate mode by counting on system clock divided by eight to the end of the tooth, advances
to the next tooth, and switches back to normal operation mode. See Table 24-55.

The reason that the EAC does not jump directly to the next tooth is the need to provide sequential angle
count throughout the whole tooth period, for channels or external STAC clients (if TCR2 is a STAC
server) which compare angle in “equal” mode. These peripherals must get all the valid angle values in a
sequential manner, to avoid missing angle matches.

TCR2 advancing from one tooth to another is a continuous count, and can be optionally reset at the end of
the tooth. An estimated tooth is generated after the Tooth Tick Counter reaches the TICKS programmed
value.

The EAC works continuously and switches automatically between Normal, Halt and High Rate modes. It
relies on the microcode to calculate the estimated tooth period on every tooth, and to update the correct
angle tick and tooth parameters in the EAC control registers. On high RPM, tooth period changes are
reduced from tooth to tooth, and the EAC may follow the angle with good accuracy for several teeth
without microcode intervention.

The EAC handles missing teeth by insertion of “dummy” teeth, or by enlarging the expected tooth period.
It is a good practice to locate the flywheel missing teeth in non-critical angles, since a missing tooth may
increase the angle measurement error (acceleration and deceleration is detected late).

24.5.7.4 Angle tick generator

The Angle Tick Generator is responsible for generating a programmed number of angle ticks in the tooth
period. It generates the ticks in an average rate which ensures completion of the correct number of angle
counts in the estimated period of the tooth, since the count of one tooth in angle ticks is independent on
engine RPM. The main output of the Angle Tick Generator is the tick clock that feeds TCR2 in Angle
Mode, as well as the internal Tooth Tick Counter (see Figure 24-56). The Tooth Tick Counter counts ticks
within a tooth, from 0 up to TICKS, is controlled by the Angle Tick Generator logic and cannot be accessed
by microcode. Refer to Figure 24-57 for a generic presentation of the angle tick count and the
measurement of a single tooth period.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 901

24.5.7.4.1 Calculating the angle tick period integer and fraction

On each tooth the microcode has to update the exact period of a single angle tick used for counting the
internal angle in the tooth. The period of an angle tick or a tooth is measured in units of TCR1 clocks (if
TCR1CS = 0) or TCR1 clocks divided by 2 (if TCR1CS = 1). The microcode can use the eTPU MAC
Divider unit (see Section 24.5.8.3, MAC and Divide Unit (MDU)) to divide the tooth period by the number
of angle ticks per tooth, which is stored in the TICKS field of TPR (refer to Section 24.5.7.2, Angle mode
registers). This division yields the integer part of the angle tick period and the remainder. Dividing again
the remainder shifted left nine positions, by the number of angle ticks per tooth translates the remainder to
a 9-bit fraction. The microcode concatenates the 15-bit integer and the 9-bit fraction to a 24-bit value and
writes it to TRR. The new rate is effective immediately after the next Angle Tick is generated by the Angle
Tick Generator1.

For high RPM, note that shifting the tooth period value nine positions to the left prior to the first divide
operation would calculate, in one operation, the integer and the fraction. For example: On 60-tooth
flywheel running at 1000 RPM, tooth period is 1 ms. If TCR1 counts @ 25 MHz, it counts 25,000 times
in a tooth, which can be represented by 15 bits. Therefore the tooth period can be shifted nine positions to
the left prior to divide operation, and be represented with 24 bits.

Using shift left nine positions and one divide operation would get the result in MACL register (in MDU)
which holds the integer and nine bits of the fraction:
Angle_Tick_Rate {Integer[14:0], Fraction[8:0]} = (TCR1ToothPeriod2<<9) / Ticks
TRR = Angle_Tick_Rate {Integer[14:0], Fraction[8:0]}

On low RPM the initial tooth period, measured in TCR1 counts, may be too big to be shifted nine positions
to the left. For lower RPM (for example 500 RPM) the tooth period cannot be represented by 15 bits, and
shifting it nine positions to the left would lose the MSB. In this case, two divide operations are required as
follows: first divide the Tooth Period by the number of TICKS—the integer is stored in MACL and
remainder in MACH. MACL is saved in another register. MACH is shifted 9 positions to the left and
divided again by TICKS. In parallel with the second divide, the register which saved the original MACL
is shifted left 9 positions. After the divide MACL contains the 9 bits fraction and the other register contains
the 15-bit integer, shifted left nine times. The logical OR of the two registers is written to the TRR:

Angle_Tick_Rate {Integer[14:0]} = (TCR1ToothPeriod) / Ticks
Remainder[9:0] = TCR1ToothPeriod) mod Ticks
Angle_Tick_Rate {Fraction[8:0]} = (Remainder[9:0] << 9) / Ticks

TRR = Angle_Tick_Rate {Integer[14:0], Fraction[8:0]} = (Integer[14:0] << 9) | Fraction[8:0]

1. In High-rate mode, the tick keeps being updated at the rate of system clock/8 until it goes back to Normal mode, when the new
TRR value is used.
2. The tooth period (TCR1ToothPeriod) is not, in general, the value of estimated tooth time. It is obtained by microcode by
subtracting TCR1 values between two teeth detections. Its comparison with the estimated tooth time indicates acceleration (if
minor) or deceleration (if greater) to the microcode.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

902 Freescale Semiconductor

Figure 24-57. Angle Ticks Generation

24.5.7.4.2 Generating the angle ticks

The integer part of TRR is preloaded to a prescaler, which counts down at input clock rate equals to the
TCR1 clock rate (TCR1CS = 0) or TCR1 clock rate divided by 2 (TCR1CS = 1) (see Figure 24-56). When
the down counter reaches zero, it generates an angle tick pulse to the Angle Counter Logic and a Load
pulse to the Fraction Accumulator. It is then preloaded with most updated TRR integer part. Due to the
Load pulse, the 9-bit fraction is accumulated in a 9-bit Fraction Accumulator. If a fraction overflow
condition occurs (the 9-bit adder asserts carry out), the accumulator saves the lower 9 bits of the addition
result, which is the remaining fractional part. The carry out bit indicates an accumulated integer “one”
which means that the angle tick is early by one input clock. It halts the prescaler operation for one input
clock to compensate the accumulated error generated by the integer prescaler. As a result, the average
angle tick period takes into account both the integer and the fraction parts. The accuracy depends on the
bit count of the fraction. Using 9-bit fraction part while the width of the field TICKS in register TPR is 10
bits provides accuracy of two LSB on a full scale (TICKS = 1023) or one LSB on lower scale
(TICKS<=511).

When the Tick Prescaler gets High Rate mode indication from the Angle Counter Logic, it generates angle
ticks at a rate of system clock divided by eight. In this case it does not generate Load pulses to the Fraction
Accumulator, ignores its “hold” input and preloads internally to a fixed period of eight system clocks.
When High Rate mode is entered, the prescaler is preloaded to a period of eight system clocks before its
first angle tick generation, ensuring separation of at least eight system clocks between the last Normal
mode angle tick and the first High Rate mode angle tick. The fraction accumulator resets when the tick
count advances to the next tooth, or when TRR is written by the microcode.

24.5.7.5 Count control and high rate logic

The Count Control and High Rate Logic controls TCR2 operation in Angle Mode, using the angle ticks
generated by the Angle Tick Generator. Count Control logic is responsible for advancing, holding and
resetting the TCR2 and Tooth Tick Counter in the proper timing, such that the TCR2 time base will reflect

Tooth Signal

Angle Tick

P1 P2 P3

Acceptance window
from EAC channel

2 4 6 9 11 13 16 18 20 23

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

TCR1 Clocks

EAC Channel
Capture

TCR2

 0 1 2

Glitch rejected

TCR1 = 1000 TCR1 = 1023 1046

 3 6 9 2 5 8 1 4 7 0 3 6 9 2 5 8 1 4 7 0 3 6 0 Fraction
Accumulator

(modes m2_o_st/dt)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Tooth Tick Counter

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 903

the correct estimated angle. This logic also includes the Tooth Program Register (TPR, see
Section 24.5.7.2, Angle mode registers, for more information).

The Count Control and High Rate Logic handles deceleration, acceleration, missing teeth and last tooth.
On High Rate (acceleration) it ensures that the angle bus scans all valid angle values in a rate which can
be traced by the STAC bus. This operation enables external STAC clients (if TCR2 is a STAC server) or
channels working in “equal-only” comparator mode to match the TCR2 exported angle information in
“equal” mode, in an exact match.

Because the eTPU channels are capable of capturing either TCR1 or TCR2 due to signal transition, the
microcode can get either the angle or time of the physical pin transition. Since the EAC channel (0, 1 or
2) is connected to the physical tooth, the microcode can get the EAC error in angle domain (tooth appears
at the wrong angle) or time domain (physical tooth captured time into the EAC channel, relative to the
estimated tooth time). Note that in angle mode, the transition detect logic of the channel 0, if selected as
the EAC channel, is fed from the digital filter of the TCRCLK signal, and not from the channel 0 internal
digital filter. This ensures synchronous operation of channel 0 and the EAC hardware.

Another feature of the eTPU channel, when working in Single Match And Single Transition Enhanced
Mode (refer to Section , Single Match Enhanced Mode (sm_st_e)), is capturing a single time base due to
signal transition before and after the digital filter. This option allows subtracting the digital filter delay to
get accurate signal transition timing on the channel. This way, the TCRCLK signal may be programmed
with a slow and reliable digital filter, and get accurate time measurement of the digital filter delay.

To assert the end of the estimated tooth period the Count Control and High Rate logic compares the TICKS
field in TPR (refer to Section 24.5.7.2, Angle mode registers) with the current value of the tooth tick
counter. When the Tooth Tick value is greater or equal to TICKS, it determines the end of the estimated
tooth period. On acceleration this event occurs during High Rate mode operation, after the arrival of a
physical tooth. In deceleration, this event occurs during Normal Mode, before the arrival of a physical
tooth. On constant angular velocity, this event appears together with the arrival of a physical tooth.

The following sections describe the operation of the Counter Control and High Rate logic.

24.5.7.5.1 Normal mode

In Normal mode the Counter Control logic advances TCR2 and the Tooth Tick counter as if the engine has
a constant speed during the tooth period. It receives the angle ticks from the Angle Tick Generator in an
average rate which is determined by the Tooth Rate Register (TRR). This is the reset mode.

When the Tooth Tick Counter is about to reach the last value effectively stored in TPR field TICKS plus
one, the hardware detects the end of the estimated tooth period. If the physical tooth and the estimated
tooth arrive at the same time the EAC stays in Normal mode, the Tooth Tick Counter is reset, and TCR2
is incremented (depending on TPR bits LAST and MISSCNT). If the physical tooth and the estimated
tooth do not arrive at the same time, either acceleration or deceleration is detected, and the EAC switches
to the proper mode. See Figure 24-58 for a detailed diagram of Normal Mode behavior.

The microcode which services the EAC channel physical tooth transition may update TRR according to
various conditions to give the best estimation of the current tooth period, according to the previous tooth
period and other engine parameters.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

904 Freescale Semiconductor

Figure 24-58. Normal Mode

24.5.7.5.2 Halt mode (Deceleration)

In case of deceleration, the Tooth Tick Counter reaches the TICKS value before the arrival of the next
tooth. The Count Control logic does not reset neither advances TCR2 and Tooth Tick Counters. The Count
Control logic halts TCR2 and Tooth Tick Counters at the end of the tooth, waiting for the physical tooth
to arrive.

When the physical tooth is detected the EAC switches back to Normal Mode and releases TCR2 to count
the angle ticks of the new tooth, also resetting the Tooth Tick Counter. Only then TCR2 may wrap to 0, if
TPR bit LAST is asserted. See Figure 24-59 for a detailed diagram of Halt Mode behavior.

The microcode service caused by the physical tooth determines the deceleration, calculates the new tooth
period and Angle Tick period and updates TRR. This operation slows the angle tick rate generated by the
Angle Tick Generator on-the-fly, to the rate required for the new tooth period.

Since the microcode service is initiated by the physical tooth edge, microcode latency may introduce a
small angle error caused by using the TRR value of the previous tooth at the beginning of the current tooth.
On high RPM, deceleration is relatively small but the microcode latency may take a significant percentage
of the tooth period. On low RPM microcode service latency takes little percentage of the tooth period, but
there may be cases of extreme acceleration and deceleration. The microcode latency can be calculated
knowing TCR1 value during the service time, and TCR1 value captured in the EAC channel due to the
physical tooth pin transition. The duration of the Halt mode is obtained using the estimated tooth time.

Tooth Signal

Angle Tick

TRR

P1 P2 P3 P4

Tooth Tick Count

EAC Channel
Service Time Slot

EAC Channel
Capture

TCR1 TCR1 TCR1 TCR1

P1/ n P2/ n P3/ n

y y+n y+n+1

Ch0 Ch0 Ch0

*service request

**microcode updates TRR

* *

** **

TCR2 - continuous

0 0 0

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 905

Figure 24-59. Halt Mode – Deceleration

24.5.7.5.3 High rate mode (Acceleration)

In case of acceleration, the next tooth arrives before the Tooth Tick Counter reaches the TICKS value. In
this case the High Rate logic is responsible for closing the gap and advancing the tooth on the correct
timing. The High Rate mode operates as follows:

• When the acceleration is detected (physical tooth arrives before the Tooth Tick Counter reaches the
TICKS value), the Count Control and High Rate logic switches to High Rate mode in which both
the Tooth Tick Counter and TCR2 count at rate of system clock divided by eight, until the Tooth
Tick Counter reaches the current TICKS value. To ensure correct operation, the TICKS value is
sampled in the logic at the beginning of the mode.

• At this point, which represents the estimated tooth edge, the logic resets the Tooth Tick Counter
and advances TCR2 (or resets it if LAST is asserted and MISSCNT = 0).

• The control logic switches back to Normal Mode, using the most updated TRR value as input to
the Angle Tick Generator. The logic samples the updated TICKS value for the tooth estimation,
last tooth indication and number of missing teeth from TPR.

In High Rate mode the angle ticks are provided at high speed until the end of the current tooth. This
operation is required to scan all the valid angle values of the current tooth, in a rate which is not too high
for the STAC bus continuous update, but much higher than the rate dictated by TRR.

EAC channel microcode, which services the physical tooth transition detection, can start its service either
before High Rate mode operation is complete (the Tooth Tick Counter has not reached the TICKS value)
or after the EAC switched back to Normal mode. Any physical teeth received while the EAC is in High
Rate Mode does not alter the immediate EAC state, but it is still detected by the EAC channel logic and
can, therefore, alter future EAC behavior (for instance, closing the tooth detection window (see
Section 24.5.7.10, Angle logic and channel modes).

Tooth Signal

Angle Tick

TRR

P1 P2 P3 P4

EAC Channel
Service Time Slot

EAC Channel
Capture

TCR1 TCR1 TCR1 TCR1

P1/ n

Ch0

y y+n y+n+1

Ch0Ch0

P2/ n

Halt Mode

*service request

**microcode updates TRR

* *

** **

TCR2 - continuous

Tooth Tick Counter

0 0 0

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

906 Freescale Semiconductor

At the beginning of High Rate mode operation, the TPR value is preloaded into a temporary register in the
Counter Control Logic, used for scanning all the valid values to the end of the current tooth, with its
appropriate LAST and MISSCNT attributes. While the EAC is in High Rate mode operation, the effect of
microcode update of TPR fields LAST, MISSCNT and TICKS is delayed to the next estimated tooth, after
the High Rate mode operation is complete1 (see Section 24.5.7.12, Special TPR write cases). This is
because the current physical tooth represents the next estimated tooth. If the microcode updates this field
after High Rate mode operation is complete, the current physical tooth and estimated tooth are the same,
and the effect is immediate. Either in High-Rate mode or not, the value read by microengine is the same
written, even if not yet effective, until the EAC resets LAST and/or IPH, or decrements MISSCNT.
Typically the microcode service may occur during the High Rate mode on extreme acceleration situation
at low RPM. Therefore, the microcode operations are always related to the real physical tooth. From the
above it can be seen that the microcode updates of the TICKS field in TPR affect the end time of the current
physical tooth. For correct operation, this field should be updated before the Tooth Tick Counter has
reached either the old or the new TICKS value.

During High Rate mode operation, TRR is ignored and the Angle Tick Generator uses system clock
divided by eight. Therefore, the TRR update by microcode will take effect only after the EAC switches
back to Normal mode. If microcode service occurs after the Tooth Tick Counter has been reset, the EAC
is already back in Normal mode, and some angle ticks may have been counted at the rate of the previous
tooth. In this case the new TRR value will have immediate effect on the angle tick period, and the
microcode should take into consideration the delay from the physical tooth to the estimated tooth in
calculation of the next tooth period. See Figure 24-60 for a detailed diagram of High Rate Mode behavior.

An angle error may be introduced by the duration of the High Rate mode. Also, the scheduler latency may
introduce a small accumulated error by using TRR value of the previous estimated tooth at the beginning
of the current tooth. After the estimated tooth has advanced, the duration of the High Rate mode operation
is the actual delay from the physical tooth edge to the estimated tooth edge. This delay can be obtained by
comparing the estimated tooth time with the EAC channel capture register which captured TCR1 on the
physical pin transition.

1. The effect of microcode writes to fields HOLD and IPH is immediate in High Rate mode.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 907

Figure 24-60. High Rate Mode – Acceleration

24.5.7.6 Special cases of missing teeth and last tooth

The EAC handles cases of up to three missing teeth and the last tooth in the engine cycle. The following
paragraphs describe these functions.

24.5.7.6.1 Handling the last tooth

The microcode can set the TCR2 counter to work in engine periods (wrap-around count) or continuous
angle measurement.

For periodic operation, during the last engine cycle tooth the EAC microcode has to set the LAST flag in
TPR. As a result, when the tooth period is ended, the Counter Control Logic generates a reset command
to both the Tooth Tick Counter and TCR2 instead of an advance command. The operation resets the TCR2
based angle count, indicating a new period of the engine cycle. This implementation provides an engine
cycle based periodic angle measurement.

24.5.7.6.2 Handling missing teeth

The EAC can handle up to three missing teeth in two ways:

• Count the angle ticks relative to the last physical tooth. The microcode should update the TPR
TICKS field to the number of angle ticks included in two, three or four teeth, according to the
flywheel type (one, two or three missing teeth). EAC hardware works in its regular manner.

• Insert a “dummy” tooth instead of the missing tooth, at the estimated point in time. After the
“dummy” tooth, the Angle Tick Counter is incremented as if there was a physical tooth. A
“dummy” tooth can be inserted only during Normal or High Rate operation modes. The microcode
inserts “dummy” teeth by writing to the MISSCNT field in TPR.

Tooth Signal

Angle Tick

TRR

P1 P2 P3 P4

EAC Channel
Service Time Slot

EAC Channel
Capture

P1/ n P2/ n P3/ n

y y+n+1

Ch0Ch0 Ch0

High Rate Mode

TCR1 TCR1 TCR1 TCR1

*service request

**microcode updates TRR

**

** **

TCR2
Tooth Tick Counter

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

908 Freescale Semiconductor

In the first option the missing tooth is not counted on the angle measurement. For example, a flywheel with
59 physical teeth and one missing tooth can be considered as 58 identical teeth numbered (0-57) and tooth
number 58 has a double number of angle TICKS. In this case a 720 degrees engine cycle has 118 teeth.
TCR2 reflects the real angle, since it counts angle ticks continuously.

In the second option, the missing teeth are counted as “regular” teeth by automatic insertion of “dummy”
teeth. The microcode has to write a non-zero value to the MISSCNT field in TPR. This field is a 2-bit down
counter which affects the operation of the Counter Control logic.

For example, a flywheel with 59 physical teeth (0-58) and one missing tooth (59) can be considered as 60
teeth numbered (0-59), all having the same number of angle ticks. The microcode has to write “01” to the
MISSCNT bits during the period of tooth number 58 to indicate that next tooth (59) is missing.

When the Tooth Tick Counter reaches the TICKS value, TCR2 is incremented as if a physical tooth has
been detected. In addition, the MISSCNT value initializes a “dummy tooth counter” which is decremented
to indicate the number of left “dummy teeth” which still need to be generated. Because a dummy tooth was
counted, EAC does not enter Halt Mode and Tooth Tick Counter continues incrementing in the absence of
a physical tooth detection.

In case of extreme acceleration on very low RPM (cold start) there can be a situation that the first physical
tooth after one or two missing teeth appears even before the “dummy” tooth is generated. Due to the
acceleration the EAC switches to High Rate mode in order to run through all the valid angle values,
including the dummy teeth. When the Tooth Tick Counter reaches the TICKS value on High Rate mode,
and the “dummy tooth” down counter is not zero, the generated “dummy tooth” advances to the next tooth
and decrements the “dummy tooth” counter, but does not switch the EAC back to Normal mode. The last
“dummy tooth” decrements the counter to zero, indicating that no more dummy teeth are to be inserted,
and the next tooth is an estimated physical tooth. The EAC continues at High Rate mode until the Tooth
Tick Counter reaches the TICKS value again, then advances to the next tooth while switching back to
Normal mode. When in High Rate mode, the TPR does not reflect the MISSCNT downcounting; see
Section 24.5.7.12.1, TPR buffering, for details.

MISSCNT can be rewritten before it reaches 0, allowing it to count more than three missing teeth, as long
as no physical tooth arrives between the first MISSCNT write and the rewrite.

24.5.7.6.3 Combining missing teeth and last tooth

The Last Tooth indication takes effect when there are no more missing teeth to be generated, i.e the
“dummy tooth” counter value is zero. If, for example, the microcode sets the missing teeth counter to “10”
(two missing teeth) and sets the LAST flag, the first and the second dummy teeth will increment TCR2,
and the third estimated tooth, which correlates with the physical tooth (the first of the next cycle), will reset
TCR2, because LAST was set. This scheme enables the microcode to define one or more missing teeth to
be replaced by “dummy tooth” insertion, and the end of the engine cycle in one service request. It is
assumed that the two missing teeth must come together in the same engine cycle, and not split between
two engine cycles (either the missing teeth are both last in an engine cycle or both not last, but not last in
one engine cycle and first in the next).

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 909

Figure 24-61. Missing Teeth and Last Tooth Combination

24.5.7.7 Handling mechanical tooth correction

The EAC can handle tooth edge detection errors caused by flywheel mechanical errors. The eTPU
application can hold a vector of tooth mechanical errors with one entry per tooth. This error can be
measured in angle ticks which are independent of engine RPM. The TRR can be updated to the fixed
period of any tooth, including its mechanical error.

Because TCR2 counts continuously, without being reset, the mechanical correction is transparent. Though
the tooth has its own programmed TICKS value, TCR2 simply counts angle ticks, disregarding the
boundary between two adjacent teeth.

24.5.7.8 Handling mis-detected tooth

When a physical tooth signal is missed by the engine sensor, the EAC may get into Halt mode at the end
of the estimated tooth period, expecting the physical arrival. In this case, a Match timeout event of EAC
channel will call service which detects extreme deceleration. The microcode can assert the IPH bit in TPR,
to force the detection of the missed physical tooth. It can also calculate the accumulated angle bus error,
and fix the next estimated tooth period, to close the gap.

24.5.7.9 Handling false tooth detection

Most of the false tooth detection, caused by noises on the engine tooth sensor, can be eliminated by the
window blanking filtering, timed by EAC channel match recognitions. The EAC also provides means of
fixing false detection of an additional tooth which passed the window filter. When such an event occurs,
the EAC switched to High Rate mode (advancing to the next tooth) and when the next physical tooth
arrives, an extreme acceleration is detected: the EAC sees the remaining portion of the current tooth period
as another tooth period. The microcode can detect the situation when the acceleration in not realistic, or
when immediately after the detection of this extreme acceleration, the following tooth indicates extreme
deceleration back to the original RPM.

Tooth Signal

Angle Tick

TCR2

P1 P2 P3 P4

Tooth Tick Counter

EAC Channel
Service Time Slot

Tooth Count

Ch0

TPR[MISSCNT]
“Dummy Teeth”

TPR[LAST]

00 10 01 00

56 57 58 59 0

Dummy teeth

**microcode sets TPR

*service request

**

0n*(TICKS+1)
(for reference only)

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

910 Freescale Semiconductor

When the microcode detects such a case, the Tooth Counter has been advanced by mistake to the next
tooth. The microcode can set the HOLD bit in the TPR, forcing the EAC to freeze and wait for the next
physical tooth to close the gap. When the next physical tooth arrives, HOLD is automatically negated and
the EAC proceeds from that point to the remaining portion of the tooth period, in the same mode it was
when HOLD bit was asserted.

24.5.7.10 Angle logic and channel modes

The TCRCLK transition detection is qualified by a signal that comes from channel 0 (see Figure 24-56)
and depends on the particular mode (PDCM) programmed for that channel. This configures a window for
TCRCLK detection for the angle logic which is the same (except on High Rate mode, see
Section 24.5.7.5.3, High rate mode (Acceleration)) used to set the TDLA flag on single transition modes,
and TDLB on double transition modes (see signals TSE1,TSE2 in Figure 24-39). The same applies when
channels 1 or 2 are used to control EAC (see signals TS1, TS2 in Figure 24-39). As a consequence, the
window depends on the channel mode as follows:

• On all modes, the window closes upon a tooth edge detection: TDLA asserted on single transition
modes, TDLB asserted on double transition modes.

• On mode m2_st: the window opens on Match A (which enables Transition A) and does not close
with Match B. If Match B comes before Match A, it blocks Match A and, hence, Transition A.

• On mode m2_o_st: the window opens on Match A (which enables Transition A) and closes on
Match B. Match B is enabled by Match A, so it cannot come before.

• On all other Single Transition modes, the window is “always open”, independently of matches.

• On mode m2_dt: the window opens on Transition A, which is enabled by Match A. The window
does not close with Match B, but if it comes before Match A the later gets blocked and, hence,
blocks Transitions. Match A is also a condition for the window, so the microcode closes it by
clearing MRLA.

• On mode m2_o_dt: the window opens on Transition A, which is enabled by Match A. The window
closes on Match B, which is enabled by Match A. Match A is also a condition for the window, so
the microcode closes it by clearing MRLA.

• On all other Double Transition modes, the window opens on Transition A.

24.5.7.11 Restarting angle logic

It is not advisable to toggle the ETPU_TBCR bit AM while GTBE = 1. However, if the Angle Logic must
be restarted without interfering with the timebase count running on TCR1, the procedure below must be
followed:

1. Write ETPU_TBCR setting AM = 00 and TCR2CTL = 111 at once. That prevents TCR2 from
incrementing while the Angle logic is disabled. The Angle Logic state-machine resets to Normal
mode and the tick prescaler to the initial count by AM = 00, but not the microengine registers TPR
and TRR.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 911

2. Start a thread to reconfigure the EAC. The thread must set the EAC controlling channel (0, 1 or 2)
flags in a state, depending on the channel mode, that lets the channel tooth detection window open
(see Section 24.5.7.10, Angle logic and channel modes). It can optionally write TCR2 with an
angle preset value equivalent to the first tooth expected after restart. The thread must also set TPR
bit HOLD = 1. The TPR bit IPH must be 0.

3. After the thread is finished, write ETPU_TBCR setting AM = 01, 10 or 11, and TCR2CTL
according to the desired tooth edge selection if AM = 01.

The first tooth detected after this procedure restarts the TCR2 counting, unfreezing the Angle Mode logic
into normal mode.

24.5.7.12 Special TPR write cases

This section describes how simultaneous modification of TPR fields are resolved, and how the effect of
TPR writes depend on the EAC mode.

24.5.7.12.1 TPR buffering

In High Rate mode (see Section 24.5.7.5.3, High rate mode (Acceleration)), TPR writes are immediately
effective only for bits IPH and HOLD. Writes to all other fields are “buffered” and become effective when
EAC leaves High Rate mode. However, if TPR is written a second time right after IPH is asserted in
Normal mode, this second write behaves as if EAC is still in Normal mode. Only in the next microcycle
(after execution of a NOP, for instance) the TPR writes are buffered, acknowledging High Rate mode.

MISSCNT and LAST can be written any value during High Rate mode, and the value that prevails for the
next tooth is the one sampled when EAC goes back to Normal mode (or the value written in Normal or
Halt mode thereafter). If MISSCNT and/or LAST are not zero when High Rate mode begins, they are
sampled into the internal EAC logic and are effective while High Rate lasts (missing teeth count continues
and TCR2 is reset at the end of High Rate if LAST = 1). However, their values in TPR are reset when High
Rate mode starts. After that and until the end of High Rate mode, the value read by microcode is the same
written. This behavior prevents read-modify-writes to TPR from unwillingly rewriting LAST or
MISSCNT.

24.5.7.12.2 IPH and LAST

If both IPH and LAST are asserted in the same microinstruction, the EAC acts as if LAST was set first and
then IPH right after, so that:

• In Normal mode, it goes to High Rate with LAST = 1;

• In Halt mode, it goes to Normal Mode resetting LAST (and TCR2);

• In High Rate mode, IPH is ignored and LAST becomes effective in the next tooth (physical or
inserted) after it goes back to Normal mode.

24.5.7.12.3 IPH and TICKS

Because of different results depending on the EAC mode at the time of TPR write, it is not advisable to
write 1 to IPH and change TICKS at the same microinstruction. A consistent behavior is obtained if IPH

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

912 Freescale Semiconductor

is written fist and TICKS on the second microinstruction after (for instance with a NOP between them),
making the new TICKS value valid for the next tooth regardless of the mode.

The mode-dependent behavior is:

• In Normal mode, the new TICKS value becomes valid before EAC goes High Rate due to the IPH;

• In Halt mode, the EAC goes to Normal mode, and new TICKS is valid for the next tooth;

• In High Rate mode, the new TICKS value is effective when EAC leaves High Rate mode, and IPH
is ignored;

24.5.7.12.4 IPH and MISSCNT

If both IPH and MISSCNT are written non-zero values:

• In Normal mode, at the next microcycle the EAC goes to High Rate mode, the MISSCNT field in
TPR goes to 0, and the missing teeth are counted in High Rate mode.

• In Halt mode, the EAC goes to Normal mode for one microcycle and then, yet another microcycle
later, goes to High Rate mode, counting the missing teeth. The TPR fields IPH and MISSCNT are
zeroed on the transition from Normal to High Rate mode.

• In High Rate mode, IPH is ignored (resetting at the next microcycle) and MISSCNT is buffered
(see Section 24.5.7.12.1, TPR buffering).

24.5.7.12.5 IPH and HOLD

If IPH and HOLD are asserted at once, IPH cancels the HOLD and both reset. The EAC is not frozen,
regardless of the mode.

24.5.7.12.6 LAST and HOLD

If LAST and HOLD are written 1 at once, LAST asserts and EAC is frozen. When a physical tooth is
detected or IPH is asserted, the EAC is unfrozen in the same state it was before, and LAST is kept asserted.

24.5.8 Microengine

Each eTPU engine has a microengine that fetches, decodes and executes microinstructions. The
Microengine only works when there are service requests to be attended, otherwise it turns to idle state,
controlled by Hardware Scheduler (see Section 24.5.3, Scheduler).

Microcode is stored in Shared Code Memory (SCM) that is 32-bit wide. Microengine can access SPRAM
using a different bus from the one used to accesses code memory, so that code and data can be accessed at
the same time (Harvard Architecture).

Some of eTPU functionality can only be made through the microengine, like configuring channels and
interrupting host. Microengine gives eTPU a high degree of flexibility, since any desired treatment for
channel’s events can be implemented; however, that flexibility comes at the cost of channel service’s
latency. Latency is worsened when channels from a same eTPU engine contend for microengine service.
In Figure 24-62 a block diagram of microengine architecture is shown.

Microengine features are summarized as follows:

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 913

• P, DIOB, A, B, C, D, SR, RAR, LINK, CHAN, MACL, MACH, ERTA, ERTB, TCR1, TCR2, TPR,
TRR registers are accessible by microcode.

• 24-bit ALU and Post-ALU shifter performs basic arithmetic and logical operations described in
Section 24.5.8.2, ALU and Post-ALU Shifter.

• MDU (MAC/Divide Unit) performs integer MAC, multiply and divide operations.

• Fixed Microinstruction Size of 32 bits.

• Fixed-length instruction execution (2 system clocks)

• Static superscalar operation

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

914 Freescale Semiconductor

Figure 24-62. Microengine Block Diagram

DIOB

P

A

BIN

ALU

Post-ALU

Control

C
o

d
e
 M

e
m

o
ry

 B
U

S

S
P

R
A

M
 D

.B
u

s

32

32

Imm.Data

CHAN*

8

24

SR

C

A
D

 (
d

e
s
t.

)

B
S

 (
s
o

u
rc

e
)

ERTA

ERTB

Flags to
to Branch Logic

4 24

24

24

24

24

24

eTPU
CHANNELS

E
R

1
 B

u
s

E
R

2
 B

u
s

24

S
P

R
A

M
 A

.B
u

s

24 24

24

32

24

1

MACH

MACL

MAC

24

2424

DIVIDE
UNIT

24

AIN

N, V, Z, C

MB Flags to
to Branch Logic

MN, MV, MZ, MC
5

RAR*

Channels + TCRs

Microengine’s DataPath

Shifter

EAU

Shifter Result

Result

Address
& Size Calc.

CHAN

8, 16 or 24

24
A

S
 (

s
o

u
rc

e
)

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

LINK*

TCR1

TCR2

6

TDLB, PSTI, PSTO
to Branch Logic

MRLA, MRLB, TDLA,

24

24

1

5

5

5

1

1

1

B 24

24

Fetch and

S
C

M
 A

d
d

re
s
s 14

Branch Logic

PC

1

RAR

D

24

24

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 915

24.5.8.1 Registers

eTPU microengine accesses a total of 18 registers. Fourteen of them are special purpose (registers A, B,
C and D are for general use). Special purpose registers except CHAN and LINK can also be used as general
use if the operation that use their contents are not performed. Register description is intended to just
introduce their functionalities and not to provide detailed explanation of it since it will be described in
Section 24.5.9, Microinstruction set. Registers less than 24 bits in size are right-justified.

None of the registers have guaranteed reset values. However, some are initialized just before the thread
starts (see Section 24.5.1.2, Time slot transition).

24.5.8.1.1 P Register

P register is the only one that is 32-bit wide. It can be used as source and destination for arithmetic/logical
operation, and as source and destination for SPRAM read/write operations.

For P source/destination possibilities in ALU/MDU microoperations, see Section 24.5.9.2.2, Selecting
sources and destination.

When P is used as SPRAM read/write operations source or destination there are only 3 possibilities of
access: all 32 bits, lower 24 bits and upper 8 bits. SPRAM operations are explained in detail in
Section 24.5.9.1, SPRAM microoperations.

P is automatically loaded with one parameter before the thread starts (parameter preload). For more
information see Section 24.5.1.1.5, Entry point format, and Section 24.5.1.2, Time slot transition.

Upper 8 bits of P register can be used as application state, since these bits can be tested as branch
conditions. P[31:24] is also used in dispatch microoperation (see Section 24.5.9.4.3, Dispatch
microoperation), and bit pairs P[29:28], P[27:26], P[25:24] can be directly copied into Channel flags 1 and
0 using field FLC. Together with Entry Table Condition Encoding, it provides fast state resolution without
code execution.

24.5.8.1.2 DIOB – Data Input/Output Buffer Register

The DIOB register is 24-bit wide and can be used as source and destination for arithmetic/logical
operations as well as SPRAM data source and destination. The DIOB only can be accessed as 24 bits, both
in arithmetic/logical and SPRAM read/write operations. When using the DIOB to perform an SPRAM
access, only the lower 24 bits of SPRAM will be accessible (SPRAM upper 8 bits always remain
unchanged).

The DIOB can also be used as SPRAM addressing register, when the DIOB contents are used as absolute
SPRAM address (14-bit wide). In this case the DIOB can also be pre-decremented or post-incremented
(see Section , Indirect addressing mode).

The DIOB is automatically loaded with one parameter before the thread starts (parameter preload). For
more information see Section 24.5.1.1.5, Entry point format, and Section 24.5.1.2, Time slot transition.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

916 Freescale Semiconductor

24.5.8.1.3 ERTA and ERTB Registers

ERTA/B registers are 24-bit wide and can be used as source or destination in arithmetic/logical operations.
ERTA/B are the only source for channel’s match registers write (see Section 24.5.9.3.5, Write Channel
Match and UDCM Registers). ERTA can also be the source for UDCM write.

When a thread starts to be executed, ERTA and ERTB are loaded with a copy of CaptureA and CaptureB
registers respectively. ERTA/B can be used to receive a copy of MatchA and MatchB registers. ERTA/B
are the only destination of MatchA/B read operation (see Section , Special T4ABS source operation: Read
match registers).

ERTA and ERTB also receive a copy of CaptureA and CaptureB registers when CHAN register is written
(see Section 24.5.8.1.8, CHAN Register). For more information about Capture and Match registers see
Section , MatchA and MatchB Registers, and Section , CaptureA and CaptureB Registers.

24.5.8.1.4 SR – Shift Register

The SR is a 24-bit wide register that can be used as source and destination register for arithmetic/logical
operations. The SR can shift right its contents by 1 bit at time and, at the same time, receive in its bit 23
the lost bit of a shift-right operation in post-ALU shifter (Section 24.5.8.2, ALU and Post-ALU Shifter),
allowing the SR to be used to perform 48-bit shift right (see Section 24.5.9.2.6, Shift operations).

24.5.8.1.5 MACH and MACL Registers

Both MACH and MACL are 24-bit registers, part of MAC/Divide unit (see Section 24.5.8.3, MAC and
Divide Unit (MDU)). They can be used as source and destination in most arithmetic/logic operations.
When multiply or divide operations are used (multiply-accumulate included), MACH and MACL have
special purpose and some restrictions apply, see Section 24.5.8.3, MAC and Divide Unit (MDU), for more
information.

24.5.8.1.6 LINK Register

Link Register is an 8-bit wide register and can be used only as destination in arithmetic operations. LINK
is a write-only command register, which precludes its use as a source register for ALU operations. When
LINK register is written, it issues a service request for the channel number and eTPU engine equal to the
number written in LINK register (see Section 24.5.1, Functions and threads, and Section 24.5.5.5, Channel
Link, for information about Link Service Request).

24.5.8.1.7 RAR – Report Address Register

The RAR is a 14-bit register and can be used as source and destination in arithmetic operations. The RAR
also receives the contents of PC register when a subroutine call is executed. The contents of the RAR are
loaded into PC when a return from subroutine is executed. The RAR is loaded with value 0x3FFF during
TST. For more information about subroutine call and return see Section 24.5.9.4.2, Branch operations, and
Section 24.5.9.4.4, Return from subroutine, respectively.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 917

24.5.8.1.8 CHAN Register

CHAN is a 5-bit register that can be used as source and destination in arithmetic operations. The contents
of CHAN register affects the execution of many channel-related microinstructions, because its number
indicates the selected channel. CHAN register must not be used to store temporary values in arithmetic
operations. For more details, refer to Section , Channel Selection Register – CHAN.

24.5.8.1.9 Counter Registers: TCR1, TCR2, TPR and TRR

All these registers are 24-bit wide except TPR, which is a 16-bit register. They can be read or written in
arithmetic/logical operations, and have special-purpose uses for time base and angle mode operations. For
more information about those registers see Section 24.5.6, Time Bases, and Section 24.5.7, EAC – eTPU
angle counter.

24.5.8.1.10 General Purpose Registers: A, B, C and D

A, B, C and D are 24-bit general purpose registers, which can be used to store intermediate values and do
not have other specific uses with any eTPU feature.

24.5.8.2 ALU and Post-ALU Shifter

The ALU executes 24-bit arithmetic and logical operations. ALU’s output goes directly to a 1-bit shifter,
called post-ALU shifter, so it is possible, for example, to add and shift using only one microinstruction.

In some microinstruction formats, it is not possible to specify the operation executed by ALU. In these
cases ALU will always perform addition.

In formats which have the field ALUOP for ALU operation selection, all of them can be performed,
including add/subtract using C (carry) flag as ALU’s carry-in, bitwise AND/OR/NOT/XOR, and
shift/rotate of 2, 4, 8 and 16 bits. See Section 24.5.9.2.10, ALU/MDU Operation Selection.

Subtraction, inversion, increment and decrement can be performed by combinations of source inversion
and setting ALU’s carry-in to 1.

ALU always performs 24-bit operations on its inputs, called A-source and B-source, and outputs a 24-bit
result. 8-, and 16-bit inputs are zero padded to 24 bits. Likewise, ALU 24-bit output is always truncated to
the destination register size.

24.5.8.2.1 ALU Flags

Four flags—Carry, Negative, Overflow, Zero—described below, are related to ALU and post-ALU shift
operations. Operation size and shifting affect flags generation logic. Operation size determines the result
boundary to be used for flags generation. Operation size is determined by size of sources and destination
(see Section 24.5.9.2.3, Flags sampling control). For more information about flag generation, see
Section 24.5.9.2.3, Flags sampling control. ALU flags can be used as branch condition (see Section ,
Conditional/Unconditional branch) or conditional ALU/MDU operation (see Section 24.5.9.2.7,
Conditional ALU/MDU operation execution).

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

918 Freescale Semiconductor

Field CCS/CCSV in microinstructions can force no update of all flags. Not all flags are updated in all
ALU operations: Overflow is updated only on addition and absolute value operations, Carry flag is
updated in most ALU operations, and only Zero and Negative are updated in all ALU operations.

ALU flags are never updated when microinstruction starts an MDU operation, regardless of CCS/CCSV,
but are updated normally afterwards, on ALU operations that are executed in parallel with an ongoing
MDU operation (MDU has its own flags).

NOTE

Operation size can be smaller than destination register. For example:
0xFFFF + 0x0001 (both 16-bit sources) stores 0x10000 in a 24-bit register
and sets Zero and Carry flags because operation size is 16 bits.

Carry Flag (C)

In an unsigned addition without shifting, Carry Flag is the ALU carry from bit 7 to 8, 15 to 16, or 23 to 24
on 8, 16 and 24-bit operation sizes respectively. In an unsigned subtraction without shifting, Carry Flag
represent the sign of ALU’s result considering operation size (Carry Flag equal to 0 means a negative
result).

Carry Flag definition is operation-dependent. The Carry flag in add/subtraction with Post-ALU shift is
defined in Table 24-64. Find the definitions for other operations in the following sections.

Negative flag (N)

Negative flag indicates the sign of result based on the operation size, regardless of the operation
performed, as shown in Table 24-60.

NOTE

The N flag may not reflect the sign of the value actually written into the
destination register, if it does not have the same size of the operation (see
Section 24.5.9.2.3, Flags sampling control). This is always the case for
registers RAR (14 bits) and CHAN (5 bits).

Overflow (V)

Overflow is updated only on addition (with or without carry) and absolute value operations. In signed
operations, overflow flag indicates that the result of arithmetic operation (add or subtraction) can not be
represented by a word of the size of the operation. Overflow flag behavior for addition is defined in
Table 24-61. Overflow flag for Absolute operation is explained in Section 24.5.8.2.8, Absolute value

Table 24-60. Negative (N) flag behavior

Operation size Value

8 bits N = result[7]

16 bits N = result[15]

24 bits N = result[23]

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 919

operation. V Flag is calculated using ALU adder output (that is, it is not affected by 1-bit shift/rotate
operations).

Zero Flag (Z)

Zero flag equal to 1 indicates that the result from the ALU, limited to the operation size, is zero, regardless
of the operation performed, whether the result is written, or where it is written. It depends on the operation
size, as shown in Table 24-62.

24.5.8.2.2 ALU ADD Operation with and without shifting

ADD operation is selected by ALUOP or ALUOPI fields and when none of them is available in a
microinstruction format1. Optionally, result can be shifted or rotated right by 1 bit, which is selected by
SHF, ALUOP or ALUOPI fields. See Section 24.5.9, Microinstruction set, for more details. Table 24-63
describes how CIN and BINV fields change ADD operation behavior.

ALU adder output can be 1-bit shifted or 1-bit rotated right as follows:

Shift right:
if BINV==1
 result[23:0] = adder_output[24:1]
else

Table 24-61. Overflow flag on addition1 – V

1 For V-flag definition on the absolute operation, see Section 24.5.8.2.8, Absolute value operation.

Operation size Value2

2 BS is taken after any inversion by the BINV field, but not added to the carry bit (CIN field)

8 bits (AS[7] & BS[7] & !alu_adder_output[7]) | (!AS[7] & !BS[7] & alu_adder_output[7])

16 bits (AS[15] & BS[15] &!alu_adder_output[15]) |
(!AS[15] & !BS[15] & alu_adder_output[15])

24 bits (AS[23] & BS[23] &!alu_adder_output[23]) |
(!AS[23] & !BS[23] & alu_adder_output[23])

Table 24-62. Zero Flag – Z

Operation size Value

8 bits Z = (result[7:0] == 0x00)

16 bits Z = (result[15:0] == 0x0000)

24 bits Z = (result[23:0] == 0x000000)

1. ALU operations only occur on formats where a destination field is found (T2ABD/T2D).

Table 24-63. Types of ADD operations

BINV CIN Operation (adder output)

1 1 AS + BS

1 0 AS + BS + 1

0 0 AS - BS

0 1 AS - BS - 1

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

920 Freescale Semiconductor

 result[23:0] = adder_output[24:1] xor 0x800000
endif

Shift left:
result[23:1] = adder_output[22:0]
result[0] = 0

Rotate right:
case(opsize/CCSV)
8-bit:
 result[6:0] = adder_output[7:1]
 result[7] = adder_output[0]
 result[23:8] = adder_output[23:8]
16-bit:
 result[14:0] = adder_output[15:1]
 result[15] = adder_output[0]
 result[23:16] = adder_output[23:16]
24-bit:
 result[22:0] = adder_output[23:1]
 result[23] = adder_output[0]

NOTE

Only for the Post-ALU rotate right, the operation size is determined by the
field CCSV (see Section 24.5.9.2.3, Flags sampling control). For example:
if CCSV = 00, T4ABS = P (24-bits), T4BBS = A (24 bits), T2ABD = B (24
bits), and ALUOP = “Add ROR”, then B gets A+ P with bits 7:0 rotated,
even though the operation size is 24 bits.

Table 24-64 describes Carry flag behavior.

Table 24-64. Carry flag update on ADD operation

BINV1 Operation size Shift/rotate Value

1 8 bits none adder carry from bit 7 to bit 8

1 16 bits none adder carry from bit 15 to bit 16

1 24 bits none alu_adder_output[24]

0 8 bits none !adder carry from bit 7 to bit 8

0 16 bits none !adder carry from bit 15 to bit 16

0 24 bits none !alu_adder_output[24]

0 or 1 8 bits shift left alu_adder_output[7]

0 or 1 16 bits shift left alu_adder_output[15]

0 or 1 24 bits shift left alu_adder_output[23]

0 or 1 x shift right alu_adder_output[0]

1 8 bits rotate right adder carry from bit 7 to bit 8

1 16 bits rotate right adder carry from bit 15 to bit 16

1 24 bits rotate right alu_adder_output[24]

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 921

Flags N and Z on shift are updated according to the result after shift. Flag V with shift is updated according
to the ADD operation only, the same way as without shift.

24.5.8.2.3 ADC operation

ADC operation is selected by the ALUOP field. CIN field is ignored when this operation is selected.
Table 24-65 describes how BINV change ADC operation behavior.

Flags behave exactly the same way as for ADD operation without shift/rotate.

24.5.8.2.4 Bitwise Operations

Bitwise AND, OR and XOR are selected by ALUOP field. On these operations CIN field is ignored and
BINV field inverts (bitwise NOT) BS. C and V Flags are never updated on these operations. Table 24-66
Describes AND, OR and XOR bitwise operations.

0 8 bits rotate right !adder carry from bit 7 to bit 8

0 16 bits rotate right !adder carry from bit 15 to bit 16

0 24 bits rotate right !alu_adder_output[24]

Except on max-constant generation (see Section , Max constant generation
with T4BBS = 111)

1 BINV has no effect on carry-out when used to code max constant (see Section , Max constant generation with
T4BBS = 111).

Table 24-65. Types of ADC operations

BINV CIN Operation

1 x AS + BS + C flag

0 x AS - BS - C flag

Table 24-66. Types of Bitwise Operations

ALUOP BINV Operation

10000 1 AS | BS

10000 0 AS | (~BS)

10001 1 AS ^ BS

10001 0 AS ^ (~BS)

10010 1 AS & BS

10010 0 AS & (~BS)

Table 24-64. Carry flag update on ADD operation (continued)

BINV1 Operation size Shift/rotate Value

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

922 Freescale Semiconductor

24.5.8.2.5 Set Bit / Clear bit operations

These operations set or clear the AS bit determined by BS[4:0]. If the bit number resolves to a value greater
than 23, no bit is set or cleared (i.e., result is equal to AS). On these operations CIN field is ignored and
BINV field inverts (bitwise NOT) BS. C and V flags are never updated for set/clear bit operations. These
operations override B-Source size to 8 bits.

set bit (BINV = 1):
result = AS | (1 << BS[4:0])

clear bit (BINV = 1):
result = AS & ~(1 << BS[4:0])

set bit (BINV = 0):
result = AS | (1 << (31 - BS[4:0]))

clear bit (BINV = 0):
result = AS & ~(1 << (31 - BS[4:0]))

24.5.8.2.6 Exchange bit

Exchange the AS bit determined by BS[4:0] with C flag. If the bit number resolves to a value greater than
23, no exchange is performed (i.e., result is equal to AS and C flag is not updated). This operation
overrides BS size to 8 bits. On this operation, CIN field is ignored and BINV field inverts (bitwise NOT)
BS. V flag is never updated on exchange bit operation. C flag is always updated, regardless of CCSV,
unless BS[4:0] > 23.

Exchange Bit (BINV = 1):
if BS[4:0] <= 23
begin
 temp_C_flag = AS[BS[4:0]]

 if C_flag == 1
 result = AS | (1 << BS[4:0])
 else
 result = AS & ~(1 << BS[4:0])

 C_flag = temp_C_flag
end

Exchange Bit (BINV = 0):
if (31 - BS[4:0]) <= 23
begin
 temp_C_flag = AS[31 - BS[4:0]]
 if C_flag == 1
 result = AS | (1 << (31 - BS[4:0]))
 else
 result = AS & ~(1 << (31 - BS[4:0]))
 C_flag = temp_C_flag
end

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 923

24.5.8.2.7 Multibit shift/rotate operations

These operations shift or rotate AS by 2, 4, 8 or 16 bits. Size of shift/rotate is determined by BS[1:0].
Table 24-67 describes the number of shifted/rotated bits depending on BS[1:0] value.

Shift right is a logical operation (i.e., zeros are inserted on left). Multibit shift and rotate operations
overrides BS size to 8 bits. The shifts and rotate operate on 24 bits, independently of the operation size.

V flag is never updated for multibit shift or rotate operations. Carry flag behavior is described on
Table 24-68. CIN is ignored in these operations, but BINV is effective.

24.5.8.2.8 Absolute value operation

Absolute Value operation is selected by ALUOP field. On this operation, AS is interpreted as a signed
number and its absolute value is the result. V and N flags are updated with the result signal determined by
the operation size. AS bit 23 after size override and sign extension (if any, see Section 24.5.9.2.8, A-Source
size override), regardless of A-source register size, is used to check the operand signal and is copied to

Table 24-67. Number of shifted/rotated bits for each BS[1:0] value

BS[1:0] Bits shifted/rotated

0 2

1 4

2 8

3 16

Table 24-68. Carry flag value on multibit shift/rotate operations

ALUOP BS[1:0] C flag value1

1 CCS/CCSV can disable flag update on multibit shift/rotate, but the specified flag size in CCSV is ignored for the C
flag.

11001 (shift left) 0 AS[22]

11001 (shift left) 1 AS[20]

11001 (shift left) 2 AS[16]

11001 (shift left) 3 AS[8]

11010 (shift right) 0 AS[1]

11010 (shift right) 1 AS[3]

11010 (shift right) 2 AS[7]

11010 (shift right) 3 AS[15]

11011 (rotate right) 0 AS[2]

11011 (rotate right) 1 AS[4]

11011 (rotate right) 2 AS[8]

11011 (rotate right) 3 AS[16]

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

924 Freescale Semiconductor

C-flag. Note that if AS is 8-bit or 16-bit, its sign is taken into account and copied to C only if sign-extension
is performed. Table 24-69 summarizes flag updating for Absolute Value operation.

This operation is independent of B-source. Instruction fields T4BBS, BINV and CINV are ignored in this
operation. The Absolute Value operation size is the minor between A-source size and Destination size.

24.5.8.3 MAC and Divide Unit (MDU)

MDU is an autonomous resource in the microengine which can carry out sequential multiply,
multiply-accumulate, fractional multiplication and divide operations, selected through the
microinstruction fields ALUOP or ALUOPI. The unit supports signed and unsigned multiply and
fractional multiplication of any combination of 8, 16 or 24-bit operands1, and also signed and unsigned
24-bit multiply-accumulate. Divide operation is unsigned, and both operands are always 24-bit wide.

Depending on the size of operands and the type of operation, MDU can take more than one microcycle to
execute the operation, but microengine continues to execute microinstructions in parallel. When the
microcode issues an END command, any MDU executing operation terminate immediately and is left
incomplete. When selecting an operation that uses MDU, the result is always placed in MACH and MACL
registers, and the register selected as destination does not have its value changed (Section 24.5.9.2.2,
Selecting sources and destination). During calculations, MACH and MACL holds temporary values and
should not be written, otherwise the result is unpredictable. One must not start an MDU operation while
MDU is already busy: the result is unpredictable for both the ongoing operation and the started one.

MDU Operations update its own set of five flags, described in Section 24.5.8.3.10, MDU Flags. MDU
operations never update C, N, V and Z flags. CIN and BINV microinstruction fields affect MDU
operations according to Table 24-70.

Table 24-69. ALU Flags in Absolute Value operation

Operation size V, N1

1 V, N can be 1 on 8- and 16-bit Absolute Value, because the operand sign is always taken from bit 23.
V, N can also be 1 in 23-bit Absolute Value (or 8-bit and 16-bit with sign extension), if the operand is
0x800000 (0x80, 0x8000).

C Z

8 alu_output[[7] AS[23] alu_output[7:0] == 0

16 alu_output[15] alu_output[15:0] == 0

23 alu_output[23] alu_output[23:0] == 0

1. There is no distinct selection of 24-bit fractional multiplication, for it works exactly as a 24-bit ordinary multiplication.

Table 24-70. CIN and BINV with MDU operations

B-source operand BINV CIN Operation performed

signed 1 1 AS mdu_op BS

0 0 AS mdu_op (-BS)

1 0 reserved

0 1 reserved

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 925

24.5.8.3.1 Multiply and Multiply-Accumulate Operation Length

MDU needs two sources, A source and B source, to perform an operation. The time needed to perform a
multiply or multiply-accumulate is:

• On 24-bit x 8 bit multiplies: 2 microcycles (one start-MDU plus one execution microcycle)

• On 24-bit x 16 bit multiplies: 3 microcycles (one start-MDU plus two execution microcycles)

• On 24 bit x 24 bit multiplies/macs: 4 microcycles (one start-MDU plus three execution
microcycles)

An internal pipeline in MDU allows multiply-accumulate (or even non-fractional multiply) operations to
start one microinstruction before a multiplication or multiply-accumulate (signed or unsigned) has been
completed (e.g., one can start one multiply or multiply-accumulate once every three microinstructions).
However, by doing that it is not possible to read the result in MACH and MACL (although the MDU flags
can be tested), so this is intended to be used in a multiply-accumulate sequence. It is also allowed to mix
different sizes in multiply/mac sequences.

Multiply-accumulate operations are similar to multiply operations, except that the contents of MACH and
MACL registers are added to the multiplication result.

When multiply or multiply accumulate operations finish, MACL and MACH hold the least and the most
significant 24-bit words, respectively.

24.5.8.3.2 Divide operation length

The divide operation is always unsigned. The division completes in 13 microcycles, meaning that after the
start divide microinstruction, one has to wait for 12 microcycles and then read the result and the remainder
in MACH and MACL registers. During the 12 execution microcycles, microengine can execute
microinstructions unrelated to the MDU.

24.5.8.3.3 Signed multiplication (mults)

MDU signed multiplication is defined as follows:
(signed) MACH,MACL = (signed) AS * (signed) BS

MC and MV flags are reset. MZ is set if result is 0, resets otherwise. MN is set if result is negative.

24.5.8.3.4 Unsigned multiplication (multu)

MDU unsigned multiplication is defined as follows:

unsigned1 1 1 AS mdu_op BS

1 0 AS mdu_op (BS+1)

0 x reserved

1 Includes the B-source (unsigned) in fmults (signed) operations.

Table 24-70. CIN and BINV with MDU operations

B-source operand BINV CIN Operation performed

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

926 Freescale Semiconductor

(unsigned) MACH|MACL = (unsigned) AS * (unsigned) BS

MC and MV flags are reset. MZ is set if result is 0, resets otherwise. MN is a copy of the most significant
bit of result.

24.5.8.3.5 Signed multiply-accumulate (macs)

MDU signed multiply-accumulate is defined as follows:
(signed/unsigned) {MACH,MACL} += (signed) AS * (signed) BS

MC is not altered.

MV is set if result can not be represented by a 48-bit signed number. MACS never resets MV flag: it is left
as is if no overflow occurs, or set it otherwise. This allows checking the overflow flag only once at the end
of a series of multiply-accumulate operations in a scalar product calculation.

if (({MACH,MACL} += AS * BS < -247) || ({MACH,MACL} += AS * BS > 247 - 1))
 MV = 1

MZ is set if result is 0, resets otherwise. MN is a copy of the most significant bit of result.

Note that only 24-bit multiply-accumulate is available.

24.5.8.3.6 Unsigned multiply-accumulate (macu)

MDU Unsigned Multiply-Accumulate is defined as follows:
(signed/unsigned) {MACH,MACL} += (unsigned) AS * (unsigned) BS

MC is set if result can not be represented by a 48-bit unsigned non-negative number. MACU never resets
MC flag: MC flag is left as is if no carry occurs, or set otherwise. This allows checking the carry flag only
once at the end of a series of multiply-accumulate operations in a scalar product calculation.

if (({MACH,MACL} += AS * BS < 0) || ({MACH,MACL} += AS * BS > 248 - 1))
 MC = 1

MV is not altered.

MZ is set if result is 0, resets otherwise. MN is a copy of the most significant bit of result.

Note that only 24-bit multiply-accumulate is available.

24.5.8.3.7 Signed fractional multiplication (fmults)

MDU Signed Fractional Multiplication takes the B-Source as an unsigned 8- or 16-bit fraction between 0
and (28 - 1)/28 (inclusive) for the 8-bit operation, or between 0 and (216-1)/216 (inclusive) for the 16-bit
operation. Only A-Source is taken as a signed number. The value of B-Source is considered the unsigned
numerator of a fraction with denominator 28 or 216 for the 8- and 16-bit operations, respectively.

The integer part of the result is stored in MACH, and the fractional part in MACL. The result is signed, so
that the concatenation of MACH and MACL form a 48-bit fixed point number with a 24-bit mantissa, both
for 8- and 16-bit operations. To calculate the unsigned numerator of the fractional part (with denominator

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 927

224) of the result, one must take the absolute value of MACL considering the signal of the result (not
MACL alone), i.e.: if flag MN = 1, invert MACL and add 1.

MDU flags are updated in the same way as in the Signed Multiplication.

24.5.8.3.8 Unsigned Fractional Multiplication (fmultu)

MDU Unsigned Fractional Multiplication takes both A-Source and B-Source as unsigned operands.
B-Source is taken as an 8- or 16-bit fraction between 0 and (28 - 1)/28 (inclusive) for the 8-bit operation,
or between 0 and (216-1)/216 (inclusive) for the 16-bit operation. The value of B-Source is considered the
numerator of a fraction with denominator 28 or 216 for the 8 and 16-bit operations, respectively.

The integer part of the result is stored in MACH, and the fractional part in MACL. The fractional part in
MACL is the numerator of a fraction with denominator 224. The concatenation of MACH and MACL form
a 48-bit fixed point number with a 24-bit mantissa, both for 8 and 16-bit operations.

MDU flags are updated in the same way as in the Unsigned Multiplication.

24.5.8.3.9 Unsigned Divide (div)

At the end of a divide operation MACL holds the result of the division, taking A-source as numerator and
B-source as denominator, while MACH holds the remainder. If a divide by 0 is executed, MACL holds the
maximum unsigned number (0xFFFFFF) as result and flag MV is set to indicate division by 0 (otherwise
reset). The contents of MACH become indetermined.

MC flag is always reset.

MZ flag is set if MACL equals 0, and reset otherwise.

MN receives a copy of MACH bit 23 (msb from the remainder).

Note that signed division is not available.

24.5.8.3.10 MDU Flags

MDU has its own flags to indicate the result and status of an MDU operation. They are: MC, MZ, MV,
MN and MB. All MDU flags are updated with the final result at the end of the operation, and do not change
until the next operation finishes. Therefore it is possible to start a new MDU operation and test the flags
of the previous one in parallel, except for mult/mac with 8-bit operand (takes only 1 microcycle).

MDU Negative Flag – MN

MN flag is always a copy of MACH bit 23 at the end of the operation, either in signed or unsigned ones.
Note that MACH holds the rest of a division operation, which is always unsigned.

MDU Carry Flag – MC

MDU carry flag indicates if the result cannot be represented by a 48-bit number, in Signed and Unsigned
Multiply Accumulates. It is reset in the other operations.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

928 Freescale Semiconductor

MDU Zero Flag – MZ

In multiply and multiply-accumulate operations, MDU zero flag is asserted if MACH and MACL are equal
to zero at the end of an operation. In divide operations, zero flag is asserted if MACL (result) is equal to 0.

MDU Overflow Flag – MV

In multiply operations, MV flag is negated and keeps negated in the end, because the result of a
multiplication can always fit in a 48-bit result (MACH and MACL concatenated). In a
multiply-accumulate operation, MV is asserted if the result size is wider than 48 bits. MV flag work in
both signed and unsigned operations.

In divide operations it is only asserted if a divide-by-zero operation was executed.

MDU Busy Flag (MB)

MB tests as true at the next microinstruction after the MDU start operation, and as false at the last
microcycle of any MDU operation execution.

24.5.8.4 Branch Conditions

Microengine allows conditional branch. There are five sets of flags that can be tested in a conditional
branch: ALU flags, MDU flags, P flags, Channel flags, and Semaphore flag (flag SMLCK).

When a thread starts to be executed, the values in MDU and ALU flags are not initialized. ALU flags are
described in Section 24.5.8.2.1, ALU Flags. MDU flags are described in Section 24.5.8.3.10, MDU Flags.
MDU and ALU flags are updated during execution of microinstructions.

P flags are actually the upper byte of P register, which optionally can work as user defined flags (see
Section 24.5.8.1.1, P Register).

Channel flags Flags0, Flag1, MRLA, MRLB, TDLA, TDLB, PSS, PSTI and PSTO are obtained from the
selected channel (value in CHAN register), while channel flags, LSR, FM[0] and FM[1] are selected by
the serviced channel, regardless of the CHAN value1.

Flags TDLA/B, MRLA/B, LSR, FM[1:0] and PSS, are sampled at the beginning of a thread. Flag PSS does
not change during its execution while CHAN register is not written. When a write in CHAN register is
performed, all flags except LSR and FM[1:0] are updated according to the channel specified by CHAN
value. Flags MRLA/B and TDLA/B are reset when their respective latches in channel are cleared by
microcode.

1. Serviced channel does not change during execution of a thread, and it is the channel that requested a service (initial value of
CHAN register when a thread starts).

Table 24-71. Channel flags as branch condition

Flag Description Service or selected channel

Flag0 State Resolution flag Reflects the selected channel (CHAN)

Flag1 State Resolution flag Reflects the selected channel (CHAN)

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 929

Semaphore condition SMLCK always indicates if a semaphore is locked for the engine, resolving as false
before any lock attempt. For each trial, the SMLCK flag is updated. The SMLCK value set in one thread
is not meaningful to the other. After a free, the SMLCK condition tests as false until a new lock attempt
on the same thread.

Branch conditions are selected through instruction fields BCC and BCF (see Section ,
Conditional/Unconditional branch).

24.5.9 Microinstruction set

Each microinstruction can execute up to three microoperations in parallel. Microinstructions are grouped
into formats, and there are four types of microoperations:

• ALU/MDU Operations

• SPRAM Operations

• Channel Configuration/Control Operations

• Flow Control Operations

Each microinstruction format is defined by a set of microinstruction fields, which determine the
operations, each belonging to one of the groups above (there may be several in one group). Complete
microinstruction formats are shown in Section 24.5.9.7, Microinstruction formats.

Parallelism conflicts may arise when two operations are executed in the same microinstruction. These
situations are explained in Section 24.5.9.6, Microinstruction parallelism issues.

MRLA Match A Recognition Latch These flags reflect the selected channel (CHAN)
see Section 24.5.5.2.1, MRLA/B – Match Recognition
Latches, and Section 24.5.5.3.1, TDLA/B – Transition
Detect Latches, for more information.

MRLB Match B Recognition Latch

TDLA Transition A Detection Latch

TDLB Transition B Detection Latch

LSR Link Service Request Reflects the serviced channel.

PSS Sampled Input Pin State Reflects the selected channel (CHAN). Does not
change if CHAN is not changed (see
Section 24.5.5.1.2, Pin Control Registers).

PSTI Current Input Pin State. Reflects the selected channel (CHAN).
Changes any time.

PSTO Current Output Pin State Reflects the selected channel (CHAN).
Changes any time.

FM[1:0] Function Mode Bits reflects the Function Mode for serviced channel
(Section 24.4.7.2, ETPU_CxSCR – eTPU Channel x
Status Control Register)

Table 24-71. Channel flags as branch condition (continued)

Flag Description Service or selected channel

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

930 Freescale Semiconductor

24.5.9.1 SPRAM microoperations

The access to SPRAM is made by providing an address and a register to perform a data transfer, except
semaphore operations, which are also classified in the SPRAM group. Only P and DIOB registers can
exchange data with SPRAM. Microengine always addresses SPRAM in 32-bit boundaries, for 8, 24, or
32-bit wide data.

Direction is determined by the field RW in all addressing modes: RW = 0 selects read and RW = 1 selects
write.

24.5.9.1.1 SPRAM Addressing Modes

The eTPU has four addressing modes:

• Absolute

• Selected Channel Relative

• Indirect

• Engine Relative

The addressing modes Absolute and Selected Channel Relative use immediate bits to form the physical
address of SPRAM, which is identified in microinstruction as a field called AID. AID field can be 3, 7, or
8-bit wide depending on the addressing mode.

Absolute addressing mode

In Absolute addressing mode, the address range is 256 parameters, addressed by field AID, which in this
mode is 8-bit wide. These parameters are located in SPRAM addresses from 0 to 255.
physical_address = AID[7:0]

Selected channel relative addressing mode

In Selected Channel Relative addressing mode, only the first 8 (with 3-bit AID) or 128 (with 7-bit AID)
parameters of the selected channel are accessible, depending on the microinstruction format. Physical
address is calculated using the channel parameter base address that is specified in field CPBA of
ETPU_CxCR (see Section 24.4.7.1, ETPU_CxCR – eTPU Channel x Configuration Register). AID field
is added to channel parameter base address to compose the physical address. The equation is:
physical_address = selected_channel_parameter_base_address + AID[6:0], or

physical_address = selected_channel_parameter_base_address + AID[2:0]

Indirect addressing mode

In Indirect Addressing mode the physical address is taken from DIOB register. Only DIOB bits 13 to 2 are
relevant. Since the SPRAM word address is shifted two bits up in DIOB, its contents hold the same
parameter address value used by Host. The equation is:
physical_address = DIOB[13:2], or

physical_address = (truncated) DIOB / 4

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 931

Indirect addressing mode can have post-increment or pre-decrement on DIOB, allowing stack operations.
See Section 24.5.9.1.6, DIOB stack operation, for more information.

Engine relative addressing mode

In Engine Relative Addressing mode the physical address is the concatenation of the ETPU_ECR field
ERBA (see Section 24.4.2.5, ETPU_ECR – eTPU Engine Configuration Register) with the 7-bit AID
instruction field. This allows the same function microcode, when running on distinct engines, to access
different address spaces, global to the engine only.

24.5.9.1.2 SPRam source/destination registers

When performing an SPRAM operation, only DIOB or P can be used as data source or destination. P is
32-bit wide, and DIOB is 24-bit wide. Microinstruction field P/D (1 bit) is used to choose between P and
DIOB as data the source or destination. When the P/D field is not available in microinstructions that
support SPRAM access, the source/destination is P.

24.5.9.1.3 SPRAM operation size

When using DIOB register to perform SPRAM data transfers, the operation size is always 24-bit wide
(lower 24 bits of SPRAM). When using P register, the operation size can be 8, 24 or 32-bit wide, which is
controlled by microcode RSIZ field (2 bits). RSIZ meaning is shown in Table 24-73.

RSIZ is not available in all microinstructions that support SPRAM access. In microinstructions where
RSIZ field is not available, SPRAM access will be 24 bits by default.

When performing a Zero SPRAM write operation (see Section 24.5.9.1.5, Zero SPRAM operation), RSIZ
defines the size of operation regardless of the P/D field (Section 24.5.9.1.2, SPRam source/destination
registers).

Table 24-72. SPRAM source/destination register selection

P/D Meaning

0 P access

1 DIOB access

Table 24-73. SPRAM P access size

RSIZ P access DIOB access

00 full 32-bit access (i.e. P[31:0]=SPRAM[addr] [31:0]) RESERVED

01 only upper 8 bits are transferred (i.e. P[31:24] = SPRAM[addr] [31:24]) RESERVED

10 only lower 24 bits are transferred (i.e. P[23:0] = SPRAM[addr] [23:0]) DIOB =
 SPRAM[addr] [23:0]

11 RESERVED RESERVED

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

932 Freescale Semiconductor

24.5.9.1.4 SPRAM access direction

RW field defines the direction of the access in the SPRAM. The access direction is summarized in
Table 24-74.

24.5.9.1.5 Zero SPRAM operation

Zero SPRAM operation is controlled by microcode field ZRO (1 bit). When ZRO field is 0, the data
portion written in SPRAM or in P/DIOB (SPRAM read) registers will always be 0x0. When performing a
Zero SPRAM write operation, the RSIZ is relevant regardless of the P/D field (usually RSIZ is meaningful
only for P/D = 0), which means that zero SPRAM write operation can be performed with 32, 24 or 8 bits
according to SPRAM operation size. These conditions are summarized in Table 24-75.

NOTE

When field STC is present, STC = 11 also disables Zero SPRAM operation
(see Table 24-76). The conflicts with DIOB operations (see
Section 24.5.9.1.6, DIOB stack operation) and ALU operations are resolved
like a normal SPRAM operation (see Table 24-117).

24.5.9.1.6 DIOB stack operation

SPRAM Indirect Addressing Mode (see Section , Indirect addressing mode) is used if STC field (2 bits)
exists in the microinstruction, controlling automatic increment/decrement of DIOB register, as shown in
Table 24-76, thus allowing stack operations. DIOB is incremented and decremented in word addresses,
only from bits 15 downto 2, i.e.: the bits 23 to 16 and 1 to 0 are left untouched by STC pre-decrement and
post-increment.

Table 24-74. SPRAM access direction

R/W Meaning

0 read SPRAM parameter into P or DIOB registers

1 write SPRAM parameter from P or DIOB registers

Table 24-75. Zero SPRAM operation

ZRO RW P/D Meaning

0 0 0 Clear P register. Size is determined by RSIZ field. See Section 24.5.9.1.3, SPRAM operation
size.

0 0 1 Clear DIOB (all 24 bits), independently of RSIZ

0 1 x Clear SPRAM parameter. Size is determined by RSIZ field. See Section 24.5.9.1.3, SPRAM
operation size.

1 RW P/D Regular SPRAM operation

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 933

24.5.9.1.7 Semaphore operations

Semaphore lock and free operations are available through eTPU microcode. For more information about
semaphores see Section 24.5.4.4, Hardware Semaphores. Two microinstruction fields control semaphore
operations: FL (1 bit) and SMPR (2 bits). Serviced channel sees four semaphores, selected by field SMPR.

When freeing a semaphore, the field SMPR has no meaning. This is because only one semaphore can be
locked at a time by each engine, so when freeing a semaphore it is not necessary to specify its number.

NOTE

If microcode tries to lock a semaphore already locked for the same engine,
the semaphore continues locked for the engine and the SMLCK branch
condition resolves as true.

24.5.9.2 ALU/MDU operations

ALU/MDU microoperations mostly comprises two sources, one destination and one operation. The
operation is generally selected through fields ALUOP, ALUOPI or SHF. In formats where there is no
operation selection field (ALUOP, ALUOPI or SHF), the operation performed is always addition;
however, it is possible to perform subtraction, increment or decrement using fields BINV (see
Section 24.5.9.2.4, B-Source inversion) and CIN (see Section 24.5.9.2.5, Carry-in Control).

24.5.9.2.1 Source and destination register set selection

Microcode field T4ABS allows selection of a source from either one of two register sets, shown in
Table 24-81. The same applies to T2ABD, used for ALU destination selection with other two register sets,
as shown in Table 24-82. Microinstruction fields ABSE and ABDE control the register set selection for
source and destination, respectively, when available at the format. In formats without ABSE/ABDE, the
field T4BBS determines the register sets used by T2ABD and T4ABS, as shown in Section ,
Microinstructions Without Fields ABSE and ABDE.

Table 24-76. DIOB Post-Increment / Pre-Decrement – STC

STC Meaning

00 Post-Increment of DIOB

01 Pre-Decrement of DIOB

10 No Increment/Decrement (normal access)

11 No SPRAM Access1

1 Also disables Zero SPRAM operation

Table 24-77. Semaphore operations fields

Field Meaning

FL 0 = free semaphore,
1 = lock semaphore

SMPR semaphore number selector

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

934 Freescale Semiconductor

Microinstructions with fields ABSE and ABDE

In microinstructions where ABSE and ABDE fields are available (1 bit each), ABSE controls register set
selection for T4ABS and ABDE controls register set selection for T2ABD. Table 24-78 shows the
meaning of values for ABSE and ABDE fields.

Microinstructions Without Fields ABSE and ABDE

When ABSE and ABDE are not available in a microinstruction format, register set is selected by T4BBS
field. Table 24-79 explains how to select a register set either for T4ABS and T2ABD.

24.5.9.2.2 Selecting sources and destination

All ALU/MDU operations need two sources (called AS and BS) and one destination (called AD), except
for some of those that use immediate data (see Section 24.5.9.2.11, Operations with immediate data).
Fields T4ABS (4 bits), ABSE (1 bit), T4BBS (3 bits) select sources, while T2ABD (4 bits) and ABDE (1
bit) select the destination. When MDU is used (multiply/divide), T2ABD destination selection is ignored
and results are stored in MACH and MACL (see Section 24.5.8.3, MAC and Divide Unit (MDU)). ABSE
and ABDE are not available in some microinstruction formats that support ALU/MDU operations.
However, in all formats where ABSE is available, ABDE is also available and vice-versa. The existence
of ABSE/ABDE fields changes the meaning of T4BBS field, as shown in Table 24-80. On instructions
with immediate data, it is used as B-source (see Section 24.5.9.2.11, Operations with immediate data).

All sources and destinations have a size associated to them, and these sizes are used to select flag sample
position (see Section 24.5.9.2.3, Flags sampling control). Sizes can be 8, 16 or 24 bits. Registers that are
not exactly of one of these sizes are treated as the immediately upper size (e.g., CHAN[4:0] is an 8-bit
source). See Section 24.5.9.2.3, Flags sampling control, for more information.

Table 24-78. Register Set Selection by ABSE or ABDE

ABSE or ABDE Register set selected

0 second

1 first

Table 24-79. Register set selection by T4BBS w/o ABSE, ABDE

T4BBS Register set for T2ABD Register set for T4ABS

0xx first first

100 second second

101 second first

110 first second

111 first first

none1

1 Refers to operations with immediate data as B-source, without ABSE, ABDE.

first first

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 935

Some parallelism issues arise when selecting P, DIOB, ERTA or ERTB as destination registers, since they
can be modified by other microoperations in the same microinstruction (see Section 24.5.9.6,
Microinstruction parallelism issues, for details).

T4ABS selects one source from two register sets, shown in Table 24-81. ABSE and T4BBS control which
set T4ABS field uses to select the source. For more information about how to select a register set for
T4ABS and T2ABD see Section 24.5.9.2.1, Source and destination register set selection. All sources are
zero-filled to 24 bits, unless sign-extension is specified (see Section 24.5.9.2.8, A-Source size override).

Table 24-80. B source selection – T4BBS

T4BBS
Meaning in microinstruction formats with

ABSE/ABDE
Meaning in microinstruction formats without

ABSE/ABDE1

1 T4BBS also selects A-source and destination register set in this case, according to Table 24-79.

000 BS[23:0] = P[23:0]

001 BS[23:0] = A[23:0]

010 BS[23:0] = SR[23:0]

011 BS[23:0] = DIOB[23:0]

100 reserved BS = 0

101 reserved BS = 0

110 reserved BS = 0

111 BS = 0, or Max const., if CIN = 0 and BINV = 0 (see Section , Generating “max” constant).

Table 24-81. A Source Selection – T4ABS

T4ABS
First register set Second register set

Selected register Size Selected register Size

0000 AS[7:0]=P[7:0] 8 AS[7:0] = 0 8

0001 AS[7:0]=P[15:8] 8 AS[23:0]=C[23:0] 24

0010 AS[7:0]=P[31:24] 8 AS[15:0] = TPR[15:0] 16

0011 AS[23:0] = ERTB[23:0] 24 AS[23:0] = B[23:0] 24

0100 AS[23:0] = D[23:0] 24 AS[23:0] = TRR[23:0] 24

0101 AS[15:0] = P[15:0] 16 AS[7:0] = 0, read_match1 8

0110 AS[15:0] = P[31:16] 16 AS[13:0] = RAR[13:0] 16

0111 AS[7:0] = P[23:16] 8 AS[23:0] = MACH[23:0] 24

1000 AS[23:0] = P[23:0] 24 AS[23:0] = MACL[23:0] 24

1001 AS[23:0] = A[23:0] 24 AS[4:0]=CHAN[4:0] 8

1010 AS[23:0] = SR[23:0] 24 AS[14:2] = CHAN_BASE2 16

1011 AS[23:0] = DIOB[23:0] 24 AS[13:0] = ENGINE_BASE3 16

1100 AS[23:0] = TCR1[23:0] 24 Reserved -

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

936 Freescale Semiconductor

T2ABD selects the destination from one of two register sets, shown in Table 24-82. ABDE and T4BBS
control which set T2ABD field uses to select the destination.

1101 AS[23:0] = TCR2[23:0] 24 Reserved -

1110 AS[23:0] = ERTA[23:0] 24 Reserved -

1111 AS[23:0] = 0 24 Reserved -

1 T4ABS = 0101 with second register set also reads MatchA/B registers into ERTA/B (see Section , Special T4ABS
source operation: Read match registers).

2 CHAN_BASE is the selected channel’s base SPRAM address in channel relative address mode (see Section ,
CHAN_BASE as a Source).

3 ENGINE_BASE is the ETPU_ECR field ERBA shifted left nine positions.

Table 24-82. Destination selection – T2ABD

T2ABD
First register set Second register set

Selected register Size Selected register Size

0000 A[23:0] = AD[23:0] 24 C[23:0] = AD[23:0] 24

0001 SR[23:0] = AD[23:0] 24 LINK[7:0] = AD[7:0] 8

0010 ERTA[23:0] = AD[23:0]1

1 T2ABD = 0010 with first register set also writes to MatchA or UDCM registers of the selected channel if field ERWA = 0
(see Section 24.5.9.3.5, Write Channel Match and UDCM Registers).

24 TPR[15:0] = AD[15:0] 16

0011 ERTB[23:0] = AD[23:0]2

2 T2ABD = 0011 with first register set also writes to MatchB register of the selected channel if field ERWB = 0.

24 B[23:0] = AD[23:0] 24

0100 DIOB[23:0] = AD[23:0] 24 CHAN[4:0] = AD[4:0] 8

0101 P[15:0] = AD[15:0] 16 D[23:0] = AD[23:0] 24

0110 P[31:16] = AD[15:0] 16 RAR[12:0] = AD[12:0] 16

0111 P[23:0] = AD[23:0] 24 MACH[23:0] = AD[23:0] 24

1000 TCR1[23:0] = AD[23:0] 24 MACL[23:0] = AD[23:0] 24

1001 TCR2[23:0] = AD[23:0] 24 Reserved -

1010 P[31:24] = AD[7:0] 8 Reserved -

1011 P[23:16] = AD[7:0] 8 Reserved -

1100 P[15:8] = AD[7:0] 8 Reserved -

1101 P[7:0] = AD[7:0] 8 Reserved -

1110 TRR[23:0] = AD[23:0] 24 Reserved -

1111 no destination selected3

3 if no destination is selected, ALU flags are updated, although the result is lost.

24 Reserved -

Table 24-81. A Source Selection – T4ABS

T4ABS
First register set Second register set

Selected register Size Selected register Size

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 937

Max constant generation with T4BBS = 111

When T4BBS = 111, BINV = 0, and CIN = 0, the value assigned to BS will be 0x800000, and not 0x0 as
expected. See Section , Generating “max” constant, for a detailed explanation.

Special T4ABS source operation: Read match registers

When T4ABS = 0101 and the source for T4ABS is selected from the second register set, the constant 0x00
is used as AS (8-bit size) and the following register transfer is performed in parallel as well: match registers
of the selected channel (value in CHAN register) are copied to ERTA/ERTB registers, where ERTA
receives the value of MatchA register and ERTB receives the value of MatchB register (see
Section 24.5.5.1.1, ER – Event Registers). Note that ALU destination can still be chosen by T2ABD in
parallel. When ERTA or ERTB is selected by T2ABD, a parallelism issue arises (see Section 24.5.9.6.1,
ALU operations and read match registers).

CHAN_BASE as a Source

Each channel has a parameter base address in SPRAM, which is configured in ETPU_CxCR registers,
CPBA field (see Section 24.4.7.1, ETPU_CxCR – eTPU Channel x Configuration Register).
CHAN_BASE, which represents a parameter address (CPBA*2), can be used as A-source using
T4ABS = 1010 when T4ABS selects a source from the second register set. In this case, CHAN_BASE is
loaded into AS[13:2] to form the byte address (AS[23:14] = 0, AS[1:0] = 0). For example, in Indirect
addressing mode, where the destination register is DIOB, CHAN_BASE is loaded into DIOB[13:2], which
is the parameter address, and DIOB[13:0] represents the byte address. CHAN_BASE is the base address
of the selected channel (given by CHAN register).

24.5.9.2.3 Flags sampling control

This section explains how the flags Z (zero), C (carry), N (negative) and V (overflow) are updated in an
ALU operation. When there are post-ALU shift operations, the ALU Carry Out is not directly sampled in
Carry flag, but passed to the post-ALU shifter (see Section 24.5.9.2.6, Shift operations). Since the size of
source operands in ALU operations is variable, flags can be sampled as an operation of 8, 16 or 24 bits
wide. The operation size selection is automatic, based on defined sizes of sources and destination, using
the equation:
operation_size = minor(size_of(destination), greater(size_of(A-Source), size_of(B-Source)))

Operation size can also be shown with the following table:

Table 24-83. Operation size determination

A Source B Source Destination Operation size

x x 8 bits 8 bits

8 bits 8 bits x 8 bits

16 or 24 bits x 16 bits 16 bits

16 bits 8 or 16 bits 24 bits 16 bits

8 or 16 bits 16 bits 24 bits 16 bits

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

938 Freescale Semiconductor

NOTE

Whenever BS = (constant) 0, its size is considered 8 bits, and all 24 bits in
B-bus are set to 0. Therefore, all operations with BS = (constant) 0 have
their size determined by AS and Destination only.

CCS field (1 bit) controls whether flags will be updated or not (Table 24-85). When CCS bit exists in a
microinstruction, the operation size will be used to sample flags. In some microinstructions CCS field is
replaced by CCSV (2 bits, Table 24-84). Flag sampling according to CCSV can be set as defined by the
operation size, or fixed as 8 or 16-bit operations.

NOTE

For the post-ALU rotate right operation, CCSV also determines the rotate
size: whether 8-bit, 16-bit, or determined by the operation size.

When neither CCS nor CCSV are present in the microinstruction, flags are not sampled. CCS and CCSV
do not affect the Carry update on Exchange Bit operation (see Section 24.5.8.2.6, Exchange bit), but does
control the N and Z flags.

24.5.9.2.4 B-Source inversion

The data selected as second source (T4BBS) can be inverted (bitwise boolean NOT) before operation. This
is controlled by microinstruction field BINV (1 bit, Table 24-86). A zero value for BINV activates
B-source inversion.

24 bits x 24 bits 24 bits

x 24 bits 24 bits 24 bits

Table 24-84. Flag Sampling Using CCSV field

CCSV Meaning

00 sample flags as an 8 bit operation

01 sample flags as a 16 bit operation

10 sample flags as defined by operation size

11 do not sample flags

Table 24-85. Flag Sampling Using CCS field

CCS Meaning

0 sample flags as defined by operation size

1 do not sample flags

Table 24-83. Operation size determination

A Source B Source Destination Operation size

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 939

BINV also selects between adc or sbc enhanced ALU operation, using inverted C flag as carry-in besides
BS inversion for sbc. Note that BINV does not invert carry in fixed-carry operations (see
Section Table 24-87., ALU Carry-In Control).

When BINV = 0, T4BBS = 111 and CIN = 0, the value assigned to BS is 0x800000, instead of 0x0. See
Section , Generating “max” constant, for more details.

24.5.9.2.5 Carry-in Control

CIN field (1 bit, Table 24-87) controls the carry-in for addition/subtraction operations. Functionality of
CIN field depends on the arithmetic operation selected by ALUOP. When ALUOP is not available in
microinstruction, the operation selected is add. For carry-in control in MDU operations, see Table 24-70.

Generating “max” constant

When T4BBS = 111, CIN = 0 and BINV = 0, BS is assigned to 0x800000 (called “max constant”) instead
of 0x000000. This is an exception for CIN and BINV fields: when “max constant” is selected, the carry in
is 0 and B-source (“max constant” itself) is not inverted, neither the carry out.

“Max constant” is the value which, added to a time base value minus 1, gives the farthest wrapped time
base value that satisfies a channel greater-equal comparison. See Section 24.5.5, Enhanced Channels, for
more information.

24.5.9.2.6 Shift operations

There are three types of shift operations: ALU, post-ALU and Shift Register. ALU shift operations are
covered in Section 24.5.9.2.10, ALU/MDU Operation Selection. Post-ALU and Shift Register are covered
in the following sections.

Table 24-86. B-Source Inversion – BINV

BINV Meaning

0 invert B-source1

1 Except on max-constant selection, see Section , Generating
“max” constant.

1 keep B-source bus unchanged

Table 24-87. ALU Carry-In Control

Operation CIN = 0 CIN = 1

add (addition) carry-in used is 11

1 Except on max-constant selection, see Section , Generating “max” constant.

carry-in used is 0

adc (addition with carry)2

2 Selected by ALUOP = 11000 and BINV = 1

carry-in used is C flag

sbc (subtraction with borrow)3

3 Selected by ALUOP = 11000 and BINV = 0

carry-in used is inverted C flag

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

940 Freescale Semiconductor

Shift register operations

SR can be used as a general purpose register and it can easily shift-right its contents, combined or not to
post-ALU shift operations. If field SRC (1 bit) in microcode is 0, SR will shift its contents 1 bit to the right
according to the algorithmic description below. SR shifting operation depends also on SHF or ALUOP
fields. ALUOP and SHF never exist both on the same microinstruction format.

SR Operation:
SR[22:0] = SR[23:1];
if SHF == “01” or ALUOP == “10110” then
 SR[23] = ALU_OUT[0];
else
 SR[23] = 0;
endif;

Post-ALU shift operations

Post-ALU shift can be selected by SHF field (2 bits) or by some specific ALUOP field values. SHF and
ALUOP fields are never both available in the same microinstruction format. When selecting post-ALU
shift operation using ALUOP field, ALU will always add the sources before shifting the result.

Carry flag is only updated when CCS or CCSV[1:0] fields allow it (see Section 24.5.9.2.3, Flags sampling
control). Algorithmic descriptions of post-ALU shift operations are presented in Section 24.5.8.2.2, ALU
ADD Operation with and without shifting.

24.5.9.2.7 Conditional ALU/MDU operation execution

The 3-bit field AS/CE allows conditional execution of arithmetic operation, as shown in Table 24-90. The
same field can also be used for overriding the size of A-Source (see Section 24.5.9.2.8, A-Source size
override).

Table 24-88. Shift Register Control – SRC

SRC Meaning

0 shift right SR 1 bit

1 no shift

Table 24-89. Post-ALU shift operation

Post ALU operation SHF1

1 ALU performs AS+BS before shift/rotate for all SHF values.

ALUOP

shift left (1 bit) 00 10101

shift right (1 bit) 01 10110

rotate right (1 bit) 10 10111

no shift/rotate 11 any other2

2 Some ALUOP combinations perform shift/rotate, but not using the Post-ALU Shifter (see
Table 24-94)

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 941

Other operations not related to ALU/MDU in the same microinstruction are not affected by the AS/CE
field.

If a conditional operation is selected, there is no A-Source size override; similarly, when size override for
A-Source is selected, the ALU/MDU operation executes unconditionally.

When a conditional ALU/MDU operation is not executed:

• The destination register is not updated. If the destination is CHAN, no actions associated with
CHAN assignment occur (see Section , Channel Selection Register – CHAN).

• The ALU and MDU flags are not updated.

• MDU does not start any operation, i.e., MACH and MACL are not updated.

• SR does not shift.

• T4ABS-selected read-match does not occur.

24.5.9.2.8 A-Source size override

Some values if the AS/CE field are used for A-Source Size Override, as shown in Table 24-91.

Table 24-90. ALU/MDU conditional execution

AS/CE Meaning

000 Used for A-Source size override (see Section 24.5.9.2.8, A-Source size override)

001

010 execute if C = 1

011 execute if C = 0

100 execute if Z = 1

101 execute if Z = 0

110 execute if N = 1

111 execute unconditionally/no size override

Table 24-91. A-Source size override

AS/CE Meaning

000 A-source size override to 8 bits

001 A-source size override to 16 bits

010 Used for conditional execution (see Section 24.5.9.2.7, Conditional ALU/MDU operation execution)

011

100

101

110

111 execute unconditionally/no size override

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

942 Freescale Semiconductor

Register size override zero-pads an overridden source to 24-bits (if no sign extension is performed, see
Section 24.5.9.2.9, A-source sign extension) and affects operation size calculation. When register source
is wider than size override, most significant bits of selected register are not used as A source (zeros are
used instead). When size override is wider than selected register, register value is padded to zeros.When
size override is used with MDU operations, it affects only the operand values, but not the operation size:
MDU operation size is fully determined by the operation definition (fields ALUOP, ALUOPI).

24.5.9.2.9 A-source sign extension

The SEXT microinstruction field forces sign extension of A source according to the size of A operand,
either overridden or not by AS/CE field, according to Table 24-93. The sign is taken from the
size-overridden value, not the original one.

A-source sign is not extended in microinstructions without SEXT field, even if AS/CE field is present.

24.5.9.2.10 ALU/MDU Operation Selection

When field ALUOP is available in microinstruction, enhanced ALU operations shown in Table 24-94 can
be performed, otherwise addition is performed. The ALU operations are defined in Section 24.5.8.2, ALU
and Post-ALU Shifter. The MDU operations are defined in Section 24.5.8.3, MAC and Divide Unit
(MDU).

Table 24-92. AS/CE field A source size override funcionality

Size override Size of selected register AS value1

1 All values are zero-padded to 24 bits

8 bits 8 bits reg[7:0]

8-bits 16 bits reg[7:0]

8bits 24 bits reg[7:0]

16 bits 8 bits reg[15:0]

16 bits 16 bits reg[15:0]

16 bits 24 bits reg[15:0]

Table 24-93. A source Sign Extension

SEXT Meaning

0 extends sign of A source from its size to 24-bits

1 does not extend sign of A source

Table 24-94. ALU Operation Selection – ALUOP

ALUO
P

Operation Comment

00000 AS mults BS[7:0] signed multiplication

00001 AS multu BS[7:0] unsigned multiplication

00010 AS fmults BS[7:0] signed fractional multiplication

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 943

00011 AS fmultu BS[7:0] unsigned fractional multiplication

00100 AS mults BS[15:0] signed multiplication

00101 AS multu BS[15:0] unsigned multiplication

00110 AS fmults BS[15:0] signed fractional multiplication

00111 AS fmultu BS[15:0] unsigned fractional multiplication

01000 AS mults BS[23:0] signed multiplication

01001 AS multu BS[23:0] unsigned multiplication

01010 AS macs BS[23:0] signed multiply-accumulate

01011 AS macu BS[23:0] unsigned multiply-accumulate

01100 AS div BS[7:0] unsigned division by 8-bit value

01101 AS div BS[15:0] unsigned division by 16-bit value

01110 AS div BS [23:0] unsigned division by 24-bit value

01111 n.a. RESERVED

10000 AS[23:0] | BS[23:0] 24 bit bitwise OR

10001 AS[23:0] ^ BS[23:0] 24 bit bitwise XOR

10010 AS[23:0] & BS[23:0] 24 bit bitwise AND

10011 abs(AS) absolute value of AS

10100 AS + BS arithmetic addition

10101 (AS + BS) shl 1 arithmetic addition with 1-bit post-ALU shift left. (Section , Post-ALU shift
operations)

10110 (AS + BS) shr 1 arithmetic addition with 1-bit post-ALU shift right (Section , Post-ALU shift
operations)

10111 (AS + BS) ror 1 arithmetic addition with 1-bit post-ALU rotate right (Section , Post-ALU shift
operations)

11000 AS adc/sbc BS1 addition/subtraction with C flag (Section 24.5.9.2.5, Carry-in Control)

11001 AS shl (2^(BS[1:0]+1)) AS is shifted left: 2 bits for BS = 0; 4 for BS = 1; 8 for BS=2; 16 for BS=3

11010 AS shr (2^(BS[1:0]+1)) AS is shifted right: 2 bits for BS = 0; 4 for BS = 1; 8 for BS=2; 16 for BS=3

11011 AS ror (2^(BS[1:0]+1)) AS is rotated right: 2 bits for BS = 0; 4 for BS = 1; 8 for BS=2; 16 for BS=3

11100 AS exch BS[4:0] exchange C flag and AS bit determined by BS[4:0] (Section 24.5.8.2.6, Exchange
bit)

11101 AS setb BS[4:0] set bit in AS determined by BS[4:0] 2

11110 AS clrb BS[4:0] clear bit in AS determined by BS[4:0]2

11111 n.a. RESERVED

1 Addition/Subtraction is selected by field BINV (see Section 24.5.9.2.4, B-Source inversion)

Table 24-94. ALU Operation Selection – ALUOP (continued)

ALUO
P

Operation Comment

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

944 Freescale Semiconductor

24.5.9.2.11 Operations with immediate data

Immediate data can be used with some specific microinstruction formats. eTPU microcode allows 8-, 16-
or 24-bit immediate data. Immediate data is loaded as B-source, so T4BBS field is not available. When
using 24-bit immediate, an add is performed with A-source = 0 and flags are not updated. ALU operations
are available with 8-bit immediate, although the field that selects ALU operation in this case is ALUOPI.

24-bit immediate destination

When using 24-bit immediate data, the destination register is selected by T2D field (2 bits), according to
Table 24-95.

Enhanced ALU operations with immediate data

Enhanced operations with immediate data, selected by ALUOPI (5 bits) are allowed only with an 8 bit
immediate operand (see Table 24-96).

2 In setb and clrb operations, the register that drives A source is not changed, unless selected as destination of the
operation.

Table 24-95. 24-bit Immediate Destination – T2D

T2D Target Register

00 P[23:0]

01 A[23:0]

10 SR[23:0]

11 DIOB[23:0]

Table 24-96. ALU Operation Selection With Immediate Data – ALUOPI

ALUOPI Operation Comment

00000 AS mults #imm8 signed multiplication

00001 AS multu #imm8 unsigned multiplication

00010 AS fmults #imm8 signed fractional multiplication

00011 AS fmultu #imm8 unsigned fractional multiplication

00100 AS div #imm8 unsigned division

00101 n.a. reserved

00110 n.a. reserved

00111 n.a. reserved

01000 AD[7:0] = AS[7:0] | #imm8, AD[23:8] =
AS[23:8]

bitwise OR

01001 AD[7:0] = AS[7:0] ̂ #imm8, AD[23:8] =
AS[23:8]

bitwise XOR

01010 AD[7:0] = AS[7:0] & #imm8, AD[23:8]
= AS[23:8]

bitwise AND

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 945

01011 AD[7:0] = AS[7:0] & #imm8, AD[23:8]
= 0x0

bitwise AND with clear

01100 AD[15:8] = AS[15:8] | #imm8,
AD[23:16] = AS[23:16],

AD[7:0] = AS[7:0]

bitwise OR

01101 AD[15:8] = AS[15:8] ^ #imm8,
AD[23:16] = AS[23:16],

AD[7:0] = AS[7:0]

bitwise XOR

01110 AD[15:8] = AS[15:8] & #imm8,
AD[23:16] = AS[23:16],

AD[7:0] = AS[7:0]

bitwise AND

01111 AD[15:8] = AS[15:8] & #imm8,
AD[23:16] = 0x0,

AD[7:0] = 0x0

bitwise AND with clear

10000 AD[23:16] = AS[23:16] | #imm8,
AD[15:0] = AS[15:0]

bitwise OR

10001 AD[23:16] = AS[23:16] ^ #imm8,
AD[15:0] = AS[15:0]

bitwise XOR

10010 AD[23:16] = AS[23:16] & #imm8,
AD[15:0] = AS[15:0]

bitwise AND

10011 AD[23:16] = AS[23:16] & #imm8,
AD[15:0] = 0x0

bitwise AND with clear

10100 AS + #imm8 arithmetic addition

10101 (AS + #imm8) shl 1 arithmetic addition with 1-bit shift left.

10110 (AS + #imm8) shr 1 arithmetic addition with 1-bit shift right

10111 (AS + #imm8) ror 1 arithmetic addition with 1-bit rotate right

11000 n.a. reserved

11001 AS shl (2^(#imm8[1:0]+1)) AS is shifted left: 2 bits for #imm8 = 0; 4 for #imm8 = 1;
8 for #imm8=2; 16 for #imm8=3

11010 AS shr (2^(#imm8[1:0]+1)) AS is shifted right: 2 bits for #imm8 = 0; 4 for #imm8 = 1;
8 for #imm8=2; 16 for #imm8=3

11011 AS ror (2^(#imm8[1:0]+1)) AS is rotated right: 2 bits for #imm8 = 0; 4 for #imm8 = 1;
8 for #imm8=2; 16 for #imm8=3

11100 AS exch #imm8[4:0] exchange C flag and AS bit determined by #imm8[4:0] (see
Section 24.5.8.2.6, Exchange bit)

11101 n.a. reserved

11110 n.a. reserved

11111 n.a. reserved

Table 24-96. ALU Operation Selection With Immediate Data – ALUOPI (continued)

ALUOPI Operation Comment

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

946 Freescale Semiconductor

24.5.9.3 Channel control and configuration microoperations

Channel Control and Configuration fields set configuration values in the channel logic of the channel
selected by the CHAN register, except fields LSR and CIRC.

24.5.9.3.1 Channel flags operations

Each channel has two associated hardware flags, called Channel Flag 0 and Channel Flag 1. Microcode
field FLC (3 bits) allows them to be set or cleared, as shown in Table 24-97. These flags can be tested by
microcode as a branch condition, and may also influence in the Entry Point taken, allowing fast state
decoding. For more details, see Section 24.5.1.1, Entry points.

24.5.9.3.2 Comparator and time base selection

TBSA and TBSB fields (4-bit wide each) are used to configure the type of the comparator and the time
bases used for match or capture (See Table 24-98and Table 24-99). TBSA can also be used to control the
Output Buffer Enable signal (See Table 24-46).

Table 24-97. P Flags Operation – FLC

FLC Meaning

000 clear flag0

001 set flag0

010 clear flag1

011 set flag1

100 copy flag1:flag0 from P[25:24]

101 copy flag1:flag0 from P[27:26]

110 copy flag1:flag0 from P[29:28]

111 no operation (nil)

Table 24-98. Time Base Selection 1 – TBSA

TBSA bit 2 1 0

TBSA[3] = 0

Bitfield Comparator selection Capture selection Match TB selection

0 greater or equal TCR1 TCR1

1 equal-only TCR2 TCR2

TBSA[3] = 1

action 2 1 0

set OBE = 1 0 0 0

set OBE = 0 0 0 1

do nothing 1 1 1

reserved all other values

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 947

24.5.9.3.3 Transition detection and pin action control

IPACA/B and OPACA/B fields are used to configure transition detection sensitivity (for the channel input
signal) or output pin action control (for the channel output signal), as defined in Table 24-100. IPACA and
IPACB have the same format, where IPACA is related to Match A and first transition detection, and IPACB
to Match B and second transition detection. The same applies in analogue way to OPACA and OPACB.

For the output signal, configuring OPAC registers does not change the current signal state, but defines the
action to be done when a match or transition detection occurs. See Section 24.5.5.2, Match Recognition,
and Section 24.5.5.4.4, Channel Modes on Output Signal Generation, for more information.
IPACA/B = 1xx also enables assertion of MRLA/B during Time Slot Transition. See Section 24.5.5.2,
Match Recognition.

24.5.9.3.4 Immediate pin state control

It is possible to change output signal state immediately by using PSC (2 bits) and PSCS (1 bit) fields.

Table 24-99. Time Base Selection 2 – TBSB

TBSB bit 2 1 0

TBSB[3] = 0

Bitfield Comparator selection Capture selection Match TB selection

0 greater or equal TCR1 TCR1

1 equal-only TCR2 TCR2

TBSB[3] = 1

action 2 1 0

do nothing 1 1 1

reserved all other values

Table 24-100. Input and Output Pin Action Control – IPACA/B and OPACA/B

 Value IPAC meaning OPAC meaning

000 Do not detect transitions Do not change output signal

001 Detect rising edge only Match1 sets output signal high

010 Detect falling edge only Match1 sets output signal low

011 Detect both edges Match1 toggles output signal

100 Detect input signal = 0 on Match1

1 Match A is used for IPACA/OPACA, and Match B for IPACB/OPACB.

Transition detection sets output signal low

101 Detect input signal = 1 on Match1 Transition detection sets output signal high

110 reserved Transition detection toggles output signal

111 do not change IPAC do not change OPAC

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

948 Freescale Semiconductor

24.5.9.3.5 Write Channel Match and UDCM Registers

Match registers can have their values changed using ERWA and ERWB fields (1 bit each). They also set
their respective MRLE register (see Section 24.5.5.2, Match Recognition).

ERWA can also be used to program the UDCM register (see Section , UDCM – User Defined Channel
Mode). The field CMW selects where the contents of ERTA is copied when ERWA is active (see
Table 24-102).

If ERTA or ERTB is a destination of an ALU operation and, at the same time, the respective ERWA/B field
is active, the new ERTA value is the one written into the MatchA/B register or the UDCM register.

24.5.9.3.6 Clear transition/match event registers

Flags MRLA, MRLB, TDLA and TDLB (see Section 24.5.5.1.1, ER – Event Registers) indicate the state
of matches and transitions detected in the selected channel, and it is possible to clear those flags using the
microcode fields MRLA, MRLB (1 bit each) and TDL (1 or 2 bits, depending on the format). The flags
cleared by these microcode fields are the actual channel flags, and also the ones sampled into the branch
logic.

Table 24-101. Immediate Pin State Control – PSC and PSCS

PSC PSCS Meaning

00 0 Set signal as specified by OPACA (see Section 24.5.9.3.3, Transition detection and pin action
control)

00 1 Set signal as specified by OPACB (see Section 24.5.9.3.3, Transition detection and pin action
control)

01 x Set signal high

10 x Set signal low

11 x Don’t change signal state

Table 24-102. Write MatchA/B – ERWA/B

Field CMW Value Action

ERWA 1 0 write ERTA value in MatchA. Enable matches for MatchA register (MRLEA = 1)

0 0 write ERTA value into UDCM

1 1 don’t change UDCM, MatchA and MRLEA

0 1 reserved

ERWB 1 0 write ERTB value in MatchB. Enable matches for MatchB register (set MRLEB = 1)

1 1 don’t change MatchB and MRLEB

0

0 0 reserved

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 949

TDL can be one or two bits wide, depending on the microinstruction format (see Section 24.5.9.7,
Microinstruction formats). Two-bit TDL allows independent clearing of TDLA and/or TDLB.
Table 24-104 defines the two-bit TDL field.

24.5.9.3.7 Disable matches

Microcode field MRLE (1 bit) allows disabling matches on channel selected by CHAN register, for both
MatchA and MatchB registers, by clearing their respective MRLE bits. Matches can be enabled for each
Match register using ERWA and ERWB fields (see Section 24.5.9.3.5, Write Channel Match and UDCM
Registers).

Some instruction formats have a two-bit MRLE field (see Section 24.5.9.7, Microinstruction formats)
which allows independent disabling of Matches 1 and 2, as shown in Table 24-106.

Table 24-103. Clear Transition/Match Event Registers – MRLA/B, TDL

Field Meaning

MRLA 0 = clear MRLA event register, 1 = don’t change

MRLB 0 = clear MRLB event register, 1 = don’t change

TDL (1 bit) 0 = clear TDLA and TDLB flags, 1 = don’t change

Table 24-104. Independent TDLA/B clear – two-bit TDL

Value Meaning

0 0 clear TDLA

0 1 clear TDLB

1 0 clear both TDLA and TDLB

1 1 do not clear TDLA or TDLB

Table 24-105. Disable Matches – MRLE

MRLE Meaning

0 Disable matches for Match A and Match B

1 don’t change match enabling

Table 24-106. Two-bit MRLE

MRLE Meaning

0 0 Disable Match A (clear MRLEA)

0 1 Disable both Matches (clear MRLEA and
MRLEB)

1 0 Disable Match B (clear MRLEB)

1 1 nop

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

950 Freescale Semiconductor

24.5.9.3.8 Disable match and transition service requests

Microcode field MTD (2 bits) disables match and transition service requests for the selected channel. MTD
does not disable Link Service Request and Host Service Request. MTD sets or resets register SRI (for more
details see Section , SRI – Match/Transition Service Request Inhibit Latch) and TCCEA (see
Section 24.5.5.3.2, TCCEA – Transition Continuous Capture Enable).

24.5.9.3.9 Predefined channel modes

Microcode PDCM field (4 bits) defines the channel mode (see Section 24.5.5.4, Channel Modes).

PDCM coding is shown in Table 24-108. Note that PDCM bit 0 selects between Single Transition
(PDCM[0] = 0) and Double Transition (PDCM[0] = 1) predefined modes.

PDCM is also used to select the user-defined channel mode, defined by the channel register UDCM (see
Section , UDCM – User Defined Channel Mode).

Table 24-107. Disable Match and Transition Service Request – MTD

MTD Action on SRI Action on TCCEA

00 SRI = 0: enable service requests for match and transition TCCEA = 0: disable transition
captures1 when TDLA = 1

1 Disables only captures on transition events specified by IPACA.

01 SRI = 1: disable service requests for match and transition

10 SRI = 1: disable service requests for match and transition TCCEA = 1: enable transition
captures2 when TDLA = 1

2 Enables only captures into CaptureA register, on transition events specified by IPACA.

11 don’t change

Table 24-108. Predefined Channel Modes

PDCM Channel mode

0000 em_b_st

0001 em_b_dt

0010 em_nb_st

0011 em_nb_dt

0100 m2_st

0101 m2_dt

0110 bm_st

0111 bm_dt

1000 m2_o_st

1001 m2_o_dt

1010 user-defined channel mode

1011 reserved

1100 sm_st

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 951

24.5.9.3.10 Channel interrupt and data transfer requests

Microcode can issue Interrupt Requests, Data Transfer Requests and Global Exception through CIRC
field. For more information see Section 24.5.2.2, Interrupts and data transfer requests.

24.5.9.3.11 Clear link service request

Microcode LSR field (1 bit) is used to clear the Link Service Request flag of the serviced channel (may
not be the one selected by CHAN). The LSR branch condition is always cleared, but not the Link Service
Request, if another channel link was received by the serviced channel during the executing thread. See
Section 24.5.5.5, Channel Link, for more information.

24.5.9.4 Flow control microoperations

eTPU has jump and call microoperations to change microcode flow. Besides, eTPU has dispatch jump and
dispatch call that can be used to implement a jump table. In call (or dispatch call) microoperation, the
return address is saved in the RAR. If nested sub-routine calls are necessary, return address values have to
be saved in a stack, usually implemented with DIOB register.

Flow Control microoperations are also provided to repeat a given microinstruction, to finish the current
thread execution, and to halt the microengine.

1101 sm_dt

1110 sm_st_e

1111 keep current channel mode

Table 24-109. Channel and Data Transfer Requests – CIRC

CIRC Meaning

000 Channel Interrupt Request from selected channel

001 Data Transfer Request from selected channel

010 Channel Interrupt and Data Transfer requests from selected channel

011 Channel Interrupt and Data Transfer requests from serviced channel

100 Channel Interrupt Request from service channel

101 Data Transfer Request from service channel

110 Global Exception

111 don’t request interrupt

Table 24-110. Link Service Request Negation Control – LSR

LSR Meaning

0 clear Link Service Request (flag LSR)

1 don’t change

Table 24-108. Predefined Channel Modes

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

952 Freescale Semiconductor

24.5.9.4.1 Ending current thread – END

Microcode END field (1 bit) finishes current thread and allows other channels to be serviced. If END field
is 0, the current instruction is completed and the thread is finished. END = 1 has no effect, and the next
microinstruction is executed Any MDU operation (see Section 24.5.8.3, MAC and Divide Unit (MDU))
that could be still pending when the thread is finished is left incomplete. END also releases any semaphore
locked by the engine.

24.5.9.4.2 Branch operations

Branch operations can be jump or call. The target address of jump or call microoperations is always
immediate and absolute. Branch microoperation is affected by FLS field (refer to Section 24.5.9.4.5, Flush
pipeline).

Selecting jump or call microoperations

The only difference between jump and call microoperations is that when a call is executed the value of PC
or PC+1 (depending on flush, see Section 24.5.9.4.5, Flush pipeline) is saved in the RAR. The microcode
field J/C (1 bit) selects whether jump or a call is executed, according to Table 24-111.

Branch target address

Microcode BAF field (14 bits) indicates the absolute address of a jump/call target.

Conditional/Unconditional branch

Jump and call can be conditional or unconditional, depending on the BCC (6 bits) and BCF (1 bit) fields,
as shown in Table 24-112 and Table 24-113. BCF determines whether branch is taken when condition
specified by BCC is true or false. When a branch condition uses the channel flags, the channel context is
related to the channel number written in CHAN register.

Table 24-111. Jump / Call Selection – J/C

J/C Meaning

0 jump

1 call

Table 24-112. Branch Condition Inversion – BCF

BCF Meaning

0 branch if condition determined by BCC is false

1 branch if condition determined by BCC is true

Table 24-113. Branch Condition Selection – BCC

BCC Meaning BCC Meaning

001110 Flag 0 001111 Flag 1

100000 V ALU flag 110000 PSS channel flag

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 953

24.5.9.4.3 Dispatch microoperation

Dispatch microoperation is an unconditional branch where the target address is always PC+P[31:24]
(unsigned). Dispatch is affected by FLS field (refer to Section 24.5.9.4.5, Flush pipeline). Dispatch
microoperation is defined by R/D field (2 bits, Table 24-114). Field R/D can also be used to define return
from sub-routine (see Section 24.5.9.4.4, Return from subroutine).

100001 N ALU flag 110001 PRSS channel flag

100010 C ALU flag 110010 “Less Than” ALU flag combination (signed) 1

100011 Z ALU flag 110011 “Lower or Equal” ALU flag combination
(unsigned)2

100100 MV MDU flag 110100 P[24]

100101 MN MDU flag 110101 P[25]

100110 MC MDU flag 110110 P[26]

100111 MZ MDU flag 110111 P[27]

101000 TDLA channel flag 111000 P[28]

101001 TDLB channel flag 111001 P[29]

101010 MRLA channel flag 111010 P[30]

101011 MRLB channel flag 111011 P[31]

101100 LSR channel flag 111100 PSTO channel flag

101101 MB flag MDU flag 111101 PSTI channel flag

101110 FM[1] channel flag 111110 SMLCK semaphore flag

101111 FM[0] channel flag 111111 false

all other values reserved

1 “less than” is a signed comparison, equal to the xor between ALU flags V and N; e.g., 0 < 0xFFFFFF tests
as false (0 < -1).

2 “lower equal” is an unsigned comparison, equal to Z or C; e.g., 0 < 0xFFFFFF tests as true.

Table 24-114. Return and Dispatch – R/D

R/D Meaning

00 return from subroutine (see Section 24.5.9.4.4, Return from subroutine)

01 dispatch jump

10 dispatch call

11 don’t change microinstruction flow

Table 24-113. Branch Condition Selection – BCC

BCC Meaning BCC Meaning

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

954 Freescale Semiconductor

24.5.9.4.4 Return from subroutine

When a subroutine call or a dispatch call microoperation is executed, the return address is saved in the
RAR. To return from a subroutine a microoperation is available to load the contents of the RAR back to
the PC. Fields R/D (2 bits) or RTN (1 bit, Table 24-115) can be used to return from subroutine. For R/D
field, see Table 24-114.

Return from subroutine microoperation is affected by FLS (see Section 24.5.9.4.5, Flush pipeline) when
field R/D is used. Return execution through RTN always flushes the pipeline.

24.5.9.4.5 Flush pipeline

When a branch, dispatch or subroutine return microoperation is executed, the next microinstruction can be
executed unconditionally before the flow change takes effect, since microengine has a two-stage pipeline.
Executing the next microinstruction after a branch maximizes execution performance. This feature is
controlled by field FLS (1 bit, Table 24-116). When FLS = 0 the pipeline is flushed, so the next
microinstruction placed after a branch is decoded as NOP if the branch is taken. If FLS = 1, the
microinstruction placed after the branch is executed, either if the branch is taken or not, as shown in
Figure 24-63.

Flush also controls which value is stored in RAR in a call: in case of no flush, it is the address of the
branch/dispatch instruction + 2, even if RAR is the ALU destination of the instruction after the call; in case
of a flush, it is the address of the instruction following branch/dispatch.

If a branch with no flush is followed by another branch with no flush, the instructions are executed in the
following order:

1. First branch

2. Second branch

3. First branch’s destination instruction

4. Second branch’s destination instruction, and the flow proceeds normally from then on

The destination of the first branch must not be another flow changing instruction (branch, return or
dispatch). Similar flows apply when returns or dispatches are used instead of branches. This scheme can
be used to implement quick table look-ups with a dispatch replacing the first branch, for instance.

Table 24-115. Return from Sub-routine – RTN

RTN Meaning

0 return with pipeline flush

1 do not return

Table 24-116. Flush Pipeline – FLS

FLS Meaning

0 flush pipeline when jump / call / dispatch jump / dispatch
call / return is executed

1 do not flush pipeline when jump / call / dispatch jump /
dispatch call / return is executed

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 955

Figure 24-63. Flush Pipeline

24.5.9.4.6 HALT microinstruction

HALT is a microinstruction provided to implement software breakpoints (see Section 24.5.10.2.5,
Software breakpoints). Note that HALT is coded as a microinstruction format, not a field (see
Section 24.5.9.7, Microinstruction formats). The execution of this instruction puts the microengine in halt
state. For more information about the implications of microengine halt state, see Section 24.5.10.2.2,
Microengine halt state. HALT is valid only if software breakpoints are enabled at the Debug interface
(signal ndedi_enable asserted). If software breakpoints are not enabled, HALT executes as a NOP and is
treated as an Illegal Instruction (see Section 24.5.9.5, Illegal Instructions).

24.5.9.4.7 NOP microinstruction

There is not a unique microinstruction with an assigned opcode to do No Operation. NOP microinstruction
is achieved through any of the formats shown on Section Table 24-118., Microinstruction Formats where
the user can assign to each individual field the corresponding value for “No Operation”. However, to
prevent future impacts of instruction changes on object code compatibility, the instruction value
0x4FFFFFFF should always be used for NOP.

24.5.9.5 Illegal Instructions

An instruction is considered illegal if any reserved field value is used, including when the fields marked
rsv in the instruction formats (see Table 24-118) are assigned value 0. A HALT instruction is exceptionally
considered illegal when executed with software breakpoints disabled (see Section 24.5.9.4.6, HALT
microinstruction). Global Exception may be issued up to two microcycles after instruction fetch. The
execution results of an illegal instruction on the microengine, channel logic or host interface are
unpredictable, except for the HALT case.

If the microengine decodes an illegal instruction, the following actions are taken:

• a Global Exception is issued.

INSTR
A

No Flush (FLS = 1) Flush (FLS = 0 or RTN = 0)

INSTR
A

branch
dispatch
return

branch
dispatch
return

branch/dispatch/
return executed

branch/dispatch/
return executed

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

956 Freescale Semiconductor

• flag ILF1/2 on register ETPU_MCR is set to indicate this occurrence to the Host.

• a breakpoint occurs, if NDEDI is present and configured to do so.

24.5.9.6 Microinstruction parallelism issues

This section clarifies parallelism issues that arise when two non-commutative microoperations appear in
the same microinstruction.

24.5.9.6.1 ALU operations and read match registers

ALU operations have only one destination register, but there is one case where source selection determines
destination: read Match register in ERTA and ERTB registers. In this case if ALU destination is ERTA or
ERTB a conflict arises. The ALU destination value overwrites the value read from the match registers.

24.5.9.6.2 ALU and SPRAM operations

P and DIOB registers can be selected as destination by both ALU and SPRAM (read) microoperations in
the same microinstruction. Since P and DIOB update from SPRAM data happens after P and DIOB update
for ALU/MDU microoperations, the data read from SPRAM remains in P or DIOB after an operation when
one of them is specified as destination for both ALU and SPRAM microoperations In this case, the value
loaded into P or DIOB is the one read from SPRAM However, the ALU operation is executed and its flags
are updated accordingly

When P or DIOB is destination of an SPRAM read and also an ALU source at the same microinstruction,
the value before the read is used for the ALU operation

If DIOB is the ALU destination and P is loaded from SPRAM or vice-versa, no conflict occurs, and the
result is the same as if operations occurred separately.

All the above also applies to Zero SPRAM operations.

When using P or DIOB as destination for ALU operations and also as source for a SPRAM write operation,
the data written in SPRAM is the one calculated by ALU, which means it is possible to calculate a value
and write it in an SPRAM address using only one microinstruction.

The old value of DIOB or the old value minus 4 (pre-decrement) is always used when DIOB is selected as
address (indirect address mode), no matter if DIOB is selected as destination of either the SPRAM or ALU.
For the value loaded into DIOB, refer to Table 24-117.

Table 24-117. DIOB load from SPRAM and ALU

DIOB selected as
 SPRAM read destination?

DIOB selected as
ALU destination?

DIOB load value

no no DIOB,
--DIOB (pre-decrement),

or DIOB++ (post-increment)

yes no SPRAM read data
(post-inc and pre-dec ignored)

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 957

24.5.9.6.3 ERTA/B as ALU destination and ERWA/B

The value in ERTA and ERTB registers can be written in match registers of the selected channel by using
fields ERWA and ERWB (Section 24.5.9.3.5, Write Channel Match and UDCM Registers). If, at the same
microinstruction, ERTA or ERTB is the destination of an ALU/MDU microoperation, the value written in
the Match registers is the ALU/MDU result.

The same applies to UDCM when ERTA is the destination of an ALU operation and instruction fields
ERWA and CMW are active.

If an ALU operation occurs in parallel with ERWA/B but ERTA/B are not the destination of an ALU/MDU
operation, then UDCM and MatchA/B receives the ERTA/B value.

24.5.9.6.4 ERWA/B and MRLE

ERWA/B automatically sets the MRLEA/B channel latch, respectively (see Section 24.5.9.3.5, Write
Channel Match and UDCM Registers). Microinstruction fields ERWA/B independently sets MRLEA/B
channel flags, regardless of MRLE.

24.5.9.6.5 CHAN assignment, Read Match and ERWA/B

When CHAN is a destination of an ALU operation it causes a read of the CaptureA/B register values into
ERTA/B. The Capture registers loaded into ERTA/B are selected by the new CHAN value. The value of
the CaptureA/B registers overwrites any read-match commanded simultaneously.

If CHAN assignment happens with an ERWA/B operation in the same instruction, the updated Match
register(s) belong to the new selected channel.

24.5.9.6.6 Read Match and ERWA/B

If a read match operation is executed with ERWA/B in the same microinstruction, the MatchA/B registers
receive the old values of ERTA/B, and the ERTA/B registers receive the old MatchA/B values
simultaneously, i.e.: ERTA/B and MatchA/B swap their values.

If ERTA/B is the destination of an ALU operation at the same instruction, MatchA/B gets the ALU result
(see Section 24.5.9.6.3, ERTA/B as ALU destination and ERWA/B), but the ERTA/B not being written still
receives the old MatchA/B values.

yes yes SPRAM read data
(post-inc, pre-dec and ALU result

ignored)

no yes ALU result
(post-inc an pre-dec ignored)

Table 24-117. DIOB load from SPRAM and ALU

DIOB selected as
 SPRAM read destination?

DIOB selected as
ALU destination?

DIOB load value

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

958 Freescale Semiconductor

NOTE

Read match, ERWA/B and CHAN assignment can be active at the same
instruction. Combining rules Section 24.5.9.6.5, CHAN assignment, Read
Match and ERWA/B, and Section 24.5.9.6.6, Read Match and ERWA/B, the
result is: ERTA/B receives the CaptureA/B values of the new CHAN value,
and MatchA/B of the new channel receives the old ERTA/B value(s).

24.5.9.6.7 Stack accesses and ALU operations

Post-increment is ignored in a stack operation (field STC) if DIOB is loaded from SPRAM: DIOB keeps
the value read from SPRAM. Pre-decrement is ignored in a stack operation (field STC) if DIOB is
destination of an ALU operation, for DIOB load value, but not for DIOB as address.
Post-increment/pre-decrement remains valid in all other situations. These rules can be summarized in the
following equivalent C code, and in Table 24-117.
DIOB = *DIOB[15:2]; // read without posinc/predec
*DIOB[15:2] = DIOB; // write without posinc/predec
DIOB = *(--DIOB[15:2]); // read with predec
DIOB = *DIOB[15:2]; // read with posinc (ignored)
*(--DIOB[15:2]) = DIOB; // write with predec
*DIOB[15:2]++ = DIOB; // write with posinc (value written is before increment)

24.5.9.6.8 SRC and ALU/MDU operations

If operation SRC is active (field SRC = 0) and register SR is selected as destination of an ALU operation,
the value of the ALU operation prevails over the shifted value.

The value of SR used as source in the ALU/MDU operation is the one before the shift.

24.5.9.6.9 Semaphore lock/free and SMLCK branch condition

When the SMLCK branch condition is tested at the same microinstruction of a semaphore lock or free, the
condition is evaluated after the semaphore action (either free or lock) is taken.

24.5.9.6.10 Dispatch and SPRAM read

When the most significant byte of P is read from SPRAM (read 8 msb bits or 32 bits) and a dispatch
instruction is executed simultaneously, the dispatch target address is calculated upon the P value before the
read.

24.5.9.6.11 CHAN Assignment, PSC/PSCS, and clear MRLEA/B, MRLA/B, TDLA/B

When clear MRLEs, MRLA/B or TDLs is done and a CHAN assignment is done at the same time, the flag
selected by the old CHAN value is cleared in the channel, but the branch conditions receive the state of
the flags selected by the new CHAN.

When a pin action is commanded through PCS/PSCS and a CHAN assignment is done simultaneously, the
output signal affected is selected with the old CHAN value.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 959

24.5.9.7 Microinstruction formats

See Table 24-118.

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
u

n
c

tio
n

a
l d

e
scrip

tio
n

F
re

escale
 S

em
ico

nductor
960

Table 24-118. Microinstruction Formats

format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A1 0 0 0 IMM[15:13] IMM[7:2] IMM[23:16] IM
M

[12]

R
T

N

IMM[11:9]

IM
M

[1
:0

]

T2D IM
M

[8]

0 0

A2 T4ABS T2ABD

C
C

S

AB
SE

AB
DE

0 1

A3

A
LU

O
P

CCSV ALUOP
I[3:2]

AS/CE ALUOP
I[1:0]

0 1 0

A4 F
L

C

SHF

S
R

C

C
C

S

rsv FLC
[1:0]

AB
SE

AB
DE

1

B1 1 0 0

E
N

D

C
IN

B
IN

V

T4BBS

R
W

P
/D

C
C

S

AID[7:0] (global param)

B2 1 Z
R

O

AID[6:0] (channel param)

B3 0 0 0 STC AB
SE

AB
DE

rsv 1 1

B4 0 0 1 0 CCSV 1 AS/CE ALUOP

B5

F
L 0 S

E
X

T

SMPR

B6 1 rsv
S

R
C

AB
SE

AB
DE

B7 0 1 1 E
N

D

SHF

T
D

L

PSC

M
R

LA

E
R

W
A

M
R

LB

E
R

W
B

A
B

S
E

A
B

D
E

C
C

S

M
R

LE P
S

C
SC1 0 1 0 0

E
N

D

OPACA OPACB TBSA TBSB LS
R

PDCM

C2 1 IPACA IPACB

D0 1 1 0 0 M
R

LE

0

C
IR

C

PSC

F
LS

R
W P
S

C
S

FLC

C
IR

C
[1:0]

R
/D

0

P
/D

RSIZ

Z
R

O

AID[6:0] (engine param)

D1 1 AID[7:0] (global param)

D2 1 Z
R

O

AID[6:0] (channel param)

D3 1 1 1 1 MRLE 1 STC 1 1 0 0 rsv

D4
F

L 0 rsv SMPR

D5 1 1 0 1

M
R

LE

rsv

C
M

W

MTD
T

D
L

R
W

T
D

L

M
R

LA

E
R

W
A

M
R

LB

E
R

W
B

0

P
/D

RSIZ AID[7:0] (global param)

D6 1 Z
R

O

AID[6:0] (channel param)

D7 1 1 1 1 MRLE 1 STC 1 1 0 1 rsv

D8

F
L 0 rsv SMPR

D9 1 1 0 0

M
R

LE

0 R
W

1 P
/D

RSIZ Z
R

O

AID[6:0] (engine param)

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
u

n
c

tio
n

a
l d

e
scrip

tio
n

F
re

escale
 S

em
ico

nductor
961

E1 1 1 1

B
C

C
[5]

J/C

BCC[4:0]

F
LS

R
W B

C
F

BAF[13:0] 00

P
/D STC

E2 01 AID[2:0]

E3 FL 10 rsv SMPR

E4 0 11 1 rsv

F1 rsv 1 rsv 111 rsv

format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALU Operations Channel Control/Config Operations

RAM Operations Flow Control Operations

Table 24-118. Microinstruction Formats (continued)

format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

962 Freescale Semiconductor

24.5.10 Test and Development Support

24.5.10.1 Overview

Following sections describe several features available to support development and test. Most debug
features, described in Section 24.5.10.2, Development support features, are accessible through a separate
debug bus, and are not available through registers in the standard eTPU memory map. The details of the
access to this interface are MCU-dependent, but a separate IP block, called NDEDI, is provided so that
these features are accessible by a Nexus interface. IP-bus Green line device debug request can also be used
to put microengines in halt state. Conditions for the assertion of this line are also MCU-dependent.

Section 24.5.10.3, Test support features, describes embedded test features: the Multiple Input Signature
Calculator (MISC) is an SCM test feature accessible through registers ETPU_MCR and
ETPU_MISCCMPR (see Section 24.4.2, System configuration registers). MISC allows SCM test “on the
fly, that is, while eTPU is running, with no impact on eTPU functionality or performance.

24.5.10.2 Development support features

24.5.10.2.1 Internal Debug Interface and Nexus Class 3 support

eTPU provides an Internal Debug Interface that exports real-time microengine states and values, including
breakpoint/watchpoint information. It also provides inputs for breakpoint request from other blocks or
outside MCU.

NDEDI is an IP block designed to support Nexus functionality for the eTPU. When Internal Debug
Interface is connected to an NDEDI block, the MCU can provide Nexus Class 3 debug interface. Nexus is
a development support external interface defined by the IEEE standard ISTO 5001-1999.

Some of the next subsections describe debug features provided by the Internal Debug Interface combined
with the NDEDI block. NDEDI can be replaced by other block providing a different programming
interface, such as a register debug interface, for instance.

24.5.10.2.2 Microengine halt state

Halt is a microengine state where it suspends execution during a thread, or does not start executing a
scheduled thread from idle state. While Idle State is entered from END execution without any other
scheduled thread, microengine enters Halt State by any of the following events:

• Execution of the HALT microinstruction (software breakpoint).

• External halt request through the Debug Interface (includes Nexus breakpoint request via EVTI
input pin (see Section 24.5.10.2.1, Internal Debug Interface and Nexus Class 3 support).

• The other engine enters halt state and they are configured to halt simultaneously (bit HTWIN is
asserted via Nexus Interface).

• IPI Green line device debug request assertion and NDEDI register NDEDIETPUx_DC field
CBI = 1. If same register’s field CBT = 1, microengine halts at the next time-slot boundary, if
CBT = 0 it halts immediately. As a particular case, microengines come halted out of reset if device
debug request is asserted, since CBI reset value is 1. Microengine does not execute out of reset,

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 963

either in halt (device debug request asserted) or idle state (device debug request negated), but halt
enables several other features (see below).

• Occurrence of any of the hardware breakpoint conditions. See Section 24.5.10.2.3, Hardware
breakpoints, for details.

• Execution of a single-step microinstruction: microengine returns to halt state after executing a
single microinstruction while in halt state. See Section 24.5.10.2.6, Single-step execution, and
Section 24.5.10.2.7, Forced microinstruction execution, for details.

When microengine enters halt state, it automatically triggers the following actions:

• Suspends input signal sampling and filters (respective engine channels only), if signal
ndedi_stop_pins is asserted at the Debug Interface.

• Releases the SPRAM arbitration for Host or CDC accesses, no matter if microengine was halted
in the middle of a dual-parameter (back-to-back) access.

• Stops TCR1/2 clocks of the respective engine, if signal ndedi_stop_tcr is asserted at the Debug
Interface.

• If the other engine is also in halt state or stopped, allows turning ETPU_MCR VIS bit to 1.

If all halt conditions are cleared when VIS = 1, microengine(s) keep on halt state until VIS = 0, when it
automatically exits halt state, except on single-step (see Section 24.5.10.2.6, Single-step execution), so
that single-step execution is ignored while VIS = 1.

MDU continues executing until it finishes any ongoing operation even if microengine is in halt state,
except when the halted instruction is an END.

There are two kinds of halt state, depending on the previous microengine state when halted:

1. halt_idle, if the engine was not executing a thread when halted; the engine cannot leave halt_idle
to fetch instructions, so one cannot single-step or follow a program flow; it can, however, execute
forced instructions (see Section 24.5.10.2.7, Forced microinstruction execution).

2. halt_exec, if the engine was executing a thread when halted. The engine can single-step and
continue a program flow from halt_exec.

When microengine exits halt state, any dependable action is suspended and, if exiting halt_exec, the
instruction pointed by the PC is fetched, while the instruction already fetched before halt is executed. Note
that both the PC and the prefetched instructions can be modified during halt state, with a forced execution
of a branch instruction (see Section 24.5.10.2.7, Forced microinstruction execution).

24.5.10.2.3 Hardware breakpoints

Microengine can enter halt state through a command from the Debug Interface, configuring a hardware
breakpoint. Hardware breakpoints can halt the microengine on specific conditions, listed below. These
conditions depend on NDEDI configuration.

• CHAN register assignment (only by microcode, not by time slot transition).

• SPRAM read and/or write to a given address and/or write data. The breakpoint is always qualified
by the SPRAM address, but the following variations are allowed:

— break on write only, read only, or read-and-write.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

964 Freescale Semiconductor

— break on higher-byte write data value, lower 24-bit write value, full word (32-bit) write value,
or regardless of data. Break on read data is not supported.

• PC (program counter) value.

• Beginning of a thread with a Host Service Request pending.

• Beginning of a thread with a Link Service Request pending.

• Beginning of a thread with a Match Service Request pending.

• Beginning of a thread with a Transition Service Request pending.

• End of a thread.

• Illegal instruction execution.

All these conditions can also be qualified by the value of the CHAN register.

On any of these conditions, halt of one microengine does not depend on the halt of the other, unless the
other engine is configured to do so, via Nexus Interface. Occurrence of any of these conditions halts the
microengine, i.e., the conditions are logically “ORed” together, and they can be individually enabled.

While in halt state, the microengine can also execute any forced microinstruction not in the normal
program flow (see Section 24.5.10.2.7, Forced microinstruction execution) or, if in halt_exec, in
single-step (see Section 24.5.10.2.6, Single-step execution).

There are situations when requests for stopping an engine, breakpoint and service can occur
simultaneously. Breakpoint requests always prevails over a stop request (ETPU_ECR bit MDIS = 1 or
device debug request = 1). When the eTPU is idle: stop request prevails over Service Request if there is
not a hardware breakpoint request; a hardware breakpoint request leads to debug mode immediately if
there is no Service Request, and after TST if there is Service Request (regardless of stop requests). The
rules above are summarized in the Table 24-119, showing the destination state of the microengine in each
situation.

When a thread is ending, it goes to Idle or TST only if there is neither a hardware breakpoint request (signal
ndedi_thread_break negated) nor a request to stop (MDIS = 1 or device debug request = 1). When thread
is ending and there are simultaneous hardware breakpoint (ndedi_thread_break active) and stop

Table 24-119. Breakpoint, stop and service requests resolution from idle

Breakpoint request MDIS Service request Final state

no 0 0 Idle

no 1 0 Stop

no 0 1 TST

no 1 1 Stop

Yes 0 0 Halt_idle

Yes 1 0 Halt_idle

Yes 0 1 TST1

1 Breaks after TST, if signal ndedi_sync_break is still asserted.

Yes 1 1 TST1

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 965

(MDIS = 1 or device debug request = 1) requests, hardware breakpoint prevails and the engine enters
Debug mode (Halt_idle state).

If the engine entered Debug mode after a thread finished (Halt_idle state) and a “go” command comes from
the debug interface, the engine state machine goes to Idle and the rules above apply. It means that if a “go”
is issued in Halt_idle state with MDIS = 1, the engine goes to Idle for one microcycle and then stops (if
MDIS or device debug request keeps asserted and there is no other breakpoint request).

NOTE

Hardware breakpoint requests are ignored for the first microinstruction
executed when microengine leaves halt.

24.5.10.2.4 Hardware watchpoints

Debug Interface allows watchpoints on the same conditions available for hardware breakpoints (see
Section 24.5.10.2.3, Hardware breakpoints.

24.5.10.2.5 Software breakpoints

A software breakpoint occurs when microengine executes a HALT microinstruction. Any number of
software breakpoints can be set in code, usually replacing an active microinstruction.

Like any other microinstruction, HALT increments the PC and pre-fetches the next instruction. So, before
the halt state is suspended, if the original program flow must be followed, the original instruction at the
HALT address must be executed, regardless if the software breakpoint is removed (replacing HALT by the
original microinstruction) or not. The following is the procedure to resume execution from a software
breakpoint:

1. Restore the original instruction in SCM (replace HALT).

2. Force a jump with flush to the original instruction (see Section 24.5.10.2.7, Forced
microinstruction execution).

3. If the software breakpoint must be kept: single-step and replace the original instruction with a
HALT.

4. Let the flow continue, issuing a GO command (leaving halt state).

Special care must be taken if HALT is followed by another HALT, and the second HALT is removed when
microengine was halted by the first one. In this case, replacing the second HALT with the original
microinstruction is not enough to remove the second breakpoint, because the second HALT was already
prefetched and would be executed anyway when halt was suspended. The debugger must also do a forced
execution of unconditional branch with flush to the original microinstruction address. That will clear the
pipeline, replacing the prefetched instruction with a NOP, and load PC with the address of the removed
breakpoint. So, when halt state is suspended, the original microinstruction will be fetched while NOP is
executed, and program flow continues normally from then on.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

966 Freescale Semiconductor

NOTE

A HALT instruction placed after a no-flushing branch, dispatch or return
may be a problem from the debugger application standpoint: after the HALT
is executed, the eTPU debug interface informs the address of the
branch/dispatch/return destination, and the debugger application has no
direct way to identify which HALT instruction was executed, if multiple
HALTs lead to the same address. This can be solved if the debug support
block (NDEDI) has a register holding the address of the last instruction
executed, otherwise one should forbid non-flushed HALT instructions.

Software breakpoint setting and removal is possible only with SCM RAM implementations or ROM
implementations with SCM RAM emulation (see Section 24.5.10.2.11, SCM emulation). There is only
one way of inserting software breakpoints into SCM RAM: writing bit VIS = 1 in register ETPU_MCR,
and then accessing SCM as an ordinary RAM from the slave bus. This can be done only if both engines
are halted or stopped.

24.5.10.2.6 Single-step execution

When microengine is already in halt_exec state, it can run the next microinstruction in the normal program
flow and get back to halt state. PC is incremented, or assigned the BAF value in a branch with satisfied
condition. Note that the executed instruction was already prefetched in the instruction pipeline, and a new
microinstruction is fetched during its execution. The prefetched instruction may be cleared during halt
state by the forced execution of a branch with flush (see Section 24.5.10.2.7, Forced microinstruction
execution), making single-step execute a NOP instead of the next instruction in the program flow.

Single-step execution is controlled by the debug interface, and is a feature available from Nexus if eTPU
is connected to the NDEDI block.The single-step execution of a NOP instruction can be useful to control
input signal sampling and filtering, if signal ndedi_stop_pins = 1 at the Debug Interface. Single-step does
not happen if VIS = 1.

24.5.10.2.7 Forced microinstruction execution

When microengine is already in halt state (either halt_idle or halt_exec), it can run forced
microinstructions through the debug interface. This feature is available from Nexus if eTPU is connected
to the NDEDI block. The microinstruction, specified by the user, is not fetched from SCM and comes
directly from the debug interface. MDU start commands issued by forced instructions are executed, and
the MDU runs the operation until the end, independently of the halt state. The microinstruction field END
is ignored.

During forced execution of any instruction except Branches, Returns and Dispatches, the PC does not
change, and the prefetched instruction in the pipeline is bypassed, but not discarded. When halt state is
suspended, the prefetched instruction is executed and the instruction pointed by the PC is prefetched in
parallel (two-stage pipeline).

Forced execution of a Branch, Dispatch or Return loads the PC with the BAF field (if branch condition is
satisfied), PC+P or RAR, respectively. If branch condition is not satisfied, PC value stays unaltered. The
flush control (field FLS) also works, so that a successful forced branch with flush replaces the prefetched

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 967

instruction with a NOP. So, to clear the instruction pipeline during halt, all one has to do is an unconditional
branch to the desired address with flush. HALT instructions must not be executed as forced.

Forced operations that depend on the serviced channel are unpredictable when executed in halt_idle.

24.5.10.2.8 Microengine register access

eTPU provides no direct access to microengine and channel registers from the slave bus or any other
interface. However, these registers can be read and written in halt state by executing forced
microinstructions (see Section 24.5.10.2.7, Forced microinstruction execution). Immediate data
microinstructions may be used to set register values. Some registers are not selectable for immediate data
destination, so intermediary register(s)—notably P—may have to be used to carry the desired new value
to the target register in two or more microinstructions. Usually the previous values of intermediary
register(s) must be previously saved and restored after the whole operation.

Similar procedures apply for register reads: their contents must be dumped to SPRAM, where they can be
read from the slave bus.

24.5.10.2.9 Microengine flag access

Microengine halt state allows reading the branch conditions flags through forced microinstructions or,
more easily, through the NDEDI register NDEDI_ENGINEx_CFSR. Flag conditions set by the user are
seen by microengine for the next microinstruction execution. The flag set options are limited by the
possibilities of forced microinstruction execution.

If the eTPU runs (not single-stepping) after exiting the halted state, the conditions modified during halt
may remain only for the first microcycle after the halted state. After the first microcycle, branch conditions
are altered only according to their regular update scheme.

24.5.10.2.10 Microengine stall

Microengine can get into a stall state, attending a request from a debug interface signal assertion. The
reason for a Stall request from NDEDI (or from any other debug support block) should be a temporary lack
of resources, for instance queue full. During stall the microengine suspends execution, but all the other
engine logic continues operating: time bases, angle logic, channel logic, input sampling and filters. Stall
differs from Halt, not enabling any of the debug features that Halt enables (see Section 24.5.10.2.2,
Microengine halt state). It also does not break an atomic microengine access, unlike halt.

The Microengine can be stalled when idle and from the moment TST ends, before executing the first thread
microinstruction, until just before the last thread microinstruction is executed. Stall requests are ignored in
any other occasions. Microengines in a dual-engine system can be independently stalled. If a forced end
is issued when microengine is in stall coming from execution, the END is executed only when the
microengine resumes execution from stall.

24.5.10.2.11 SCM emulation

If SCM is implemented as ROM, an external RAM may be used to replace it, allowing code patching and
software breakpoint setting for debugging purposes. SCM ROM replacement by Emulation RAM is
MCU-dependent. The SCM may even be divided into a ROM part and a RAM part. In this case, both

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

968 Freescale Semiconductor

microengines can run code from both ROM and Emulation RAM. It is possible to make one engine run
code from RAM and the other from ROM, by using different Entry Tables. The SCM visibility conditions
also apply to Emulation RAM.

All SCM implementations, either RAM, ROM or Emulation RAM, are external to the eTPU block. eTPU
provides a signal to enable the switching between external SCM banks. The conditions for this switching
are:

1. Both engines stopped

2. VIS bit = 0

Note that these conditions also stop the clocks of the SCM interface and MISC logic.

24.5.10.3 Test support features

24.5.10.3.1 SCM Test – Multiple input signature calculator

The Multiple Input Signature Calculator (MISC) comprises special hardware that sequentially reads all
SCM positions and calculates, in parallel, a 32-bit signature from a 32-input CRC signature calculator with
the following polynomial:
1 + x1 + x2 + x22 + x31

A complete description of the signature calculation procedure can be found in Section 24.7.4, MISC
algorithm.

Once started by the Host the MISC runs continuously, restarting after the completion of each cycle, when
it sets the ETPU_MCR flag SCMMISC (see Section 24.4.2.1, ETPU_MCR – eTPU Module Configuration
Register). The average time for a MISC calculation can be measured by checking SCMMISC state at
regular intervals, incrementing a counter and clearing SCMMISC if it is set.

MISC accesses to the SCM array are executed if none of the engines is accessing the SCM, to avoid
degradation of the microengine performance: it happens while no channel is being serviced. An ongoing
MISC operation can be aborted by writing 0 to SCMMISEN.

The Host must load the register ETPU_MISCCMPR (see Section 24.4.2.3, ETPU_MISCCMPR – eTPU
MISC Compare Register) with the expected value to be found at the end of the MISC cycle, and then start
the signature calculation writing bit SCMMISEN = 1 in register ETPU_MCR (see Section 24.4.2.1,
ETPU_MCR – eTPU Module Configuration Register). MISC zeroes the signature accumulator and starts
reading SCM data and calculating the signature. After last SCM position is read, MISC compares the value
in signature accumulator against the value in ETPU_MISCCMPR: if there is a mismatch MISC stops, a
Global Exception is issued and the bit SCMMISF in register ETPU_MCR assumes value 1. If no mismatch
is found, MISC repeats the procedure automatically. When signature is being calculated, SCM address
starts at the last SCM address and counts down to 0. The conditions for executing a MISC operation are
(see also Table 24-38):

• Both microengines in idle state (no channel is being serviced) or stopped, in any combination (e.g.,
engine 1 idle with engine 2 stopped)

• ETPU_MCR bit VIS = 0

• ETPU_MCR bit SCMMISEN = 1

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 969

Note that MISC can run regardless of SCM implementation type (RAM or ROM).

If SCMMISEN = 0 or VIS = 1, the MISC logic stays at its initial state, with address counter pointing to the
last SCM position and accumulator reset.

24.5.10.4 Performance monitoring features

24.5.10.4.1 Idle Counter

The Idle Counter Register ETPU_IDLE (see Section 24.4.4.2, ETPU_IDLE – eTPU Idle Register)
continuously counts microcycles in which the microengine is not busy with channel service. It can be used
to measure the microengine utilization by rating the count measured during a period of time to the number
of microcycles contained in the period. The Idle counter does not count microcycles when the engine is
stopped, or is in TST or halt states.

24.6 Initialization/Application information

24.6.1 Configuration sequence

After initial power-on reset the eTPU remains in an idle state1, requiring initialization of several registers
before any function can begin execution. Also, if the SCM is implemented in RAM, it should be initialized
with the eTPU application code prior to configuring the eTPU. Configuration procedures are summarized
as follows:

• If SCM is implemented as RAM, load the eTPU application code (see Section 24.5.2.6, SCM
access).

• Initialize the SCM MISC logic (optional, see Section 24.5.10.3.1, SCM Test – Multiple input
signature calculator).

• Initialize the eTPU time base configuration registers (ETPU_TBCR) to setup:

— TCR1 and TCR2 prescalers and clock sources.

— Select digital filtering mode.

— TCRCLK signal filter control.

— Angle mode operation (if necessary).

• Initialize the eTPU engine configuration register(s) (ETPU_ECR) to setup:

— Entry table base.

— Filter prescaler clock control.

• Initialize eTPU STAC configuration register(s) (ETPU_REDCR), if one needs to setup TCR1/2
resource Client/Server operation.

• Write to the Channel Configuration registers (ETPU_CxCR) to choose the Function to be
performed by each channel, and its parameter base address.

• Write to channel status control register (ETPU_CxSCR) to choose among the possible variations
within the function flow (FM bits).

• Write to SPRAM for parameter initialization of each configured channel.
1. Except when device debug request is asserted on power-on reset: in this case, the microengines wake-up in halt state.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

970 Freescale Semiconductor

• Write to register(s) ETPU_WDTR if one needs to enable and setup the Watchdog(s) mode and
timeout.

• Write to channel x Host Service Request registers (ETPU_CxHSRR) to initialize the active
channels.1

• Write to the channel interrupt enable register (ETPU_CIER) if interrupts are to be enabled from the
appropriate channels. Likewise for Data Transfer Requests (ETPU_CDTRER). This can also be
done through ETPU_CxCR.

• Write to channel x configuration registers (ETPU_CxCR) to enable each channel by assigning it a
high, middle, or low priority (CPR field).1

• Monitor the Host service request registers (ETPU_CxHSRR) for completion of initialization.

• Write ETPU_MCR bit GTBE = 1 to start TCR1/TCR2 time base counting at same time in both
engines (may be done before or never, depending on the particular application and use of Red Line
bus).

See Section 24.7.2, Initialization code example.

24.6.2 Reset options

24.6.2.1 Hardware Reset

Hardware reset is achieved by assertion of device synchronous reset. Both engines and common logic is
reset, and even the System Configuration and Global Channel registers assume their reset values.

NOTE

All eTPU input clocks must pulse during reset so that both engines are reset,
even if they are in Module Disable or Stop mode.

24.6.2.2 Software reset

eTPU has no Software reset. To abort infinite microcode loops, the Force END mechanism must be used
(see field FEND in Section 24.4.2.5, ETPU_ECR – eTPU Engine Configuration Register).

24.6.3 Multiple parameter coherency methods

Follows a description of two methods for coherent transfer of multiple parameters between Host and
eTPU. Both methods involve the use of two parameter areas: the Transfer Parameter Area (hereafter called
TPA), which is the SPRAM area directly accessed by the Host for reads and writes, and the Permanent
Parameter Area (hereafter called PPA), which are the SPRAM positions where channel parameters are
normally accessed by the Function microcode. Note that parameters in either TPA or PPA do not have to
be in sequential addresses. TPAs and PPAs allocation are completely defined by the application, and there
may be any number of them, independently of the channels.

The methods described here are not the only solutions for the coherent transfer problem, and both can
co-exist in eTPU and even used in combination. Also note that for transfers of a pair of parameters, the

1. This operation is done before enabling active channels to avoid time events happening before the channel initialization.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 971

Coherent Dual-parameter Controller is faster and have less impact on both eTPU and Host performance.
That said, the methods are:

• Transfer Service

A microengine thread transfers, upon Host Service Request, data from/to a TPA to/from a PPA.
Coherency is guaranteed by the fact that a thread is atomic with respect to other threads in the same
engine, and so are its transfers. If parameters in PPA are shared by both engines, hardware
semaphores have to be used to access them.

• Mailbox

For Host to eTPU transfers, the microcode checks a flag, set by the host, indicating the existence
of new parameter data in the TPA. It can, then, either access TPA data directly or copy it to the PPA.
For eTPU to Host transfers, when microcode changes PPA, it copies them to the TPA and flags
updated TPA data to Host, possibly using an Interrupt or a Data Transfer Request. The Mailbox
flag is reset when data is copied: by the eTPU microcode, when it transfers TPA to PPA (possibly
followed by an Interrupt); by the Host, when it reads data from the TPA. This indicates that TPA is
free for another transfer.

Transfer Service has the advantage of separating the task of data transfer from the functional service thread
that accesses the parameters, with less impact to the latter. Compared to the Mailbox method, however, it
has bigger average latency, because the Transfer Service thread has to contend for a time slot to execute.
This latency can be minimized if Transfer Service thread is assigned to a separate channel with higher
priority, but even so it does not guarantee that PPA is updated before the next execution of the functional
thread that uses it.

Mailbox method, on the other hand, makes the functional thread check for the existence of new data (Host
to eTPU). It does not have to be responsible for the transfer, though: it may access the TPA directly, and a
Transfer Service can then be used to copy data from TPA to PPA.

24.6.4 Programming hints and caveats

24.6.4.1 Atomic dual access after a call, return

A dual, back-to-back parameter access is not atomic after a call, a jump, or a return if they occurred in
parallel with an odd SPRAM access. It is safer to make a pair of parameter accesses that must be coherent
begin at the second instruction after a call/jump/return.

24.6.4.2 Resource polling

The use of polling while waiting for a condition or a resource (except semaphore lock) should be avoided
in order not to hang the microengine in long loops. This general programming guideline is greatly enforced
in eTPU, as a thread cannot be preempted for any reason. Safer polling, albeit with long and
indeterministic latency, can be obtained if one issues a channel link to itself and terminates the thread. The
microengine is then free to other tasks, and the next poll happens at the next time the channel is serviced.
This mechanism can be combined with finite (timed out) loops for better latency.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

972 Freescale Semiconductor

24.6.4.3 Changing channel function, parameter base, or entry table scheme

Channel Function, Parameter Base Address and Entry Table Scheme are determined by the ETPU_CxCR
fields CFS, CPBA and ETCS. They cannot be changed when the channel is enabled. If the channel is
disabled first, one may still have service requests from the previous function, so before the channel is
enabled again one must be sure that:

• The first thread executed in the new function is the initialization one.

• The initialization thread of the new function clears any previously pending service request.

Follows a safe procedure for function changing:

1. Disable the channel (write ETPU_CxCR field CPR = 00).

2. Change the function configuration (ETPU_CxCR fields CFS and/or CPBA and/or ETCS).

3. Request the initialization thread, writing ETPU_CxHSRR with the initialization HSR (channel still
disabled).

4. Enable the channel (write ETPU_CxCR field CPR > 0); the initialization HSR is serviced before
any other formerly pending service requests, clearing them.

24.6.4.4 Checking and clearing interrupts of a stopped engine

An engine may be stopped with interrupts (or DMA requests) pending. This includes the case when the
engine’s MDIS bit is set and a thread is still running: the thread will complete execution, possibly issuing
an interrupt or DMA request before the engine stops, setting the STF bit.

As soon as the engine stops the channel registers become inaccessible, issuing bus errors when accessed.
Interrupts and DMA requests can still be checked and cleared through the Global Channel Registers,
though. DMA requests can also be cleared by the hardware handshaking with the DMA controller when
the engine is stopped.

24.6.5 Estimating worst-case latency

Reliable systems are designed to work under worst-case conditions. This section explains how to estimate
worst-case latency (WCL) for any eTPU function in any system. The appendix covers the following topics:

• Introduction to Worst-Case Latency

• Using Worst-Case Latency Estimates to Evaluate Performance

• Priority Scheme Details used in WCL Analyses

• First-Pass WCL Analysis

• Second-Pass WCL Analysis

The first-pass WCL analysis is based on a deterministic, generalized formula that is easy to apply. Because
of the generalizations in the formula, the first analysis result is almost always much worse than the real
worst case. If the desired system performance is within the limits of this first analysis, then no further
analysis is required; the system is well within the performance limits of the eTPU. If the desired system
performance exceeds that indicated by the first analysis, the second-pass WCL analysis should be applied.
The second-pass analysis is not a generalized formula, but rather uses specific system details for a realistic
worst-case estimation.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 973

24.6.5.1 Introduction to worst-case latency

NOTE

In this Appendix the latency calculation and examples refer to old TPU
functions such as PWM, DIO etc. These functions use single action
channels which have single transition and single match functionality. They
are not optimized for the eTPU hardware enhancement which support
various double action modes. These examples are for reference only. New
eTPU functions which are optimized for the new hardware will impose
different latency calculations.

Worst-case latency for a channel is the longest amount of time that can elapse between the execution of
any two function threads on that channel. For example, if in a particular system, channel 5 is running
PWM, the worst-case latency for channel 5 is the longest possible time between the execution of two PWM
threads. The worst-case time includes the time the execution unit takes to execute threads for other active
channels, and other delays described later in this section. Refer to Figure 24-64.

Figure 24-64. Worst-case latency for PWM

Worst-case latency for a channel depends both on the function running on that channel and on the activity
on other channels. Since the 32 eTPU channels must all share the same execution unit, execution speed of
a particular function varies with each system. The PWM thread response is faster if there are no other
active channels than if other channels are also active. In addition, changing the priority scheme and
channel number assignments can change performance for a function even if the same set of functions are
still active.

Each function is divided into treads, as shown in Figure 24-65 (see also Section 24.5.1, Functions and
threads). The eTPU Microengine executes one thread of a function at a time. For example, the Microengine
might execute thread 1 of PWM, then thread 3 of DIO, then thread 2 of PWM, then thread 2 of SM, and
so on. The amount of time the eTPU Microengine grants a function to execute a thread varies with the
number of microcode instructions in the thread.

Since there is only one eTPU Microengine (in each eTPU engine), the eTPU cannot actually execute the
software for multiple functions simultaneously. However, the hardware for each of the channels is

Additional Channel Threads
and other delays.

Worst-Case Latency
for Channel 5

PWM Thread
executed for
Channel 5

Next PWM Thread
executed for
Channel 5

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

974 Freescale Semiconductor

independent. This means that, for example, all 32 channel signals can change thread at the same moment,
provided that the function software sets up the channel hardware to do so beforehand.

With Host CPU code, the system designer assigns functions to channels and initializes the functions. After
initialization, functions typically run without Host intervention, except for eTPU channel interrupts to the
Host to give or receive information. Most functions can run continuously with periodic servicing from the
eTPU Microengine. As required, the channels request service from the eTPU Microengine, and the eTPU
Scheduler determines the order in which the channels are serviced. Worst-case latency for a channel can
be derived from the details of the priority scheme that the scheduler uses (see Section 24.5.3, Scheduler).

Figure 24-65. Function threads

24.6.5.2 Using worst-case latency estimates to evaluate performance

Once WCL is found for a channel, the user must determine how to use this number to analyze performance.
To analyze the performance of a channel running the PWM function, for example, some information about
what happens in each thread is necessary.

The following example refers to old TPU PWM function, which is not optimized to the eTPU enhanced
hardware. For PWM, thread 1 is the initialization thread, and threads 2 and 3 are used during normal
function execution. (PWM threads 4, 5, and 6 are for special modes and will be assumed to be unused on
channel 5). Thread 2 writes a time into the channel 5 match register and performs other operations that will
cause the channel 5 signal to go from low to high at the time indicated in the match register (match time).
At match time, the signal goes high and channel 5 requests service from the eTPU Microengine to execute
thread 3. Thread 3 writes a time into the channel 5 match register and performs other operations that will
cause the channel 5 signal to go from high to low at match time. At match time, the signal goes low and
channel 5 requests service from the eTPU Microengine to execute thread 2. A PWM wave is kept running
on the system by the eTPU executing thread 2, then thread 3, then thread 2, then thread 3, and so on.

DIO Function Threads PWM Function Threads

SM Function Threads

S1

S2 S3 S4

S5 S6

S1

S2 S3 S4

S5 S6

S1

S2 S3 S4

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 975

Since the definition of worse-case latency assumes a fully loaded running system, initialization threads are
not part of worst-case calculations. For the channel 5 example, the two PWM threads in Figure 24-64 are
thus the two normal running threads, threads 2 and 3.

Figure 24-64 does not define which thread is thread 2 and which is thread 3. Since the worst-case latency
derived from the first-pass analysis is the worst case between any two threads (not counting initialization
threads), it is safe to say that the worst-case latency shown in Figure 24-65 represents both the worst-case
high time and the worst-case low time.

Notice in Figure 24-64 that worst-case latency is drawn from the end of the execution of the first PWM
thread to the end of the execution of the next PWM thread. It is drawn from end to end because the
microcode instructions that make up the threads control the channel hardware. To make sure that all the
microcode instructions needed to change the pin thread have been executed, it is necessary to include the
execution time of the second thread.

Thread information for each function is found in the programming notes for individual TPU functions.
Refer to Freescale Programming Note TPUPN00/D, Using the TPU Function Library and TPU Emulation
Mode, for a list of available programming notes. Similar documentation will we provided for the eTPU
new functions.

24.6.5.3 Priority scheme details used in WCL analysis

The user assigns functions to channel numbers and gives each active channel a priority level of high,
middle, or low. The Scheduler uses the channel number and channel priority level to determine the order
in which to grant service.

The scheduler allocates time slots to specific priority levels of high, middle, or low. One function thread
is executed in each time slot. The length of a time slot varies according to the length of the executing
thread. When fully loaded, the scheduler always assigns time slots in a seven-slot sequence (see
Figure 24-66). After a seven-slot sequence is completed, another seven-slot sequence begins (see
Figure 24-67). Note that in eTPU, when no service request exists, the scheduler goes to thread 1, but WCL
calculation considers full load.

Figure 24-66. Time-slot sequence

H M H L H M H

Time Slot Transitions
(10 CPU Clock Cycle Each)

Time Slots of
Varying Lengths

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

976 Freescale Semiconductor

This sequence scheme gives higher-priority channels more service time than lower-priority channels.
High-priority channels are allocated four of seven time slots, middle-priority channels are allocated two
of seven time slots, and low-priority channels are allocated one of seven time slots.

Figure 24-67. Multiple time-slot sequences

24.6.5.3.1 Priority passing

If no channel of the priority level assigned to the time slot is requesting service, the eTPU scheduler can
pass priority to other levels. If no high-level channel is requesting service during a high level time slot, a
middle-level channel is granted service; or, if no middle level-channel is requesting service, a low-level
channel is granted service. If no middle-level channel is requesting service during a middle-level time slot,
a high-level channel is granted service; or, if no high-level channel is requesting service, a low-level
channel is granted service. If no low-level channel is requesting service during a low-level time slot, a
high-level channel is granted service; or, if no high-level channel is requesting service, a middle-level
channel is granted service. If no channel is requesting service, the time slot sequence is reset to state 1 and
the scheduler idles until a request is received.

Priority passing is implemented in hardware and does not contribute to worst-case latency.

24.6.5.3.2 Time-slot transition

After each time slot, the eTPU must prepare for the next time slot. This preparation time between each
time slot is called a time-slot transition. See Section 24.5.1.2, Time slot transition. Time-slot transitions
can take from six up to ten system clocks.

24.6.5.3.3 Channel number priority

If more than one channel of a priority level is requesting service, the lowest numbered channel is granted
service first. For example, if channels 0, 5, and 9 are all high-level channels requesting service during a
high time slot, channel 0 is granted service first. Continuing this example, if channel 0 requests service
again immediately after being serviced, it is not serviced again until channels 5 and 9 are serviced. This
scheme is implemented so that continuously-requesting low numbered channels do not take all the time on
the eTPU execution unit and leave no time for other channels.

The scheduler uses registers to keep track of which channels have been serviced and which require
servicing. Each channel has two register bit: a service request register (SRR) and a service grant register
(SGR). The SRR is set when a channel requests service. After the channel has been granted service, the
SGR is set and the SRR is cleared.

H M H L H M H

New 7-slot
Sequence

H M H L H M H H M H

New 7-slot New 7-slot
Sequence Sequence

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 977

SGRs are not cleared individually by channel, but rather as priority level groups. The clearing of a group
of SGRs begins a new cycle for that priority level. An SGR group is cleared on the condition that a channel
of that priority level has just been serviced, and no other channel of that priority level is requesting service
(has a set SRR) and has not been granted service (has a clear SGR).

For example, if a middle-priority channel has just been serviced (either in a middle-priority time slot or a
high or low-priority time slot gained by priority passing), the SRRs and SGRs of all middle-priority
channels are compared. If there is no middle-priority channel with its SRR set and SGR cleared, the
scheduler clears all middle-level SGRs. If there is a middle-level channel with its SRR set and SGR
cleared, the scheduler does not clear the SGR group, and the requesting middle-level channel is serviced
on the next middle-level time slot (or possibly sooner by priority passing).

24.6.5.3.4 SPRAM collision rate

Most function threads read or write to the eTPU SPRAM at least once. Because both the eTPU
Microengine and Host can access the SPRAM but not at the same time, the Microengine may suspend
execution during the SPRAM access while waiting for the Host to finish accessing the SPRAM. At other
times the Host may wait for the Microengine. Wait states can take up to two system clocks, when the Host
accesses the SPRAM directly, without using CDC. Microengine(s) wait-states must be added into the
worst-case latency calculation. The system designer should estimate the percentage of SPRAM accesses
in the system that will result in Microengine wait-states. This percentage is called the RAM collision rate
(RCR). In each collision with direct Host accesses to the SPRAM the Microengine(s) wait for two system
clocks.

In eTPU the Coherent Dual-parameter Controller (CDC) may also access the SPRAM for atomic transfers
of two parameters. eTPU Microengine may wait on this operation (if it is in service time) until the transfer
is complete. CDC always transfers two parameters, making four consecutive accesses (read, write, read,
write) of one system clock each. The system designer should estimate the percentage of SPRAM accesses
in the system that will result in a Microengine wait due to coherent transfer, and multiply it with the
average number of system clocks the Microengine waits for each transfer. This percentage is called
Coherent Parameter Collision Rate (CPCR).

In addition, Microengine to Microengine multiple parameter coherent communication, using the hardware
semaphores, may hold one Microengine which waits to lock the semaphore while the other Microengine
is holding it. This waiting is due to a software loop, not hardware wait-states. Note that single parameter
access of one Microengine does not affect the timing of the other Microengine due to SPRAM time
interlace. This implies that single parameter Microengine to Microengine communication does not affect
the performance. The Microengine which waits for the semaphore will loop until it is freed by the other
Microengine. This time depends on the eTPU application. The system designer should estimate the
percentage of Microengine to Microengine coherent parameter communication that will result in eTPU
semaphore loops, and multiply it with the average number of system clocks the Microengine loops for each
such transfer. This percentage is called CCR (Communication Collision Rate).

A 100% collision rate for a system is the theoretical worst case. In many systems, however, the RCR,
CPCR and CCR would be very low, sometimes even near 0%. This is because the eTPU is an independent
processor capable of servicing most function needs, so that the Host rarely needs to access the eTPU
parameter RAM. Also coherent Microengine to Microengine communication of more than one parameter
may be rare. To find a realistic RCR, CPCR the system designer should evaluate the Host code and find

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

978 Freescale Semiconductor

the percentage of time it accesses the eTPU parameter RAM with or without using the CDC. This
percentage gives a good RCR and CPCR. The eTPU application provides a good estimation of CCR.

NOTE

The programming practice of polling a flag in the eTPU SPRAM causes a
very high RCR and should be avoided in high-performance systems.

After the collision rate for a system is found, it can be applied to the WCL calculations for each channel.
The system designer can use the collision percentage and the number of SPRAM accesses (with and
without semaphores) to estimate the eTPU loop time for a function. Note that in old TPU functions CPCR
and CCR are both zero.

The estimation of eTPU wait time is as follows:

Variables:

N1 = Number of simple RAM accesses in the longest thread

RCRWait = Maximal system clocks wait time for simple RAM collision = 2

CPCRWait = Average System Clocks for Coherent Parameter Transfer (using CDC).

N2 = Number of eTPU-eTPU semaphore RAM accesses in the longest thread

CCRWait = Average System Clocks for Microengine-Microengine communication transfer.

Estimated Wait Time:

Function eTPU maximal wait time =

N1 * (RCR * RCRWait + CPCR * CPCRWait) + N2 * CCR * CCRWait

24.6.5.4 First-pass worst-case latency analysis

Following is the first-pass calculation of worst-case latency for a channel. Remember that this analysis
uses generalizations that usually produce a result much worse than the real worst case. If the worst-case
result from the first analysis is too long for the desired performance, use the second analysis for a more
realistic worst-case analysis.

24.6.5.4.1 Worst-case assumptions and formula

To estimate worst-case latency for a channel, assume this worst-case condition: the channel has just been
serviced in a time slot of its priority level, and all other channels in the system are continuously requesting
service and have cleared SGRs. The worst-case latency is the time from the end of the channel’s service
until the end of the channel’s next service. See Figure 24-68.

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

In
itializatio

n
/A

p
p

licatio
n

 in
fo

rm
atio

n

F
re

escale
 S

em
ico

nductor
979

Figure 24-68. First-pass worst-case latency

To estimate worst-case latency:

• Find the worst-case service time for each active channel.

• Using the H-M-H-L-H-M-H time-slot sequence, map the channels that are granted for each time slot.

• Add time for six-clock time-slot transitions.

Finding the worst-case service time for each active channel

A table for eTPU functions should list the longest threads (not counting initialization threads) for the functions, and the number of
eTPU SPRAM accesses in the longest thread (semaphored and non semaphored). These figures will be used for estimating
Microengine wait time. Table 24-120 is an example for old TPU functions in which there are only simple parameter RAM accesses.
It does not take into consideration the CDC operation and Microengine to Microengine communication.

The worst-case service time for each channel is: (CPCR = CCR = 0)

Longest thread + ((number of RAM accesses in longest thread+1) * RCR * 2 clocks).

Note that the formula adds 1 RAM accesses for the parameter preload that occurs during TST. There are actually three accesses during
TST, but only the first one can receive wait-states.

Table 24-120. Longest threads and RAM accesses for old TPU functions

Function Longest thread RAM accesses

DIO 10 4

ITC 40 (no linking)
42 (linking)

7

OC 40 7

Channel X

Serviced

Worst-Case Latency Channel X

Other Channels Serviced

Channel X

Serviced Next

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

In
itializatio

n
/A

p
p

licatio
n

 in
fo

rm
atio

n

F
re

escale
 S

em
ico

nductor
980

Mapping the channels for each time slot

To determine when a channel will be serviced again, it is necessary to determine which other channels will be serviced first. Do this
by assuming all channels are continuously requesting service and mapping the channels into the time-slot sequence.

Adding time for time-slot transitions

Add six system clocks for time-slot transitions which occur after each time slot.

24.6.5.4.2 First-pass analysis worst-case latency examples

The examples in this section assume the system configuration shown in Table 24-121.

PWM 24 4

SPWM
Mode 0
Mode1
Mode 2

14
18

20 (no linking)
22 (linking

4
4
4
4

PMA 94 8

PMM 94 8

PSP
Angle-Angle Mode
Angle-Time Mode

76
50

6
3

SM
1

160 21

PPWA
Mode 0
Mode 1
Mode 2
Mode 3

44
50

2

44
50

9
10
9

10

1 Assumes one master and one slave. For each additional slave
a) Add 32 clocks and 2 RAM accesses, and
b) Add (STEP_RATE_CNT  two clocks)

2 With one channel linked. Add two clocks for each additional channel linked.

Table 24-120. Longest threads and RAM accesses for old TPU functions (continued)

Function Longest thread RAM accesses

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 981

Finding the WCL for PWM on Channel 0

The following shows how to find the WCL for PWM on channel 0.

1. Find the worst-case service time for each active channel.

a) Longest thread of PWM is 24 CPU clocks with four RAM accesses.

24 + ((4 RAM accesses+1) * 0.09 * 2 CPU clock waits) = 24.9 CPU clocks, rounded up to 25
CPU clocks (since there are no partial clock periods)

Channel 0 worst-case service time = 25 CPU clocks.

b) Longest thread of PPWA in mode 0 is 44 CPU clocks with nine RAM accesses.

44 + ((9 RAM accesses+1) * 0.09 * 2 CPU clock waits) = 45.8 CPU clocks, rounded up to 46
CPU clocks

Channel 1 worst-case service time = 46 CPU clocks.

c) Longest thread of DIO is ten CPU clocks with four RAM accesses.

10 + ((4 RAM accesses+1) * 0.09 * 2 CPU clock waits) = 10.9 CPU clocks, rounded up to 11
CPU clocks

Channel 2 worst-case service time = 11 CPU clocks.

2. Assume channel 0 has just been serviced and that channels 1 and 2 are continuously requesting
service. Using the H-M-H-L-H-M-H time-slot sequence, map the channels that are granted for
each time slot. See Figure 24-69.

Figure 24-69. Next Servicing for Channel 0

Channel 1 will be serviced in the middle-priority time slot before channel 0 is serviced again.

3. Add time for the six-clock CPU time-slot transitions. See Figure 24-69 and Table 24-122.

Table 24-121. System configuration example

Channel Priority Function1, 2

1 9% RAM Collision Rate (RCR)
2 CPU clock rate = 40 MHz, or 25 ns per clock period

0 High PWM (driving a DC motor)

1 Middle PPWA (Mode 0, measuring the DC motor speed)

2 Low DIO (Input)

TPU CH0 WCL TIMTPU CH0 WCL TIM

CHANNEL 0
SERVICED

WORST CASE LATENCY
CHANNEL 0

H M H L H M H H

CHANNEL 1
SERVICED

CHANNEL 0
SERVICED

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

982 Freescale Semiconductor

A four-clock NOP occurs after each channel is serviced since there is one channel in each priority
level, i.e., a new cycle for a priority level is started after each channel is serviced. Time-slot
transitions occur after each time slot.

83 clocks * 25 ns/clock = 2075 ns

Conclusion: in this system configuration PWM can run with a minimum high time or low time of
2075 ns.

Note that in double match eTPU system the PWM can be serviced once in each period, and there
is no latency for minimum high time. The latency in eTPU PWM function will represent the
minimum PWM period.

Finding the WCL for PPWA on channel 1

The following shows how to find the WCL for PPWA on channel 1.

1. Find the worst-case service time for each active channel. See step 1 of previous example.

2. Assume channel 1 has just been serviced and that channels 0 and 2 are continuously requesting
service. Using the H-M-H-L-H-M-H time-slot sequence, map the channels that are granted for
each time slot. See Figure 24-70.

Figure 24-70. Next servicing for channel 1

Channel 0 will be serviced twice and channel 2 once before channel 1 is serviced again.

3. Add time for the six-clock CPU time-slot transitions. See Figure 24-70 and Table 24-123.

Table 24-122. Worst-case latency for channel 0

Channel 0 worst-case service time 25 clocks

Channel 1 worst-case service time 46 clocks

Two 6-clock time-slot transitions 12 clocks

Total clocks 83 clocks

Table 24-123. Worst-case latency for channel 1

Two Channel 0 worst-case service times 50 clocks

Channel 1 worst-case service time 46 clocks

Channel 2 worst-case service time 11 clocks

TPU CH1 WCL TIMTPU CH1 WCL TIM

CHANNEL
SERVICED

WORST CASE LATENCY
CHANNEL 1

H M H L H M H H

CHANNEL 0
SERVICED

CHANNEL 2
SERVICED

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

CHANNEL 0
SERVICED

CHANNEL 1
SERVICED

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 983

131 clocks * 25 ns/clock = 3275 ns

Conclusion: In this system configuration PPWA can measure a period or pulse of minimum
3275 ns.

Note that PPWA function optimized for eTPU hardware can use double transition mode to measure
very narrow pulses with one service after the second transition, and latency will affect only the
minimum gap between two input pulses. Also the function threads would have more efficient
coding.

Finding the WCL for DIO on Channel 2

The following shows how to find the WCL for DIO on channel 2.

1. Find the worst-case service time for each active channel. See step 1 of previous examples.

2. Assume channel 2 has just been serviced and that channels 0 and 1 are continuously requesting
service. Using the H-M-H-L-H-M-H time-slot sequence, map the channels that are granted for
each time slot. See Figure 24-71.

Figure 24-71. Next Servicing for Channel 2

Channel 0 will be serviced four times and channel 1 twice before channel 2 is serviced again.

3. Add time for the ten-clock CPU time-slot transitions and the four-clock NOPs. See Figure 24-71
and Table 24-124.

245 clocks * 25 ns/clock = 6125 ns

Four 6-clock time-slot transitions 24 clocks

Total clocks 131 clocks

Table 24-124. Worst-case latency for channel 2

Four Channel 0 worst-case service times 100 clocks

Two Channel 1 worst-case service time 92 clocks

Channel 2 worst-case service time 11 clocks

Seven 6-clock time-slot transitions 42 clocks

Total clocks 245 clocks

Table 24-123. Worst-case latency for channel 1

TPU CH2 WCL TIMTPU CH2 WCL TIM

CHANNEL 2
SERVICED

WORST CASE LATENCY
CHANNEL 2

H M H L H M H H

CHANNEL 0
SERVICED

CHANNEL 1
SERVICED

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

CHANNEL 0
SERVICED

CHANNEL 0
SERVICED

M H L H

CHANNEL 1
SERVICED

CHANNEL 0
SERVICED

CHANNEL 2
SERVICED

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

984 Freescale Semiconductor

Conclusion: in this system configuration DIO can keep track of the input level at a minimum of
every 6125 ns.

Note that DIO function optimized for eTPU hardware can use double transition mode to measure
two pin transitions at a time and reduce the service time, improving the overall system performance
and latency.

24.6.5.5 Second-pass worst-case latency analysis

Following is an example of a second-pass analysis for calculating worst-case latency for a channel. The
second-pass analysis is useful for higher-performance systems, since it gives a more realistic worst-case
latency result than first-pass analysis.

This example uses a relatively simple system in order to illustrate the basic principles of second-pass
analysis. For a more complex example of second-pass analysis, refer to Multiphase Motor Commutation
TPU Function (COMM)(TPUPN09/ D).

24.6.5.5.1 Second-pass analysis guidelines

Rather than use a fixed formula, a second-pass analysis relies on the application of the following
guidelines.

1. The first-pass analysis makes the assumption that all channels in the system are continually
requesting service. For many systems this is an unrealistic assumption. For example, if TCR1 is
counting at a rate of 2 MHz (500 ns per count) and a channel is running the DIO function with a
match rate of 20,000 TCR1 counts, the DIO will request service every 10 ms (20,000 * 500 ns =
10,000,000 ns or 10 ms). It is therefore unrealistic to assume that the channel running this DIO
function is continuously requesting service. Figure out a realistic service request rate for each
channel. Time slots can then be mapped to each channel at the real rate of request.

2. If a function is active during system initialization but not during the high-speed running mode of
the system, then that system does not need to be included in the high-speed worst-case latency
calculations.

3. Use a realistic SPRAM collision rate.

4. Be careful when assigning functions priority levels and channel numbers. Decide which function
or functions will be most difficult to make perform at the desired level. Assign those channels high
priority and low channel numbers. Try different priority and channel assignments to see how it
affects the system.

5. The seven-slot sequence of || H | M | H | L | H | M | H || is asymmetrical when put back-to-back with
other seven-slot sequences. Note that in the following sequence there are two high-priority slots
next to each other:

|| H | M | H | L | H | M | H |||| H | M | H | L | H | M | H ||

6. Make sure that when mapping out channels to the sequence, you choose a worst-case slot to start
the mapping. For example, when estimating WCL for a high-priority channel, do not start the
mapping in the last high-priority slot in a seven-slot sequence, as that is a best case for a
high-priority channel since another high-priority time slot is next.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 985

7. Instead of always using the longest thread in the function as the worst-case thread, evaluate the
threads in the function that will be used in the system and use the appropriate worst-case threads.
For example, in the preceding example of first-pass analysis, the PWM was shown to be able to
achieve a high time and low time of 2475 ns under worst-case conditions. This was derived using
the longest PWM thread of 24 CPU clocks. This longest thread is actually thread 2, the thread that
is entered after the pin has just gone high. Thread 3, the thread that is entered after the pin has just
gone low, requires only two CPU clocks. Therefore, in the first-pass example, the high time was
correctly derived, but the low time is actually shorter than was estimated.

24.6.5.5.2 Second-Pass analysis example

This example requires three 50% PWM waveforms: one 5 kHz (200 ms/period) and two 50 kHz (20
ms/period), each running DC motors. (Remember that the PWM function requests service from the eTPU
after each high time and after each low time, so the eTPU must handle a request every 100 ms for the 5 kHz
PWM and every 10 ms for the 50 MHz PWM.)

NOTE

This example uses square waves for simplicity. Notice that to use a PWM
waveform in the typical way, in which the pulse is modulated, the pulse
must not be modulated in a way that violates the worst-case latency
requirements.

This example also uses one DIO channel monitoring a signal level every millisecond and one PPWA
channel in mode 0 monitoring the speed of the 5-kHz DC motor. The PPWA must measure periods of
5 kHz (200 ms/period).

The CPU is interrupted by the channel running the PPWA function after measuring 200 periods (every
40 ms). The interrupt service routine performs an averaging of the period accumulation and checks it
against a known parameter. The interrupt service time is so short and infrequent that it is a tiny fraction of
total system time. The interrupt service routine contains no polling of the parameter RAM. Therefore a
realistic RCR = 0%.

First-Try system configuration

Try a system configuration that seems likely to work. If it does not, change priority levels or channel
numbers.

The 5 kHz and 50 kHz PWMs are the most time-critical functions. Those are assigned high priority. PPWA
is assigned middle priority. The DIO is low performance and is assigned low priority. Refer to
Table 24-125.

Table 24-125. First-Try system configuration

Channel Priority Function1,2

0 High PWM at 50 kHz (needs a 4-µs WCL)

1 High PWM at 50 kHz (needs a 4-µs WCL)

2 High PWM at 5 kHz (needs a 40-µs WCL)

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

986 Freescale Semiconductor

With this system configuration, worst-case service time for each active channel is determined as follows:

a) Longest thread of PWM is 24 CPU clocks with four RAM accesses.

24 + ((4 RAM accesses+1) * 0 * 2 CPU clock waits) = 24 CPU clocks

Channels 0-2 worst-case service time = 24 CPU clocks.

b) Longest thread of PPWA in mode 0 is 44 CPU clocks with nine RAM accesses.

44 + ((9 RAM accesses +1)* 0 * 2 CPU clock waits) = 44 CPU clocks

Channel 8 worst-case service time = 44 CPU clocks.

c) Longest thread of DIO is ten CPU clocks with four RAM accesses.

10 + ((4 RAM accesses+1) * 0 * 2 CPU clock waits) = 10 CPU clocks

Channel 15 worst-case service time = 10 CPU clocks.

To find the WCL for channel 0, assume channel 0 has just finished service.

Map the channels in the H-M-H-L-H-M-H sequence. See Figure 24-72.

Figure 24-72. Worst-case latency for channel 0 (first try)

Conclusion: with this system configuration, worst-case latencies for channels 0 and 1 are too
high (WCL for channel 1 is the same as WCL for channel 0). Try a different system
configuration.

Second-Try system configuration

The second-try system configuration is shown in Table 24-126.

8 Middle PPWA at 5 kHz (needs an 80-µs WCL)

15 Low DIO as input at rate of 1 ms

1 0% RAM collision rate
2 CPU clock rate = 40 MHz, or 60 ns per clock period

Table 24-125. First-Try system configuration

Channel Priority Function1,2

TPU CH0 WCL TIM 1TPU CH0 WCL TIM 1

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

CHANNEL 0
SERVICED

WORST CASE LATENCY

H M H L H M H H

CHANNEL 8
SERVICED

CHANNEL 1
SERVICED

CHANNEL 15
SERVICED

CHANNEL 2
SERVICED

M H L

CHANNEL 0
SERVICED

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 987

To find the WCL for channel 0, assume channel 0 has just finished service. Map the channels in the
H-M-H-L-H-M-H sequence. See Figure 24-73.

Figure 24-73. Worst-case latency for channel 0 (second try)

Conclusion: with this system configuration, the WCL of both channel 0 and channel 1 is 3.85 ms, which
is within the limit of 4 ms needed for a 50-kHz PWM.

Next, find the WCL for channel 2. Assume channel 2 has just finished service. Map the channels in the
H-M-H-L-H-M-H sequence. See Figure 24-74.

Figure 24-74. Worst-case latency for channel 2

Conclusion: with this system configuration, the WCL for channels 2 and 8 is 4.7 ms, which is within the
40 and 80 ms WCL requirements.

Table 24-126. Second-Try system configuration

Channel Priority Function1,2

1 0% RAM collision rate
2 CPU clock rate = 40 MHz, or 60 ns per clock period

0 High PWM at 50 kHz (needs a 4-µs WCL)

1 High PWM at 50 kHz (needs a 4-µs WCL)

2 Middle PWM at 5 kHz (needs a 40-µs WCL)

8 Middle PPWA at 5 kHz (needs an 80-µs WCL)

15 Low DIO as input at rate of 1 ms

TPU CH0 WCL TIM 2

TPU CH0 WCL TIM 2

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

CHANNEL 0
SERVICED

WORST CASE LATENCY

H M H L H M H H

CHANNEL 2
OR CHANNEL

SERVICED

CHANNEL 1
SERVICED

CHANNEL 15
SERVICED

CHANNEL 0
SERVICED

M H L

TPU CH2 WCL TIM 1TPU CH2 WCL TIM 1

= 10-CYCLE TIME SLOT TRANSITION

= 4-CYCLE NOP INSTRUCTION

CHANNEL 2
SERVICED

WORST CASE LATENCY

H M H L H M H H

CHANNEL 0
SERVICED

CHANNEL 15
SERVICED

CHANNEL 1
SERVICED

CHANNEL 8
SERVICED

M H L

CHANNEL 2
SERVICED

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

988 Freescale Semiconductor

Notice that channels 2 and 8 are well within their WCL requirements. The system could be reconfigured
as shown in Table 24-127 to give channels 0 and 1 a larger margin while still keeping channels 2, 8 and 15
within their WCL requirements.

24.6.6 Endianness

The address of the 24-bit parameters and the most significant byte depends on the endianness of the MCU.
Table 24-128 shows the parameter addresses for big and little endian machines.

24.7 Appendices

24.7.1 Microcycle and I/O timing

24.7.1.1 Execution and channel timing

Figure 24-75 shows the main timings related to microinstruction execution when channels and timebases
run on T2 timing.

Table 24-127. Second-try system with channel 0 and 1 reconfigured

Channel Priority Function1,2

1 0% RAM collision rate
2 CPU clock rate = 40 MHz, or 60 ns per clock period

0 High PWM at 50 kHz (needs a 10-µs WCL)

1 High PWM at 50 kHz (needs a 10-µs WCL)

2 Middle PWM at 5 kHz (needs a 40-µs WCL)

8 Low PPWA at 5 kHz (needs an 80-µs WCL)

15 Low DIO as input at rate of 1 ms

Table 24-128. Parameter addresses and endianness

Parameter
Byte address offset (n = word address offset)

Big endian Little endian

32-bit 4*n

24-bit 4*n + 1 4*n

32-bit parameter’s most significant byte 4*n 4*n + 3

24-bit parameter’s most significant byte 4*n + 1 4*n + 2

Least significant byte 4*n + 3 4*n

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 989

Figure 24-75. Execution, Timebase and Channel T2 Timing

TCR1/2*

T2 T4T2 T4 T2 T4

1 microcycle 1 microcycle 1 microcycle

tn+1

tn

MRLA/B
TDLA/B

CAP1/2

Pin Action
due Match

uInstr
uInstn uInstn+1uInst = Set Pin

Pin Action
due uInstr

Note: *TCR clock/prescaler selection = 4x system clock

Updated Pin Value

Updated Pin Value

uInstr uInstn
Pre-fetch

uInstn+1 uInstn+2

Execution

System
Clock

T4

(match on tn)

tntn-1

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

990 Freescale Semiconductor

Figure 24-76. Execution, Timebase and Channel T2/T4 Timing

The sequential occurrence of the four T states (T1 – T4) constitutes a microcycle. Only T2 and T4 are
taken as reference for timings, either internal or external. T2 and T4 have the timing of the positive system
clock pulses, and are used in most of the eTPU logic in an edge-triggered design style.

Two additional T states are derived from the system clocks: T2 and T4. T2 occurs when the eTPU loses
SPRAM arbitration to a bus master. T4 occurs in halt state (due to a breakpoint or device debug request
assertion, for instance), or in stall state (due to an NDEDI queue full); see Section 24.5.10.2, Development
support features, for more details.

T2 and T4 states are defined as microcycle timing states (not to be confounded with logic states) of one
system clock in which the T clocks continue to run, but the control signals associated with the clocks are
unaffected. That is, no operation occurs during these states. Both T2 and T4 states occur in multiples of
two system clocks to keep the microengine synchronized with the free running channels, which are
unaffected and keep on working as in T2 and T4.

Thus, the eTPU has two types of timing states:

TCR1/2*

T2 T4T2 T4 T2 T4

1 microcycle 1 microcycle 1 microcycle

tn-1 tntn-3

MRLA/B
TDLA/B

CAP1/2

Pin Action
due Match

uInstr
uInstn uInstn+1uInst = Set Pin

Pin Action
due uInstr

Note: *TCR clock/prescaler selection = 1 x system clock

Updated Pin Value

uInstr uInstn
Pre-fetch

uInstn+1 uInstn+2

Execution

System
Clock

T4

(match on tn)

tn-2 tn+1 tn+2 tn+3 tn+4

tn

Updated Pin Value

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 991

• T2: hold execution for SPRAM access, from clock pulse T2 until one of the next T2 clock pulses
of another microcycle.

• T4: hold execution in debug mode or stall, from clock pulse T4 until one of the next T4 clock pulses
of another microcycle.

Figure 24-77 and Figure 24-78 shows the timing of T2 and T4 timing states, respectively.

Figure 24-77. T2 timing

Figure 24-78. T4 timing

24.7.1.2 Input/Output signal delays

The synchronizer, filter and edge detection logic delay the input signal transitions.

T4 T2 T2 T2 T2

T21st 2ndT2

T4 T2 T4 T2T CLOCKS

SYS.CLOCK

Nth T2

WAIT-T2

T4

PC A1 A2

T4

T4

A2 A3

T2

(A1)(A0) (A1)INST

T2 T4 T4 T4 T4

T41st 2ndT4

T2 T4 T2 T4T CLOCKS

SYS.CLOCK

Nth T4

WAIT-T4

T2

PC A1 A2

T2

T2

A2

T4

A3

T4

(A1) (A1) (A2)INST

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

992 Freescale Semiconductor

The Filter Delay varies with the filter clock (ETPU_ECR field FPSCK) and the filter mode used, as shown
in the Table 24-58. For any given transition, it depends on the phase of the filter clock when the input
transition happens. In integration mode (TCRCLK filtering only), it also depends on the state of the
integrator counter. The Total Delay is defined as the number of system clock rising edges between the input
transition and the setting of TDLA/B, TCR1/2 incrementing, or EAC tooth sensing (TCRCLK) in angle
mode. The synchronizer delay is 2 or 3 system clocks, depending on the phase of the synchronizer when
the input transition happens. The edge detection takes 1 more system clock. The total delays are, thus:
Min. Total Delay = Min. Synchronizer Delay + Min. Filter Delay + Edge Detection Delay
Min. Total Delay = 3 + Min. Filter Delay

Max. Total Delay = Max. Synchronizer Delay + Max. Filter Delay + Edge Detection Delay
Max. Total Delay = 4 + Max. Filter Delay

The channel filters can be bypassed, so nullifying the filter delays in the equations above.

The channel output flip-flops drive the eTPU output signals directly, without any synchronous delays.
Consult the MCU Reference Manual for information on additional delays added at the integration.

24.7.2 Initialization code example

The code example below initializes ETPU_1 engine and configures eTPU UART FUNCTION to perform
the receiver at channel 1 and the transmitter at channel 0. The function works without parity and the data
word is 8 bits in size. The initialization code assumes the microcode function previously loaded into SCM.

// Initilization program for eTPU engine 1, function microcode previously loaded into SCM.
// No angle mode, eTPU UART FUNCTION configured to perform at channels 0 and 1.
// Channel0 - Tx_UART
// Channel1 - Rx_UART

// UART Specifications:
// Data word size: 8 bits
// Parity: disabled

// ***************************** Definitions ***********************************

//Bases
#define ETPU_BASE 0x000 //MCU-dependent
#define SPRAM_BASE 0x000 //MCU-dependent

//General Configuration Registers
#define ETPU_MCR_OFFSET 0x000 //Module Configuration Register
#define ETPU_TBCR_1_OFFSET 0x020 //Time Base Configuration Register
#define ETPU_ECR_1_OFFSET 0x014 //Engine Configuration Register
#define ETPU_CIER_1_OFFSET 0x240 //Channel Interrupt Enable Register
#define ETPU_CDTRER_1_OFFSET 0x250 //Data TransF Interrupt Enable Register

//channel0 configuration registers
#define ETPU_C0CR_1_OFFSET 0x400 //Channel0 Configuration Register
#define ETPU_C0SCR_1_OFFSET 0x404 //Channel0 Status Control Register
#define ETPU_C0HSRR_1_OFFSET 0x408 //Channel0 Host Service Req. Register

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 993

//channel1 configuration registers
#define ETPU_C1CR_1_OFFSET 0x410 //Channel1 Configuration Register
#define ETPU_C1SCR_1_OFFSET 0x414 //Channel1 Status Control Register
#define ETPU_C1HSRR_1_OFFSET 0x418 //Channel1 Status Control Register

// Tx_UART SPRAM parameters
#define MATCH_RATE_TX_OFFSET 0x004 //Channel0 parameter 1
#define DATA_UART_TX_OFFSET 0x008 //Channel0 parameter 2
#define DATA_SIZE_TX_OFFSET 0x00C //Channel0 parameter 3

// Rx_UART SPRAM parameters
#define MATCH_RATE_RX_OFFSET 0x024 //Channel1 parameter 1
#define DATA_UART_RX_OFFSET 0x028 //Channel1 parameter 2
#define DATA_SIZE_RX_OFFSET 0x02C //Channel1 parameter 3

//
#define ETPU_MCR (*((volatile unsigned int*)(ETPU_MCR_OFFSET + ETPU_BASE)))
#define ETPU_TBCR_1 (*((volatile unsigned int*)(ETPU_TBCR_1_OFFSET + ETPU_BASE)))
#define ETPU_ECR_1 (*((volatile unsigned int*)(ETPU_ECR_1_OFFSET + ETPU_BASE)))
#define ETPU_CIER_1 (*((volatile unsigned int*)(ETPU_CIER_1_OFFSET + ETPU_BASE)))
#define ETPU_CDTRER_1 (*((volatile unsigned int*)(ETPU_CDTRER_1_OFFSET + ETPU_BASE)))
#define ETPU_C0CR_1 (*((volatile unsigned int*)(ETPU_C0CR_1_OFFSET + ETPU_BASE)))
#define ETPU_C0SCR_1 (*((volatile unsigned int*)(ETPU_C0SCR_1_OFFSET + ETPU_BASE)))
#define ETPU_C0HSRR_1 (*((volatile unsigned int*)(ETPU_C0HSRR_1_OFFSET + ETPU_BASE)))
#define ETPU_C1CR_1 (*((volatile unsigned int*)(ETPU_C1CR_1_OFFSET + ETPU_BASE)))
#define ETPU_C1SCR_1 (*((volatile unsigned int*)(ETPU_C1SCR_1_OFFSET + ETPU_BASE)))
#define ETPU_C1HSRR_1 (*((volatile unsigned int*)(ETPU_C1HSRR_1_OFFSET + ETPU_BASE)))
#define MATCH_RATE_TX (*((volatile unsigned int*)(MATCH_RATE_TX_OFFSET + SPRAM_BASE)))
#define DATA_UART_TX (*((volatile unsigned int*)(DATA_UART_TX_OFFSET + SPRAM_BASE)))
#define DATA_SIZE_TX (*((volatile unsigned int*)(DATA_SIZE_TX_OFFSET + SPRAM_BASE)))
#define MATCH_RATE_RX (*((volatile unsigned int*)(MATCH_RATE_RX_OFFSET + SPRAM_BASE)))
#define DATA_UART_RX (*((volatile unsigned int*)(DATA_UART_RX_OFFSET + SPRAM_BASE)))
#define DATA_SIZE_RX (*((volatile unsigned int*)(DATA_SIZE_RX_OFFSET + SPRAM_BASE)))

// Macros
#define TCR2_PRESCALER(x) ((x & 0x3F) << 8)
#define TCR1_PRESCALER(x) (x & 0xFF)
#define CHANNEL_FUNCTION(x) ((x & 0x1F) << 16)
#define CHANNEL_PARAM_BASE_ADDR(x) (x & 0xFF)
#define FUNCTION_MODE(x) (x & 0x3)
#define MATCH_RATE_TRANS(x) (x & 0xFFFF)
#define MATCH_RATE_REC(x) (x & 0xFFFF)
#define DATA_WORD_Tx(x) (x & 0x3FFF)
#define DATA_SIZE_TRANS(x) (x & 0xF)
#define DATA_SIZE_REC(x) (x & 0xF)
#define HOST_SERV_REQ(x) (x & 0x7)
#define ENTRY_TABLE_BASE(x) (x & 0x1F)

//ETPU_MCR fields - Module Configuration Register
#define PSE 0x00000002 //Parameter sign extension
#define SCMMISEN 0x00000200 //SCM MISC enable
#define VIS 0x00000040 //SCM visibility
#define GTBE 0x00000001 //Global time base enable

//ETPU_TBCR_1 fields - Time Base Configuration Register
#define TCRCLK_FILTER_TWOSAMPLE 0x00000000 //TCRCLK filter in Two sample mode

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

994 Freescale Semiconductor

#define TCRCLK_FILTER_INTEGRATOR 0x00800000 //TCRCLK filter in Integrator mode
#define TCRCLK_FILTER_DIV2CLOCK 0x00000000 //TCRCLK filter uses system clock divided by 2
#define TCRCLK_FILTER_CHANNELCLOCK 0x00400000 //TCRCLK filter uses channel clock

#define TCR2_RISE 0x00100000 //TCR2 inc rising edge
#define TCR2_FALL 0x00200000 //TCR2 inc falling edge
#define TCR2_RISEFALL 0x00300000 //TCR2 inc ris and fall
#define TCR2_GATEDDIV8 0x00000000 //TCRCLK gates system clock/8
#define TCR1CLK_SOURCE_DIV2 0x00000000 //TCR1 source system clock/2
#define TRC1CLK_SOURCE_TCRCLK 0x00040000 //TCR1 source is TCRCLK pin
#define CHANNEL_FILTER_TWOSAMPLEMODE 0x00000000 //Filter:two sample mode
#define CHANNEL_FILTER_THREESAMPLEMODE 0x00008000 //Filter:three sample mode
#define CHANNEL_FILTER_CONTMODE 0x0000C000 //Filter:continuous mode

//ETPU_ECR fields - Engine Configuration Register
#define FILTER_PRESCALER_CLOCK_DIV4 0x00010000 //System clock/4

//ETPU_CxCR fields - Channelx Configuration Register
#define CHANNEL_INT_ENABLE 0x80000000 //Channel Interrupt enable
#define CHANNEL_DATA_TRANSF_REQ_ENABLE 0x40000000 //Channel data transfer req. enable
#define CHANNEL_PRIORITY_DISABLE 0x00000000 //Channel disable
#define CHANNEL_PRIORITY_LOW 0x10000000 //Low priority channel
#define CHANNEL_PRIORITY_MIDDLE 0x20000000 //Middle priority channel
#define CHANNEL_PRIORITY_HIGH 0x30000000 //High priority channel

//DATA_UART - SPRAM
#define CLEAR_TDRE 0x007FFFFF //TDRE must be zero to signal new valid
 //data to be transmitted

void init_etpu(){

volatile int temp;

//Initialize eTPU module configuration register(ETPU_MCR)
ETPU_MCR = 0x00070000; //SCMSIZE is 16K(7 2K blocks)

//Initialize eTPU time base configuration register(ETPU_TBCR)
ETPU_TBCR_1 = (TCR1CLK_SOURCE_DIV2 | CHANNEL_FILTER_TWOSAMPLEMODE | TCR1_PRESCALER(8));

//Initialize eTPU engine configuration register(ETPU_ECR)
ETPU_ECR_1 = (ENTRY_TABLE_BASE(0x1F) | FILTER_PRESCALER_CLOCK_DIV4);

//Write to the channel configuration Registers(ETPU_CxCR) to choose the
//function to be performed by the channel and its parameter base address.Standard entry table
//is selected.
ETPU_C0CR_1 = (CHANNEL_INT_ENABLE | CHANNEL_FUNCTION(15) | CHANNEL_PARAM_BASE_ADDR(0x00));
ETPU_C1CR_1 = (CHANNEL_INT_ENABLE | CHANNEL_FUNCTION(15) | CHANNEL_PARAM_BASE_ADDR(0x02));

//Write to the channel status control registers(ETPU_CxSCR) to choose
//variations within the function flow.
ETPU_C0SCR_1 = (FUNCTION_MODE(0)); // no parity for transmitter
ETPU_C1SCR_1 = (FUNCTION_MODE(0)); // no parity for receiver

//write to spram for parameter initialization of each configured
//channel
MATCH_RATE_TX = MATCH_RATE_TRANS(0x412); //setup match rate for transmitter

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

A
p

p
en

d
ice

s

F
re

escale
 S

em
ico

nductor
995 DATA_UART_TX = DATA_WORD_TX(0x000000AA); //load first byte to be transmitted=AA

DATA_SIZE_TX = DATA_SIZE_TRANS(8); //8-bit data word for transmitter
MATCH_RATE_RX = MATCH_RATE_REC(0x412); //setup match rate for receiver
DATA_SIZE_RX = DATA_SIZE_REC(8); //8-bit data word for receiver

//Write to Channel host service request registers(ETPU_CxHSRR) to
//initialize active channels(Channel 0 and 1)
ETPU_C0HSRR_1 = HOST_SERV_REQ(3);
ETPU_C1HSRR_1 = HOST_SERV_REQ(2);

//write to Channel priority field to enable each channel by
//assigning it a high,middle or low priority
ETPU_C0CR_1 =(ETPU_C0CR_1 | CHANNEL_PRIORITY_HIGH);
ETPU_C1CR_1 =(ETPU_C1CR_1 | CHANNEL_PRIORITY_HIGH);

//Monitor channel host service request register for completion
//of initialization
//HSR should be zero in the end of initialization
do
{
 temp = ETPU_C0HSRR_1;
} while (temp != 0);

do
{
 temp = ETPU_C1HSRR_1;
} while (temp != 0);

//Write GTBE bit to start TCR1 and TCR2 time bases counting
//at the same time
ETPU_MCR = (ETPU_MCR | GTBE);

}// end of etpu_initialization routine

24.7.3 Predefined channel mode summary

Table 24-129 explains channel double match predefined submode functionality by showing all event sequence possibilities. The initial
state considered for all submodes is channel flags MRLA, MRLB, TDLA and TDLB reset. From initial state one can follow the table
and verify how each submode behaves in a determined sequence of events. Note that the actions performed by an event type depend
on all previous events following the initial state, for a given channel submode.

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

A
p

p
en

d
ice

s

F
re

escale
 S

em
ico

nductor
996 There are three columns for each event: one for event type, one for enable/disable actions and one for capture. Event type column can

be matchA, matchB, transA and transB (for double transition modes). Enable/disable actions column (identified as
“[blocks](enables)” in column head) specifies which other events are enabled or disabled. Initially disabled events (specified in
“initially blocked” column) are usually enabled by other events.

In double transition submodes, the first transition detected is always considered transA and the second is considered transB. This
means that transA event actually enables the detection of transB event. This is not explicit in the table, since it is a general behavior
for all double transition submodes.

A sequence of four events (two matches and two transitions) are necessary to describe the behavior of some channel submodes. When
a determined sequence of events has less than four events, the other event columns are left blank.

Cells in an “event type” column that have light-grayed background indicate that a service request is generated. More than one event
in the same event sequence can issue service request.

NOTE

The table does not exhaust all possibilities of channel logic event sequences, because it does not account
for possible microcode interventions. For instance, if matches are blocked by first transition and
microcode resets TDLA, the matches become enabled again, and from this point on the channel behaves
as if the first transition had never occurred.

A
p

p
e

n
d

ic
es

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

F
re

escale S
e

m
icondu

cto
r

9
97

Table 24-129. Predefined channel mode summary

Mode
initially
blocked

1st event 2nd event 3rd event 4th event

event type
[blocks]

(enables1)
Capt. event type

[blocks]
(enables)

Capt. event type
[blocks]

(enables)
Capt. event type

[blocks]
(enables)

Capt.

em_nb_st none matcha/b none 1/2 matchB/A none 2/1 transA [matches] both transB none 2

transA [matches] both transB none 2

transA [matches] both transB none 2

em_nb_dt none matchA/B none 1/2 matchB/A none 2/1 transA none 1 transB none 2

matchA none 1 transA none 1 matchB none 2 transB none 2

transB [matchB] 2

matchB none 2 transA [matchA] 1 transB [matchB] 2

transA [matchA] 1 matchB none 2 transB none 2

transB [matchB] 2

em_b_st none matchA [matchB] both transA [matches] both transB none 2

matchB [matchA] both

transA [matches] both transB none 2

em_b_dt none matchA [matchB] both transA none 1 transB none 2

matchB [matchA] both

transA [matchA] 1 matchB none 2 transB none 2

transB [matchB] 2

bm_st none matchA/B none 1/2 matchB/A none 2/1 transA [matches] both transB none 2

transA [matches] both transB none 2

transA [matches] both transB none 2

bm_dt none matchA/B none 1/2 matchB/A none 2/1 transA none 1 transB [matches] 2

transA none 1 matchB/A none 2/
none

transB [matches] 2

transB [matches] 2

transA none 1 matchA/B none none/
2

matchB/A none 2/
none

transB [matches] 2

transB [matches] 2

transB [matches] 2

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

A
p

p
en

d
ice

s

F
re

escale
 S

em
ico

nductor
998

m2_st transA matchA (transA) 1 matchB none 2 transA [matches] both transB none 2

transA [matches] both transB none 2

matchA
and

matchB

(transA) both transA [matches] both transB none 2

matchB [matchA] 2

m2_dt transA matchA (transA) 1 transA none 1 transB [matchB] 2

matchB none 2 transB none 2

matchB none 2 transA none 1 transB none 2

matchA
and

matchB

(transA) both transA none 1 transB none 2

matchB [matchA] 2

m2_o_st transA
matchB

matchA (matchB)
(transA)

1 transA [matches] both transB none 2

matchB [transA] 2

m2_o_dt transA
matchB

matchA (matchB)
(transA)

1 transA none 1 transB [matchB] 2

matchB [transB] 2

matchB [transA] 2

sm_st2 matchB matchA none both transA none both transB none 2

transA [matchA] both transB none 2

sm_dt matchB matchA none both transA none 1 transB none 2

transA none 1 matchA none 2 transB none 2

transA none 1 transB [matchA] 2

sm_st_e3 matchB

transB

matchA none 1 transA none 1

transA [matchA] 1

Generates Service Request

1 Transition A always enables Transition B
2 sm_st is compatible with TPU3 channel logic.
3 It is not possible to include all functionality of this submode in table. See Section , Single Match Enhanced Mode (sm_st_e), for more details.

Table 24-129. Predefined channel mode summary (continued)

Mode
initially
blocked

1st event 2nd event 3rd event 4th event

event type
[blocks]

(enables1)
Capt. event type

[blocks]
(enables)

Capt. event type
[blocks]

(enables)
Capt. event type

[blocks]
(enables)

Capt.

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 999

24.7.4 MISC algorithm

The MISC generator is based on the following polynomial:
G(x) = 1 + x1 + x2 + x22 + x31 (equivalent to feedback mask = 0x80400007)

The MISC signature generation starts by clearing the MISC Accumulator value to 0 and preloading the
MISC Counter with the highest SCM address. It then steps through each address decrementing the counter,
reading 32 bit values and following the algorithm below:
If the least significant bit in MISC is 1 then
 MISC = MISC right shifted by 1 bit
 MISC = MISC XOR 0x80400007
else
 MISC = MISC right shifted by 1 bit
end if
MISC = MISC XOR RAM data

The code example below shows an excerpt of C code that calculates the MISC signature for a given array
of data, based on the previous algorithm:
#define SCM_size (MAX_SCM_ADDRESS / 4) /* last byte address - converted to 32-bit word */
#define POLY 0x80400007 /* G(x) = 1 + x1 + x2 + x22 + x31 */

/***
 FUNCTION : void calc_misc()
 PURPOSE : This function calculates the MISC value.
 INPUTS NOTES : none
 RETURNS NOTES : MISC value
 GENERAL NOTES : the array’unsigned int data[]’ represents the actual memory
 array, organized in 32-bit words.
***/
unsigned int calc_misc (void)
{
 int j; /* loop counter */

 unsigned int misc = 0;

 for (j = (SCM_size-1); j >= 0 ; j--) { /* SCM_size has the number of 32-bit words in SCM */

 if (misc & 0x1) {
 misc >>= 1;
 misc ^= POLY;
 }
 else {
 misc >>= 1;
 }
 misc ^= data[j]; /* data[j] is the actual 32-bit word taken from the SCM array */
 }

 return (misc); /* final signature calculated */

};

The value calculated by this algorithm must be loaded into register ETPU_MISCCMPR prior to activating
the SCM MISC calculator in eTPU. Once the MISC calculator is activated (bit SCMMISEN in register

Enhanced Time Processing Unit (eTPU2)

MPC5644A Microcontroller Reference Manual, Rev. 6

1000 Freescale Semiconductor

ETPU_MCR is written to 1) eTPU itself will start this procedure1 reading the SCM whenever allowed by
microengine. At the end of the cycle, when all the array has been read and the SCM signature is calculated,
the Host CPU can be notified via Global Exception if the MISC Accumulator does not match the value in
ETPU_MISCCMPR.

Equation 24-1 shows how the average time taken by MISC to complete the signature of the whole SCM
can be calculated.

Average MISC period = S / (4 * f * (1 - L)) Eqn. 24-1

In Equation 24-1,

f = clock frequency

S = SCM size in bytes

L = eTPU load (as a percentage of execution clocks over a period of time, including TST clocks)

Further detail on MISC calculation can be found on Section 24.5.10.3.1, SCM Test – Multiple input
signature calculator. The application note AN2192 - Detecting Errors in the Dual Port RAM
(DPTRAM) Module is also a good source of information (although it refers to TPU) on MISC signature.

1. eTPU MISC hardware is optimized to read 32-bit words from memory and to calculate this CRC in parallel, rather than shifting
one bit at a time. The actual implementation inside eTPU, although bringing to the same results, does not match exactly the
algorithm shown here.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1001

Chapter 25
Enhanced Queued Analog-to-Digital Converter (EQADC)

25.1 Information Specific to This Device

This section presents device-specific parameterization and customization information not specifically
referenced in the remainder of this chapter.

25.1.1 Device-Specific Pin Configuration Features

The following eQADC pins are multiplexed and configuration of the corresponding Systems Integration
Unit (SIU) registers is necessary.

25.1.1.1 AN12/MA0/SDS

These pins are configured by setting the Pad Configuration Register 215 (SIU_PCR215) on the SIU.

NOTE

Attempts to convert the input voltage applied to this pin while the MA0 or
the SDS functions are selected will result in an undefined conversion result.

As this pin is also used by digital logic, it has reduced analog to digital
conversion accuracy when compared to the AN[0:11,16:39] analog input
pins.

25.1.1.2 AN13/MA1/SDO

These pins are configured by setting the Pad Configuration Register 216 (SIU_PCR216) on the SIU.

NOTE

Attempts to convert the input voltage applied to this pin while the MA1 or
the SDO functions are selected will result in an undefined conversion result.

As this pin is also used by digital logic, it has reduced analog to digital
conversion accuracy when compared to the AN[0:11,16:39] analog input
pins.

25.1.1.3 AN14/MA2/SDI

These pins are configured by setting the Pad Configuration Register 217 (SIU_PCR217) on the SIU.

NOTE

Attempts to convert the input voltage applied to this pin while the MA2 or
the SDI functions are selected will result in an undefined conversion result.

As this pin is also used by digital logic, it has reduced analog to digital
conversion accuracy when compared to the AN[0:11,16:39] analog input
pins.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1002 Freescale Semiconductor

25.1.1.4 AN15/FCK

These pins are configured by setting the Pad Configuration Register 218 (SIU_PCR218) on the SIU.

NOTE

Attempts to convert the input voltage applied to this pin while the FCK
function is selected will result in an undefined conversion result.

As this pin is also used by digital logic, it has reduced analog to digital
conversion accuracy when compared to the AN[0:11,16:39] analog input
pins.

25.1.1.5 External Triggers

The source of the eQADC external triggers can be the eTPU, the eMIOS, or an external signal. The source
is selected by configuring the eQADC Trigger Input Select Register (SIU_ETISR) on the SIU.

25.1.2 Availability of Analog Inputs

Analog inputs ANR, ANS, ANT and ANU are not available on MPC5644A devices.

25.2 Introduction

25.2.1 Module overview

The Enhanced Queued Analog-to-Digital Converter (EQADC) block provides accurate and fast
conversions for a wide range of applications. The EQADC provides a parallel interface to two on-chip
analog-to-digital converters (ADCs), a single master to single slave serial interface to an off-chip external
device, and a parallel side interface to one or more on-chip digital signal processing (DSP) modules (for
example, a decimation filter). The two on-chip ADCs are architected to allow access to all the analog
channels.

The EQADC transfers commands from multiple Command FIFOs (CFIFOs) to the on-chip ADCs or to
the external device. The multiple Result FIFOs (RFIFOs) can receive data from the on-chip ADCs, from
an off-chip external device or from an on-chip DSP module. Data from the on-chip ADCs can be routed
to the side interface, processed by the on-chip DSP and then routed back through the side interface to the
RFIFOs. The EQADC supports software and external hardware triggers from other blocks to initiate
transfers of commands from the CFIFOs to the on-chip ADCs or to the external device. It also monitors
the fullness of CFIFOs and RFIFOs, and accordingly generates DMA or interrupt requests to control data
movement between the FIFOs and the system memory, which is external to the EQADC.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1003

25.2.2 Block diagram

Figure 25-1 is the block diagram for the EQADC.

Figure 25-1. EQADC Block Diagram

Figure 25-1 shows the primary components inside the EQADC. The EQADC consists of the FIFO Control
Unit which controls the CFIFOs and the RFIFOs, the ADC Control Logic which controls the two on-chip
ADCs, the EQADC Synchronous Serial Interface (EQADC SSI) which allows communication with an
external device, and the EQADC Parallel Side Interface (EQADC PSI) which allows communication with
on-chip eQADC companion modules1. There are 6 CFIFOs and 6 RFIFOs, each with 4 entries, except
CFIFO0 that can have 8 entries.

1.Decimation filters A and B and Reaction module

AN8/ANW

AN9/ANX/TBIAS

AN10/ANY

AN11/ANZ

AN0/DAN0+

AN1/DAN0-

AN2/DAN1+

AN3/DAN1-

AN4/DAN2+

AN5/DAN2-

AN6/DAN3+

AN7/DAN3-

P
ri
o
ri
ty

D
e
co

d
e

r

External Device

S
D

S

F
C

K

S
D

O

S
D

I

ADC0

ADC1

BIAS
GEN

REFBYPC

CFIFOx

NOTE: x=0, 1, 2, 3, 4, 5

32 bits

CQueue y

RQueue y

System

RFIFOx

16 bits

CBuffer0

CBuffer1

EQADC

FIFO Control

MUX
Control
Logic

Synchronous Serial

Channel

VDDA

VSSA

VRH

VRL

MA0

MA1
MA2

y=0, 1, 2, 3, ...

DMA and

Requests

Number

ADC Control

Interface (EQADC SSI)

EQADC

Interrupt

DMA Transaction
Done Signals

EQADC SSI
Transmit Buffer

UnitLogic

AN12/T50PVREF

AN13/T25PVREF

AN15

AN14/T75PVREF

Pre-Charge

REF
GEN

Parallel Side Interface
(EQADC PSI)

EQADC

On-Chip
Digital Signal Processor

Abort
Cont

Abort
Cont

Memory

Result
Format

and
Calibra-

tion

ETRIGx, ATRIG
FIL BYPASSx

AN16/

AN17

AN19

AN18

AN20-39

M
U

X
M

U
X

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1004 Freescale Semiconductor

The FIFO Control Unit performs the following functions:

• It prioritizes the CFIFOs to determine what CFIFOs will have their commands transferred.

• Supports software and hardware triggers to start command transfers from a particular CFIFO.

• Decodes command data from the CFIFOs, and accordingly, sends these commands to one of the
two on-chip ADCs or to the external device.

• Decodes result data from on-chip ADCs or from the external device, and transfers data to the
appropriate RFIFO or to the parallel side interface.

The ADC Control Logic manages the execution of commands bound for on-chip ADCs. It interfaces with
the CFIFOs via two 2-entry command buffers (CBuffers) with abort control and with the RFIFOs and side
interface via the Result Format and Calibration Sub-Block. The ADC Control Logic performs the
following functions:

• Buffers command data for execution.

• Decodes command data and accordingly generates control signals for the two on-chip ADCs.

• Detects abort request, stores aborted commands and buffers immediate conversion commands.

• Formats and calibrates conversion result data coming from the on-chip ADCs.

• Generates the internal multiplexer control signals and the select signals used by the external
multiplexers.

The EQADC SSI allows for a full duplex, synchronous, serial communication between the EQADC and
an external device.

The EQADC PSI allows for a full duplex, synchronous, parallel communication between the EQADC and
decimation filters A and B and reaction modules.

Figure 25-1 also depicts data flow through the EQADC. Commands are contained in system memory in a
user defined data structure. The most likely data structure to be used is a queue as depicted in the
Figure 25-11. Command data is moved from the command queue (CQueue) to the CFIFOs by either the
host CPU or by the DMAC. Once a CFIFO is triggered and becomes the highest priority CFIFO using a
certain CBuffer, command data is transferred from the CFIFO to the on-chip ADCs, or to the external
device. The ADC executes the command, and the result is moved through the Result Format and
Calibration Sub-Block to either the side interface or to the RFIFO. Data from the external device or
on-chip companion module bypasses the Result Format and Calibration Sub-Block and is moved directly
to its specified RFIFO. When data is stored in an RFIFO, data is moved from the RFIFO by the host CPU
or by the DMAC to a data structure in system memory depicted in the Figure 25-1 as a result queue
(RQueue).

For users familiar with the QADC, the EQADC system upgrades the functionality provided by that block.
Refer to Section 25.7.7, EQADC versus QADC, for a comparison between the EQADC and QADC.

25.2.3 Features

The EQADC Block includes these distinctive features:

1. Command and result data can be stored in system memory in any user defined data structure. However, in this document
it will be assumed that the data structure of choice is a queue, since it is the most likely data structure to be used and
because queues are the only type of data structure supported by the DMAC.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1005

• Two independent on-chip RSD Cyclic ADCs

— 8, 10, and 12 bits AD Resolution

— Targets up to 10 bit accuracy at 500KSample/s (ADC_CLK=7.5 MHz) and 8 bit accuracy at
1M Sample/s (ADC_CLK=15 MHz) for differential conversions

— Selectable common mode conversion range (0 - 5V; 0 - 2.5V; 0 - 1.25V)

— Differential conversions

— Differential channels include variable gain amplifier for improved dynamic range (x1; x2; x4)

— Differential channels include programmable pull-up and pull-down resistors for biasing and
sensor diagnostics (200k ohms; 100k ohms; 5k ohms)

— Sample times of 2 (default), 8, 64 or 128 ADC clock cycles

— Provides time stamp information when requested

— Parallel interface to EQADC CFIFOs and RFIFOs

— Supports both right-justified unsigned and signed formats for conversion results

— The REFBYPC pin stabilizes one of internal generated reference

— Temperature sensor

— Ability to measure directly Vdd

• Automatic application of ADC calibration constants

— Provision of reference voltages (25%VREF and 75%VREF) for ADC calibration purposes

• 40 input channels available to the two on-chip ADCs

• 4 pairs of differential analog input channels

• Full duplex synchronous serial interface to an external device

— Has a free-running clock for use by the external device

— Supports a 26-bit message length

— Transmits a null message when there are no triggered CFIFOs with commands bound for
external CBuffers, or when there are triggered CFIFOs with commands bound for external
CBuffers but the external CBuffers are full

• Parallel Side Interface to communicate with several on-chip companion modules

• STAC bus Client Interface to import an alternative timebase to the internal time stamp

• Priority Based CFIFOs

— Supports six CFIFOs with fixed priority. The lower the CFIFO number, the higher its priority.
When commands of distinct CFIFOs are bound for the same CBuffer, the higher priority
CFIFO is always served first.

— Immediate conversion command feature with conversion abort control

— Streaming mode operation of CFIFO0 to execute some commands several times

— Supports software and several hardware trigger modes to arm a particular CFIFO

— Generates interrupt when command coherency is not achieved

• External Hardware Triggers

— Supports rising edge, falling edge, high level and low level triggers

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1006 Freescale Semiconductor

— Supports configurable digital filter

— Supports controls to bypass the trigger digital filters

• Two Triggers operation mode for queue0

— Additional internal trigger (not filtered) called Advance trigger that is used to enable the
external trigger of queue0 and to control the loop behavior of CFIFO0

• Supports 4 to 8 external 8-to-1 muxes which can expand the input channel number from 40 to 96

• Upgrades the functionality provided by the QADC

25.3 Modes of operation

This section describes the operation modes of the EQADC.

25.3.1 Normal mode

This is the default operational mode when the EQADC is not in streaming mode or background debug or
stop mode.

25.3.2 Streaming mode

This mode is characterized by two main aspects: the abort action by CFIFO0 in any current conversion
process started from another queue, and the loop behavior of the CFIFO0.

In some applications, there may be sequences of identical commands each spaced only by a few
microseconds. To reduce the DMA data transfer, in this mode a short command queue can be stored in
CFIFO0 and repeatedly be executed based on a timed trigger, but advance to the next (repeating) sequence
of commands based on another device’s internal trigger.

The CFIFO0 delivers commands to the ADC as before, but those commands are not ‘invalidated’ after they
are sent (in fact, they are ‘invalidated’ only because the Transfer Next Data Pointer has moved on). When
it encounters these repeated commands the CFIFO0 only fills once, using the DMA as usual, until either
it is full or a command with End-of-Queue is encountered. Thereafter the sub-queue repeats/wraps. The
number of commands loaded is unaffected by the delivery of commands once the streaming mode is
configured, since no commands loaded are invalidated even if sent before all the queue is loaded.

The number of entries in the CFIFO0 is extended to eight (configurable). This is to facilitate the targeted
applications. The repeating subqueue must be contained within the eight CFIFO0 entries.

To maintain compatibility, CFIFO0 by default operates as it does before, without streaming and with four
entries. Streaming, and additional entries, can be enabled independently.

Streaming mode is selected as another mode for queue 0 using the configuration bits in the
EQADC_CFCR register. Streaming mode makes use of an additional bit in the Conversion Command
Word (CCW); this bit is called ‘Repeat’. The purpose of this bit is to mark in the command queue, where
to start a repeating sequence.

Streaming mode requires two trigger inputs. The standard queue 0 trigger, in this mode referred to as
‘Repeat Trigger’ and a second internal trigger input to the eQADC called ‘Advance’ trigger.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1007

25.3.3 Debug mode

Upon a debug mode entry request, EQADC behavior will vary according to the status of the DBG field in
Section 25.5.2.1, EQADC Module Configuration Register (EQADC_MCR). If DBG is programmed to
0b00, the debug mode entry request is ignored. If DBG is programmed to 0b10 or to 0b11, the EQADC
will enter debug mode. In case the EQADC SSI is enabled, the free running clock (FCK) output to external
device will not stop when DBG is programmed to 0b11, but FCK will stop in low phase, when DBG is
programmed to 0b10.

During debug mode, the EQADC will not transfer commands from any CFIFOs, no null messages will be
transmitted to the external device, no data will be returned to any RFIFO, no hardware trigger event will
be captured, and all EQADC registers can be accessed as in Normal mode. The latter implies that CFIFOs
can still be triggered using software triggers, since no scheme is implemented to write-protect registers
during debug mode. DMA and interrupt requests continue to be generated as in Normal Mode.

If at the time the debug mode entry request is detected, there are commands in the on-chip CBuffers that
were already under execution, these commands will be completed but the generated results, if any, will not
be sent to the RFIFOs until debug mode is exited. Commands whose execution has not started will not be
executed until debug mode is exited.The clock associated with an on-chip ADC stops, during its low phase,
after the ADC ceases executing commands. The time base counter will only stop after all on-chip ADCs
cease executing commands.

When exiting debug mode, the EQADC relies on the CFIFO operation modes and on the CFIFO status to
determine the next command entry to transfer.

The EQADC internal behavior after the debug mode entry request is detected differs depending on the
status of command transfers.

• No command transfer is in progress.

The EQADC immediately halts future command transfers from any CFIFO.

If a null message is being transmitted, EQADC will complete the serial transmission before halting
future command transfers. If valid data (conversion result or data read from an ADC register) is
received at the end of transmission, it will not be sent to an RFIFO until debug mode is exited.

If the null message transmission is aborted, the EQADC will complete the abort procedure before
halting future command transfers from any CFIFO. The message of the CFIFO that caused the
abort of the previous serial transmission will only be transmitted after debug mode is exited.

• Command transfer is in progress.

EQADC will complete the transfer and update CFIFO status before halting future command
transfers from any CFIFO. Command transfers to the internal CBuffers are considered completed
when a command is written to the buffers.

Command transfers to the external device are considered completed when the serial transmission
of the command is completed. If valid data (conversion result or data read from an ADC register)
is received at the end of a serial transmission, it will not be sent to an RFIFO until debug mode is
exited. The CFIFO status bits will still be updated after the completion of the serial transmission,
therefore, after debug mode entry request is detected, the EQADC status bits will only stop
changing several system clock cycles after the on-going serial transmission completes.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1008 Freescale Semiconductor

If the command message transmission is aborted, the EQADC will complete the abort procedure
before halting future command transfers from any CFIFO. The message of the CFIFO that caused
the abort of the previous serial transmission will only be transmitted after debug mode is exited.

• Command/Null message transfer through serial interface was aborted but next serial transmission
did not start.

If the debug mode entry request is detected between the time a previous serial transmission was
aborted and the start of the next transmission, the EQADC will complete the abort procedure before
halting future command transfers from any CFIFO. The message of the CFIFO that caused the
abort of the previous serial transmission will only be transmitted after debug mode is exited.

25.3.4 Stop mode

Upon a stop mode entry request detection, the EQADC progressively halts its operations until it reaches a
static, stable state from which it can recover when returning to Normal mode. EQADC then asserts an
acknowledge signal, indicating that it is static and that the clock input can be stopped. In stop mode, the
free running clock (FCK) output to external device will stop during its low phase if the EQADC SSI is
enabled, and no hardware trigger events will be captured. The latter implies that, as long as the system
clock is running, CFIFOs can still be triggered using software triggers, since no scheme is implemented to
write-protect registers during stop mode.

If at the time the stop mode entry request is detected, there are commands in the on-chip CBuffers that
were already under execution, these commands will be completed but the generated results, if any, will not
be sent to the RFIFOs until stop mode is exited. Commands whose execution has not started will not be
executed until stop mode is exited.

After these remaining commands are executed, the clock input to the ADCs is stopped. The ADC clock
stops during its low phase. The time base counter will only stop after all on-chip ADCs cease executing
commands. Only then, the stop acknowledge signal is asserted. When exiting stop mode, the EQADC
relies on the CFIFO operation modes and on the CFIFO status to determine the next command entry to
transfer.

The EQADC internal behavior after the stop mode entry request is detected differs depending on the status
of the command transfer.

• No command transfer is in progress

The EQADC immediately halts future command transfers from any CFIFO.

If a null message is being transmitted, EQADC will complete the transmission before halting future
command transfers. If valid data (conversion result or data read from an ADC register) is received
at the end of the transmission, it will not be sent to an RFIFO until stop mode is exited.

If the null message transmission is aborted, the EQADC will complete the abort procedure before
halting future command transfers from any CFIFO. The message of the CFIFO that caused the
abort of the previous serial transmission will only be transmitted after stop mode is exited.

• Command transfer is in progress

EQADC will complete the transfer and update CFIFO status before halting future command
transfers from any CFIFO. Command transfers to the internal CBuffers are considered completed
when a command is written to the buffers.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1009

Command transfers to the external device are considered completed when the serial transmission
of the command is completed. If valid data (conversion result or data read from an ADC register)
is received at the end of a serial transmission, it will not be sent to an RFIFO until stop mode is
exited. The CFIFO status bits will still be updated after the completion of the serial transmission,
therefore, after stop mode entry request is detected, the EQADC status bits will only stop changing
several system clock cycles after the on-going serial transmission completes.

If the command message transmission is aborted, the EQADC will complete the abort procedure
before halting future command transfers from any CFIFO. The message of the CFIFO that caused
the abort of the previous serial transmission will only be transmitted after stop mode is exited.

• Command/Null message transfer through serial interface was aborted but next serial transmission
did not start.

If the stop mode entry request is detected between the time a previous serial transmission was
aborted and the start of the next transmission, the EQADC will complete the abort procedure before
halting future command transfers from any CFIFO. The message of the CFIFO that caused the
abort of the previous serial transmission will only be transferred after stop mode is exited.

25.4 External signal description

25.4.1 Overview

The following is a list of external pins.

NOTE

At chip integration level, some of the digital and analog signals listed here
might share pins or not be available external to the chip. Refer to the Signals
chapter for details.

Table 25-1. External Signals

Name Port Function Reset State Type

AN0/DAN0+ Input Single-ended analog input /
Differential analog input positive

terminal

— Analog

AN1/DAN0- Input Single-ended analog input /
Differential analog input negative

terminal

— Analog

AN2/DAN1+ Input Single-ended analog input /
Differential analog input positive

terminal

— Analog

AN3/DAN1- Input Single-ended analog input /
Differential analog input negative

terminal

— Analog

AN4/DAN2+ Input Single-ended analog input /
Differential analog input positive

terminal

— Analog

AN5/DAN2- Input Single-ended analog input /
Differential analog input negative

terminal

— Analog

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1010 Freescale Semiconductor

AN6/DAN3+ Input Single-ended analog input /
Differential analog input positive

terminal

— Analog

AN7/DAN3- Input Single-ended analog input /
Differential analog input negative

terminal

— Analog

AN8/ANW Input Single-ended analog input /
Single-ended analog input from

external multiplexers

— Analog

AN9/ANX Input Single-ended analog input /
Single-ended analog input from

external multiplexers

— Analog

AN10/ANY Input Single-ended analog
input/Single-ended analog input from

external multiplexers

— Analog

AN11/ANZ Input Single-ended analog input /
Single-ended analog input from

external multiplexers

— Analog

AN12 Input / Output Single-ended analog input — Analog

AN13 Input / Output Single-ended analog input — Analog

AN14 Input / Output Single-ended analog input — Analog

AN15 Input Single-ended analog input — Analog

AN16 Input Single-ended analog input — Analog

AN17 Input Single-ended analog input — Analog

AN18 Input Single-ended analog input — Analog

AN19 Input Single-ended analog input — Analog

AN20 Input Single-ended analog input — Analog

AN21 Input Single-ended analog input — Analog

AN22 Input Single-ended analog input — Analog

AN23 Input Single-ended analog input — Analog

AN24 Input Single-ended analog input — Analog

AN25 Input Single-ended analog input — Analog

AN26 Input Single-ended analog input — Analog

AN27 Input Single-ended analog input — Analog

AN28 Input Single-ended analog input — Analog

AN29 Input Single-ended analog input — Analog

AN30 Input Single-ended analog input — Analog

AN31 Input Single-ended analog input — Analog

AN32 Input Single-ended analog input — Analog

AN33 Input Single-ended analog input — Analog

AN34 Input Single-ended analog input — Analog

AN35 Input Single-ended analog input — Analog

AN36 Input Single-ended analog input — Analog

AN37 Input Single-ended analog input — Analog

AN38 Input Single-ended analog input — Analog

Table 25-1. External Signals (continued)

Name Port Function Reset State Type

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1011

25.4.2 Detailed signal descriptions

25.4.2.1 AN0/DAN0+ — Single-ended analog input/Differential analog input
positive terminal

AN0 is a single-ended analog input to the two on-chip ADCs. DAN0+ is the positive terminal of the
differential analog input DAN0 (DAN0+ - DAN0-).

25.4.2.2 AN1/DAN0— — Single-ended analog input/Differential analog input
negative terminal

AN1 is a single-ended analog input to the two on-chip ADCs. DAN0- is the negative terminal of the
differential analog input DAN0 (DAN0+ - DAN0-).

25.4.2.3 AN2/DAN1+ — Single-ended analog input/Differential analog input
positive terminal

AN2 is a single-ended analog input to the two on-chip ADCs. DAN1+ is the positive terminal of the
differential analog input DAN1 (DAN1+ - DAN1-).

AN39 Input Single-ended analog input — Analog

MA0 Output External multiplexer control signal 0 Digital

MA1 Output External multiplexer control signal 0 Digital

MA2 Output External multiplexer control signal 0 Digital

FCK Output EQADC SSI free running clock 0 Digital

SDS Output EQADC SSI serial data select 1 Digital

SDI Input EQADC SSI serial data in Digital

SDO Output EQADC SSI serial data out 0 Digital

VDDA Input Analog Positive Power Supply — Power

VSSA Input Analog Negative Power Supply — Power

VRH Input Voltage Reference High — Power

VRL Input Voltage Reference Low — Power

REFBYPC Input External Bypass capacitor Pin — Power

ETRIG0 Input External trigger for CFIFO0 — Digital

ETRIG1 Input External trigger for CFIFO1 — Digital

ETRIG2 Input External trigger for CFIFO2 — Digital

ETRIG3 Input External trigger for CFIFO3 — Digital

ETRIG4 Input External trigger for CFIFO4 — Digital

ETRIG5 Input External trigger for CFIFO5 — Digital

Table 25-1. External Signals (continued)

Name Port Function Reset State Type

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1012 Freescale Semiconductor

25.4.2.4 AN3/DAN1— — Single-ended analog input/Differential analog input
negative terminal

AN3 is a single-ended analog input to the two on-chip ADCs. DAN1- is the negative terminal of the
differential analog input DAN1 (DAN1+ - DAN1-).

25.4.2.5 AN4/DAN2+ — Single-ended analog input/Differential analog input
positive terminal

AN4 is a single-ended analog input to the two on-chip ADCs. DAN2+ is the positive terminal of the
differential analog input DAN2 (DAN2+ - DAN2-).

25.4.2.6 AN5/DAN2— — Single-ended analog input/Differential analog input
negative terminal

AN5 is a single-ended analog input to the two on-chip ADCs. DAN2- is the negative terminal of the
differential analog input DAN2 (DAN2+ - DAN2-).

25.4.2.7 AN6/DAN3+ — Single-ended analog input/Differential analog input
positive terminal

AN6 is a single-ended analog input to the two on-chip ADCs. DAN3+ is the positive terminal of the
differential analog input DAN3 (DAN3+ - DAN3-).

25.4.2.8 AN7/DAN3— — Single-ended analog input/Differential analog input
negative terminal

AN7 is a single-ended analog input to the two on-chip ADCs. DAN3- is the negative terminal of the
differential analog input DAN3 (DAN3+ - DAN3-).

25.4.2.9 AN8/ANW — Single-ended analog input/ Single-ended analog input from
external multiplexers

AN8 is a single-ended analog input to the two on-chip ADCs. ANW is a single-ended analog input to one
of the on-chip ADCs in external multiplexed mode.

25.4.2.10 AN9/ANX — Single-ended analog input/ Single-ended analog input from
external multiplexers

AN9 is a single-ended analog input to the two on-chip ADCs. ANX is a single-ended analog input to one
of the on-chip ADCs in external multiplexed mode.

25.4.2.11 AN10/ANY — Single-ended analog input/ Single-ended analog input
from external multiplexers

AN10 is a single-ended analog input to the two on-chip ADCs. ANY is a single-ended analog input to one
of the on-chip ADCs in external multiplexed mode.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1013

25.4.2.12 AN11/ANZ — Single-ended analog input/ Single-ended analog input
from external multiplexers

AN11 is a single-ended analog input to the two on-chip ADCs. ANZ is a single-ended analog input to one
of the on-chip ADCs in external multiplexed mode.

25.4.2.13 AN12 — Single-ended analog input

AN12 is a single-ended analog input to the two on-chip ADCs.

25.4.2.14 AN13 — Single-ended analog input/

AN13 is a single-ended analog input to the two on-chip ADCs.

25.4.2.15 AN14 — Single-ended analog input

AN14 is a single-ended analog input to the two on-chip ADCs.

25.4.2.16 AN15 — Single-ended analog input

AN15 is a single-ended analog inputs to the two on-chip ADCs.

25.4.2.17 AN16 — Single-ended analog input/

AN16 is a single-ended analog input to the two on-chip ADCs.

25.4.2.18 AN17 — Single-ended analog input

AN17 is a single-ended analog input to the two on-chip ADCs.

25.4.2.19 AN18 — Single-ended analog input

AN18 is a single-ended analog input to the two on-chip ADCs.

25.4.2.20 AN19 — Single-ended analog input

AN19 is a single-ended analog input to the two on-chip ADCs.

25.4.2.21 AN20-AN39 — Single-ended analog input

AN20 through AN39 are single-ended analog inputs to the two on-chip ADCs.

25.4.2.22 INA_ADC0_0 - INA_ADC0_9 — Single-ended analog input

INA_ADC0_0 through INA_ADC0_9 are single-ended analog inputs to the on-chip ADC0.

25.4.2.23 INA_ADC1_0 - INA_ADC1_9 — Single-ended analog input

INA_ADC1_0 through INA_ADC1_9 are single-ended analog inputs to the on-chip ADC1.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1014 Freescale Semiconductor

25.4.2.24 MA0-MA2 — External multiplexer control signals

MA0, MA1, and MA2 combined form a select signal associated with external multiplexers.

25.4.2.25 FCK — EQADC SSI free-running clock

FCK is a free-running clock signal for synchronizing transmissions between the EQADC (master) and the
external (slave) device.

25.4.2.26 SDS — EQADC SSI serial data select

SDS is the serial data select output. It is used to indicate to the external (slave) device when it can latch
incoming serial data, when it can output its own serial data, and when it must abort a data transmission.
SDS corresponds to the chip select signal in a conventional SPI interface.

25.4.2.27 SDI — EQADC SSI serial data in

SDI is the serial data input signal from the external (slave) device.

25.4.2.28 SDO — EQADC SSI serial data out

SDO is the serial data output signal to the external (slave) device.

25.4.2.29 VRH, VRL — Voltage reference high and voltage reference low

VRH and VRL are voltage references for the ADCs. VRH is the highest voltage reference, while VRL is
the lowest voltage reference.

25.4.2.30 VDDA, VSSA — 5V VDD and VSS for the 5V analog components

VDDA is the positive power supply pin for the ADCs and VSSA is the negative power supply pin for the
ADCs. Refer to electrical specifications.

25.4.2.31 REFBYPC — Reference Bypass Capacitor

The REFBYPC pin is used to connect an external bypass capacitor between REFBYPC and VRL. The
value of this capacitor should be 100nf. This bypass capacitor is used to provide a stable reference voltage
for the ADC.

25.4.2.32 ETRIG0—ETRIG5 — External triggers

The external trigger signals are for hardware triggering. The EQADC can detect rising edge, falling edge,
high level and low level on each of the external trigger signals. ETRIGx triggers CFIFOx. The EQADC
also supports configurable digital filters for these external trigger signals. These digital filters can be
bypassed by individual input control signals called eqadc_intern_trig_selx.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1015

25.5 Memory Map/Register Definition

This section provides memory maps and detailed descriptions of all registers. Data written to or read from
reserved areas of the memory map is undefined.

25.5.1 EQADC Memory Map

This section provides memory maps for the EQADC block.

Table 25-2. EQADC Memory Map

Address Use Access

EQADC_BASE+0x00
0

EQADC Module Configuration Register (EQADC_MCR) Unrestricted

EQADC_BASE+0x00
4

EQADC Test Register (EQADC_TST) Test

EQADC_BASE+0x00
8

EQADC Null Message Send Format Register (EQADC_NMSFR) Unrestricted

EQADC_BASE+0x00
C

EQADC External Trigger Digital Filter Register (EQADC_ETDFR) Unrestricted

EQADC_BASE+0x01
0

EQADC CFIFO Push Register 0 (EQADC_CFPR0) Write only

EQADC_BASE+0x01
4

EQADC CFIFO Push Register 1 (EQADC_CFPR1) Write only

EQADC_BASE+0x01
8

EQADC CFIFO Push Register 2 (EQADC_CFPR2) Write only

EQADC_BASE+0x01
C

EQADC CFIFO Push Register 3 (EQADC_CFPR3) Write only

EQADC_BASE+0x02
0

EQADC CFIFO Push Register 4 (EQADC_CFPR4) Write only

EQADC_BASE+0x02
4

EQADC CFIFO Push Register 5 (EQADC_CFPR5) Write only

EQADC_BASE+0x02
8

Reserved -

EQADC_BASE+0x02
C

Reserved -

EQADC_BASE+0x03
0

EQADC Result FIFO Pop Register 0 (EQADC_RFPR0) Read only

EQADC_BASE+0x03
4

EQADC Result FIFO Pop Register 1 (EQADC_RFPR1) Read only

EQADC_BASE+0x03
8

EQADC Result FIFO Pop Register 2 (EQADC_RFPR2) Read only

EQADC_BASE+0x03
C

EQADC Result FIFO Pop Register 3 (EQADC_RFPR3) Read only

EQADC_BASE+0x04
0

EQADC Result FIFO Pop Register 4 (EQADC_RFPR4) Read only

EQADC_BASE+0x04
4

EQADC Result FIFO Pop Register 5 (EQADC_RFPR5) Read only

EQADC_BASE+0x04
8

Reserved -

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1016 Freescale Semiconductor

EQADC_BASE+0x04
C

Reserved -

EQADC_BASE+0x05
0

EQADC CFIFO Control Register 0 (EQADC_CFCR0) Unrestricted

EQADC_BASE+0x05
4

EQADC CFIFO Control Register 1 (EQADC_CFCR1) Unrestricted

EQADC_BASE+0x05
8

EQADC CFIFO Control Register 2 (EQADC_CFCR2) Unrestricted

EQADC_BASE+0x05
C

Reserved -

EQADC_BASE+0x06
0

EQADC Interrupt and DMA Control Register 0 (EQADC_IDCR0) Unrestricted

EQADC_BASE+0x06
4

EQADC Interrupt and DMA Control Register 1 (EQADC_IDCR1) Unrestricted

EQADC_BASE+0x06
8

EQADC Interrupt and DMA Control Register 2 (EQADC_IDCR2) Unrestricted

EQADC_BASE+0x06
C

Reserved -

EQADC_BASE+0x07
0

EQADC FIFO and Interrupt Status Register 0 (EQADC_FISR0) Unrestricted

EQADC_BASE+0x07
4

EQADC FIFO and Interrupt Status Register 1 (EQADC_FISR1) Unrestricted

EQADC_BASE+0x07
8

EQADC FIFO and Interrupt Status Register 2 (EQADC_FISR2) Unrestricted

EQADC_BASE+0x07
C

EQADC FIFO and Interrupt Status Register 3 (EQADC_FISR3) Unrestricted

EQADC_BASE+0x08
0

EQADC FIFO and Interrupt Status Register 4 (EQADC_FISR4) Unrestricted

EQADC_BASE+0x08
4

EQADC FIFO and Interrupt Status Register 5 (EQADC_FISR5) Unrestricted

EQADC_BASE+0x08
8

Reserved -

EQADC_BASE+0x08
C

Reserved -

EQADC_BASE+0x09
0

EQADC CFIFO Transfer Counter Register 0 (EQADC_CFTCR0) Unrestricted

EQADC_BASE+0x09
4

EQADC CFIFO Transfer Counter Register 1 (EQADC_CFTCR1) Unrestricted

EQADC_BASE+0x09
8

EQADC CFIFO Transfer Counter Register 2 (EQADC_CFTCR2) Unrestricted

EQADC_BASE+0x09
C

Reserved -

EQADC_BASE+0x0A
0

EQADC CFIFO Status Snapshot Register 0 (EQADC_CFSSR0) Read only

EQADC_BASE+0x0A
4

EQADC CFIFO Status Snapshot Register 1 (EQADC_CFSSR1) Read only

EQADC_BASE+0x0A
8

EQADC CFIFO Status Snapshot Register 2 (EQADC_CFSS2R) Read only

Table 25-2. EQADC Memory Map (continued)

Address Use Access

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1017

EQADC_BASE+0x0A
C

EQADC CFIFO Status Register (EQADC_CFSR) Read only

EQADC_BASE+0x0B
0

Reserved -

EQADC_BASE+0x0B
4

EQADC Synchronous Serial Interface Control Register
(EQADC_SSICR)

Unrestricted

EQADC_BASE+0x0B
8

EQADC Synchronous Serial Interface Receive Data Register
(EQADC_SSIRDR)

Read Only

EQADC_BASE+0x0B
C -

EQADC_BASE+0x0C
C

Reserved -

EQADC_BASE+0x0D
0

EQADC STAC bus Client Configuration Register
(EQADC_REDLCCR)

Unrestricted

EQADC_BASE+0x0D
4 -

EQADC_BASE+0x0F
C

Reserved -

EQADC_BASE+0x10
0 -

EQADC_BASE+0x10
C

EQADC CFIFO0 Registers (EQADC_CF0Rw) (w=0, .., 3) Read only

EQADC_BASE+0x11
0 -

EQADC_BASE+0x11
C

EQADC CFIFO0 Extension Registers (EQADC_CF0ERw) (w=0,
.., 3)

Read only

EQADC_BASE+0x12
0 -

EQADC_BASE+0x13
C

Reserved -

EQADC_BASE+0x14
0 -

EQADC_BASE+0x14
C

EQADC CFIFO1 Registers (EQADC_CF1Rw) (w=0, .., 3) Read only

EQADC_BASE+0x15
0 -

EQADC_BASE+0x17
C

Reserved -

EQADC_BASE+0x18
0 -

EQADC_BASE+0x18
C

EQADC CFIFO2 Registers (EQADC_CF2Rw) (w=0, .., 3) Read only

EQADC_BASE+0x19
0 -

EQADC_BASE+0x1B
C

Reserved -

EQADC_BASE+0x1C
0 -

EQADC_BASE+0x1C
C

EQADC CFIFO3 Registers (EQADC_CF3Rw) (w=0, .., 3) Read only

Table 25-2. EQADC Memory Map (continued)

Address Use Access

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1018 Freescale Semiconductor

EQADC_BASE+0x1D
0 -

EQADC_BASE+0x1F
C

Reserved -

EQADC_BASE+0x20
0 -

EQADC_BASE+0x20
C

EQADC CFIFO4 Registers (EQADC_CF4Rw) (w=0, .., 3) Read only

EQADC_BASE+0x21
0 -

EQADC_BASE+0x23
C

Reserved -

EQADC_BASE+0x24
0 -

EQADC_BASE+0x24
C

EQADC CFIFO5 Registers (EQADC_CF5Rw) (w=0, .., 3) Read only

EQADC_BASE+0x25
0 -

EQADC_BASE+0x2F
C

Reserved -

EQADC_BASE+0x30
0 -

EQADC_BASE+0x30
C

EQADC RFIFO0 Registers (EQADC_RF0Rw) (w=0, .., 3) Read only

EQADC_BASE+0x31
0 -

EQADC_BASE+0x33
C

Reserved -

EQADC_BASE+0x34
0 -

EQADC_BASE+0x34
C

EQADC RFIFO1 Registers (EQADC_RF1Rw) (w=0, .., 3) Read only

EQADC_BASE+0x35
0 -

EQADC_BASE+0x37
C

Reserved -

EQADC_BASE+0x38
0 -

EQADC_BASE+0x38
C

EQADC RFIFO2 Registers (EQADC_RF2Rw) (w=0, .., 3) Read only

EQADC_BASE+0x39
0 -

EQADC_BASE+0x3B
C

Reserved -

EQADC_BASE+0x3C
0 -

EQADC_BASE+0x3C
C

EQADC RFIFO3 Registers (EQADC_RF3Rw) (w=0, .., 3) Read only

Table 25-2. EQADC Memory Map (continued)

Address Use Access

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1019

25.5.2 EQADC Register Descriptions

25.5.2.1 EQADC Module Configuration Register (EQADC_MCR)

The EQADC Module Configuration Register (EQADC_MCR) contains bits used to control how the
EQADC responds to a debug mode entry request, and to enable the EQADC SSI interface.

Figure 25-2. EQADC Module Configuration Register (EQADC_MCR)

EQADC_BASE+0x3D
0 -

EQADC_BASE+0x3F
C

Reserved -

EQADC_BASE+0x40
0 -

EQADC_BASE+0x40
C

EQADC RFIFO4 Registers (EQADC_RF4Rw) (w=0, .., 3) Read only

EQADC_BASE+0x41
0 -

EQADC_BASE+0x43
C

Reserved -

EQADC_BASE+0x44
0 -

EQADC_BASE+0x44
C

EQADC RFIFO5 Registers (EQADC_RF5Rw) (w=0, .., 3) Read only

EQADC_BASE+0x45
0 -

EQADC_BASE+0x7F
C

Reserved -

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0

IC
E

A
0

IC
E

A
1 0

ESSIE
0

DBG
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x000

Table 25-2. EQADC Memory Map (continued)

Address Use Access

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1020 Freescale Semiconductor

NOTE

Disabling the EQADC SSI (0b00 write to ESSIE) or serial transmissions
from the EQADC SSI (0b10 write to ESSIE) while a serial transmission is
in progress results in the abort of that transmission.

NOTE

When disabling the EQADC SSI, the FCK will not stop until it reaches its
low phase.

25.5.2.2 EQADC test register (EQADC_TST)

The EQADC Test Register (EQADC_TST) is used for test purposes only. This register can only be
read/written in a test access, accessing the EQADC_TST register in any other way will result in a transfer
error. In a non-test access to the EQADC_TST register, read data is undefined and written data is ignored.

Table 25-3. EQADC Module Configuration Register (EQADC_MCR) field description

Field Description

24-25
ICEAn

Immediate Conversion Command Enable ADCn (n=0,1)
ICEAn enables the EQADC to abort on-chip ADCn current conversion and to start the
immediate conversion command from CFIFO0 in the requested ADCn.
1 Enable immediate conversion command request.
0 Disable immediate conversion command request.

27-28
ESSIE[0:1]

EQADC Synchronous Serial Interface Enable Field
The ESSIE field defines the EQADC synchronous serial interface operation according to
Table 25-4.

30-31
DBG[0:1]

Debug enable
The DBG field defines the EQADC response to a debug mode entry request as in
Table 25-5.

Table 25-4. EQADC SSI Enable Field

ESSIE[0:1] Meaning

0b00 EQADC SSI is disabled

0b01 Reserved

0b10 EQADC SSI is enabled, FCK is free running, and serial transmissions are
disabled.

0b11 EQADC SSI is enabled, FCK is free running, and serial transmissions are
enabled.

Table 25-5. Debug Enable Field

DBG[0:1] Meaning

0b00 Do not enter debug mode.

0b01 Reserved

0b10 Enter debug mode. If the EQADC SSI is enabled, FCK
stops while the EQADC is in debug mode.

0b11 Enter debug mode. If the EQADC SSI is enabled, FCK is
free running while the EQADC is in debug mode.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1021

Figure 25-3. EQADC Test Register (EQADC_TST)

25.5.2.3 EQADC null message send format register (EQADC_NMSFR)

The EQADC Null Message Send Format Register (EQADC_NMSFR) defines the format of the null
message sent to the external device.

Figure 25-4. EQADC null message send format register (EQADC_NMSFR)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x004

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
NMF

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
NMF

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x008

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1022 Freescale Semiconductor

The EQADC Null Message Send Format Register only affects how the
EQADC sends a null message, but it has no control on how the EQADC
detects a null message on receiving data. The EQADC detects a null
message by decoding the MESSAGE_TAG field on the receive data. Refer
to page 1078 for more information on the MESSAGE_TAG field.

NOTE

Writing to the EQADC Null Message Send Format Register while the serial
transmissions are enabled (ESSIE field configured to 0b11 in
Section 25.5.2.1, EQADC Module Configuration Register
(EQADC_MCR)) is not recommended.

25.5.2.4 EQADC External Trigger Digital Filter Register (EQADC_ETDFR)

The EQADC External Trigger Digital Filter Register (EQADC_ETDFR) is used to set the minimum time
a signal must be held in a logic state on the CFIFO triggers inputs to be recognized as an edge or level
gated trigger. The Digital Filter Length field specifies the minimum number of system clocks that must be
counted by the digital filter counter to recognize a logic state change. However, there is a control signal
that can be used to bypass the digital filter when this is not needed.

Table 25-6. EQADC Null Message Send Format Register (EQADC_NMSFR) field description

Field Description

6-31
NMF[0:25]

Null Message Format
The NMF field contains the programmable null message send value for the EQADC. The
value written to this register will be sent as a null message when serial transmissions from
the EQADC SSI are enabled (ESSIE field configured to 0b11 in Section 25.5.2.1, EQADC
Module Configuration Register (EQADC_MCR)) and either
 • there are no triggered CFIFOs with commands bound for external CBuffers, or;
 • there are triggered CFIFOs with commands bound for external CBuffers but the external

CBuffers are full.
Refer to Section , Null Message Format for External Device Operation, for more information
on the format of a null message.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1023

Figure 25-5. EQADC External Trigger Digital Filter Register (EQADC_ETDFR)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DFL

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x00C

Table 25-7. EQADC External Trigger Digital Filter Register (EQADC_ETDFR) field description

Field Description

28-31
DFL[0:3]

Digital Filter Length
The DFL field specifies the minimum number of system clocks that must be counted by the
digital filter counter to recognize a logic state change. The count specifies the sample period
of the digital filter which is calculated according to the following equation:

Minimum clock counts for which an ETRIG signal needs to be stable to be passed through
the filter are shown in Table 25-8. Refer to Section 25.6.4.5, External Trigger Event
Detection, for more information on the digital filter.

Note: The DFL field must only be written when the MODEx of all CFIFOs are configured to
disabled.When the digital filter is bypassed by using the input control, the DFL is not
considered and the trigger input signal is not filtered.

Table 25-8. Minimum Required Time to Valid ETRIG

DFL[0:3] Minimum Clock Count
Minimum Time (ns)

(system clock = 120 MHz)

0b0000 2 16.66

0b0001 3 25.00

0b0010 5 41.66

0b0011 9 75.00

0b0100 17 141.66

0b0101 33 275.00

0b0110 65 541.66

0b0111 129 1075.00

FilterPeriod S ystemClockPeriod 2DFL  1 S ystemClockPeriod +=

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1024 Freescale Semiconductor

25.5.2.5 EQADC CFIFO Push Registers (EQADC_CFPR)

The EQADC CFIFO Push Registers (EQADC_CFPR) provide a mechanism to fill the CFIFOs with
command messages from the CQueues. Refer to Section 25.6.4, EQADC Command FIFOs, for more
information on the CFIFOs and to Section 25.6.2.3, Message Format in EQADC, for a description on
command message formats.

Figure 25-6. EQADC CFIFO Push Register x (EQADC_CFPRx)

0b1000 257 2141.66

0b1001 513 4275.00

0b1010 1025 8541.66

0b1011 2049 17075.00

0b1100 4097 34141.00

0b1101 8193 68275.00

0b1110 16385 136541.66

0b1111 32769 273075.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W CF_PUSHx

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W CF_PUSHx

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x010
Register address: EQADC_BASE+0x014
Register address: EQADC_BASE+0x018
Register address: EQADC_BASE+0x01C
Register address: EQADC_BASE+0x020
Register address: EQADC_BASE+0x024

Table 25-8. Minimum Required Time to Valid ETRIG (continued)

DFL[0:3] Minimum Clock Count
Minimum Time (ns)

(system clock = 120 MHz)

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1025

25.5.2.6 EQADC Result FIFO Pop Registers (EQADC_RFPR)

The EQADC Result FIFO Pop Registers (EQADC_RFPR) provide a mechanism to retrieve data from
RFIFOs.

Figure 25-7. EQADC RFIFO Pop Register x (EQADC_RFPRx)

Table 25-9. EQADC CFIFO Push Register x (EQADC_CFPRx) field description

Field Description

0-31
CF_PUSHx

[0:31]

CFIFO Push Data x
When CFIFOx is not full, writing to the whole word or any bytes of EQADC_CFPRx will push
the 32-bit CF_PUSHx value into CFIFOx. Writing to the CF_PUSHx field also increments the
corresponding CFCTRx value by one in Section 25.5.2.9, EQADC FIFO and Interrupt Status
Registers (EQADC_FISR). When the CFIFOx is full, the EQADC ignores any write to the
CF_PUSHx. Reading the EQADC_CFPRx always returns zero.

Note: Only whole words must be written to EQADC_CFPR. Writing half-words or bytes to
EQADC_CFPR will still push the whole 32-bit CF_PUSH field into the corresponding
CFIFO, but undefined data will fill the areas of CF_PUSH that were not specifically
designated as target locations for the write.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RF_POPx

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x030
Register address: EQADC_BASE+0x034
Register address: EQADC_BASE+0x038
Register address: EQADC_BASE+0x03C
Register address: EQADC_BASE+0x040
Register address: EQADC_BASE+0x044

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1026 Freescale Semiconductor

25.5.2.7 EQADC CFIFO Control Registers (EQADC_CFCR)

The EQADC CFIFO Control Registers (EQADC_CFCR) contain bits that affect CFIFOs. These bits
specify the CFIFO operation mode and can invalidate all of the CFIFO contents.

Figure 25-8. EQADC CFIFO Control Register 0 (EQADC_CFCR0)

Table 25-10. EQADC RFIFO Pop Register x (EQADC_RFPRx) field description

Field Description

16-31
RF_POPx

[0:15]

Result FIFO Pop Data x
When RFIFOx is not empty, the RF_POPx contains the next unread entry value of RFIFOx.
Reading a word, a half-word, or any bytes from EQADC_RFPRx will pop one entry from
RFIFOx and cause the RFCTRx field to be decremented by one in the Section 25.5.2.9,
EQADC FIFO and Interrupt Status Registers (EQADC_FISR). When the RFIFOx is empty,
any read on EQADC_RFPRx returns undefined data value and does not decrement the
RFCTRx value. Writing to EQADC_RFPRx has no effect.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
CFE
EE0

STR
ME0

0 0 0

MODE0 AMODE0W SSE
0

CFIN
V0

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0

MODE1

0 0 0 0

W SSE
1

CFIN
V1

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x050

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1027

Figure 25-9. EQADC CFIFO Control Register 1 (EQADC_CFCR1)

Figure 25-10. EQADC CFIFO Control Register 2 (EQADC_CFCR2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

MODE2

0 0 0 0

W SSE
2

CFIN
V2

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0

MODE3

0 0 0 0

W SSE
3

CFIN
V3

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x054

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

MODE4

0 0 0 0

W SSE
4

CFIN
V4

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0

MODE5

0 0 0 0

W SSE
5

CFIN
V5

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x058

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1028 Freescale Semiconductor

Table 25-11. EQADC CFIFO Control Register x (EQADC_CFCRx) field description

Field Description

3
CFEEE0

CFIFO0 Entry Number Extension Enable
The CFEEE0 bit is used to enable the extension of the CFIFO0 entries. When in extended
mode, the CFIFO0 total entries is the sum of normal entries plus the defined value for
extension. For more details, refer to Section 25.6.4.2, CFIFO0 Streaming Mode Description.
1 Enable the extension of CFIFO0 entries.
0 CFIFO0 has a normal value of entries.

4
STRME0

CFIFO0 Streaming Mode Operation Enable
The STRME0 bit is used to enable the streaming mode of operation of CFIFO0. In this case,
it is possible to repeat some sequence of commands of this FIFO. For more details, refer to
Section 25.6.4.2, CFIFO0 Streaming Mode Description.
1 Enable the streaming mode of CFIFO0.
0 Streaming mode of CFIFO0 is disabled.

5
SSEx

CFIFO Single-Scan Enable Bit x
The SSEx bit is used to set the SSSx bit in Section 25.5.2.9, EQADC FIFO and Interrupt
Status Registers (EQADC_FISR). Writing a “1” to SSEx will set the SSSx in
Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), if the CFIFO
is in single-scan mode. When SSSx is already asserted, writing a “1” to SSEx also has no
effect. If the CFIFO is in continuous-scan mode or is disabled, writing a “1” to SSEx will not
set SSSx. Writing a “0” to SSEx has no effect. SSEx always is read as “0”.
1 Set the SSSx bit.
0 No effect.

6
CFINVx

 CFIFO Invalidate Bit x
The CFINVx bit causes the EQADC to invalidate all entries of CFIFOx. Writing a “1” to
CFINVx will reset the value of CFCTRx in Section 25.5.2.9, EQADC FIFO and Interrupt
Status Registers (EQADC_FISR). Writing a “1” to CFINVx also resets the Push Next Data
Pointer, Transfer Next Data Pointer to the first entry of CFIFOx in Figure 25-60. CFINVx
always is read as “0”. Writing a “0” has no effect.
Invalidate all of the entries in the corresponding CFIFO.
No effect.

Note: Writing CFINVx only invalidates commands stored in CFIFOx; previously transferred
commands that are waiting for execution, that is commands stored in the CBuffers,
will still be executed, and results generated by them will be stored in the appropriate
RFIFO.

Note: CFINVx must not be written unless the MODEx is configured to disabled, and CFIFO
status is IDLE.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1029

MODEx
[0:3]

CFIFO Operation Mode x
The MODEx field selects the CFIFO operation mode for CFIFOx, see Table 25-12. Refer to
Section 25.6.4.6, CFIFO Scan Trigger Modes, for more information on CFIFO trigger mode.

Note: If MODEx is not disabled, it must not be changed to any other mode besides disabled.
If MODEx is disabled and the CFIFO status is IDLE, MODEx can be changed to any
other mode.

12-15
AMODE0

[0:3]

CFIFO0 Advance Trigger Operation Mode 0
The AMODE0 field selects the trigger mode for the ATRIG0 trigger signal in streaming mode,
see Table 25-13. The use of reserved values drives to unknown behavior of the block.

Note: If AMODE0 is not disabled, it must not be changed to any other mode besides
disabled. If AMODE0 is disabled and the CFIFO0 status is IDLE, AMODE0 can be
changed to any other mode.

Note: For the streaming mode of operation when the ATRIG0 is used to enable the ETRIG0
or to advance the command queue, the normal mode of operation is external trigger
single scan. Other settings are not fully tested.

Table 25-12. CFIFO Operation Mode Table

MODEx[0:3] CFIFO Operation Mode

0b0000 Disabled

0b0001 Software Trigger, Single Scan

0b0010 Low Level Gated External Trigger, Single Scan

0b0011 High Level Gated External Trigger, Single Scan

0b0100 Falling Edge External Trigger, Single Scan

0b0101 Rising Edge External Trigger, Single Scan

0b0110 Falling or Rising Edge External Trigger, Single Scan

0b0111 - 0b1000 Reserved

0b1001 Software Trigger, Continuous Scan

0b1010 Low Level Gated External Trigger, Continuous Scan

0b1011 High Level Gated External Trigger, Continuous Scan

0b1100 Falling Edge External Trigger, Continuous Scan

0b1101 Rising Edge External Trigger, Continuous Scan

0b1110 Falling or Rising Edge External Trigger, Continuous Scan

0b1111 Reserved

Table 25-11. EQADC CFIFO Control Register x (EQADC_CFCRx) field description (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1030 Freescale Semiconductor

25.5.2.8 EQADC Interrupt and DMA Control Registers (EQADC_IDCR)

The EQADC Interrupt Control Registers (EQADC_IDCR) contain bits to enable the generation of
interrupt or DMA requests when the corresponding flag bits are set in Section 25.5.2.9, EQADC FIFO and
Interrupt Status Registers (EQADC_FISR).

Figure 25-11. EQADC Interrupt and DMA Control Register 0 (EQADC_IDCR0)

Table 25-13. CFIFO0 Advance Trigger Operation Mode Table

AMODE0[0:3] CFIFO0 Advance Trigger Operation Mode

0b0000 Disabled

0b0001 Reserved

0b0010 Reserved

0b0011 Reserved

0b0100 Falling Edge External Trigger, Single Scan

0b0101 Rising Edge External Trigger, Single Scan

0b0110 Falling or Rising Edge External Trigger, Single Scan

0b0111 - 0b1111 Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NCIE
0

TORI
E0

PIE0
EOQ
IE0

CFUI
E0

0 CFF
E0

CFF
S0

0 0 0 0 RFOI
E0

0 RFD
E0

RFD
S0W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R NCIE
1

TORI
E1

PIE1
EOQ
IE1

CFUI
E1

0 CFF
E1

CFF
S1

0 0 0 0 RFOI
E1

0 RFD
E1

RFD
S1W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x060

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1031

Figure 25-12. EQADC Interrupt and DMA Control Register 1 (EQADC_IDCR1)

Figure 25-13. EQADC Interrupt and DMA Control Register 2 (EQADC_IDCR2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NCIE
2

TORI
E2

PIE2
EOQ
IE2

CFUI
E2

0 CFF
E2

CFF
S2

0 0 0 0 RFOI
E2

0 RFD
E2

RFD
S2W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R NCIE
3

TORI
E3

PIE3
EOQ
IE3

CFUI
E3

0 CFF
E3

CFF
S3

0 0 0 0 RFOI
E3

0 RFD
E3

RFD
S3W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x064

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NCIE
4

TORI
E4

PIE4
EOQ
IE4

CFUI
E4

0 CFF
E4

CFF
S4

0 0 0 0 RFOI
E4

0 RFD
E4

RFD
S4W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R NCIE
5

TORI
E5

PIE5
EOQ
IE5

CFUI
E5

0 CFF
E5

CFF
S5

0 0 0 0 RFOI
E5

0 RFD
E5

RFD
S5W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x068

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1032 Freescale Semiconductor

Table 25-14. EQADC Interrupt and DMA Control Register x (EQADC_IDCRx) field description

Field Description

NCIEx Non-Coherency Interrupt Enable x
NCIEx enables the EQADC to generate an interrupt request when the corresponding NCFx
in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), is
asserted.
1 Enable non-coherency interrupt request.
0 Disable non-coherency interrupt request.

TORIEx Trigger Overrun Interrupt Enable x
TORIEx enables the EQADC to generate an interrupt request when the corresponding
TORFx in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), is
asserted.
Apart from generating an independent interrupt request for a CFIFOx Trigger Overrun event,
the EQADC also provides a combined interrupt at which the Result FIFO Overflow Interrupt,
the Command FIFO Underflow Interrupt, and the Command FIFO Trigger Overrun Interrupt
requests of ALL CFIFOs are ORed. When RFOIEx, CFUIEx, and TORIEx are all asserted,
this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFx, CFUFx, and TORFx (assuming that all interrupts are enabled). See
Section 25.6.8, EQADC DMA/Interrupt request, for details.
1 Enable trigger overrun interrupt request.
0 Disable trigger overrun interrupt request.

PIEx Pause Interrupt Enable x
PIEx enables the EQADC to generate an interrupt request when the corresponding PFx in
Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), is asserted.
1 Enable pause interrupt request.
0 Disable pause interrupt request.

EOQIEx End of Queue Interrupt Enable x
EOQIEx enables the EQADC to generate an interrupt request when the corresponding
EOQFx in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR),
is asserted.
1 Enable End of Queue interrupt request.
0 Disable End of Queue interrupt request.

CFUIEx CFIFO Underflow Interrupt Enable x
CFUIEx enables the EQADC to generate an interrupt request when the corresponding
CFUFx in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), is
asserted.
Apart from generating an independent interrupt request for a CFIFOx underflow event, the
EQADC also provides a combined interrupt at which the Result FIFO Overflow Interrupt, the
Command FIFO Underflow Interrupt, and the Command FIFO Trigger Overrun Interrupt
requests of ALL CFIFOs are ORed. When RFOIEx, CFUIEx, and TORIEx are all asserted,
this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFx, CFUFx, and TORFx (assuming that all interrupts are enabled). See
Section 25.6.8, EQADC DMA/Interrupt request, for details.
1 Enable Underflow Interrupt request.
0 Disable Underflow Interrupt request.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1033

CFFEx CFIFO Fill Enable x
CFFEx enables the EQADC to generate an interrupt request (CFFSx is asserted) or DMA
request (CFFSx is negated) when CFFFx in Section 25.5.2.9, EQADC FIFO and Interrupt
Status Registers (EQADC_FISR), is asserted.
1 Enable CFIFO Fill DMA or Interrupt request.
0 Disable CFIFO Fill DMA or Interrupt request.

Note: CFFEx must not be negated while a DMA transaction is in progress.

CFFSx CFIFO Fill Select x
CFFSx selects if a DMA or interrupt request is generated when CFFFx in Section 25.5.2.9,
EQADC FIFO and Interrupt Status Registers (EQADC_FISR), is asserted. If CFFEx is
asserted, the EQADC generates an interrupt request when CFFSx is negated, or it
generates a DMA request if CFFSx is asserted.
1 Generate DMA request to move data from the system memory to CFIFOx.
0 Generate interrupt request to move data from the system memory to CFIFOx.

Note: CFFSx must not be negated while a DMA transaction is in progress.

RFOIEx RFIFO Overflow Interrupt Enable x
RFOIEx enables the EQADC to generate an interrupt request when the corresponding
RFOFx in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), is
asserted.
Apart from generating an independent interrupt request for an RFIFOx overflow event, the
EQADC also provides a combined interrupt at which the Result FIFO Overflow Interrupt, the
Command FIFO Underflow Interrupt, and the Command FIFO Trigger Overrun Interrupt
requests of ALL CFIFOs are ORed. When RFOIEx, CFUIEx, and TORIEx are all asserted,
this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFx, CFUFx, and TORFx (assuming that all interrupts are enabled). See
Section 25.6.8, EQADC DMA/Interrupt request, for details.
1 Enable Overflow Interrupt request.
0 Disable Overflow Interrupt request.

RFDEx RFIFO Drain Enable x
RFDEx enables the EQADC to generate an interrupt request (RFDSx is asserted) or DMA
request (RFDSx is negated) when RFDFx in Section 25.5.2.9, EQADC FIFO and Interrupt
Status Registers (EQADC_FISR), is asserted.
1 Enable RFIFO Drain DMA or Interrupt request.
0 Disable RFIFO Drain DMA or Interrupt request.

Note: RFDEx must not be negated while a DMA transaction is in progress.

RFDSx RFIFO Drain Select x
RFDSx selects if a DMA or interrupt request is generated when RFDFx in Section 25.5.2.9,
EQADC FIFO and Interrupt Status Registers (EQADC_FISR), is asserted. If RFDEx is
asserted, the EQADC generates an interrupt request when RFDSx is negated, or it
generates a DMA request when RFDSx is asserted.
1 Generate DMA request to move data from RFIFOx to the system memory.
0 Generate interrupt request to move data from RFIFOx to the system memory.

Note: RFDSx must not be negated while a DMA transaction is in progress.

Table 25-14. EQADC Interrupt and DMA Control Register x (EQADC_IDCRx) field description (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1034 Freescale Semiconductor

25.5.2.9 EQADC FIFO and Interrupt Status Registers (EQADC_FISR)

The EQADC FIFO and Interrupt Status Registers (EQADC_FISR) contain flag and status bits for each
CFIFO and RFIFO pair. Write “1” to a flag bit to clear it. Writing “0” has no effect. Status bits are read
only. These bits indicate the status of the FIFO itself.

Figure 25-14. EQADC FIFO and Interrupt Status Register x (EQADC_FISRx)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NCF
x

TOR
Fx

PFx
EOQ
Fx

CFU
Fx

SSSx CFF
Fx

0 0 0 0 0 RFO
Fx

0 RFD
Fx

0

W

RESET: 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFCTRx TNXTPTRx RFCTRx POPNXTPTRx

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x070
Register address: EQADC_BASE+0x074
Register address: EQADC_BASE+0x078
Register address: EQADC_BASE+0x07C
Register address: EQADC_BASE+0x080
Register address: EQADC_BASE+0x084

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1035

Table 25-15. EQADC FIFO and Interrupt Status Register x (EQADC_FISRx) field description

Field Description

0
NCFx

Non-Coherency Flag
NCFx is set whenever a command sequence being transferred through CFIFOx becomes
non coherent. If NCIEx in Section 25.5.2.8, EQADC Interrupt and DMA Control Registers
(EQADC_IDCR), and NCFx are asserted, an interrupt request will be generated. Write “1” to
clear NCFx. Writing a “0” has no effect. For more information refer to Section 25.6.4.7.5,
Command Sequence Non-Coherency Detection.
1 Command sequence being transferred by CFIFOx became non-coherent.
0 Command sequence being transferred by CFIFOx is coherent.

1
TORFx

Trigger Overrun Flag for CFIFOx
TORFx is set when trigger overrun occurs for the specified CFIFO in edge or level trigger
mode. Trigger overrun occurs when an already triggered CFIFO receives an additional
trigger. When TORIEx in Section 25.5.2.8, EQADC Interrupt and DMA Control Registers
(EQADC_IDCR), and TORFx are asserted, an interrupt request will be generated.
Apart from generating an independent interrupt request for a CFIFOx Trigger Overrun event,
the EQADC also provides a combined interrupt at which the Result FIFO Overflow Interrupt,
the Command FIFO Underflow Interrupt, and the Command FIFO Trigger Overrun Interrupt
requests of ALL CFIFOs are ORed. When RFOIEx, CFUIEx, and TORIEx are all asserted,
this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFx, CFUFx, and TORFx (assuming that all interrupts are enabled). See
Section 25.6.8, EQADC DMA/Interrupt request, for details.
Write “1” to clear the TORFx bit. Writing a “0” has no effect.
1 Trigger overrun occurred.
0 No trigger overrun occurred.

Note: The trigger overrun flag will not set for CFIFOs configured for software trigger mode.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1036 Freescale Semiconductor

2
PFx

Pause Flag x
PF behavior changes according to the CFIFO trigger mode. In edge trigger mode, PFx is set
when the EQADC completes the transfer of an entry with an asserted Pause bit from
CFIFOx. In level trigger mode, when CFIFOx is in TRIGGERED status, PFx is set when
CFIFO status changes from TRIGGERED due to the detection of a closed gate. An interrupt
routine, generated due to the asserted PF, can be used to verify if a complete scan of the
CQueue was performed. If a closed gate is detected while no command transfers are taking
place, it will have immediate effect on the CFIFO status. If a closed gate is detected while a
command transfer to an on-chip CBuffer is taking place, it will only affect the CFIFO status
when the transfer completes. If a closed gate is detected during the serial transmission of a
command to the external device, it will have no effect on the CFIFO status until the
transmission completes. The transfer of entries bound for the on-chip ADCs is considered
completed when they are stored in the appropriate CBuffer. The transfer of entries bound for
the external device is considered completed when the serial transmission of the entry is
completed. In software trigger mode, PFx will never become asserted.
If PIEx in Section 25.5.2.8, EQADC Interrupt and DMA Control Registers (EQADC_IDCR),
and PFx are asserted, an interrupt will be generated. Write “1” to clear the PFx. Writing a “0”
has no effect. Refer to Section 25.6.4.7.3, Pause Status, for more information on the Pause
Flag.
1 Entry with asserted PAUSE bit was transferred from CFIFOx (CFIFO in edge trigger

mode), or CFIFO status changes from TRIGGERED due to detection of a closed gate
(CFIFO in level trigger mode).

0 Entry with asserted PAUSE bit was not transferred from CFIFOx (CFIFO in edge trigger
mode), or CFIFO status did not change from TRIGGERED due to detection of a closed
gate (CFIFO in level trigger mode).

Note: In edge trigger mode, an asserted PFx only implies that the EQADC has finished
transferring a command with an asserted PAUSE bit from CFIFOx. It does not imply
that result data for the current command and for all previously transferred commands
has been returned to the appropriate RFIFO.

Note: In software or level trigger mode, when the EQADC completes the transfer of an entry
from CFIFOx with an asserted PAUSE bit, PFx will not be set and transfer of
commands will continue without pausing.

3
EOQFx

End of Queue Flag x
EOQFx indicates that an entry with an asserted EOQ bit was transferred from CFIFOx to the
on-chip ADCs or to the external device - see Section 25.6.2.3, Message Format in EQADC,
for details about command message formats. When the EQADC completes the transfer of
an entry with an asserted EOQ bit from CFIFOx, EOQFx will be set. The transfer of entries
bound for the on-chip ADCs is considered completed when they are stored in the appropriate
CBuffer. The transfer of entries bound for the external device is considered completed when
the serial transmission of the entry is completed. If the EOQIEx bit in Section 25.5.2.8,
EQADC Interrupt and DMA Control Registers (EQADC_IDCR), and EOQFx are asserted,
an interrupt will be generated. Write “1” to clear the EOQFx bit. Writing a “0” has no effect.
Refer to Section 25.6.4.7.2, CQueue Completion Status, for more information on the End of
Queue Flag.
1 Entry with asserted EOQ bit was transferred from CFIFOx.
0 Entry with asserted EOQ bit was not transferred from CFIFOx.

Note: An asserted EOQFx only implies that the EQADC has finished transferring a
command with an asserted EOQ bit from CFIFOx. It does not imply that result data for
the current command and for all previously transferred commands has been returned
to the appropriate RFIFO.

Table 25-15. EQADC FIFO and Interrupt Status Register x (EQADC_FISRx) field description (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1037

4
CFUFx

CFIFO Underflow Flag x
CFUFx indicates an underflow event on CFIFOx. CFUFx is set when CFIFOx is in
TRIGGERED state and it becomes empty. No commands will be transferred from an
underflowing CFIFO, nor will command transfers from lower priority CFIFOs be blocked.
When CFUIEx in Section 25.5.2.8, EQADC Interrupt and DMA Control Registers
(EQADC_IDCR), and CFUFx are both asserted, the EQADC generates an interrupt request.
Apart from generating an independent interrupt request for a CFIFOx underflow event, the
EQADC also provides a combined interrupt at which the Result FIFO Overflow Interrupt, the
Command FIFO Underflow Interrupt, and the Command FIFO Trigger Overrun Interrupt
requests of ALL CFIFOs are ORed. When RFOIEx, CFUIEx, and TORIEx are all asserted,
this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFx, CFUFx, and TORFx (assuming that all interrupts are enabled). See
Section 25.6.8, EQADC DMA/Interrupt request, for details.
Write “1” to clear CFUFx. Writing a “0” has no effect.
1 A CFIFO underflow event occurred.
0 No CFIFO underflow event occurred.

5
SSSx

CFIFO Single-Scan Status Bit x
An asserted SSSx bit enables the detection of trigger events for CFIFOs programmed into
single-scan level- or edge-trigger mode, and works as trigger for CFIFOs programmed into
single-scan software-trigger mode. Refer to Section 25.6.4.6.2, Single-Scan Mode, for
further details. The SSSx bit is set by writing a “1” to the SSEx bit in Section 25.5.2.7,
EQADC CFIFO Control Registers (EQADC_CFCR). The EQADC clears the SSSx bit when
a command with an asserted EOQ bit is transferred from a CFIFO in single-scan mode,
when a CFIFO is in single-scan level-trigger mode and its status changes from TRIGGERED
due to the detection of a closed gate, or when the value of the CFIFO operation mode
(MODEx) in Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR), is
changed to disabled. Writing to SSSx has no effect. SSSx has no effect in continuous-scan
or in disabled mode.
1 CFIFO in single-scan level- or edge-trigger mode will detect a trigger event, or CFIFO in
single-scan software-trigger mode is triggered.
0 CFIFO in single-scan level- or edge-trigger mode will ignore trigger events, or CFIFO in
single-scan software-trigger mode is not triggered.

6
CFFFx

CFIFO Fill Flag x
CFFFx is set when the CFIFOx is not full. When CFFEx in Section 25.5.2.8, EQADC
Interrupt and DMA Control Registers (EQADC_IDCR), and CFFFx are both asserted, an
interrupt or a DMA request will be generated depending on the status of the CFFSx bit. When
CFFSx is negated (interrupt requests selected), software clears CFFFx by writing a “1” to it.
Writing a “0” has no effect. When CFFSx is asserted (DMA requests selected), CFFFx is
automatically cleared by the EQADC when the CFIFO becomes full.
1 CFIFOx is not full.
0 CFIFOx is full.

Note: Writing “1” to CFFFx when CFFSx is asserted (DMA requests selected) is not allowed.

Note: When generation of interrupt requests is selected (CFFSx=0), CFFFx must only be
cleared in the ISR after the CFIFOx push register is accessed.

Table 25-15. EQADC FIFO and Interrupt Status Register x (EQADC_FISRx) field description (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1038 Freescale Semiconductor

12
RFOFx

RFIFO Overflow Flag x
RFOFx indicates an overflow event on RFIFOx. RFOFx is set when RFIFOx is already full,
and a new data is received from the on-chip ADCs or from the external device. The RFIFOx
will not overwrite older data in the RFIFO, and the new data will be ignored. When RFOIEx
in Section 25.5.2.8, EQADC Interrupt and DMA Control Registers (EQADC_IDCR), and
RFOFx are both asserted, the EQADC generates an interrupt request.
Apart from generating an independent interrupt request for an RFIFOx overflow event, the
EQADC also provides a combined interrupt at which the Result FIFO Overflow Interrupt, the
Command FIFO Underflow Interrupt, and the Command FIFO Trigger Overrun Interrupt
requests of ALL CFIFOs are ORed. When RFOIEx, CFUIEx, and TORIEx are all asserted,
this combined interrupt request is asserted whenever one of the following 18 flags becomes
asserted: RFOFx, CFUFx, and TORFx (assuming that all interrupts are enabled). See
Section 25.6.8, EQADC DMA/Interrupt request, for details.
Write “1” to clear RFOFx. Writing a “0” has no effect.
1 An RFIFO overflow event occurred.
0 No RFIFO overflow event occurred.

14
RFDFx

RFIFO Drain Flag x
RFDFx indicates if RFIFOx has valid entries or not. RFDFx is set when the RFIFOx has at
least one valid entry in it. When RFDEx in Section 25.5.2.8, EQADC Interrupt and DMA
Control Registers (EQADC_IDCR), and RFDFx are both asserted, an interrupt or a DMA
request will be generated depending on the status of the RFDSx bit. When RFDSx is
negated (interrupt requests selected), software clears RFDFx by writing a “1” to it. Writing a
“0” has no effect. When RFDSx is asserted (DMA requests selected), RFDFx is
automatically cleared by the EQADC when the RFIFO becomes empty.
1 RFIFOx has at least one valid entry.
0 RFIFOx is empty.

Note: Writing “1” to RFDFx when RFDSx is asserted (DMA requests selected) is not
allowed.

Note: When the generation of interrupt requests is selected (RFDSx=0), RFDFx must only
be cleared in the ISR after the RFIFOx pop register is accessed.

16-19
CFCTRx

[0:3]

CFIFOx Entry Counter
CFCTRx indicates the number of commands stored in the CFIFOx. When the EQADC
completes transferring a piece of new data from the CFIFOx, it decrements CFCTRx by one.
Writing a word or any bytes to the corresponding Section 25.5.2.5, EQADC CFIFO Push
Registers (EQADC_CFPR), increments CFCTRx by one. Writing any value to CFCTRx has
no effect.

20-23
TNXTPTRx

[0:3]

CFIFOx Transfer Next Pointer
TNXTPTRx indicates the index of the next entry to be removed from CFIFOx when it
completes a transfer. When TNXTPTRx is zero, it points to the entry with the smallest
memory-mapped address inside CFIFOx. TNXTPTRx is only updated when a command
transfer is completed. If the maximum index number (CFIFO depth minus one) is reached,
TNXTPTRx is wrapped to zero, else, it is incremented by one. For details refer to
Section 25.6.4.1, CFIFO Basic Functionality. Writing any value to TNXTPTRx has no effect.

Table 25-15. EQADC FIFO and Interrupt Status Register x (EQADC_FISRx) field description (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1039

25.5.2.10 EQADC CFIFO Transfer Counter Registers (EQADC_CFTCR)

The EQADC CFIFO Transfer Counter Registers (EQADC_CFTCR) record the number of commands
transferred from a CFIFO. The EQADC_CFTCR supports the monitoring of command transfers from a
CFIFO.

Figure 25-15. EQADC CFIFO Transfer Counter Register 0 (EQADC_CFTCR0)

24-27
RFCTRx

[0:3]

RFIFOx Entry Counter
RFCTRx indicates the number of data items stored in the RFIFOx. When the EQADC stores
a piece of new data into RFIFOx, it increments RFCTRx by one. Reading the whole word,
half-word or any bytes of the corresponding Section 25.5.2.6, EQADC Result FIFO Pop
Registers (EQADC_RFPR), decrements RFCTRx by one. Writing any value to RFCTRx
itself has no effect.

28-31
POPNXTPTRx

[0:3]

RFIFOx Pop Next Pointer
POPNXTPTRx indicates the index of the entry that will be returned when EQADC_RFPRx
is read. When POPNXTPTRx is zero, it points to the entry with the smallest memory-mapped
address inside RFIFOx. POPNXTPTRx is updated when EQADC_RFPRx is read. If the
maximum index number (RFIFO depth minus one) is reached, POPNXTPTRx is wrapped to
zero, else, it is incremented by one. For details refer to Section 25.6.5.1, RFIFO Basic
Functionality. Writing any value to POPNXTPTRx has no effect.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
TC_CF0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
TC_CF1

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x090

Table 25-15. EQADC FIFO and Interrupt Status Register x (EQADC_FISRx) field description (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1040 Freescale Semiconductor

Figure 25-16. EQADC CFIFO Transfer Counter Register 1 (EQADC_CFTCR1)

Figure 25-17. EQADC CFIFO Transfer Counter Register 2 (EQADC_CFTCR2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
TC_CF2

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
TC_CF3

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x094

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
TC_CF4

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
TC_CF5

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address:EQADC_BASE+0x098

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1041

25.5.2.11 EQADC CFIFO Status Snapshot Registers (EQADC_CFSSR)

The EQADC CFIFO Status Snapshot Registers (EQADC_CFSSR) contain status fields to track the
operation status of each CFIFO and the transfer counter of the last CFIFO to initiate a command transfer
to the internal/external CBuffers. EQADC_CFSSR0-1 are related to the on-chip CBuffers (CBuffer0-1)
while EQADC_CFSSR2 is related to the external CBuffers. All fields of a particular EQADC_CFSSR
register are captured at the beginning of a command transfer to the CBuffer associated with that register.
Note that captured status register values are associated with previous command transfer. This means that
the CFSSR registers capture the status registers before the status registers change because of the transfer
of the current command that is about to be popped from the CFIFO. The EQADC_CFSSR registers are
read only. Writing to the EQADC_CFSSR registers has no effect.

Figure 25-18. EQADC CFIFO Status Snapshot Register 0 (EQADC_CFSSR0)

Table 25-16. EQADC CFIFO Transfer Counter Register x (EQADC_CFTCRx) field description

Field Description

TC_CFx
[0:10]

Transfer Counter for CFIFOx
TC_CFx counts the number of commands which have been completely transferred from
CFIFOx. The transfer of entries bound for the on-chip ADCs is considered completed when
they are stored in the appropriate CBuffer. The transfer of entries bound for an external
device is considered completed when the serial transmission of the entry is completed. The
EQADC increments the TC_CFx value by one after a command is transferred. TC_CFx
resets to zero after EQADC completes transferring a command with an asserted EOQ bit.
Writing any value to TC_CFx sets the counter to that written value.

Note: If CFIFOx is in TRIGGERED state when its MODEx field is programmed to disabled,
the exact number of entries transferred from the CFIFO until that point - TC_CFx - is
only known after the CFIFO status changes to IDLE, as indicated by CFSx. For details
refer to Section 25.6.4.6.1, Disabled Mode.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFS0_TCB
0

CFS1_TCB
0

CFS2_TCB
0

CFS3_TCB
0

CFS4_TCB
0

CFS5_TCB
0

0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 LCFTCB0 TC_LCFTCB0

W

RESET: 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x0A0

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1042 Freescale Semiconductor

Figure 25-19. EQADC CFIFO Status Snapshot Register 1 (EQADC_CFSSR1)

Figure 25-20. EQADC CFIFO Status Snapshot Register 2 (EQADC_CFSSR2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFS0_TCB
1

CFS1_TCB
1

CFS2_TCB
1

CFS3_TCB
1

CFS4_TCB
1

CFS5_TCB
1

0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 LCFTCB1 TC_LCFTCB1

W

RESET: 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x0A4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFS0_TSSI CFS1_TSSI CFS2_TSSI CFS3_TSSI CFS4_TSSI CFS5_TSSI 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R ECB
NI

LCFTSSI TC_LCFTSSI

W

RESET: 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x0A8

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1043

Table 25-17. EQADC CFIFO Status Snapshot Register x (EQADC_CFSSRx) field description

Field Description

CFSx_TCBn
[0:1]

CFIFO Status at Transfer to CBuffern (n=0,1)
CFSx_TCBn indicates the CFIFOx status of previously completed command transfer.
CFSx_TCBn is a copy of the corresponding CFSx in the Section 25.5.2.12, EQADC CFIFO
Status Register (EQADC_CFSR), captured at the time a current command transfer to
CBuffern is initiated.

LCFTCBn
[0:3]

Last CFIFO to Transfer to CBuffern (n=0,1)
LCFTCBn holds the CFIFO number to have completed a previous command transfer to
CBuffern, see Table 25-18.

TC_LCFTCBn
[0:10]

Transfer Counter for Last CFIFO to transfer commands to CBuffern
TC_LCFTCBn indicates the number of commands which have been completely transferred
from CFIFOx when a current command transfer from CFIFOx to CBuffern is initiated.
TC_LCFTCBn is a copy of the corresponding TC_CFx in the Section 25.5.2.10, EQADC
CFIFO Transfer Counter Registers (EQADC_CFTCR), captured at the time a current
command transfer from CFIFOx to CBuffern is initiated. This field has no meaning when
LCFTCBn is 0b1111.

CFSx_TSSI
[0:1]

CFIFO Status at Transfer through the EQADC SSI
CFSx_TSSI indicates the CFIFOx status of previously completed serial transmission
through the EQADC SSI. CFSx_TSSI is a copy of the corresponding CFSx in the
Section 25.5.2.12, EQADC CFIFO Status Register (EQADC_CFSR), capture at the time a
current serial transmission through the EQADC SSI is initiated.

ECBNI External CBuffer Number Indicator
ECBNI indicates to which external CBuffer the previous command was transmitted.
1 Last command was transferred to CBuffer3.
0 Last command was transferred to CBuffer2.

LCFTSSI[0:3] Last CFIFO to Transfer Commands through the EQADC SSI.
LCFTSSI holds the CFIFO number to have completed a previous command transfer to an
external CBuffer through the EQADC SSI, see Table 25-19. LCFTSSI does not indicate the
transmission of null messages.

TC_LCFSSI
[0:10]

Transfer Counter for Last CFIFO to Transfer commands through EQADC SSI
TC_LCFTSSI indicates the number of commands which have been completely transferred
from a particular CFIFO when a command transfer from that CFIFO to an external CBuffer
is initiated. TC_LCFTSSI is a copy of the corresponding TC_CFx in the Section 25.5.2.10,
EQADC CFIFO Transfer Counter Registers (EQADC_CFTCR), captured at the time a
current command transfer to an external CBuffer is initiated. This field has no meaning when
LCFTSSI is 0b1111.

Table 25-18. LCFTCBn Description

LCFTCBn[0:3] LCFTCBn Meaning

0b0000 Last command was transferred from CFIFO0

0b0001 Last command was transferred from CFIFO1

0b0010 Last command was transferred from CFIFO2

0b0011 Last command was transferred from CFIFO3

0b0100 Last command was transferred from CFIFO4

0b0101 Last command was transferred from CFIFO5

0b0110 - 0b1110 Reserved

0b1111 No command was transferred to CBuffern

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1044 Freescale Semiconductor

25.5.2.12 EQADC CFIFO Status Register (EQADC_CFSR)

The EQADC CFIFO Status Register (EQADC_CFSR) contains the current CFIFO status. The
EQADC_CFSR registers is read only. Writing to the EQADC_CFSR register has no effect.

Figure 25-21. EQADC CFIFO Status Register (EQADC_CFSR)

Table 25-19. LCFTSSI Description

LCFTSSI[0:3] LCFTSSI Meaning

0b0000 Last command was transferred from CFIFO0

0b0001 Last command was transferred from CFIFO1

0b0010 Last command was transferred from CFIFO2

0b0011 Last command was transferred from CFIFO3

0b0100 Last command was transferred from CFIFO4

0b0101 Last command was transferred from CFIFO5

0b0110 - 0b1110 Reserved

0b1111 No command was transferred to an external CBuffer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFS0 CFS1 CFS2 CFS3 CFS4 CFS5 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x0AC

Table 25-20. field description

Field Description

CFSx[0:1] CFIFO Status
CFSx indicates the current status of CFIFOx. Refer to Table 25-21 for more information on
CFIFO status.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1045

25.5.2.13 EQADC SSI Control Register (EQADC_SSICR)

The EQADC SSI Control Register (EQADC_SSICR) configures the SSI sub-block.

Figure 25-22. EQADC SSI Control Register (EQADC_SSICR)

Table 25-21. Current CFIFO Status

CFIFO
Status

Field Value Explanation

IDLE 0b00 CFIFO is disabled.
CFIFO is in single-scan edge or level trigger mode and does not have SSS
asserted.
EQADC completed the transfer of the last entry of the CQueue in single-scan
mode.

Reserved 0b01 Not applicable.

WAITING
FOR

TRIGGER

0b10 CFIFO Mode is modified to continuous-scan edge or level trigger mode.
CFIFO Mode is modified to single-scan edge or level trigger mode and SSS is
asserted.
CFIFO Mode is modified to single-scan software trigger mode and SSS is
negated.
CFIFO is paused.
EQADC transferred the last entry of the queue in continuous-scan edge trigger
mode.

TRIGGERED 0b11 CFIFO is triggered

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
MDT

0 0 0 0
BR

W

RESET: 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1

= Unimplemented or Reserved

Register address: EQADC_BASE+0x0B4

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1046 Freescale Semiconductor

Table 25-22. EQADC SSI Control Register (EQADC_SSICR) field description

Field Description

21-23
MDT[0:2]

Minimum Delay after Transmission
MDT field defines the minimum delay after transmission time (tMDT) expressed in serial clock
(FCK) periods. tMDT is minimum time SDS should be kept negated between two consecutive
serial transmissions. Table 25-23 lists the minimum delay after transfer time according to
how MDT is set.

The MDT field must only be written when the serial transmissions from the EQADC SSI are
disabled - See ESSIE field in Section 25.5.2.1, EQADC Module Configuration Register
(EQADC_MCR).

28-31
BR[0:3]

Baud Rate Field
The BR field selects system clock divide factor as shown in Table 25-24. The baud clock is
calculated by dividing the system clock by the clock divide factor specified with the BR field.

The BR field must only be written when the EQADC SSI is disabled - See ESSIE field in
Section 25.5.2.1, EQADC Module Configuration Register (EQADC_MCR).

Table 25-23. Minimum Delay After Transmission (tMDT) Time

MDT
tMDT

(FCK period)

0b000 1

0b001 2

0b010 3

0b011 4

0b100 5

0b101 6

0b110 7

0b111 8

Table 25-24. System Clock Divide Factor for Baud Clock

BR[0:3] System Clock Divide Factor 1

0b0000 2

0b0001 3

0b0010 4

0b0011 5

0b0100 6

0b0101 7

0b0110 8

0b0111 9

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1047

25.5.2.14 EQADC SSI Receive Data Register (EQADC_SSIRDR)

The EQADC SSI Receive Data Register (EQADC_SSIRDR) records the last message received from the
external device.

Figure 25-23. EQADC SSI Receive Data Register (EQADC_SSIRDR)

0b1000 10

0b1001 11

0b1010 12

0b1011 13

0b1100 14

0b1101 15

0b1110 16

0b1111 17

1 If the system clock is divided by a odd number then the serial clock will have a duty cycle different
from 50%.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RDV 0 0 0 0 0 R_DATA

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R R_DATA

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x0B8

Table 25-24. System Clock Divide Factor for Baud Clock (continued)

BR[0:3] System Clock Divide Factor 1

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1048 Freescale Semiconductor

25.5.2.15 EQADC STAC Client Configuration Register (EQADC_REDLCCR)

The EQADC STAC Client Configuration Register (EQADC_REDLCCR) contains bits used to control
which time slots the EQADC selects to obtain pre-defined external time bases.

Figure 25-24. EQADC STAC Client Configuration Register (EQADC_REDLCCR)

Table 25-25. EQADC SSI Receive Data Register (EQADC_SSIRDR) field description

Field Description

0
RDV

Receive Data Valid Bit
The RDV bit indicates if the last received data is valid. This bit is cleared automatically
whenever the EQADC_SSIRDR register is read. Writes have no effect.
1 Receive data is valid.
0 Receive data is not valid.

6-31
R_DATA

[0:25]

EQADC Receive DATA Field
The R_DATA contains the last result message that was shifted in. Writes to the R_DATA
have no effect. Messages that were not completely received due to a transmission abort will
not be copied into EQADC_SSIRDR.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
REDBS2 SRV2 REDBS1 SRV1

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address: EQADC_BASE+0x0D0

Table 25-26. EQADC STAC Client Configuration Register (EQADC_REDLCCR) field description

Field Description

REDBSm
[0:3]

STAC Timebase Bits Selection, where m (m=1,2)
The REDBSm field selects 16 bits from the total of 24 bits that are received from the STAC
interface as described in below. Consider TBASEm[0:23] the selected time base from slot
SRVm:

SRVm
[0:3]

STAC bus Server Data Slot Selector m (m=1,2)
The field SRVm indicates the slot number that contains the desired time base value sent by
the STAC server. It is possible to have up to 16 different sources to be selected.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1049

S

25.5.2.16 EQADC CFIFO Registers (EQADC_CFxRw) (x=0, ..,5; w=0, .., 3)

The EQADC CFIFO Registers (EQADC_CFxRw) (x=0, .., 5; w=0, .., 3) provide visibility of the contents
of a CFIFO for debugging purposes. Each CFIFO has four registers which are uniquely mapped to its four
32-bit entries. Refer to Section 25.6.4, EQADC Command FIFOs, for more information on CFIFOs. These
registers are read only. Data written to these registers is ignored.

Table 25-27. STAC Bus Timebase Bits Selection

REDBSm[0:3] Selected Bits

0b0000 TBASEm[0:15]

0b0001 TBASEm[1:16]

0b0010 TBASEm[2:17]

0b0011 TBASEm[3:18]

0b0100 TBASEm[4:19]

0b0101 TBASEm[5:20]

0b0110 TBASEm[6:21]

0b0111 TBASEm[7:22]

0b1000 TBASEm[8:23]

Others Reserved

Table 25-28. SRVm valid values

SRVm[0:3] Time Base

0b0000 eTPU engine A, TCR1

0b0001 Reserved

0b0010 eTPU engine A, TCR2

0b0011 Reserved

0b0100–0b1111 Reserved

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1050 Freescale Semiconductor

Figure 25-25. EQADC CFIFO0 Registers (EQADC_CF0Rw) (w=0, .., 3)

Figure 25-26. EQADC CFIFO1 Registers (EQADC_CF1Rw) (w=0, .., 3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFIFO0_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFIFO0_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x100
Register address: EQADC_BASE+0x104
Register address: EQADC_BASE+0x108
Register address: EQADC_BASE+0x10C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFIFO1_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFIFO1_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x140
Register address: EQADC_BASE+0x144
Register address: EQADC_BASE+0x148
Register address: EQADC_BASE+0x14C

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1051

Figure 25-27. EQADC CFIFO2 Registers (EQADC_CF2Rw) (w=0, .., 3)

Figure 25-28. EQADC CFIFO3 Registers (EQADC_CF3Rw) (w=0, .., 3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFIFO2_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFIFO2_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x180
Register address: EQADC_BASE+0x184
Register address: EQADC_BASE+0x188
Register address: EQADC_BASE+0x18C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFIFO3_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFIFO3_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x1C0
Register address: EQADC_BASE+0x1C4
Register address: EQADC_BASE+0x1C8
Register address: EQADC_BASE+0x1CC

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1052 Freescale Semiconductor

Figure 25-29. EQADC CFIFO4 Registers (EQADC_CF4Rw) (w=0, .., 3)

Figure 25-30. EQADC CFIFO5 Registers (EQADC_CF5Rw) (w=0, .., 3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFIFO4_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFIFO4_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x200
Register address: EQADC_BASE+0x204
Register address: EQADC_BASE+0x208
Register address: EQADC_BASE+0x20C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFIFO5_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFIFO5_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x240
Register address: EQADC_BASE+0x244
Register address: EQADC_BASE+0x248
Register address: EQADC_BASE+0x24C

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1053

25.5.2.17 EQADC CFIFO0 Extension Registers (EQADC_CF0ERw) (w=0, .., 3)

The EQADC CFIFO0 Extension Registers (EQADC_CF0ERw) (w=0, .., 3) provide visibility of the
contents of the extended portion of CFIFO0 for debugging purposes. There are four registers which are
uniquely mapped to its four 32-bit entries. Refer to Section 25.6.4, EQADC Command FIFOs, for more
information on CFIFOs. These registers are read only. Data written to these registers is ignored.

Figure 25-31. EQADC CFIFO0 Extension Registers (EQADC_CF0ERw) (w=0, .., 3)

Table 25-29. EQADC CFIFOx Registers (EQADC_CFxRw) (w=0, .., 3) field description

Field Description

0-31
CFIFOx_DATAw

[0:31]

CFIFOx Data w (w = 0, .., 3)
Reading CFIFOx_DATAw returns the value stored on the wth entry of CFIFOx. Each CFIFO
is composed of four 32-bit entries, with register 0 being mapped to the one with the smallest
memory mapped address.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CFIFO0_EDATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CFIFO0_EDATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x110
Register address: EQADC_BASE+0x114
Register address: EQADC_BASE+0x118
Register address: EQADC_BASE+0x11C

Table 25-30. field description

Field Description

0-31
CFIFOx_EDATAw

[0:31]

CFIFOx Data w (w = 0, .., 3)
Reading CFIFOx_DATAw returns the value stored on the wth entry of CFIFOx. Each CFIFO
is composed of four 32-bit entries, with register 0 being mapped to the one with the smallest
memory mapped address.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1054 Freescale Semiconductor

25.5.2.18 EQADC RFIFO Registers (EQADC_RFxRw) (x=0, .., 5; w=0, .., 3)

The EQADC RFIFO Registers (EQADC_RFxRw) (x=0, .., 5; w=0, .., 3) provide visibility of the contents
of a RFIFO for debugging purposes. Each RFIFO has four registers which are uniquely mapped to its four
16-bit entries. Refer to Section 25.6.5, EQADC Result FIFOs, for more information on RFIFOs. These
registers are read only. Data written to these registers is ignored.

Figure 25-32. EQADC RFIFO0 Registers (EQADC_RF0Rw) (w=0, .., 3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RFIFO0_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x300
Register address: EQADC_BASE+0x304
Register address: EQADC_BASE+0x308
Register address: EQADC_BASE+0x30C

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1055

Figure 25-33. EQADC RFIFO1 Registers (EQADC_RF1Rw) (w=0, .., 3)

Figure 25-34. EQADC RFIFO2 Registers (EQADC_RF2Rw) (w=0, .., 3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RFIFO1_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x340
Register address: EQADC_BASE+0x344
Register address: EQADC_BASE+0x348
Register address: EQADC_BASE+0x34C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RFIFO2_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x380
Register address: EQADC_BASE+0x384
Register address: EQADC_BASE+0x388
Register address: EQADC_BASE+0x38C

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1056 Freescale Semiconductor

Figure 25-35. EQADC RFIFO3 Registers (EQADC_RF3Rw) (w=0, .., 3)

Figure 25-36. EQADC RFIFO4 Registers (EQADC_RF4Rw) (w=0, .., 3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RFIFO3_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x3C0
Register address: EQADC_BASE+0x3C4
Register address: EQADC_BASE+0x3C8
Register address: EQADC_BASE+0x3CC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RFIFO4_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x400
Register address: EQADC_BASE+0x404
Register address: EQADC_BASE+0x408
Register address: EQADC_BASE+0x40C

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1057

Figure 25-37. EQADC RFIFO5 Registers (EQADC_RF5Rw) (w=0, .., 3)

25.5.3 On-Chip ADC Registers

This section describes a list of registers that control on-chip ADC operation. The ADC registers are not
part of the CPU accessible memory map. These registers can only be accessed indirectly through
configuration commands. There are 4 non memory mapped registers per ADC, plus 12 registers shared by
both ADCs. The address, usage, and access privilege of each register is shown in Table 25-32. Data written
to or read from reserved areas of the memory map is undefined.

Their assigned addresses are the values used to set the ADC_REG_ADDRESS field of the read/write
configurations commands bound for the on-chip ADCs. These are half-word addresses. Further, the
following restrictions apply when accessing these registers:

• Registers ADC0_CR, ADC0_GCCR, ADC0_OCCR, ADC0_AGR1/2 and ADC0_AOR1/2 can
only be accessed by configuration commands sent to CBuffer0.

• Registers ADC1_CR, ADC1_GCCR, ADC1_OCCR, ADC1_AGR1/2 and ADC1_AOR1/2 can
only be accessed by configuration commands sent to CBuffer1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RFIFO5_DATAw

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register address: EQADC_BASE+0x440
Register address: EQADC_BASE+0x444
Register address: EQADC_BASE+0x448
Register address: EQADC_BASE+0x44C

Table 25-31. EQADC RFIFOx Registers (EQADC_RFxRw) (w=0, .., 3) field description

Field Description

0-31
RFIFOx_DATAw

[0:15]

 RFIFOx Data w (w = 0, .., 3)
Reading RFIFOx_DATAw returns the value stored on the wth entry of RFIFOx. Each RFIFO
is composed of four 16-bit entries, with register 0 being mapped to the one with the smallest
memory mapped address.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1058 Freescale Semiconductor

• Registers ADC_TSCR, ADC_TBCR, ADC_ACR1-8 and ADC_PUDCR0-7 can be accessed by
configuration commands sent to CBuffer0 or to CBuffer1. A data write to any of these registers
through a configuration command sent to CBuffer0 will write the same memory location as when
writing to it through a configuration command sent to CBuffer1.

NOTE

Simultaneous write accesses from CBuffer0 and CBuffer1 to any of the
shared registers are not allowed.

Table 25-32. On-Chip ADC Memory Map

ADC
Address

Use Access

0x00 ADC0/ADC11 Conversion Command for Standard Configuration (See Section ,
Conversion Command Format for the Standard Configuration”)

Write

0x01 ADC0/ADC1 Configuration Control Register (ADC0_CR, ADC1_CR) Write/Read

0x02 Time Stamp Control Register (ADC_TSCR) Write/Read

0x03 Time Base Counter Register (ADC_TBCR) Write/Read

0x04 ADC0/ADC1 Gain Calibration Constant Register (ADC0_GCCR, ADC1_GCCR) Write/Read

0x05 ADC0/ADC1 Offset Calibration Constant Register (ADC0_OCCR, ADC1_OCCR) Write/Read

0x06- 0x07 Reserved -

0x08 ADC0/ADC1 Conversion Command for Alternate Configuration 1 (See Section ,
Conversion Command Format for Alternate Configurations”)

Write

0x09 ADC0/ADC1 Conversion Command for Alternate Configuration 2 (See Section ,
Conversion Command Format for Alternate Configurations”)

Write

0x0A ADC0/ADC1 Conversion Command for Alternate Configuration 3 (See Section ,
Conversion Command Format for Alternate Configurations”)

Write

0x0B ADC0/ADC1 Conversion Command for Alternate Configuration 4 (See Section ,
Conversion Command Format for Alternate Configurations”)

Write

0x0C ADC0/ADC1 Conversion Command for Alternate Configuration 5 (See Section ,
Conversion Command Format for Alternate Configurations”)

Write

0x0D ADC0/ADC1 Conversion Command for Alternate Configuration 6 (See Section ,
Conversion Command Format for Alternate Configurations”)

Write

0x0E ADC0/ADC1 Conversion Command for Alternate Configuration 7 (See Section ,
Conversion Command Format for Alternate Configurations”)

Write

0x0F ADC0/ADC1 Conversion Command for Alternate Configuration 8 (See Section ,
Conversion Command Format for Alternate Configurations”)

Write

0x10-0x2F Reserved -

0x30 Alternate Configuration 1 Control Register (ADC_ACR1) Write/Read

0x31 ADC0/ADC1 Alternate Gain 1 Register (ADC0_AGR1, ADC1_AGR1) Write/Read

0x32 ADC0/ADC1 Alternate Offset 1 Register (ADC0_AOR1, ADC1_AOR1) Write/Read

0x33 Reserved -

0x34 Alternate Configuration 2 Control Register (ADC_ACR2) Write/Read

0x35 ADC0/ADC1 Alternate Gain 2 Register (ADC0_AGR2, ADC1_AGR2) Write/Read

0x36 ADC0/ADC1 Alternate Offset 2 Register (ADC0_AOR2, ADC1_AOR2) Write/Read

0x37 Reserved -

0x38 Alternate Configuration 3 Control Register (ADC_ACR3) Write/Read

0x39 Reserved -

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1059

25.5.3.1 ADC0/1 Control Registers (ADC0_CR and ADC1_CR)

The ADC0/1 Control Registers (ADC0/1_CR) is used to define the standard configuration of the ADC. In
the standard configuration, the parameters contained in the Alternate Configuration Control Registers
(ADC_ACR1-8) are fixed at their reset value. A conversion uses the standard configuration when the
conversion command (with the standard format) is written to address 0x00 of the on-chip ADC memory
map. Refer to Section , Conversion Command Format for the Standard Configuration.

0x3A Reserved -

0x3B Reserved -

0x3C Alternate Configuration 4 Control Register (ADC_ACR4) Write/Read

0x3D Reserved -

0x3E Reserved -

0x3F Reserved -

0x40 Alternate Configuration 5 Control Register (ADC_ACR5) Write/Read

0x41 Reserved -

0x42 Reserved -

0x43 Reserved -

0x44 Alternate Configuration 6 Control Register (ADC_ACR6) Write/Read

0x45 Reserved -

0x46 Reserved -

0x47 Reserved -

0x48 Alternate Configuration 7 Control Register (ADC_ACR7) Write/Read

0x49 Reserved -

0x4A Reserved -

0x4B Reserved -

0x4C Alternate Configuration 8 Control Register (ADC_ACR8) Write/Read

0x4D-0x6F Reserved -

0x70 Pull Up/Down Control Register0 (ADC_PUDCR0) Write/Read

0x71 Pull Up/Down Control Register0 (ADC_PUDCR1) Write/Read

0x72 Pull Up/Down Control Register0 (ADC_PUDCR2) Write/Read

0x73 Pull Up/Down Control Register0 (ADC_PUDCR3) Write/Read

0x74 Pull Up/Down Control Register0 (ADC_PUDCR4) Write/Read

0x75 Pull Up/Down Control Register0 (ADC_PUDCR5) Write/Read

0x76 Pull Up/Down Control Register0 (ADC_PUDCR6) Write/Read

0x77 Pull Up/Down Control Register0 (ADC_PUDCR7) Write/Read

0x78-0x97 Reserved for ADC_PUDCR8 to ADC_PUDCR39 -

0x98-0xFF Reserved -

1 Throughout the table, ADC0/ADC1 indicates that if the command is stored in CBuffer0 it will be applied to
ADC0 and if in CBuffer1 it applies to ADC1. If this indication is omitted the register applies for both ADC0 and
ADC1, independent of the CBuffer used.

Table 25-32. On-Chip ADC Memory Map (continued)

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1060 Freescale Semiconductor

ADC0 Register address: 0x01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ADC0
_EN

0 0 0 ADC0
_EMU

X

0
ADC0

_TBSEL

ADC0
_ODD
_PS

ADC0
_CLK
_DTY

ADC0
_CLK
_ SEL

ADC0_CLK_PS
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

ADC1 Register address: 0x01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ADC1
_EN

0 0 0 ADC1
_EMU

X

0
ADC1

_TBSEL

ADC1
_ODD
_PS

ADC1
_CLK
_DTY

ADC1
_CLK
_ SEL

ADC1_CLK_PS
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

= Unimplemented or Reserved

Figure 25-38. ADC0/1 Control Registers (ADC0/1_CR)

Table 25-33. ADC0/1 Control Registers (ADC0/1_CR) field description

Field Description

0
ADC0/1_EN

Enable bit for ADC0/1
ADC0/1_EN enables ADC0/1 to perform A/D conversions. Refer to Section 25.6.6.1,
Enabling and Disabling the On-chip ADCs, for details.
1 ADC is enabled and ready to perform A/D conversions.
0 ADC is disabled. Clock supply to ADC0/1 is stopped.

Note: Conversion commands sent to the CBuffer of a disabled ADC are ignored by the ADC
control hardware.

Note: When the ADC0/1_EN status is changed from asserted to negated, the ADC Clock
will not stop until it reaches its low phase.

4
ADC0/1_EMUX

External Multiplexer enable for ADC0/1
When ADC0/1_EMUX is asserted, the MA pins will output digital values according to the
number of the external channel being converted for selecting external multiplexer inputs.
Refer to Section 25.6.7, Internal/External Multiplexing, for a detailed description about how
ADC0/1_EMUX affects channel number decoding.
1 External multiplexer enabled; external multiplexer channels can be selected.
0 External multiplexer disabled; no external multiplexer channels can be selected.

Note: Both ADC0 and ADC1 of an eQADC module pair must be enabled before calibrating
or using either ADC0 or ADC1 of the pair. Failure to enable both ADC0 and ADC1 of
the pair can result in inaccurate conversions.

Note: Both ADC0/1_EMUX bits must not be asserted at the same time.

Note: The ADC0/1_EMUX bit must only be written when the ADC0/1_EN bit is negated.
ADC0/1_EMUX can be set during the same write cycle used to set ADC0/1_EN.

6-7
ADC0/1_TBSEL

[0:1]

Timebase Selection for ADC0/1
The ADC0/1_TBSEL[0:1] field selects the time information to be used as timestamp
according to Table 25-34.

Note: This selection is overriden by the corresponding field ATBSEL in the ADC_ACR1-8
registers when the alternate conversion command is used.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1061

8
ADC0/1_ODD_PS

Clock Prescaler Odd Rates Selector for ADC0/1
The ADC0/1_CLK_DTY field controls the duty rate of the ADC0/1 clock when the
ADC0/1_CLK_PS field is asserted. The generated clock has an odd number of system clock
cycles, therefore this field is used to select a clock duty higher or lower than 50%.
1 Odd divide factor is selected. The final divide factor is dependent of ADC0/1_CLK_PS

field.
0 Even divide factor is selected. The final divide factor is dependent of ADC0/1_CLK_PS

field.

9
ADC0/1_CLK_DTY

Clock Duty Rate Selector for ADC0/1 (for odd divide factors)
The ADC0/1_ODD_PS field is used together with the ADC0/1_CLK_PS field to define
even/odd divide factors in the generation of the ADC0/1 clocks. Refer to Table 25-35 for
available divide factors.
1 clock high pulse is longer 1 clock cycle than low portion.
0 clock low interval is longer 1 clock cycle than high pulse.

10
ADC0/1_CLK_SEL

Clock Selector for ADC0/1
The ADC0/1_CLK_SEL is used to select between the system clock signal or the prescaler
output signal. The prescaler provides the system clock signal divided by a even factor from
2 to 64. This is required to permit the ADC to run as fast as possible when the device is in
Low Power Active mode and system clock is around 1 MHz.
1 System clock is selected - maximum frequency.
0 Prescaler output clock is selected.

Note: The ADC0/1_CLK_SEL bits must only be written when the ADC0/1_EN bit is negated.
ADC0/1_CLK_SEL can be set during the same write cycle used to set ADC0/1_EN.

11-15
ADC0/1_CLK_PS

[0:4]

Clock Prescaler Field for ADC0/1
The ADC0/1_CLK_PS field controls the system clock divide factor for the ADC0/1 clock as
in Table 25-35. See Section 25.6.6.2, ADC Clock and Conversion Speed, for details about
how to set ADC0/1_CLK_PS.

Note: The ADC0/1_CLK_PS field must only be written when the ADC0/1_EN bit is negated.
This field can be configured during the same write cycle used to set ADC0/1_EN.

Table 25-34. Timebase Selection

ADC0/1_TBSEL[0:1] Definition

00 Selects internally generated time base as time stamp.

01 Selects imported time base 1 indicated by SRV1 bit field
of EQADC_REDLCCR register.

10 Selects imported time base 2 indicated by SRV2 bit field
of EQADC_REDLCCR register.

11 Reserved

Table 25-33. ADC0/1 Control Registers (ADC0/1_CR) field description (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1062 Freescale Semiconductor

Table 25-35. System Clock Divide Factor for ADC Clock

ADC0/1_CLK_PS[0:4]

System Clock Divide Factor

ADC0/1_ODD_
PS = 0

ADC0/1_ODD_
PS = 1

0b00000 2 3

0b00001 4 5

0b00010 6 7

0b00011 8 9

0b00100 10 11

0b00101 12 13

0b00110 14 15

0b00111 16 17

0b01000 18 19

0b01001 20 21

0b01010 22 23

0b01011 24 25

0b01100 26 27

0b01101 28 29

0b01110 30 31

0b01111 32 33

0b10000 34 35

0b10001 36 37

0b10010 38 39

0b10011 40 41

0b10100 42 43

0b10101 44 45

0b10110 46 47

0b10111 48 49

0b11000 50 51

0b11001 52 53

0b11010 54 55

0b11011 56 57

0b11100 58 59

0b11101 60 61

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1063

25.5.3.2 ADC Time Stamp Control Register (ADC_TSCR)

The ADC Time Stamp Control Register (ADC_TSCR) contains a system clock divide factor used in the
making of the time base counter clock. It determines at what frequency the time base counter will run.
ADC_TSCR can be accessed by configuration commands sent to CBuffer0 or to CBuffer1. A data write
to ADC_TSCR through a configuration command sent to CBuffer0 will write the same memory location
as when writing to it through a configuration command sent to CBuffer1.

NOTE

Simultaneous write accesses from CBuffer0 and CBuffer1 to ADC_TSCR
are not allowed.

0b11110 62 63

0b11111 64 65

ADC0/1 Register address: 0x02

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
TBC_CLK_PS

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-39. ADC Time Stamp Control Register (ADC_TSCR)

Table 25-36. ADC Time Stamp Control Register (ADC_TSCR) field description

Field Description

12-15
TBC_CLK_PS

[0:3]

Time Base Counter Clock Prescaler
The TBC_CLK_PS field contains the system clock divide factor for the time base counter. It
controls the accuracy of the time stamp. The prescaler is disabled when TBC_CLK_PS is
set to 0b0000.

Table 25-37. Clock Divide Factor for Time Stamp

TBC_CLK_PS[0:3]
System Clock Divide

Factor

Clock to Time Stamp
Counter for a 120 MHz
System Clock (MHz)

0b0000 Disabled Disabled

0b0001 1 120

0b0010 2 60

Table 25-35. System Clock Divide Factor for ADC Clock (continued)

ADC0/1_CLK_PS[0:4]

System Clock Divide Factor

ADC0/1_ODD_
PS = 0

ADC0/1_ODD_
PS = 1

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1064 Freescale Semiconductor

NOTE

If TBC_CLK_PS is not set to disabled, it must not be changed to any other
value besides disabled. If TBC_CLK_PS is set to disabled it can be changed
to any other value.

25.5.3.3 ADC Time Base Counter Registers (ADC_TBCR)

The ADC Time Base Counter Register (ADC_TBCR) contains the current value of the time base counter.
ADC_TBCR can be accessed by configuration commands sent to CBuffer0 or to CBuffer1. A data write
to ADC_TBCR through a configuration command sent to CBuffer0 will write the same memory location
as when writing to it through a configuration command sent to CBuffer1.

NOTE

Simultaneous write accesses from CBuffer0 and CBuffer1 to ADC_TBCR
are not allowed.

0b0011 4 30

0b0100 6 20

0b0101 8 15

0b0110 10 12

0b0111 12 10

0b1000 16 7.5

0b1001 32 3.75

0b1010 64 1.88

0b1011 128 0.94

0b1100 256 0.47

0b1101 512 0.23

0b1110 - 0b1111 Reserved -

ADC0/1 Register address: 0x03

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TBC_VALUE

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-40. ADC Time Base Counter Register (ADC_TBCR)

Table 25-37. Clock Divide Factor for Time Stamp (continued)

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1065

25.5.3.4 ADC0/1 Gain Calibration Constant Registers (ADC0_GCCR and
ADC1_GCCR)

The ADC0/1 Gain Calibration Constant Register (ADC0/1_GCCR) contains the gain calibration constant
used to fine-tune the ADC0/1 conversion results. Refer to Section 25.6.6.7, ADC Calibration Feature, for
details about the calibration scheme used in the EQADC.

25.5.3.5 ADC0/1 Offset Calibration Constant Registers (ADC0_OCCR and
ADC1_OCCR)

The ADC0/1 Offset Calibration Constant Register (ADC0/1_OCCR) contains the offset calibration
constant used to fine-tune of ADC0/1 conversion results. The offset constant is a signed 14-bit integer

Table 25-38. ADC Time Base Counter Register (ADC_TBCR) field description

Field Description

0-15
TBC_VALUE

[0:15]

Time Base Counter VALUE Field
The TBC_VALUE field contains the current value of the time base counter. Reading
TBC_VALUE returns the current value of time base counter. Writes to TBC_VALUE register
load the written data to the counter. The time base counter counts from 0x0000 to 0xFFFF
and wraps when reaching 0xFFFF.

ADC0 Register address: 0x04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
GCC0

W

RESET: 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADC1 Register address: 0x04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
GCC1

W

RESET: 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-41. ADC0/1 Gain Calibration Constant Registers (ADC0/1_GCCR)

Table 25-39. ADC0/1 Gain Calibration Constant Registers (ADC0/1_GCCR) field description

Field Description

1-15
GCC0/1

[0:14]

Gain calibration constant for ADC0/1
GCC0/1 contains the gain calibration constant used to fine-tune ADC0/1 conversion results.
It is a unsigned 15-bit fixed pointed value. The gain calibration constant is an unsigned fixed
point number expressed in the GCC_INT.GCC_FRAC binary format. The integer part of the
gain constant (GCC_INT) contains a single binary digit while its fractional part (GCC_FRAC)
contains fourteen digits. For details about the GCC data format refer to Section 25.6.6.7.2,
MAC Unit and Operand Data Format.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1066 Freescale Semiconductor

value. Refer to Section 25.6.6.7, ADC Calibration Feature, for details about the calibration scheme used
in the EQADC.

25.5.3.6 Alternate Configuration 1-8 Control Registers (ADC_ACR1-8)

The Alternate Configuration Control Registers (ADC_ACR1-8) are used to configure the alternate
configurations of the ADC. There are 8 possible alternate configurations, each one associated with one of
the ADC_ACR1-8 registers. All alternate configurations share the same standard configuration parameters
from the ADC0/1_CR registers, plus additional configuration parameters contained in the ADC_ACR1-8.
A conversion uses one of the alternate configurations when the conversion command (with the alternate
configuration format) is written to an address in the range 0x08-0x0F of the on-chip ADC memory map.
Refer to Section , Conversion Command Format for Alternate Configurations.

ADC0 Register address: 0x05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
OCC0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADC1 Register address: 0x05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
OCC1

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-42. ADC0/1 Offset Calibration Constant Registers (ADC0/1_OCCR)

Table 25-40. ADC0/1 Offset Calibration Constant Registers (ADC0/1_OCCR) field description

Field Description

2-15
OCC0/1

[0:13]

Offset Calibration Constant of ADC0/1
OCC0/1 contains the offset calibration constant used to fine-tune ADC0/1 conversion
results. Negative values should be expressed using the two’s complement representation.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1067

Figure 25-43. Alternate Configuration 1-8 Control Registers (ADC_ACR1-8)

ADC0/1 Register address: 0x30
ADC0/1 Register address: 0x34
ADC0/1 Register address: 0x38
ADC0/1 Register address: 0x3C
ADC0/1 Register address: 0x40
ADC0/1 Register address: 0x44
ADC0/1 Register address: 0x48
ADC0/1 Register address: 0x4C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RET
_IN
H

0 DEST FMT
A

0 RESSEL 0 0 ATBSEL PRE_GAIN

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 25-41. Alternate Configuration 1-8 Control Registers (ADC_ACR1-8) field description

Field Description

0
RET_INH

Result Transfer Inhibit / Decimation Filter Pre-Fill
This bit is used to inhibit the transfer of the result data from the peripheral module to the
result queue. When the module is a Decimation Filter, this bit sets the filter in a special mode
(PRE-FILL) in which it does not generate decimated samples out from the conversion results
received from the EQADC block, but the conversion samples are used by the filter algorithm.
This feature allows a proper initialization of the Decimation Filter without generating any
decimated result. Or this bit is useful for sending the result of the ADC to the STAC bus
master but not putting the result in the result queue.
1 No result transfer to result queue / Decimation Filter PRE-FILL mode
0 Result transfer to result queue / Decimation Filter in filtering mode

2-5
DEST
[0:3]

Conversion Result Destination Selection
The DEST[0:3] field selects the destination of the conversion result generated by the
Alternate Conversion Command as shown in Table 25-42. This field also affects the behavior
of the FMTA bit and the FFMT bit of the conversion command for alternate configurations
(see Section , Conversion Command Format for Alternate Configurations).

6
FMTA

Conversion Data Format for Alternate Configuration
If the DEST field is not 0b000, the FMTA bit specifies how the 12-bit conversion data returned
by the ADCs is formatted into the 16-bit data which is sent to the parallel side interface.
1 Right justified signed
0 Right justified unsigned

8-9
RESSEL

[0:1]

ADC Resolution Selection
The RESSEL[0:1] field selects the resolution of the ADC according to Table 25-43.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1068 Freescale Semiconductor

12-13
ATBSEL

[0:1]

Alternate Command Timebase Selector
The ATBSEL[0:1] field selects the time information to be used as timestamp according to
Table 25-44.

Note: This selection overrides the corresponding fields ADC0/1_TBSEL in the ADC0/1_CR
registers when the alternate conversion command is used.

14-15
PRE_GAIN

[0:1]

ADC Pre-gain control
The PRE_GAIN[0:1] controls the gain of the ADC input stage by changing the internal ADC
iterations in the gain stage. The gain is selected according to Table 25-45.

Table 25-42. Conversion Destination Selection

DEST[0:3] Description

0000 The conversion result is sent to the RFIFOs.
The data format is specified by the FFMT bit in the conversion command.

0001 The conversion result is sent to the Parallel Side Interface of Decimation filter A. The data
format is specified by the FMTA bit in the Alternate Configuration Control Register.

0010 The conversion result is sent to the Parallel Side Interface of Decimation filter B. The data
format is specified by the FMTA bit in the Alternate Configuration Control Register.

0011 - 1110 Unused.

1111 The conversion result is sent to the Parallel Side Interface of Reaction module. The data
format is specified by the FMTA bit in the Alternate Configuration Control Register.

Table 25-43. Resolution Selection

RESSEL[0:1] Definition

00 ADC set to 12-bits resolution

01 ADC set to 10-bits resolution

10 ADC set to 8-bits resolution

11 Reserved

Table 25-44. Timebase Selection

ATBSEL[0:1] Definition

00 Selects internally generated time base as time
stamp.

01 Selects imported time base 1 indicated by SRV1 bit
field of EQADC_REDLCCR register.

10 Selects imported time base 2 indicated by SRV2 bit
field of EQADC_REDLCCR register.

11 Reserved

Table 25-41. Alternate Configuration 1-8 Control Registers (ADC_ACR1-8) field description (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1069

25.5.3.7 ADC0/1 Alternate Gain Registers (ADC0_AGR1-2 and ADC1_AGR1-2)

The Alternate Gain Registers (ADC0_AGRx and ADC1_AGRx, x=1-2) contain the gain calibration
constants used to fine-tune the ADCs conversion results for alternate configurations 1 or 2. A conversion
from an ADC uses the corresponding ADC0_AGRx or ADC1_AGRx register when the conversion
command (with the alternate configuration format) is written to an address in the range 0x08-0x09 of the
on-chip ADC memory map. Refer to Section 25.6.6.7, ADC Calibration Feature, for details about the
calibration scheme used in the EQADC.

Table 25-45. ADC Pre-Gain Control Bits

Pre_gain[0:1] Description

00 X1 gain

01 X2 gain

10 X4 gain

11 Reserved

ADC0 Register address: 0x31
ADC0 Register address: 0x35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
ALTGCC0x

W

RESET: 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADC1 Register address: 0x31
ADC1 Register address: 0x35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
ALTGCC1x

W

RESET: 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-44. ADC0/1 Alternate x Gain Register (ADC0/1_AGRx, x=1-2)

Figure 25-45. ADC0/1 Alternate x Gain Register (ADC0/1_AGRx, x=1-2) field description

Field Description

1-15
ALTGCC0/1x

[0:14]

Alternate Gain Calibration Constant
ALTGCC0/1x[0:14] contain the gain calibration constants used to fine-tune ADC0/1
conversion results for alternate configurations 1 and 2. The gain calibration constants are
15-bit unsigned fixed point numbers expressed in the GCC_INT.GCC_FRAC binary format.
The integer part of the gain constants (GCC_INT) contain a single binary digit while their
fractional part (GCC_FRAC) contain fourteen digits. For details about the GCC data format
refer to Section 25.6.6.7.2, MAC Unit and Operand Data Format.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1070 Freescale Semiconductor

25.5.3.8 ADC0/1 Alternate Offset Register (ADC0_AOR1-2 and ADC1_AOR1-2)

The Alternate Offset Registers (ADC0_AORx and ADC1_AORx, x=1-2) contain the offset calibration
constants used to fine-tune ADCs conversion results for alternate configurations 1 and 2. The offset
constants are signed 14-bit integer values. Refer to Section 25.6.6.7, ADC Calibration Feature, for details
about the calibration scheme used in the EQADC.

25.5.3.9 ADC Pull Up/Down Control Register x (ADC_PUDCRx, x=0-7)

The ADC Pull Up/Down Control Register x (ADC_PUDCRx) contains configuration bits for pull up and
pull down resistors present at ADC input channels x, x=0 to 7.

ADC0 Register address: 0x32
ADC0 Register address: 0x36

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
ALTOCC0x

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADC1 Register address: 0x32
ADC1 Register address: 0x36

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
ALTOCC1x

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-46. ADC0/1 Alternate x Offset Registers (ADC0/1_AORx, x=1-2)

Table 25-46. ADC0/1 Alternate x Offset Registers (ADC0/1_AORx, x=1-2) field description

Field Description

2-15
ALTOCC0/1x

[0:13]

Alternate Offset Calibration Constant
ALTOCC0/1x[0:13] contain the offset calibration constants used to fine-tune ADCs
conversion results for alternate configurations 1 or 2. Negative values should be expressed
using the two’s complement representation.

ADC0/1 Register address: 0x70-0x77

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
CH_PULLx

0 0 PULL_STR
x

0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 25-47. ADC Pull Up/Down Control Register x (ADC_PUDCRx, x=0-7)

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1071

25.6 Functional Description

25.6.1 Overview

The EQADC provides a parallel interface to two on-chip ADCs, a single master to single slave serial
interface to an off-chip external device and a parallel side interface to an on-chip companion module, like
a decimation filter. The two on-chip ADCs are architected to allow access to all the analog channels.

Initially, command data is contained in system memory in a user defined data structure which is likely to
be a queue as depicted in Figure 25-11. Command data is moved between the CQueues and CFIFOs by the
host CPU or by the DMAC which respond to interrupt and DMA requests generated by the EQADC. The
EQADC supports software and hardware triggers from other blocks or external pins to initiate transfers of
commands from the multiple CFIFOs to the on-chip ADCs or to the external device.

Table 25-47. ADC Pull Up/Down Control Register x (ADC_PUDCRx, x=0-7) field description

Field Description

2-3
CH_PULLx

[0:1]

Channel x Pull Up/Down Control bits
The CH_PULLx[0:1] field controls the pull up/down configuration of the channel x according
to Table 25-48.

6-7
PULL_STRx

[0:1]

Pull Up/Down Strength Control bits of channel x
The PULL_STRx[0:1] bit field defines the strength of the channel x pull up or down resistors,
according to Table 25-49.

Table 25-48. Channel x Pull Up/Down Field Definition

CH_PULLx[0:1] Definition

00 No Pull resistors connected to the channel

01 Pull Up resistor connected to the channel

10 Pull Down resistor connected to the channel

11 Pull Up and Pull Down resistors connected to the channel

Table 25-49. Pull Up/Down Strength Field Definition

PULL_STRx[0:1] Definition

00 Reserved

01 200 Kohms pull resistor

10 100 Kohms pull resistor

11 5 Kohms (Approx.) pull resistor1

1 This set is not available for CH_PULL_x = 11.

1. Command and result data can be stored in the system memory in any user defined data structure. However, in this
document it will be assumed that the data structure of choice is a queue, since it is the most likely data structure to be used
and because queues are the only type of data structure supported by the DMAC.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1072 Freescale Semiconductor

CFIFOs can be configured in single-scan or continuous-scan mode. When a CFIFO is configured in
single-scan mode, the EQADC scans the CQueue one time. The EQADC stops transferring commands
from the triggered CFIFO after detecting the EOQ bit set in the last transfer. After an EOQ bit is detected,
software involvement is required to rearm the CFIFO so that it can detect new trigger events.

When a CFIFO is configured for continuous-scan mode, the whole CQueue is scanned multiple times.
After the detection of an asserted EOQ bit in the last command transfer, command transfers can continue
or not depending on the mode of operation of the CFIFO.

CFIFO0 has a special configuration option to allow a repetitive sequence of conversion commands
(streaming mode) with high priority characteristics (abort operation) or not. This feature is useful with the
immediate conversion command feature that allows the immediate execution of a conversion command or
a sequence of commands with critical timing even with the possibility of abortion of some current ADC
conversion in progress. The aborted command is stored and executed again as soon as the critical timing
commands have been finished.

The multiple Result FIFOs (RFIFOs) can receive data from the on-chip ADCs, from an off-chip external
device or from an on-chip companion module. Data from the on-chip ADCs can be routed to the side
interface, processed by the on-chip companion module and then routed back through the side interface to
the RFIFOs.

25.6.2 Data Flow in EQADC

25.6.2.1 Overview and Basic Terminology

Figure 25-48 shows how command data flows inside the EQADC system. A Command Message is the
predefined format at which command data is stored on the CQueues. A Command message has 32 bits and
is composed of two parts: a CFIFO header and an ADC Command. Command messages are moved from
the CQueues to the CFIFOs by the host CPU or by the DMAC as they respond to interrupt and DMA
requests generated by the EQADC. The EQADC generates these requests whenever a CFIFO is not full.
The FIFO Control Unit will only transfer to a CBuffer the ADC command part of the Command Message.
Information in the CFIFO header together with the upper bit of the ADC command is used by the FIFO
Control Unit to arbitrate which triggered CFIFO will be transferring the next command. Since command
transfer through the serial interface can take significantly more time than a parallel transfer to the on-chip
ADCs, command transfers for on-chip ADCs occur concurrently with the ones through the serial interface.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1073

Figure 25-48. Command Flow during EQADC operation

ADC commands sent to the on-chip CBuffers are executed in a first-in-first-out basis with exception when
the immediate conversion command function is enabled. Three types of results can be expected: data read
from an ADC register, a conversion result, or a time stamp. The order at which ADC commands sent to
the external device are executed, and the type of results that can be expected depends on the architecture
of that device with the exception of unsolicited data like null messages for example.

NOTE

While the EQADC pops commands out from a CFIFO, it also is checking
the number of entries in the CFIFO and generating requests to fill it. The
process of pushing and popping commands to and from a CFIFO can occur
simultaneously. However, this is not true for CFIFO0 when configured to
operate in streaming mode for popping.

The FIFO Control Unit expects all incoming results to be shaped in a predefined Result Message format.
Figure 25-49 shows how result data flows inside the EQADC system. Results generated on the on-chip
ADCs are adjusted considering the selected resolution of the ADC and are formatted into result messages
inside the Result Format and Calibration Sub-Block. This result message can be routed directly to one of
the RFIFOs or to an on-chip companion module via the parallel side interface. After the data is processed
by the companion module, it can be routed back to one of the RFIFOs via the side interface with the correct
format. Results returning from the external device are already formatted into result messages and therefore
bypass the Result Format and Calibration Sub-Block. A result message is composed of an RFIFO header

P
ri

o
ri

ty

CFIFOx

NOTE: x=0, 1, 2, 3, 4, 5

32 bits

CQueueyCBuffer

Inside EQADC

FIFO Control

To
ADCs

Command Message

CFIFO Header

ADC Command

Host CPU
or

DMAC

32 bits

DMA or interrupt requests

ADC

 y=0, 1, 2, 3, ...

System Memory

ADC

External Device

Logic
&

Buffers

EQADC SSI

EQADC SSI

DMA Transaction
Done Signals

Unit

Abort
Cont

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1074 Freescale Semiconductor

and an ADC Result. The FIFO Control Unit decodes the information contained in the RFIFO header to
determine the RFIFO to which the ADC result should be sent. Once in an RFIFO, the ADC result is moved
to the corresponding RQueue by the host CPU or by the DMAC as they respond to interrupt and DMA
requests generated by the EQADC. The EQADC generates these requests whenever an RFIFO has at least
one entry.

NOTE

While conversion results are returned, the EQADC is checking the number
of entries in the RFIFO and generating requests to empty it. The process of
pushing and popping ADC results to and from an RFIFO can occur
simultaneously.

Figure 25-49. Result Flow during EQADC operation

25.6.2.2 Assumptions/Requirements Regarding the External Device

The external device exchanges command and result data with the EQADC through the EQADC SSI
interface. This section explains the minimum requirements an external device has to meet to properly

NOTE: x=0, 1, 2, 3, 4, 5

Inside EQADC

Host CPU
or

DMAC

ADC

y=0, 1, 2, 3, ...

System Memory

EQADC SSI

External Device

D
e

co
d

e
r

RQueue yRFIFOx

16 bits 16 bits

ADC

Result Message

RFIFO Header

ADC Result

Logic
&

Buffers

EQADC SSI

DMA or interrupt requests

DMA Transaction
Done Signals

FIFO Control
Unit

Result
Format and
Calibration
Sub-Block

On-Chip
Companion

EQADC PSI

Module

R
es

ol
ut

io
n

A
dj

us
t

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1075

interface with the EQADC. Some assumptions about the architecture of the external device are also
described.

25.6.2.2.1 EQADC SSI Protocol Support

The external device must fully support the EQADC SSI protocol as specified in Section 25.6.9, EQADC
Synchronous Serial Interface (SSI) Sub-Block.. Support for the abort feature is optional. When aborts are
not supported, all command messages bound for an external CBuffer must have the ABORT_ST bit
negated - see Section , Command Message Format for External Device Operation.

25.6.2.2.2 Number of Command Buffers and Result Buffers

The external device should have a minimum of one and a maximum of two Command Buffers (CBuffer)
to store command data sent from the EQADC. Even if more than two CBuffers are implemented in the
external device, they are not recognized by the EQADC as valid destinations for commands. In this
document, these two CBuffers will be referred as CBuffer2 and CBuffer3. The external device decides to
which external CBuffer a command should go by decoding the upper bit (BN bit) of the ADC command -
see Section , Command Message Format for External Device Operation. An external device that only
implements one CBuffer can ignore the BN bit.

The limit of two CBuffers does not limit the number of RBuffers in the slave device.

25.6.2.2.3 Command Execution and Result Return

Commands sent to an specific CBuffer should be executed in that order they were received.

Results generated by the execution of commands of a CBuffer should be returned in the order the CBuffer
received these commands.

25.6.2.2.4 Null and Result Messages

The external device must be capable of correctly processing null messages as specified in the
Section 25.5.2.3, EQADC null message send format register (EQADC_NMSFR).

In case no valid result data is available to be sent to the EQADC, the external device must send data in the
format specified in Section , Null Message Format for External Device Operation.

In case valid result data is available to sent to the EQADC, the external device must send data in the format
specified in Section , Result Message Format for External Device Operation.

The BUSY0/1 fields of all messages sent from the external device to the EQADC must be correctly
encoded according to the latest information on the fullness state of the CBuffers. For example, if the
CBuffer2 is empty before the end of the current serial transmission and if at the end of this transmission
the external device receives a command to CBuffer2, then the BUSY0 field, that is to be sent to the
EQADC on the next serial transmission, should be encoded assuming that CBuffer2 has one entry.

25.6.2.3 Message Format in EQADC

This section explains the command and result message formats used for on-chip ADC operation and for
external device operation.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1076 Freescale Semiconductor

A Command Message is the predefined format at which command data is stored on the CQueues. A
Command message has 32 bits and is composed of two parts: a CFIFO header and an ADC Command.
The size of the CFIFO header is fixed to 6 bits, and it works as inputs to the FIFO Control Unit. It controls
when a CQueue ends, when it pauses, if commands are sent to internal or external buffers, and if it can
abort a serial data transmission. Information contained in the CFIFO header, together with the upper bit of
the ADC Command is used by the FIFO Control Unit to arbitrate which triggered CFIFO will transfer the
next command. ADC commands are encoded inside the least significant 26 bits of the command message.

A Result message is composed of an RFIFO header and an ADC Result. The FIFO Control Unit decodes
the information contained in the RFIFO header to determine the RFIFO to which the ADC result should
be sent. An ADC result is always 16 bits long.

25.6.2.3.1 Message Formats for On-Chip ADC Operation

This section describes the Command/Result message formats used for on-chip ADC operation.

NOTE

Although this subsection describes how the command and result messages
are formatted to communicate with the on-chip ADCs, nothing prevents the
programmer from using a different format when communicating with an
external device through the serial interface. Refer to Section 25.6.2.3.2,
Message Formats for External Device Operation. Apart from the BN bit, the
ADC Command of a command message can be formatted to communicate
to an arbitrary external device provided that the device returns an RFIFO
header in the format expected by the EQADC. When the FIFO Control Unit
receives return data message, it decodes the message tag field and stores the
16-bit data into the corresponding RFIFO.

Conversion Command Format for the Standard Configuration

Figure 25-50 describes the format for conversion commands when interfacing with the on-chip ADCs in
the standard configuration. The standard configuration is selected when the lowest byte (bits 24-31) of the
conversion command is set to zero. In the standard configuration, the conversion result is always routed
to one of the RFIFOs. A time stamp information can be optionally requested.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ
PAU
SE

REP
RESERVE

D
EB

(0b0)
BN CAL MESSAGE_TAG LST TSR FMT

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CHANNEL_NUMBER 0 0 0 0 0 0 0 0

ADC Command

Figure 25-50. Conversion Command Format for the Standard Configuration

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1077

Table 25-50. Conversion Command Format for the Standard Configuration field description

Field Description

0
EOQ

End Of Queue Bit
The EOQ bit is asserted in the last command of a CQueue to indicate to the EQADC that a
scan of the CQueue is completed. EOQ instructs the EQADC to reset its current CFIFO
transfer counter value (TC_CF) to zero. Depending on the CFIFO mode of operation, the
CFIFO status will also change upon the detection of an asserted EOQ bit on the last
transferred command - see Section 25.6.4.6, CFIFO Scan Trigger Modes, for details.
1 Last entry of the CQueue.
0 Not the last entry of the CQueue.

Note: If both the PAUSE and EOQ bits are asserted in the same command message the
respective flags are set, but the CFIFO status changes as if only the EOQ bit were
asserted.

1
PAUSE

Pause Bit
The Pause bit allows software to create sub-queues within a CQueue. When the EQADC
completes the transfer of a command with an asserted Pause bit, the CFIFO enters the
WAITING FOR TRIGGER state. Refer to Section 25.6.4.7.1, CFIFO Operation Status, for a
description of the state transitions. The Pause bit is only valid when CFIFO operation mode
is configured to single or continuous-scan edge trigger mode.
1 Enter WAITING FOR TRIGGER state after transfer of the current Command Message.
0 Do not enter WAITING FOR TRIGGER state after transfer of the current Command

Message.

Note: If both the PAUSE and EOQ bits are asserted in the same command message the
respective flags are set, but the CFIFO status changes as if only the EOQ bit were
asserted.

2
REP

Repeat/loop Start Point Indication Bit
The REP bit is asserted in the command to indicate where is the start point of the sub-queue
to be repeated when the streaming mode is enabled. The PAUSE bit indicates the end point
of the sub-queue. Therefore, both can occur in the same command or in separated ones. If
two or more REP bits are read before a PAUSE bit, this is an error case and the intermediary
REP bits are ignored.
1 Indicates the start point of the sub-queue to be repeated.
0 It is not the start point of a loop.

5
EB

External Buffer Bit
A negated EB bit indicates that the command is sent to an internal CBuffer.
Command is sent to an internal buffer.

6
BN

Buffer Number Bit
BN indicates which buffer the message will be stored in. Buffers 1 and 0 can either internal
or external depending on the EB bit setting.
Message stored in buffer 1.
Message stored in buffer 0.

7
CAL

CALibration Bit
CAL indicates if the returning conversion result must be calibrated.
Calibrate conversion result.
Do not calibrate conversion result.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1078 Freescale Semiconductor

8-11
MESSAGE_TAG

[0:3]

MESSAGE_TAG Field
The MESSAGE_TAG allows the EQADC to separate returning results into different RFIFOs.
Table 25-51 describes the meaning of the MESSAGE_TAG. When the EQADC transfers a
command, the MESSAGE_TAG is included as part of the command. Eventually the external
device/on-chip ADC returns the result with the same MESSAGE_TAG. The EQADC
separates incoming messages into different RFIFOs by decoding the MESSAGE_TAG of
the incoming data.

12-13
LST
[0:1]

Long Sampling Time
These two bits determine the duration of the sampling time in ADC clock cycles.

14
TSR

Time Stamp Request
TSR indicates the request for a time stamp. When TSR is asserted, the on-chip ADC Control
Logic returns a time stamp for the current conversion command after the conversion result
is sent to the RFIFOs. See Section 25.6.6.4, Time Stamp Feature, for details.
Return conversion time stamp after the conversion result.
Return conversion result only.

15
FMT

Conversion Data Format
FMT specifies to the EQADC how to format the 12-bit conversion data returned by the ADCs
into the 16-bit format which is sent to the RFIFOs. See Section , ADC Result Format for
On-Chip ADC Operation, for details.
Right justified signed.
Right justified unsigned.

16-23
CHANNEL_NUMBER

[0:7]

Channel Number Field
The CHANNEL_NUMBER field selects the analog input channel. The software programs
this field with the channel number corresponding to the analog input pin to be sampled and
converted. See Section 25.6.7.1, Channel assignment, for details.

Table 25-51. MESSAGE_TAG Description

MESSAGE_TAG[0:3] MESSAGE_TAG Meaning

0b0000 Result is sent to RFIFO 0

0b0001 Result is sent to RFIFO 1

0b0010 Result is sent to RFIFO 2

0b0011 Result is sent to RFIFO 3

0b0100 Result is sent to RFIFO 4

0b0101 Result is sent to RFIFO 5

0b0110 - 0b0111 Reserved

0b1000 Null Message Received

0b1001 Reserved for customer use1

1 These messages are treated as null messages. Therefore, they must obey the format for incoming null
messages and return valid BUSY0/1 fields. Refer to Section , Null Message Format for External
Device Operation.“

0b1010 Reserved for customer use1

0b1011 - 0b1111 Reserved

Table 25-50. Conversion Command Format for the Standard Configuration field description (continued)

Field Description

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1079

Conversion Command Format for Alternate Configurations

Figure 25-51 describes the format for conversion commands when interfacing with the on-chip ADCs in
one of the 8 alternate configurations. An alternate configuration is selected when the lowest byte (bits
24-31) of the conversion command is set to a value in the range 0x08-0x0F. Each value in this range selects
one of the 8 alternate configuration (0x08 selects Alternate Configuration 1, 0x0F selects Alternate
Configuration 8). In the alternate configurations, the conversion result can be routed to one of the RFIFOs
or to the parallel side interface to communicate with an on-chip companion module. A bit field in the
corresponding Alternate Configuration Control Register selects the Internal RFIFO or Parallel Side
Interface as the destination for the conversion result. A time stamp information can be optionally
requested.

All fields, except FFMT and ALT_CONFIG_SEL, are identical to the ones in the standard configuration
format. Only the fields which are different from the standard format will be described here.

Table 25-52. Sampling Time

LST[0:1]
Sampling cycles

(ADC Clock Cycles)

0b00 2

0b01 8

0b10 64

0b11 128

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ
PAU
SE

REP
RESERVE

D
EB

(0b0)
BN CAL MESSAGE_TAG LST TSR

FFM
T

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CHANNEL_NUMBER ALT_CONFIG_SEL

ADC Command

Figure 25-51. Conversion Command Format for Alternate Configurations

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1080 Freescale Semiconductor

Write Configuration Command Format for On-Chip ADC Operation

Figure 25-51 describes the command message format for a write configuration command when interfacing
with the on-chip ADCs. A write configuration command is used to set the control registers of the on-chip
ADCs. No conversion data will be returned for a write configuration command. Write configuration
commands are differentiated from read configuration commands by a negated R/W bit.

Table 25-53. Conversion Command Format for Alternate Configurations field description

Field Description

15
FFMT

Flush or Format
The function of this bit depends on the DEST field of the Alternate Configuration Control
Register. If DEST is equal to 0b000, then FFMT defines the format in which the 12-bit
conversion result are stored in the RFIFOs. If DEST is not equal to 0b000, then the FFMT
bit is used to send a flush (soft-reset) signal through the parallel side interface to the
companion module addressed by the DEST field.
In case DEST is not equal to 0b000, the FMTA bit in the Alternate Configuration Control
register is used to define the conversion result format.
1 Conversion Result Format set to right justified signed if DEST is equal to 0b000. A flush

signal is sent through the side interface if DEST is not equal to 0b000.
0 Conversion Result Format set to right justified unsigned if DEST is equal to 0b000. No

flush signal is sent through the side interface if DEST is not equal to 0b000.

Note: The flush signal can be asserted along with a valid conversion result. In this case the
companion module should execute the software-reset first and then consider the
conversion result as a valid data for the filtering algorithm.

24-31
ALT_CONFIG_SEL

Alternate Configuration Selection
This field selects one of the alternate configurations according to Table 25-54.

Table 25-54. Alternate Configuration Selection

ALT_CONFIG_SEL[0:7] Alternate Configuration

0x08 1

0x09 2

0x0A 3

0x0B 4

0x0C 5

0x0D 6

0x0E 7

0x0F 8

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1081

Read Configuration Command Format for On-Chip ADC Operation

Figure 25-53 describes the command message format for a read configuration command when interfacing
with the on-chip ADCs. A read configuration command is used to read the contents of the on-chip ADC
registers which are only accessible via command messages. Read configuration commands are
differentiated from write configuration commands by an asserted R/W bit.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ
PAU
SE

REP
RESERVE

D
EB

(0b0)
BN

R/W
(0b0)

ADC_REGISTER HIGH BYTE

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ADC_REGISTER LOW BYTE ADC_REG_ADDRESS

ADC Command

Figure 25-52. Write Configuration Command Format for On-Chip ADC Operation

Table 25-55. Write Configuration Command Format for On-Chip ADC Operation field description

Field Description

0
EOQ

End Of Queue Bit

1
PAUSE

Pause Bit

2
REP

Repeat/loop Start Point Indication Bit

5
EB

External Buffer Bit

6
BN

Buffer Number Bit
Refer to Section , Conversion Command Format for the Standard Configuration.

7
R/W

Read/Write bit
A negated R/W indicates a write configuration command.
Write

8-11
ADC_REGISTER_HIGH_BYTE

[0:7]

ADC Register High Byte Field
REGISTER_HIGH_BYTE is the value to be written into the most significant 8 bits
of control/configuration register when the R/W bit is negated.

16-23
ADC_REGISTER_LOW_BYTE

[0:7]

Register Low Byte Field
REGISTER_LOW_BYTE is the value to be written into the least significant 8 bits
of a control/configuration register when the R/W bit is negated.

24-31
ADC_REG_ADDRESS

[0:7]

ADC Register Address
The ADC_REG_ADDRESS field selects a register on the ADC register set to be
written or read. Only half-word addresses can be used.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1082 Freescale Semiconductor

ADC Result Format for On-Chip ADC Operation

When the FIFO Control Unit receives a return data message, it decodes the MESSAGE_TAG field and
stores the 16-bit data into the appropriate RFIFO. This section describes the ADC result portion of the
result message returned by the on-chip ADCs. The 16-bit data stored in the RFIFOs can be:

• Data read from an ADC register with a read configuration command. In this case, the stored 16-bit
data corresponds to the contents of the ADC register that was read.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ
PAU
SE

REP
RESERVE

D
EB

(0b0)
BN

R/W
(0b1)

MESSAGE_TAG RESERVED

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RESERVED ADC_REG_ADDRESS

ADC Command

Figure 25-53. Read Configuration Command Format for On-Chip ADC Operation

Table 25-56. Read Configuration Command Format for On-Chip ADC Operation field description

Field Description

0
EOQ

End Of Queue Bit

1
PAUSE

Pause Bit

2
REP

Repeat/loop Start Point Indication Bit

5
EB

External Buffer Bit

6
BN

Buffer Number Bit
Refer to Section , Conversion Command Format for the Standard Configuration..

7
R/W

R/W - Read/Write bit
An asserted R/W bit indicates a read configuration command.
1 Read

8-11
MESSAGE_TAG

[0:3]

MESSAGE_TAG Field
Refer to Section , Conversion Command Format for the Standard Configuration..

24-31
ADC_REG_ADDRESS

[0:7]

ADC Register Address
The ADC_REG_ADDRESS field selects a register on the ADC register set to be written
or read. Only half-word addresses can be used.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1083

• A time stamp. In this case, the stored 16-bit data is the value of the time base counter latched when
the EQADC detects the end of the analog input voltage sampling. For details see Section 25.6.6.4,
Time Stamp Feature.

• A conversion result, coming directly from the ADCs. In this case, the stored 16-bit data contains a
right justified 14-bit result data. The conversion result can be calibrated or not depending on the
status of CAL bit in the command that requested the conversion1. When the CAL bit is negated,
this 14-bit data is obtained by executing a 2-bit left-shift on the 12-bit data resultant from the
resolution adjustment on the 8 or 10 or 12-bit data received from the ADC. The resolution
adjustment consists of changing the conversion result input from 8, 10 or 12 bits right aligned to a
12-bit word left aligned - refer to Section 25.6.6.6, ADC resolution selection feature, for details.
When the CAL bit is asserted, this 14-bit data is the result of the calculations performed in the
EQADC MAC unit using the 12-bit data result of the resolution adjustment and the calibration
constants GCC and OCC, or ALTGCC and ALTOCC - refer to Section 25.6.6.7, ADC Calibration
Feature, for details. Then, this 14-bit data is further formatted into a 16-bit format according to the
status of the FMT bit in conversion command of the standard configuration or FFMT bit in the
conversion command of the alternate configurations2. When FMT/FFMT is asserted, the 14-bit
result data is reformatted to look as if it was measured against an imaginary ground at VREF/2 (the
MSB bit of the 14-bit result is inverted), and is sign-extended to a 16-bit format as in Figure 25-54.
When FMT/FFMT is negated, the EQADC zero-extends the 14-bit result data to a 16-bit format as
in Figure 25-55. Correspondence between the analog voltage in a channel and the calculated digital
values is shown in Table 25-58.

1. In case the conversion result is routed through an on-chip DSP via side interface, the calibration is applied before the data
is sent to the DSP.

2. For simplicity, the following text will refer to FMT only, but when using alternate configurations, refer to Section , Conversion
Command Format for Alternate Configurations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SIGN_EXT RESOLUTION ADJUSTED CONVERSION_RESULT (With inverted MSB bit)

ADC Result

Figure 25-54. ADC Result Format when FMT=1 (Right Justified Signed)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 RESOLUTION ADJUSTED CONVERSION_RESULT

ADC Result

Figure 25-55. ADC Result Format when FMT=0 (Right Justified Unsigned)

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1084 Freescale Semiconductor

Table 25-57. ADC Result Format (Right Justified Signed) field description

Field Description

0-1
SIGN_EXT

[0:1]

Sign Extension field
SIGN_EXT only has meaning when FMT is asserted. SIGN_EXT is 0b00 when
CONVERSION_RESULT is positive, and 0b11 when CONVERSION_RESULT is
negative.

2-15
CONVERSION_RESULT

[0:13]

Conversion Result field
CONVERSION_RESULT is a digital value corresponding to the analog input voltage in a
channel when the conversion command was initiated. The two’s complement
representation is used to express negative values.

Table 25-58. Correspondence between analog voltages and digital values1, 2

Voltage Level
on Channel

(V)

Corresponding
8-bit

Conversion
Result

Returned by
the ADC

Corresponding
10-bit

Conversion
Result

Returned by
the ADC

Corresponding
12-bit

Conversion
Result

Returned by
the ADC

16-bit Result
Sent to
RFIFOs

(FMT=0) 3

16-bit Result
Sent to
RFIFOs

(FMT=1) 3

Single-
Ended

Conversion
s

5.12 - - 0xFFF 0x3FFC 0x1FFC

- 0x3FF - 0x3FF0 0x1FF0

0xFF - - 0x3FC0 0x1FC0

5.12 - LSB - - 0xFFF 0x3FFC 0x1FFC

- 0x3FF - 0x3FF0 0x1FF0

0xFF - - 0x3FC0 0x1FC0

...

2.56 - - 0x800 0x2000 0x0000

- 0x200 - 0x2000 0x0000

0x80 - - 0x2000 0x0000

...

1 LSB - - 0x001 0x0004 0xE004

- 0x001 - 0x0010 0xE010

0x01 - - 0x0040 0xE040

0 0x00 0x000 0x000 0x0000 0xE000

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1085

25.6.2.3.2 Message Formats for External Device Operation

This section describes the Command Messages, Data Messages, and Null Messages formats used for
external device operation.

Command Message Format for External Device Operation

Figure 25-56 describes the command message format for external device operation. Command message
formats for on-chip operation and for external device operation share the same CFIFO header format.
However, there are no limitations regarding the format an ADC Command used to communicate to an
arbitrary external device. Only the upper bit of an ADC Command has a fixed format (BN field) to indicate
to the FIFO Control Unit/external device to which CBuffer the corresponding command should be sent.
The remaining 25 bits can be anything decodable by the external device. Only the ADC Command portion
of a command message is transferred to the external device.

Differential
Conversion

s

2.56 - - 0xFFF 0x3FFC 0x1FFC

- 0x3FF - 0x3FF0 0x1FF0

0xFF - - 0x3FC0 0x1FC0

2.56 - LSB - - 0xFFF 0x3FFC 0x1FFC

- 0x3FF - 0x3FF0 0x1FF0

0xFF - - 0x3FC0 0x1FC0

...

0 - - 0x800 0x2000 0x0000

- 0x200 - 0x2000 0x0000

0x80 - - 0x2000 0x0000

...

2.56 - LSB - - 0x001 0x0004 0xE004

- 0x001 - 0x0010 0xE010

0x01 - - 0x0040 0xE040

-2.56 0x00 0x000 0x000 0x0000 0xE000

1 VREF=VRH-VRL=5.12V. Resulting in one 12-bit count (LSB) =1.25mV.
2 The two’s complement representation is used to express negative values.
3 Assuming uncalibrated conversion results.

Table 25-58. Correspondence between analog voltages and digital values1, 2

Voltage Level
on Channel

(V)

Corresponding
8-bit

Conversion
Result

Returned by
the ADC

Corresponding
10-bit

Conversion
Result

Returned by
the ADC

Corresponding
12-bit

Conversion
Result

Returned by
the ADC

16-bit Result
Sent to
RFIFOs

(FMT=0) 3

16-bit Result
Sent to
RFIFOs

(FMT=1) 3

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1086 Freescale Semiconductor

Result Message Format for External Device Operation

Data is returned from the ADCs in the form of Result Messages. A result message is composed of an
RFIFO header and an ADC Result. The FIFO Control Unit decodes the information contained in the
RFIFO header and sends the contents of the ADC Result to the appropriate RFIFO. Only data stored on
the ADC_RESULT field is stored in the RFIFOs/RQueues. The ADC result of any received message with
a Null Data Message Tag will be ignored. The format of a Result Message returned from the external
device is shown in Figure 25-57. It is 26 bits long, and is composed of a MESSAGE_TAG field,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EOQ
PAU
SE

RESERVE
D

ABO
RT_
ST

EB
(0b1)

BN OFF_CHIP_COMMAND

CFIFO Header ADC Command

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OFF_CHIP_COMMAND

ADC Command

Figure 25-56. Command Message Format for External Device Operation

Table 25-59. Command Message Format for External Device Operation field description

Field Description

0
EOQ

End Of Queue Bit

1
PAUSE

Pause Bit
Refer to Section , Conversion Command Format for the Standard Configuration.

4
ABORT_ST

ABORT Serial Transmission Bit
ABORT_ST indicates whether an on-going serial transmission should be aborted or not.
All CFIFOs can abort null message transmissions when triggered but only CFIFO0 can
abort command transmissions of lower priority CFIFOs. For more on serial transmission
aborts see Section 25.6.4.3, CFIFO Common Prioritization and Command Transfer.
Abort current serial transmission.
Do not abort current serial transmission.

5
EB

External Buffer Bit
An asserted EB bit indicates that the command is sent to an external CBuffer.
Command is sent to an external CBuffer.

6
BN

Buffer Number Bit
Refer to Section , Conversion Command Format for the Standard Configuration.

7-31
OFF_CHIP_COMMAND

[0:24]

OFF-CHIP COMMAND Field
The OFF_CHIP_COMMAND field can be anything decodable by the external device. It is
25 bits long and it is transferred together with the BN bit to the external device when the
CFIFO is triggered. Refer to Section , Conversion Command Format for the Standard
Configuration, for a description of the command message used when interfacing with the
on-chip ADCs.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1087

information about the status of the CBuffers (BUSY fields), and result data. The BUSY fields are needed
to inform the EQADC about when it is appropriate to transfer commands to the external CBuffers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED MESSAGE_TAG
BUSY1 BUSY0

RFIFO Header

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ADC_RESULT

ADC Result

Figure 25-57. Result Message Format for External Device Operation

Table 25-60. Result Message Format for External Device Operation field description

Field Description

8-11
MESSAGE_TAG

[0:3]

MESSAGE_TAG Field
Refer to Section , Conversion Command Format for the Standard Configuration.

12-13
BUSY1[0:1]

BUSY Status field
The BUSY fields indicate if the external device can receive more commands. Table 25-61
shows how these two bits are encoded. When an external device cannot accept any more
new commands, it must set BUSYx to a value indicating “Do not send commands” in the
returning message. The BUSY fields of values 0b10 and 0b10 can be freely encoded by the
external device to allow visibility of the status of the external CBuffers for debug, they could
indicate the number of entries in a external CBuffer for example.

Note: After reset, the EQADC always assumes that the external CBuffers are full and cannot
receive commands.

14-15
BUSY0[0:1]

BUSY Status field
The BUSY fields indicate if the external device can receive more commands. Table 25-61
shows how these two bits are encoded. When an external device cannot accept any more
new commands, it must set BUSYx to a value indicating “Do not send commands” in the
returning message. The BUSY fields of values 0b10 and 0b10 can be freely encoded by the
external device to allow visibility of the status of the external CBuffers for debug, they could
indicate the number of entries in a external CBuffer for example.

Note: After reset, the EQADC always assumes that the external CBuffers are full and cannot
receive commands.

16-31
ADC_RESULT

[0:15]

ADC RESULT Field
ADC_RESULT is the result data received from the external device or on-chip ADC. This can
be the result of a conversion command, data requested via a read configuration command,
or time stamp value. The ADC_RESULT of any incoming message with a Null Message tag
will be ignored. When the MESSAGE_TAG is for an RFIFO, the EQADC extracts the 16-bit
ADC_RESULT from the raw message and stores it into the appropriate RFIFO.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1088 Freescale Semiconductor

Null Message Format for External Device Operation

Null Messages are only transferred through the serial interface to allow results and unsolicited control data,
like the status of the external CBuffers, to return when there are no more commands pending to transfer.
Null Messages are only transmitted when serial transmissions from the EQADC SSI are enabled (See
ESSIE field in Section 25.5.2.1, EQADC Module Configuration Register (EQADC_MCR)”), and when
one of the following conditions apply:

1. there are no triggered CFIFOs with commands bound for external CBuffers, or;

2. there are triggered CFIFOs with commands bound for external CBuffers but the external CBuffers
are full. The EQADC detected returning BUSYx fields indicating “Do not send commands”.

Figure 25-58 illustrates the null message send format. When the EQADC transfers a null message, it
directly shifts out the 26-bit data content inside the Section 25.5.2.3, EQADC null message send format
register (EQADC_NMSFR). The register must be programmed with the null message send format of the
external device.

Figure 25-59 illustrates the null message receive format. It has the same fields found in a Result Message
with the exception that the ADC result is not used. Refer to Section , Result Message Format for External
Device Operation, for more information. The MESSAGE_TAG field must be set to the Null Message tag
(0b1000). The EQADC does not store into an RFIFO any incoming message with a Null Message tag.

Table 25-61. Command BUFFERx BUSY Status

BUSYx[0:1] Meaning

0b00 Send available commands - CBuffer is empty

0b01 Send available commands

0b10 Send available commands

0b11 Do not send commands

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED
CONTENTS OF EQADC_NMSFR

REGISTER

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CONTENTS OF EQADC_NMSFR REGISTER

Figure 25-58. Null Message Send Format for External Device Operation

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1089

25.6.3 Command/Result Queues

The Command and Result queues (CQueues and RQueues) are actually part of the EQADC system
although they are not hardware implemented inside the EQADC. Each CQueue entry is a 32-bit Command
Message.The last entry of a CQueue has the EOQ bit asserted to indicate that it is the last entry of the
CQueue. RQueue entry is a 16-bit data.

See Section 25.6.2.1, Overview and Basic Terminology, for a description of the message formats and their
flow in EQADC.

Refer to Section 25.7.5, CQueue and RQueues usage, for examples of how CQueues and RQueues can be
used.

25.6.4 EQADC Command FIFOs

25.6.4.1 CFIFO Basic Functionality

There are six prioritized CFIFOs located in the EQADC. Each CFIFO is four entries deep, except CFIFO0
that can be configured to eight entries deep in extended mode, and each CFIFO entry is 32 bits long. A
CFIFO serves as a temporary storage location for the command messages stored on the CQueues in the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED
MESSAGE_TAG

(0b1000)
BUSY1 BUSY0

RFIFO Header

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DETERMINED BY THE EXTERNAL DEVICE

ADC Result

Figure 25-59. Null Message Receive Format for External Device Operation

Table 25-62. field description

Field Description

8-11
MESSAGE_TAG

[0:3]

MESSAGE_TAG Field
Refer to Section , Conversion Command Format for the Standard Configuration.

21-13
BUSY1

[0:1]

BUSY Status field
Refer to Section , Result Message Format for External Device Operation.

14-15
BUSY0

[0:1]

BUSY Status field
Refer to Section , Result Message Format for External Device Operation.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1090 Freescale Semiconductor

system memory. When a CFIFO is not full, the EQADC sets the corresponding CFFF bit in
Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR). If CFFE is asserted in
Section 25.5.2.8, EQADC Interrupt and DMA Control Registers (EQADC_IDCR), the EQADC generates
requests for more commands from a CQueue. An interrupt request, served by the host CPU, is generated
when CFFS is negated, and a DMA request, served by the DMAC, is generated when CFFS is asserted.
The host CPU or the DMAC respond to these requests by writing to the Section 25.5.2.5, EQADC CFIFO
Push Registers (EQADC_CFPR), to fill the CFIFO.

NOTE

The DMAC should be configured to write a single command (32-bit data)
to the CFIFO push registers for every asserted DMA request it
acknowledges. Refer to Section 25.7.2, EQADC/DMAC Interface, for
DMAC configuration guidelines.

NOTE

CFIFO0 can be configured to work in an alternative way called Streaming
Mode. This mode is very different from the mode described here because it
maintains some stored commands to execute them several times in sequence
and in loop.

NOTE

Only whole words must be written to EQADC_CFPR. Writing half-words
or bytes to EQADC_CFPR will still push the whole 32-bit CF_PUSH field
into the corresponding CFIFO, but undefined data will fill the areas of
CF_PUSH that were not specifically designated as target locations for
writing.

Figure 25-60 describes the important components in the CFIFO. Each CFIFO is implemented as a circular
set of registers to avoid the need to move all entries at each push/pop operation. The Push Next Data
Pointer points to the next available CFIFO location for storing data written into the EQADC Command
FIFO Push Register. The Transfer Next Data Pointer points to the next entry to be removed from CFIFOx
when it completes a transfer. The CFIFO Transfer Counter Control Logic counts the number of entries in
the CFIFO and generates DMA or interrupt requests to fill the CFIFO. TNXTPTR in Section 25.5.2.9,
EQADC FIFO and Interrupt Status Registers (EQADC_FISR), indicates the index of the entry that is
currently being addressed by the Transfer Next Data Pointer, and CFCTR, in the same register, provides
the number of entries stored in the CFIFO. Using TNXTPTR and CFCTR, the absolute addresses for the
entries indicated by the Transfer Next Data Pointer and by the Push Next Data Pointer can be calculated
using the following formulas:

Transfer Next Data Pointer Address = CFIFOx_BASE_ADDRESS + TNXTPTRx*4

Push Next Data Pointer Address = CFIFOx_BASE_ADDRESS +
[(TNXTPTRx+CFCTRx) mod CFIFO_DEPTH] * 4

where

• a mod b returns the remainder of the division of a by b.

• CFIFOx_BASE_ADDRESS is the smallest memory mapped address allocated to a CFIFOx entry.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1091

• CFIFO_DEPTH is the number of entries contained in a CFIFO - four in this implementation.

When CFSx in Section 25.5.2.12, EQADC CFIFO Status Register (EQADC_CFSR), is TRIGGERED, the
EQADC generates the proper control signals for the transfer of the entry pointed by Transfer Next Data
Pointer. CFUFx in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), is set
when a CFIFOx underflow event occurs. A CFIFO underflow occurs when the CFIFO is in TRIGGERED
state and it becomes empty. No commands will be transferred from an underflowing CFIFO, nor will
command transfers from lower priority CFIFOs be blocked. CFIFOx is empty when the Transfer Next
Data Pointer x equals the Push Next Data Pointer x and CFCTRx is zero. CFIFOx is full when the Transfer
Next Data Pointer x equals the Push Next Data Pointer x and CFCTRx is not zero.

When the EQADC completes the transfer of an entry from CFIFOx: the transferred entry is popped from
CFIFOx, the CFIFO counter CFCTR in the Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers
(EQADC_FISR), is decremented by one, and Transfer Next Data Pointer x is incremented by one (or
wrapped around) to point to the next entry in the CFIFO. The transfer of entries bound for the on-chip
ADCs is considered completed when they are stored in the appropriate CBuffer. The transfer of entries
bound for the external device is considered completed when the serial transmission of the entry is
completed.

When the EQADC_CFPRx is written and CFIFOx is not full, the CFIFO counter CFCTRx is incremented
by one, and the Push Next Data Pointer x then is incremented by one (or wrapped around) to point to the
next entry in the CFIFO.

When the EQADC_CFPRx is written but CFIFOx is full, the EQADC will not increment the counter value
and will not overwrite any entry in CFIFOx.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1092 Freescale Semiconductor

Figure 25-60. CFIFO Diagram

The detailed behavior of the Push Next Data Pointer and Transfer Next Data Pointer is described in the
example shown in Figure 25-61 where a CFIFO with 16 entries is shown for clarity of explanation, the
actual hardware implementation has only four entries. In this example, CFIFOx with 16 entries is shown
in sequence after pushing and transferring entries.

32-bit Entry 1

32-bit Entry 2

Push Next

Data Pointer *
Transfer Next
Data Pointer *

CFIFO
Push Register

CFIFO

Control Logic

DMA Done

Interrupt/DMA Request

Control
Signals

Data to
external
device or
to on-chip
ADCs

Transfer Counter

* All CFIFO entries are memory mapped and the
entries addressed by these pointers can have their
absolute addresses calculated using TNXTPTR
and CFCTR.

Write to slave-bus
interface by CPU or
DMA

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1093

Figure 25-61. CFIFO Entry Pointer Example

25.6.4.2 CFIFO0 Streaming Mode Description

CFIFO0 can be configured to operate in streaming mode to allow repetition of a group of commands
several times without the need of refilling the registers as in the normal mode of operation of CFIFOs. This
mode makes use of the additional bit in the Conversion Command Word (CCW) called ‘Repeat’ (REP bit).

Push Transfer
CFIFOx

First In

After reset or
invalidation

Next
Data
Pointer

Next
Data
Pointer

Last In

Valid Entry

Empty Entry

Push

Transfer
CFIFOx

Some entries pushed
but none Executed

Next
Data
Pointer

Next
Data
Pointer

Transfer

CFIFOx

No entries pushed
but some executed

Next
Data
Pointer

First In

Last In
Push
Next
Data
Pointer

Push

CFIFOx

Entries pushed until
full and none executed

Next
Data
Pointer

CFIFOx

No entries pushed
but some executed

Transfer

CFIFOx

Some entries pushed
and some executed

Next
Data
Pointer

First In

Last In
Push
Next
Data
Pointer

Transfer
Next
Data
Pointer

First In
Last In

Push
Next
Data
Pointer

Transfer
Next
Data
Pointer

First In

Last In

NOTE: x=0, 1, 2, 3, 4, 5

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1094 Freescale Semiconductor

The purpose of this bit is to mark in the command queue, where to start a repeating sequence. This location
is stored in an additional pointer ‘Repeat Pointer’.

Streaming mode requires 2 trigger inputs. The standard queue 0 trigger, in this mode referred to as Repeat
Trigger and a new internal trigger input to the eQADC called Advance Trigger (no filter available).

CFIFO0 is configured to operate in streaming mode by setting the bit STRME0 as described in
Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR). CFIFO0 is eight entries deep in
extended mode by setting the bit CFEEE0 in the same EQADC_CFCR register, and each entry is 32 bits
long. This CFIFO0 serves as a local storage of a few commands that need to be executed sequentially as
in a FIFO but can contain sub-queues that need to be executed several times. The CFFF0 bit in
Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), is used to assure the
CFIFO0 is not full and command messages are stored from address 0x0 to 0x7.

25.6.4.2.1 CFIFO0 Operation in Streaming Mode

In Streaming mode, the CFIFO0 is filled with CCWs using the DMA exactly the same as existing modes.
The CFIFO executes commands as per the existing modes until it executes a Conversion Command Word
with the Repeat bit set. When this CCW is executed, the Repeat Pointer is set to point to this FIFO location
and from this CCW onwards, CFIFO0 entries is not invalidated, that is, the Repeat Pointer prevents this
and subsequent entries from being overwritten.

The queue continues to execute until a CCW with an asserted Pause bit is completed; then the queue stops
and enters the Pause state, waiting for a trigger. This is the same as normal behavior.

The Pause state is exited in one of two ways: Repeat Trigger or Repeat Trigger with Advance Trigger. The
Repeat trigger with no Advance trigger causes the Transfer Next Data Pointer to be loaded with the Repeat
Pointer location and CCWs are then executed from the Repeat Pointer back to the Pause bit. This means
that a section of the CFIFO0 is repeatedly executed every time a Repeat Trigger occurs.

The Repeat trigger with the Advance trigger pending causes all CCWs from the Repeat pointer to the Pause
bit to be invalidated and the CCW after the pause bit to be executed. This is achieved by invalidating the
Repeat Pointer. The effect is that the queue advances beyond the repeating section of the CFIFO0 to
execute new CCWs.

Note that the Advance trigger can occur at any time between Repeat triggers, but is only actioned when
the next Repeat trigger occurs. Prior to that it is pending.

In a typical application, the queue is made of some configuration commands to the ADC (to flush the
decimator or turn on pad pull-up/down) followed by a repeating section of ADC conversions on one or
more ADC channels from one or more sensors; followed by a few more configuration commands; then
more repeating ADC conversions, until the entire engine cycle is complete; when the queue is restarted.
The mechanism described permits any number of repeating sub-queues to be loaded and executed,
interspersed by configuration commands.

25.6.4.2.2 Triggering Description in Streaming Mode

The additional trigger signal ATRIG0 is detected by a separate circuit that is configured by the bit field
AMODE0 as described in Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR). This
trigger signal is used as an advance control of pop pointer of CFIFO0. In addition, it is used as the enable

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1095

trigger for the Repeat trigger. This means it is necessary to have an Advance trigger first to enable the
detection of the Repeat trigger. When the Repeat trigger is enabled, the Advance trigger is used to advance
the pop pointer beyond some loop sub-queue. And it is to disable the Repeat trigger by executing a Pause
without a previous REP bit.

A typical sequence of events is presented below to describe the relationship between the triggers.

In Streaming mode, the CFIFO0 is filled with CCWs using the DMA as usual. The two triggers are
configured to positive edge and single scan mode.

The SSS bit is asserted and the trigger detector of the Repeat trigger is disabled in the start of the queue.
It is necessary to receive the first Advance trigger to enable the detector of the other trigger. This enable
is useful when the Repeat trigger is received all the time and the trigger signal can be disabled when it is
not desired.

The Advance trigger is received and detected and the Repeat trigger detector is enabled. No commands are
executed until now.

The Repeat trigger is detected and the commands start to be executed in sequence. If a REP bit is decoded
with the PAUSE bit, the loop is configured and the CFIFO0 commands stop to be executed. The next
Repeat trigger is waited to start the execution of the loop again, or the Advance trigger can be detected to
break the loop and advance the queue in CFIFO0. The Repeat trigger detector remains enabled.

If the Advance trigger is received and the next command in the CFIFO0 does not present the REP bit set,
this means the CFIFO0 is not starting a new loop. In this case (outside a loop) if a PAUSE bit is decoded,
this means to disable the Repeat trigger detector. This can be useful if the Repeat trigger is not required for
some interval of time. The Repeat trigger detector is enabled again when the next Advance trigger event
is detected.

25.6.4.2.3 CFIFO0 Diagram Description in Streaming Mode

Figure 25-62 represents the main components of CFIFO0 in streaming mode. However, some signals
behave in a different way from the common operation. The Push Next Data Pointer points to the next
available CFIFO0 location for storing data written into the EQADC Command FIFO Push Register. The
Transfer Next Data Pointer points to the next entry to be transferred to Cbuffer. The Repeat Pointer points
to the first entry of the repeating sub-queue. TNXTPTR in Section 25.5.2.9, EQADC FIFO and Interrupt
Status Registers (EQADC_FISR), indicates the index of the entry that is currently being addressed by the
Transfer Next Data Pointer, and CFCTR, in the same register, provides the number of entries stored in the
CFIFO.

When CFS0 in Section 25.5.2.12, EQADC CFIFO Status Register (EQADC_CFSR), is TRIGGERED, the
EQADC generates the proper control signals for the transfer of the entry pointed by Transfer Next Data
Pointer. CFUF0 in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), is set
when CFIFO0 underflow event occurs. A CFIFO underflow occurs when the CFIFO is in TRIGGERED
state and it is empty. No commands will be transferred from an underflowing CFIFO, nor will command
transfers from lower priority CFIFOs be blocked. CFIFO0 is empty when CFCTR0 is zero. CFIFO0 is full
when (CFCTR0 mod CFIFO_DEPTH) is zero but CFCTR0 is not zero.

When the EQADC completes the transfer of an entry from CFIFO0 in loop condition: the transferred entry
is not popped from CFIFO0, the CFIFO counter CFCTR in the Section 25.5.2.9, EQADC FIFO and

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1096 Freescale Semiconductor

Interrupt Status Registers (EQADC_FISR), is not decremented by one, and Transfer Next Data Pointer 0
is incremented by one (or wrapped around) to point to the next entry in the CFIFO0.

Figure 25-62. CFIFO0 in Streaming Mode Diagram

The detailed behavior of the Push Next Data Pointer and Transfer Next Data Pointer is described in the
example shown in Figure 25-63 where a CFIFO with 16 entries is shown for clarity of explanation, the
actual hardware implementation has only four/eight entries. In this example, CFIFO0 with 16 entries is
shown in sequence after pushing and transferring entries.

32-bit Entry 1

32-bit Entry 2

Push Next

Data Pointer *
Transfer Next
Data Pointer *

CFIFO
Push Register

CFIFO

Control Logic

DMA Done

Interrupt/DMA Request

Control
Signals

Data to
external
device or
to on-chip
ADCs

Transfer Counter

* All CFIFO entries are memory mapped and the
entries addressed by these pointers can have their
absolute addresses calculated using TNXTPTR and
CFCTR.

Repeat
Pointer

32-bit Entry n, Rep

Write to slave-bus
interface by CPU or
DMA

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1097

Figure 25-63. CFIFO0 in Streaming Mode Entry Pointer Example

Push Transfer
CFIFO0

First In

After reset or
invalidation

Next
Data
Pointer

Next
Data
Pointer

Last In

Valid Entry

Empty Entry

Push

Transfer
CFIFO0

Some entries pushed
but none Executed

Next
Data
Pointer

Next
Data
Pointer

Transfer

CFIFO0

No entries pushed
but some executed

Next
Data
Pointer

Last In
Push
Next
Data
Pointer

Transitory state.
Repeat trigger with no

Entries pushed but not

Repeat

Pause

Repeat

Pointer
Repeat

Pause

up to pause bit
- waiting for trigger

Repeat

Pause

Repeat

Pointer

Transfer

CFIFO0

Next
Data
Pointer

Last In
Push
Next
Data
Pointer

Repeat

Pause

Repeat

Pointer

Advance trigger causes
loop execution.

Transfer

CFIFO0

Next
Data
Pointer

Last In
Push
Next
Data
Pointer

Repeat

Pause
Repeat

Pointer

Transitory state.
Repeat trigger and with
Advance trigger causes
execution of next entry
after Pause.

Repeat

full and not executed.

Transfer

CFIFO0

Next
Data
Pointer

Last In
Push
Next
Data
Pointer

Pause

Repeat

Pointer Repeat
First In

Non repeat command
followed by 5 repeat
commands pending.
No trigger.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1098 Freescale Semiconductor

Figure 25-64. CFIFO0 in Streaming Mode Entry Pointer Example (Cont.)

25.6.4.2.4 Streaming Mode Error Conditions

In the repeat state, the existing error conditions still apply, but now there are new ways to trigger them.
Now, the CCWs are not being invalidated so the DMA is not able to load more CCWs into those locations.
So a queue overflow becomes more likely, and occurs if the repeat loop is longer than 8 entries. If all
CCWs in the CFIFO0 are executed and no Pause bit or EOQ bit is detected, the eQADC will signal an
underflow error. In practice this may limit a repeating queue to 7 entries since otherwise an underflow will
occur at the point a Repeat with Advance trigger occurs, and there is no command in the CFIFO0 to
execute. The exception is a final command with both a Pause and an EOQ bit set. The End of Queue bit
EOQ continues to operate as in normal mode, unless the Repeat mode is enabled. In this case the Pause bit
takes precedence and a Repeat trigger causes the jump back described. A Repeat trigger with Advance
trigger causes the queue to end.

Another error condition occur when the repeat trigger is in the TRIGGERED state and a new repeat trigger
is received. In this case, a trigger overflow occurs but the CFIFO0 is defined to not restart the loop. The
trigger in this case is not used in the CFIFO0, but the overflow is indicated.

25.6.4.3 CFIFO Common Prioritization and Command Transfer

The CFIFO priority is fixed according to the CFIFO number. A CFIFO with a smaller number has a higher
priority. When commands of distinct CFIFOs are bound for the same destination (CBuffer), the higher

No entries pushed.

Last In
Push

Transfer

CFIFO0

Entries pushed. Fifo full. Waiting

Next
Data
Pointer

Next
Data
Pointer

Repeat

Pointer
Repeat

Pause
Transfer

CFIFO0

Next
Data
Pointer

Last In
Push
Next
Data
Pointer

Pause

Repeat

Pointer
Repeat

Entries executed to
pause bit.
Pending trigger.

at pause bit for Repeat trigger or
Advance & Repeat trigger.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1099

priority CFIFO is always served first. A TRIGGERED, not-underflowing CFIFO will start the transfer of
its commands when:

• its commands are bound for an internal CBuffer that is not full, and it is the highest priority
triggered CFIFO sending commands to that CBuffer.

• its commands are bound for an external CBuffer that is not full, and it is the highest priority
triggered CFIFO sending commands to an external CBuffer that is not full.

A triggered CFIFO with commands bound for a certain CBuffer consecutively transfers its commands to
it until:

• an asserted End Of Queue bit is reached, or;

• an asserted Pause bit is encountered and the CFIFO is configured for edge trigger mode, or;

• CFIFO is configured for level trigger mode and a closed gate is detected, or;

• in case its commands are bound for an internal CBuffer, a higher priority CFIFO that uses the same
internal CBuffer is triggered, or;

• in case its commands are bound for an external CBuffer, a higher priority CFIFO that uses an
external CBuffer is triggered.

The prioritization logic of the EQADC, depicted in Figure 25-65, is composed of three independent
sub-blocks: one prioritizing CFIFOs with commands bound for CBuffer0, another prioritizing CFIFOs
with commands for CBuffer1, and a last one prioritizing CFIFOs with commands for CBuffer2 and
CBuffer3 which reside inside the external device. As these three sub-blocks are independent, simultaneous
writes to CBuffer0, to CBuffer1, and to EQADC SSI transmit buffer are allowed. The hardware identifies
the destination of a command by decoding the EB and BN bits in the command message - see
Section 25.6.2.3, Message Format in EQADC, for details.

NOTE

Triggered but empty CFIFOs, underflowing CFIFOs, are not considered for
prioritization. No data from these CFIFOs will be sent to the CBuffers and
nor will they stop lower priority CFIFOs from transferring commands.

Whenever CBuffer0 is able to receive new entries, the prioritization sub-block selects the highest-priority
triggered CFIFO with a command bound for CBuffer0, and writes its command into the buffer. In case
CBuffer0 is able to receive new entries but there are no triggered CFIFOs with commands bound for it,
nothing is written to the buffer. The sub-block prioritizing CBuffer1 usage behaves in the same way.

When the EQADC SSI is enabled and ready to start serial transmissions, the sub-block prioritizing
EQADC SSI usage writes command or null messages into the EQADC SSI transmit buffer, data written
to the EQADC SSI transmit buffer is subsequently transmitted to the external device through the EQADC
SSI link. The sub-block writes commands to the EQADC SSI transmit buffer when there are triggered
CFIFOs with commands bound for not-full external CBuffers. The command written to the transmit buffer
belongs to the highest priority CFIFO sending commands to a external CBuffer that is not full. This implies
that a lower priority CFIFO can have its commands sent if a higher priority CFIFO cannot send its
commands due to a full CBuffer. The sub-block writes null messages to the EQADC SSI transmit buffer
when there are no triggered CFIFOs with commands bound for external CBuffers, or when there are
triggered CFIFOs with commands bound for external CBuffers but the external CBuffers are full. The
EQADC monitors the status of the external CBuffers by decoding the BUSY fields of the incoming result

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1100 Freescale Semiconductor

messages from the external device - see Section , Result Message Format for External Device Operation,
for details.

NOTE

When a lower priority CFIFO is served first because a higher priority
CFIFO cannot send its commands due to a full external CBuffer, there is a
possibility that command transfers from the lower priority CFIFO will be
interrupted and the CFIFO will become non-coherent, when the higher
priority CFIFO again becomes ready to send commands. If the lower
priority CFIFO becomes non-coherent or not depends on the rate at which
commands on the external CBuffers are executed, on the rate at which
commands are transmitted to the external CBuffers, and on the depth of
those buffers.

Once a serial transmission is started, the sub-block monitors triggered CFIFOs and manages the abort of
serial transmissions. In case a null message is being transmitted, the serial transmission is aborted when
all following conditions are met:

• A not-underflowing CFIFO in TRIGGERED state has commands bound for an external CBuffer
that is not full, and it is the highest priority CFIFO sending commands to an external CBuffer that
is not full.

• the ABORT_ST bit of the command to be transmitted is asserted.

• the 26th bit of currently transmitting null message has not being shifted out.

The command from the CFIFO is then written into EQADC SSI transmit buffer, allowing for a new serial
transmission to initiate.

In case a command is being transmitted, the serial transmission is aborted when all following conditions
are met:

• CFIFO0 is in TRIGGERED state, is not underflowing, and its current command is bound for an
external CBuffer that is not full.

• the ABORT_ST bit of the command to be transmitted is asserted.

• the 26th bit of currently transmitting command has not being shifted out.

The command from CFIFO0 is then written into EQADC SSI transmit buffer, allowing for a new serial
transmission to initiate.

NOTE

The aborted command is not popped from the preempted CFIFO and will be
retransmitted as soon as its CFIFO becomes the highest priority CFIFO
sending commands to an external CBuffer that is not full.

After a serial transmission is completed, the EQADC prioritizes the CFIFOs and schedules a command or
a null message to be sent in the next serial transmission. After the data for the next transmission has been
defined and scheduled, the EQADC can, under certain conditions, stretch the SDS negation time in order
to allow the schedule of new data for that transmission. This occurs when the EQADC acknowledges that
the status of a higher-priority CFIFO changed to TRIGGERED and attempts to schedule that CFIFO

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1101

command before SDS is asserted. Only commands of CFIFOs that have the ABORT_ST bit asserted can
be scheduled in this manner. Under such conditions:

1. a CFIFO0 command is scheduled for the next transmission independently of the type of data that
was previously scheduled. The time during which SDS is negated is stretched in order to allow the
EQADC to load the CFIFO0 command and start its transmission.

2. CFIFO1-5 commands are only scheduled for the next transmission if the previously scheduled data
was a null message. The time during which SDS is negated is stretched in order to allow the
EQADC to load that command and start its transmission. However, if the previously scheduled
data was a command, no rescheduling occurs and the next transmission starts without delays.

If a CFIFO becomes TRIGGERED while SDS is negated, but the EQADC only attempts to reschedule that
CFIFO command after SDS is asserted, then the current transmission is aborted depending on if the
conditions for that are met or not.

Figure 25-65. CFIFO Prioritization Logic

25.6.4.4 CFIFO Prioritization in Abort Mode

The CFIFO priority does not change when the EQADC is configured to allow abortion of conversion
execution in on-chip ADC analog blocks. However, CFIFO0 is the only one that can be enabled to abort
conversions.

CFIFO3Command

CFIFO4Command

CFIFO5Command

CFIFO0
Command

CFIFO1Command

CFIFO2Command

ADC1

CBuffer1

ADC0 for CBuffer0
Prioritization

6 x CommandCommand

(2 entries)

Command

EQADC

Prioritization Logic
CBuffer0

(2 entries)

Usage

for CBuffer1
Prioritization

Usage

Abort
Cont0

Abort
Cont1

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1102 Freescale Semiconductor

This feature is necessary when the timing of some conversion is very important. In normal priority scheme,
when CFIFO0 is triggered, its conversion command can be put behind 2 pending conversion commands
in the Cbuffer due to the queue structure. Considering that these 2 pending commands are from lower
priority CFIFOs and that the delay between the trigger and the sampling of the command from CFIFO0
can be unacceptable, EQADC can be configured to permit immediate conversion commands from CFIFO0
with abort function.

When CFIFO0 is triggered and abort is enabled, up to 2 commands in Cbuffer0 or Cbuffer1 are stored in
a side register. The abort request signal is generated to ADC0 or ADC1 and the confirmation of ADC
reset/ready is waited to send the command from CFIFO0 to the decoded Cbuffer.

After the transfer of all commands from CFIFO0, the recovery phase restores the up to 2 commands that
were in Cbuffer when the abort occurred. After this recovery phase, it is established the normal process of
prioritization of commands from CFIFOs.

25.6.4.5 External Trigger Event Detection

The digital filters for trigger signals can be individually bypassed by asserting the input control signals
eqadc_intern_trig_sel5-0. When the filter is bypassed, the ETRIG input signal is not filtered and the logic
after the filter receives a copy of this input trigger signal.

The Digital Filter Length field in Section 25.5.2.4, EQADC External Trigger Digital Filter Register
(EQADC_ETDFR), specifies the minimum number of system clocks that the ETRIG0-5 signals must be
held at a logic level to be recognized as valid. All ETRIG signals are filtered. A counter for each queue
trigger is implemented to detect a transition between logic levels. The counter counts at the system clock
rate. The corresponding counter is cleared and restarted each time the signal transitions between logic
levels. When the corresponding counter matches the value specified by the Digital Filter Length field in
Section 25.5.2.4, EQADC External Trigger Digital Filter Register (EQADC_ETDFR), the EQADC
considers the ETRIG logic level to be valid and passes that new logic level to the rest of the EQADC.

The filter is only for filtering the ETRIG signal. Logic after the filter checks for transitions between filtered
values, such as for detecting the transition from a filtered logic level zero to a filter logic level one in rising
edge external trigger mode. The EQADC can detect rising edge, falling edge, or level gated external
triggers. The digital filter will always be active independently of the status of the MODEx field in
Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR), but the edge, level detection logic
is only active when MODEx is set to a value different from disabled, and in case MODEx is set to single
scan mode, when the SSS bit is asserted. Note that the time necessary for a external trigger event to result
into a CFIFO status change is not solely determined by the DFL field in the Section 25.5.2.4, EQADC
External Trigger Digital Filter Register (EQADC_ETDFR). After being synchronized to the system clock
and filtered, a trigger event is checked against the CFIFO trigger mode. Only then, after a valid trigger
event is detected, the EQADC accordingly changes the CFIFO status. Refer to Figure 25-66 for an
example.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1103

Figure 25-66. ETRIG Event Propagation Example

25.6.4.6 CFIFO Scan Trigger Modes

The EQADC supports two different scan modes, single-scan and continuous-scan. Refer to Table 25-63
for a summary of these two scan modes. When a CFIFO is triggered, the EQADC scan mode determines
whether the EQADC will stop command transfers from a CFIFO, and wait for software intervention to
rearm the CFIFO to detect new trigger events, upon detection of an asserted EOQ bit in the last transfer.
Refer to Section 25.6.2.3, Message Format in EQADC, for details about command formats.

CFIFOs can be configured in single-scan or continuous-scan mode. When a CFIFO is configured in
single-scan mode, the EQADC scans the CQueue one time. The EQADC stops future command transfers
from the triggered CFIFO after detecting the EOQ bit set in the last transfer. After a EOQ bit is detected,
software involvement is required to rearm the CFIFO so that it can detect new trigger events.

When a CFIFO is configured for continuous-scan mode, no software involvement is necessary to rearm
the CFIFO to detect new trigger events after an asserted EOQ is detected. In continuous-scan mode the
whole CQueue is scanned multiple times.

The EQADC also supports different triggering mechanisms for each scan mode. The EQADC will not
transfer commands from a CFIFO until the CFIFO is triggered. The combination of scan modes and
triggering mechanisms allows the support of different requirements for scanning input channels. The scan
mode and trigger mechanism are configured by programming the MODEx field in Section 25.5.2.7,
EQADC CFIFO Control Registers (EQADC_CFCR).

Enabled CFIFOs can be triggered by software or external trigger events. The elapsed time from detecting
a trigger to transferring a command is a function of clock frequency, trigger synchronization, trigger
filtering or not, programmable trigger events, command transfer, CFIFO prioritization, CBuffer
availability, etc. Fast and predictable transfers can be achieved by ensuring that the CFIFO is not
underflowing and that the target CBuffer is not full when the CFIFO is triggered.

System Clock

External Trigger Signal

Filtered External

CFIFO Status

Trigger Signal

 Signal State at Input Pin

MODEx

IDLE WAITING FOR TRIGGER TRIGGERED

DISABLED CONTINUOUS SCAN HIGH LEVEL GATED EXTERNAL TRIGGER

Trigger Detection Delay

Trigger Synchronization and Filtering Delay (Obs. 1)

Obs.

- 1: This delay is about 2 clocks when the filter bypass control is asserted.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1104 Freescale Semiconductor

25.6.4.6.1 Disabled Mode

The MODEx field in Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR), for all of the
CFIFOs can be changed from any other mode to disabled at any time. No trigger event can initiate
command transfers from an CFIFO which has its MODE field programmed to disabled.

NOTE

If MODEx is not disabled, it must not be changed to any other mode besides
disabled. If MODEx is disabled and the CFIFO status is IDLE, MODEx can
be changed to any other mode.

If MODEx is changed to disabled:

• The CFIFO execution status will change to IDLE. The timing of this change depends on whether
a command is being transferred or not:

— When no command transfer is in progress, the EQADC switches the CFIFO to IDLE status
immediately.

— When a command transfer to an on-chip CBuffer is in progress, the EQADC will complete the
transfer, update TC_CF, and switch CFIFO status to IDLE. Command transfers to the internal
CBuffers are considered completed when a command is written to the buffers.

— When a command transfer to an external CBuffer is in progress, the EQADC will abort the
transfer and switch CFIFO status to IDLE. If the EQADC cannot abort the transfer, that is when
the 26th bit of the serial message has being already shifted out, the EQADC will complete the
transfer, update TC_CF and then switch CFIFO status to IDLE.

• The CFIFOs are not invalidated automatically. The CFIFO still can be invalidated by writing a “1”
to the CFINVx bit in Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR).
Certify that CFS has changed to IDLE before setting CFINVx.

• The TC_CFx value also is not reset automatically, but it can be reset by writing “0” to it.

• The SSS bit in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), is
negated. The SSS bit can be set even if a “1” is written to the SSE bit in Section 25.5.2.7, EQADC
CFIFO Control Registers (EQADC_CFCR), in the same write that the MODEx field is changed to
a value other than disabled.

• The trigger detection hardware is reset. If MODEx is changed from disabled to an edge trigger
mode, a new edge, matching that edge trigger mode, is needed to trigger the command transfers
from the CFIFO.

NOTE

CFIFO fill requests, which generated when CFFF is asserted, are not
automatically halted when MODEx is changed to disabled. CFIFO fill
requests will still be generated until CFFE is cleared in Section 25.5.2.8,
EQADC Interrupt and DMA Control Registers (EQADC_IDCR).

25.6.4.6.2 Single-Scan Mode

In single-scan mode, a single pass through a sequence of command messages in a CQueue is performed.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1105

In single-scan software trigger mode, the CFIFO is triggered by an asserted Single-Scan Status bit (SSS)
in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR). The SSS bit is set by
writing “1” to the Single-Scan Enable bit (SSE) in Section 25.5.2.7, EQADC CFIFO Control Registers
(EQADC_CFCR).

In single-scan edge- or level-trigger mode, the respective triggers are only detected when the SSS bit is
asserted. When the SSS bit is negated, all trigger events for that CFIFO are ignored. Writing a “1” to the
SSE bit can be done during the same write cycle that the CFIFO operation mode is configured.

Only the EQADC can clear the SSS bit. Once SSS is asserted, it remains asserted until the EQADC
completes the CQueue scan, or the CFIFO operation mode (MODEx) in Section 25.5.2.7, EQADC CFIFO
Control Registers (EQADC_CFCR), is changed to disabled. The SSSx bit will be negated while MODEx
is disabled.

Single-Scan Software Trigger

When single-scan software trigger mode is selected, the CFIFO is triggered by an asserted SSS bit. The
SSS bit is asserted by writing “1” to the SSE bit. Writing to SSE while SSS is already asserted will not
have any effect on the state of the SSS bit, nor will it cause a trigger overrun event.

The CFIFO commands start to be transferred when the CFIFO becomes the highest priority CFIFO using
a not-full on-chip CBuffer or an not-full external CBuffer. When an asserted EOQ bit is encountered, the
EQADC will clear the SSS bit. Setting the SSS bit is required for the EQADC to start the next scan of the
queue.

The Pause bit has no effect in single-scan software trigger mode.

Single-Scan Edge Trigger

When SSS is asserted and an edge triggered mode is selected for a CFIFO, an appropriate edge on the
associated trigger signal causes the CFIFO to become TRIGGERED. For example, if rising-edge trigger
mode is selected, the CFIFO becomes TRIGGERED when a rising edge is sensed on the trigger signal.
The CFIFO commands start to be transferred when the CFIFO becomes the highest priority CFIFO using
a not-full on-chip CBuffer or an not-full external CBuffer.

When an asserted EOQ bit is encountered, the EQADC clears SSS and stops command transfers from the
CFIFO. An asserted SSS bit and a subsequent edge trigger event are required to start the next scan for the
CFIFO. When an asserted Pause bit is encountered, the EQADC stops command transfers from the CFIFO,
but SSS remains set. Another edge trigger event is required for command transfers to continue. A trigger
overrun happens when the CFIFO is in TRIGGERED state and an edge trigger event is detected.

Single-Scan Level Trigger

When SSS is asserted and a level gated trigger mode is selected, the input level on the associated trigger
signal puts the CFIFO in TRIGGERED state. When the CFIFO is asserted to high-level gated trigger, a
high level signal opens the gate, and a low level closes the gate. When the CFIFO is set to low-level gated
trigger mode, a low level signal opens the gate, and a high level closes the gate. If the corresponding level
is already present, setting the SSS bit triggers the CFIFO. The CFIFO commands start to be transferred

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1106 Freescale Semiconductor

when the CFIFO becomes the highest priority CFIFO using a not-full on-chip CBuffer or a not -full
external CBuffer.

The EQADC clears the SSS bit and stops transferring commands from a TRIGGERED CFIFO when an
asserted EOQ bit is encountered or when CFIFO status changes from TRIGGERED due to the detection
of a closed gate. If a closed gate is detected while no command transfers are taking place and the CFIFO
status is TRIGGERED, the CFIFO status is immediately changed to IDLE, the SSS bit is negated, and the
PF flag is asserted. If a closed gate is detected during the serial transmission of a command to the external
device, it will have no effect on the CFIFO status until the transmission completes. Once the transmission
is completed, the TC_CF counter is updated, the SSS bit is negated, the PF flag is asserted, and the CFIFO
status is changed to IDLE. An asserted SSS bit and a level trigger are required to restart the CFIFO.
Command transfers will restart from the point they have stopped.

If the gate closes and opens during the same serial transmission of a command to the external device, it
will have no effect on the CFIFO status or on the PF flag, but the TORF flag will become asserted as was
exemplified in Figure 25-68. Therefore, closing the gate for a period less than a serial transmission time
interval does not guarantee that the closure will affect command transfers from a CFIFO.

The Pause bit has no effect in single-scan level-trigger mode.

25.6.4.6.3 Continuous-Scan Mode

In continuous-scan mode, multiple passes looping through a sequence of command messages in a CQueue
are executed. When a CFIFO is programmed for a continuous-scan mode, the SSE bit in the
Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR), does not have any effect.

Continuous-Scan Software Trigger

When a CFIFO is programmed to continuous-scan software trigger mode, the CFIFO is triggered
immediately. The CFIFO commands start to be transferred when the CFIFO becomes the highest priority
CFIFO using a not-full on-chip CBuffer or an not-full external CBuffer. When a CFIFO is programmed to
run in continuous-scan software trigger mode, the EQADC will not halt transfers from the CFIFO until the
CFIFO operation mode is modified to disabled or a higher priority CFIFO preempts it. Although command
transfers will not stop upon detection of an asserted EOQ bit, the EOQF is set and, if enabled, an EOQ
interrupt request is generated.

The Pause bit has no effect in continuous-scan software trigger mode.

Continuous-Scan Edge Trigger

When rising, falling, or either edge trigger mode is selected for a CFIFO, a corresponding edge on the
associated ETRIG signal places the CFIFO in TRIGGERED state. The CFIFO commands start to be
transferred when the CFIFO becomes the highest priority CFIFO using a not-full on-chip CBuffer or an
not-full external CBuffer

When an EOQ or a Pause is encountered, the EQADC halts command transfers from the CFIFO and, if
enabled, the appropriate interrupt requests are generated. Another edge trigger event is required to resume
command transfers but no software involvement is required to rearm the CFIFO in order to detect such
event.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1107

A trigger overrun happens when the CFIFO is already in TRIGGERED state and a new edge trigger event
is detected.

Continuous-Scan Level Trigger

When high or low level gated trigger mode is selected, the input level on the associated trigger signal
places the CFIFO in TRIGGERED state. When high-level gated trigger is selected, a high-level signal
opens the gate, and a low level closes the gate. The CFIFO commands start to be transferred when the
CFIFO becomes the highest priority CFIFO using a not-full on-chip CBuffer or an not-full external
CBuffer. Although command transfers will not stop upon detection of an asserted EOQ bit at the end of a
command transfer, the EOQF is asserted and, if enabled, an EOQ interrupt request is generated.

The EQADC stops transferring commands from a TRIGGERED CFIFO when CFIFO status changes from
TRIGGERED due to the detection of a closed gate. If a closed gate is detected while no command transfers
are taking place and the CFIFO status is TRIGGERED, the CFIFO status is immediately changed to
WAITING FOR TRIGGER and the PF flag is asserted. If a closed gate is detected during the serial
transmission of a command to the external device, it will have no effect on the CFIFO status until the
transmission completes. Once the transmission is completed, the TC_CF counter is updated, the PF flag is
asserted, and the CFIFO status is changed to WAITING FOR TRIGGER. Command transfers will restart
as the gate opens.

If the gate closes and opens during the same serial transmission of a command to the external device, it
will have no effect on the CFIFO status or on the PF flag, but the TORF flag will become asserted as was
exemplified in Figure 25-68. Therefore, closing the gate for a period less than a serial transmission time
interval does not guarantee that the closure will affect command transfers from a CFIFO.

The Pause bit has no effect in continuous-scan level-trigger mode.

25.6.4.6.4 CFIFO Scan Trigger Mode Start/Stop Summary

Table 25-63 summarizes the start and stop conditions of command transfers from CFIFOs for all of the
single-scan and continuous-scan trigger modes.

Table 25-63. CFIFO Scan Trigger Mode - Command Transfer Start/Stop Summary

Trigger Mode

Requires
Asserted SSS
to Recognize

Trigger
Events?

Command Transfer
Start/Restart

Condition

Stop on
asserted

EOQ
bit1?

Stop on
asserted

Pause
bit2?

Other Command Transfer Stop
Condition3 4

Single Scan
Software

Don’t Care Asserted SSS bit. Yes No None.

Single Scan
Edge

Yes A corresponding edge
occurs when the SSS
bit is asserted.

Yes Yes None.

Single Scan
Level

Yes Gate is opened when
the SSS bit is asserted.

Yes No EQADC also stops transfers
from the CFIFO when CFIFO
status changes from
TRIGGERED due to the
detection of a closed gate.5

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1108 Freescale Semiconductor

25.6.4.7 CFIFO and Trigger Status

25.6.4.7.1 CFIFO Operation Status

Each CFIFOs has its own CFIFO status field. CFIFO status (CFS) can be read from Section 25.5.2.12,
EQADC CFIFO Status Register (EQADC_CFSR). Figure 25-67 and Table 25-64 indicate the CFIFO
status switching condition. Refer to Table 25-21 for the meaning of each CFIFO operation status. The last
CFIFO to transfer a command to an on-chip CBuffer can be read from the LCFTCBn (n=0,1) fields in the
Section 25.5.2.11, EQADC CFIFO Status Snapshot Registers (EQADC_CFSSR). The last CFIFO to
transfer a command to a specific external CBuffer can be identified by reading the LCFTSSI and ECBNI
fields in the Section 25.5.2.11, EQADC CFIFO Status Snapshot Registers (EQADC_CFSSR).

Continuous
Scan Software

No CFIFO starts
automatically after
being configured into
this mode.

No No None.

Continuous
Scan Edge

No A corresponding edge
occurs.

Yes Yes None.

Continuous
Scan Level

No Gate is opened. No No EQADC also stops transfers
from the CFIFO when CFIFO
status changes from
TRIGGERED due to the
detection of a closed gate.5

1 Refer to Section 25.6.4.7.2, CQueue Completion Status, for more information on EOQ.
2 Refer to Section 25.6.4.7.3, Pause Status, for more information on Pause.
3 EQADC always stops command transfers from a CFIFO when the CFIFO operation mode is disabled.
4 EQADC always stops command transfers from a CFIFO when a higher priority CFIFO is triggered. Refer to

Section 25.6.4.3, CFIFO Common Prioritization and Command Transfer, for information on CFIFO priority.
5 If a closed gate is detected while no command transfers are taking place, it will have immediate effect on the

CFIFO status. If a closed gate is detected during the serial transmission of a command to the external device,
it will have no effect on the CFIFO status until the transmission completes.

Table 25-63. CFIFO Scan Trigger Mode - Command Transfer Start/Stop Summary (continued)

Trigger Mode

Requires
Asserted SSS
to Recognize

Trigger
Events?

Command Transfer
Start/Restart

Condition

Stop on
asserted

EOQ
bit1?

Stop on
asserted

Pause
bit2?

Other Command Transfer Stop
Condition3 4

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1109

Figure 25-67. State Machine of CFIFO Status

Table 25-64. Command FIFO Status Switching Condition

No.
From Current
CFIFO Status

(CFS)

To New CFIFO
Status (CFS)

Status Switching Condition

1 IDLE (00) IDLE (0b00) — CFIFO Mode is programmed to disabled, OR
— CFIFO Mode is programmed to single-scan edge or level
trigger mode and SSS is negated.

2 WAITING FOR
TRIGGER (0b10)

— CFIFO Mode is programmed to continuous-scan edge or
level trigger mode, OR
— CFIFO Mode is programmed to single-scan edge or level
trigger mode and SSS is asserted, OR
— CFIFO Mode is programmed to single-scan software trigger
mode.

3 TRIGGERED (0b11) — CFIFO Mode is programmed to continuous-scan software
trigger mode

4 WAITING FOR
TRIGGER (10)

IDLE (0b00) — CFIFO Mode is modified to disabled mode.

5 WAITING FOR
TRIGGER (0b10)

— No trigger occurred.

6 TRIGGERED (0b11) — Appropriate edge or level trigger occurred, OR
— CFIFO Mode is programmed to single-scan software trigger
mode and SSS bit is asserted.

IDLE

WAITING
FOR

TRIGGER

TRIGGERED

2

1

3

4

5

6

7

8

9

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1110 Freescale Semiconductor

25.6.4.7.2 CQueue Completion Status

The End of Queue Flag (EOQF) in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers
(EQADC_FISR), is asserted when the EQADC completes the transfer of a CFIFO entry with an asserted
EOQ bit. Software sets the EOQ bit in the last Command Message of a CQueue to indicate that this entry
is the end of the CQueue - see Section 25.6.2.3, Message Format in EQADC, for information on command
message formats. The transfer of entries bound for the on-chip ADCs is considered completed when they
are stored in the appropriate CBuffer. The transfer of entries bound for the external device is considered
completed when the serial transmission of the entry is completed.

The command with a EOQ bit asserted is valid and will be transferred. When EOQIE in Section 25.5.2.7,
EQADC CFIFO Control Registers (EQADC_CFCR), and EOQF are asserted, the EQADC will generate
an End of Queue interrupt request.

In single-scan modes, command transfers from the corresponding CFIFO will cease when EQADC
completes the transfer of a entry with an asserted EOQ. Software involvement is required to rearm the
CFIFO so that it can detect new trigger events.

7 TRIGGERED (11) IDLE (0b00) — CFIFO in single-scan mode, EQADC detects the EOQ bit
asserted at end of command transfer, and CFIFO Mode is not
modified to disabled.OR
— CFIFO, in single-scan level trigger mode, and the gate
closes while no commands are being transferred from the
CFIFO, and CFIFO Mode is not modified to disabled. OR
— CFIFO, in single-scan level trigger mode, and EQADC
detects a closed gated at end of command transfer, and CFIFO
Mode is not modified to disabled. OR
— CFIFO Mode is modified to disabled mode and CFIFO was
not transferring commands.
—CFIFO Mode is modified to disabled mode while CFIFO was
transferring commands, and CFIFO completes or aborts the
transfer.

8 WAITING FOR
TRIGGER (0b10)

— CFIFO in single or continuous-scan edge trigger mode,
EQADC detects the Pause bit asserted at the end of command
transfer, the EOQ bit in the same command is negated, and
CFIFO Mode is not modified to disabled, OR
— CFIFO in continuous-scan edge trigger mode, EQADC
detects the EOQ bit asserted at the end of command transfer,
and CFIFO Mode is not modified to disabled, OR
— CFIFO, in continuous-scan level trigger mode, and the gate
closes while no commands are being transferred from the
CFIFO, and CFIFO Mode is not modified to disabled, OR
— CFIFO, in continuous-scan level trigger mode, and EQADC
detects a closed gated at end of command transfer, and CFIFO
Mode is not modified to disabled.

9 TRIGGERED (0b11) — No event to switch to IDLE or WAITING FOR TRIGGER
status has happened.

Table 25-64. Command FIFO Status Switching Condition (continued)

No.
From Current
CFIFO Status

(CFS)

To New CFIFO
Status (CFS)

Status Switching Condition

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1111

NOTE

An asserted EOQFx only implies that EQADC has finished transferring a
command with an asserted EOQ bit from CFIFOx. It does not imply that
result data for the current command and for all previously transferred
commands has been returned to the appropriate RFIFO.

25.6.4.7.3 Pause Status

In edge trigger mode, when the EQADC completes the transfer of a CFIFO entry with an asserted Pause
bit, the EQADC will stop future command transfers from the CFIFO and set the corresponding Pause Flag
(PF) in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR). Refer to
Section 25.6.2.3, Message Format in EQADC, for information on command message formats. The
EQADC ignores the Pause bit in command messages in any software and external level trigger mode. The
EQADC sets the PF flag upon detection of an asserted Pause bit only in single or continuous-scan edge
trigger mode. When the PF flag is set for a CFIFO in single-scan edge trigger mode, the SSS bit will not
be cleared in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR).

In level trigger mode, the definition of the PF flag has been redefined. In level trigger mode, when CFIFOx
is in TRIGGERED status, PFx is set when CFIFO status changes from TRIGGERED due to detection of
a closed gate. The pause flag interrupt routine can be used to verify if the a complete scan of the CQueue
was performed. If a closed gate is detected while no command transfers are taking place, it will have
immediate effect on the CFIFO status. If a closed gate is detected during the serial transmission of a
command to the external device, it will have no effect on the CFIFO status until the transmission
completes.

When PIE in Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR), and PF are asserted,
the EQADC will generate a Pause interrupt request.

NOTE

In edge trigger mode, an asserted PFx only implies that the EQADC finished
transferring a command with an asserted PAUSE bit from CFIFOx. It does
not imply that result data for the current command and for all previously
transferred commands has been returned to the appropriate RFIFO.

NOTE

In software or level trigger mode, when the EQADC completes the transfer
of an entry from CFIFOx with an asserted Pause bit, PFx will not be set and
command transfers will continues without pausing.

25.6.4.7.4 Trigger Overrun Status

When a CFIFO is configured for edge- or level-trigger mode and is in TRIGGERED state, an additional
trigger occurring for the same CFIFO results in a trigger overrun. The trigger overrun bit for the
corresponding CFIFO will be set (TORFx = 1) in Section 25.5.2.9, EQADC FIFO and Interrupt Status
Registers (EQADC_FISR). When TORIE in Section 25.5.2.7, EQADC CFIFO Control Registers
(EQADC_CFCR), and TORF are asserted, the EQADC generates a trigger overrun interrupt request.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1112 Freescale Semiconductor

For CFIFOs configured for level-trigger mode, a trigger overrun event is only detected when the gate
closes and opens during a single serial command transmission as shown in Figure 25-68.

Figure 25-68. Trigger Overrun on Level-Trigger Mode CFIFOs

NOTE

The trigger overrun flag will not set for CFIFOs configured for software
trigger mode.

25.6.4.7.5 Command Sequence Non-Coherency Detection

The EQADC provides a mechanism to indicate if a command sequence has been completely executed
without interruptions. A command sequence is defined as a group of consecutive commands bound for the
same CBuffer and it is expected to be executed without interruptions. A command sequence is coherent if
its commands are executed in order without interruptions. Since commands are stored in the CBuffers
before being executed in the EQADC, a command sequence is coherent if, while it is transferring
commands to a CBuffer, the buffer is only fed with commands from that sequence without ever becoming
empty.

A command sequence starts when:

• a CFIFO in TRIGGERED state transfers its first command to CBuffer.

• the CFIFO is constantly transferring commands and the previous command sequence ended.

• the CFIFO resumes command transfers after being interrupted.

And a command sequence ends when:

• an asserted EOQ bit is detected on the last transferred command.

• CFIFO is in edge-trigger mode and asserted PAUSE bit is detected on the last transferred
command.

• the CBuffer to which the next command is bound is different from the one to which the last
command was transferred.

Command Transmission
through EQADC SSI

Assumptions:

Low Active Level Trigger

CFIFO Status

TORF

Command 1 Null Message Command 2

TRIGGERED WFT TRIGGERED WFT TRIGGERED

If gate closes during a command transmission it is only recognized
when the transmission ends.

1) CFIFO programmed to “continuous-scan low level gated external trigger mode”
2) Command 2 has its ABORT_ST bit negated.

WFT= WAITING FOR TRIGGER

3) There are no other CFIFOs using the serial interface.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1113

Figure 25-69 shows examples of how the EQADC would detect command sequences when transferring
commands from a CFIFO to a CBuffer. The smallest possible command sequence can have a single
command as shown in example 3 of Figure 25-69.

Figure 25-69. Command Sequence Examples

The NCF flag is used to indicate command sequence non-coherency. When the NCFx flag is asserted, it
indicates that the command sequence being transferred through CFIFOx became non-coherent. The NCF
flag only becomes asserted for CFIFOs in TRIGGERED state.

CF5_CB1_CM0

CF5_CB1_CM1

CF5_CB1_CM2

CF5_CB1_CM3 (Pause =1)

CF5_CB1_CM4

CF5_CB1_CM5

CF5_CB1_CM6 (EOQ =1)

CF5_CB1_CM0

CQueue with a three

CF5_CB1_CM1

CF5_CB1_CM2

CF5_CB0_CM3

CF5_CB0_CM4

CF5_CB1_CM5

CF5_CB1_CM6 (EOQ =1)

command sequences

CF5_CB1_CM0

CQueue with a seven

CF5_CB2_CM1

CF5_CB3_CM2

CF5_CB1_CM3

CF5_CB0_CM4

CF5_CB2_CM5

CF5_CB1_CM6 (EOQ =1)

command sequences

Example 3

Example 1

Example 2

CQueue with a two
command sequences

Assuming that these commands are transferred by a CFIFO configured for
edge trigger mode and the command transfers are never interrupted, the
EQADC would check for non-coherency of two command sequences: one
formed by commands 0, 1, 2, 3, and the other by commands 4, 5, 6.

Assuming that command transfers from the CFIFO are never interrupted,
the EQADC would check for non-coherency of three command sequences.
The first being formed by commands 0, 1, 2, the second by commands 3,
4 and the third by commands 5, 6. Note that even when the commands of
this CQueue are transferred through a CFIFO in continuous-scan mode,
the first three commands and the last two commands of this CQueue would
still constitute two distinct command sequences, although they are all
bound for the same CBuffer, since an asserted EOQ ends a command
sequence.

The EQADC would check for non-coherency of seven command
sequences, all containing a single command, but NCF would never get set.

CFx_CBa_CMn - Command n in CFIFOx bound for CBuffera

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1114 Freescale Semiconductor

A command sequence is non-coherent when, after transferring the first command of a sequence from a
CFIFO to a CBuffer, it cannot successively send all the other commands of the sequence before any of the
following conditions are true:

• The CFIFO through which commands are being transferred is preempted by a higher priority
CFIFO which sends commands to the same CBuffer. The NCF flag becomes asserted immediately
after the first command transfer from the preempting CFIFO, that is the higher priority CFIFO, to
the CBuffer in use is completed. See Figure 25-71.

• The external CBuffer in use becomes empty1. This case happens when different CFIFOs attempt
to use different external CBuffers and the higher priority CFIFO bars the lower priority one from
sending new commands to its CBuffer - see Figure 25-72. An external CBuffer is considered empty
when the corresponding BUSY field in the last result message received from external device is
encoded as “Send available commands - CBuffer is empty”. Refer to Section , Result Message
Format for External Device Operation. The NCF flag becomes asserted immediately after the
EQADC detects that the external CBuffer in use becomes empty.

NOTE

After the transfer of a command sequence to an external CBuffer starts, the
EQADC ignores, for non-coherency detection purposes, the BUSY fields
captured at the end of the first serial transmission. Thereafter, all BUSY
fields captured at the end of consecutive serial transmissions are used to
check the fullness of that external CBuffer. This is done because the
EQADC only updates its external CBuffers status record when it receives a
serial message, resulting that the record kept by the EQADC is always
outdated by, at least, the length of one serial transmission. This prevents a
CFIFO from immediately becoming non-coherent when it starts transferring
commands to an empty external CBuffer. Refer to Figure 25-70 for an
example.

1. Only the fullness of external CBuffers is monitored because the fill rate for internal CBuffers is many times faster than the
drain rate, and each has a dedicated priority engine.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1115

Figure 25-70. External CBuffer Status Detection at Command Sequence Transfer Start

Once a command sequence starts to be transferred, the EQADC will check for the command sequence
coherency until the command sequence ends or until one of the conditions below becomes true.

• The command sequence became non-coherent.

• The CFIFO status changed from TRIGGERED.

• The CFIFO underflowed.

NOTE

The NCF flag still becomes asserted if an external CBuffer empty event is
detected at the same time the EQADC stops checking for the coherency of
a command sequence.

Once command transfers restart/continue, the non-coherency hardware will behave as if the command
sequence started from that point. Figure 25-73 depicts how the non-coherency hardware will behave when
a non-coherency event is detected.

NOTE

If MODEx is changed to disabled while a CFIFO is transferring commands,
the NCF flag for that CFIFO will not become asserted.

NOTE

When the EQADC enters debug or stop mode while a command sequence
is being executed, the NCF will become asserted if an empty external
CBuffer is detected after debug/stop mode is exited.

Null Message 1st Command 2nd Command 3rd Command

SDS

Serial Data

(a) (b) (c)

External CBuffer Status

Capture
Point at
EQADC

CBuffer
Status at
External
Device

CBuffer
Status as

Captured by
the EQADC

Used for
NCF

detection
on the

EQADC?

(a) EMPTY EMPTY Don’t care

(b) 1 ENTRY EMPTY No

Transmitted

Assumptions:

1. The CFIFO starts sending commands to an empty
external CBuffer when triggered.

2. Execution of a command on the external device
takes longer than the time to complete three serial
transmissions.

External CBuffer status starts to
be monitored here.

Transfer of command
sequence starts

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1116 Freescale Semiconductor

Figure 25-71. Non-Coherency Event when Different CFIFOs use the same CBuffer

* TNXTPTR - Transfer Next Data Pointer

TNXTPTR *CF5_CB1_CM00
CF5_CB1_CM11
CF5_CB1_CM22
CF5_CB1_CM33

CF0_CB1_CM00

CF0_CB1_CM11

CF0_CB1_CM22
CF0_CB1_CM33

TNXTPTR *

EMPTY0

EMPTY1

CBuffer1

CFIFO5

CFIFO0

TNXTPTR *

Sent0
Sent1

CF5_CB1_CM22
CF5_CB1_CM33

CF0_CB1_CM00

CF0_CB1_CM11

CF0_CB1_CM22
CF0_CB1_CM33

TNXTPTR *

CF5_CB1_CM00
CF5_CB1_CM11

CBuffer1

CFIFO5

CFIFO0

TNXTPTR *

Sent0

Sent1
CF5_CB1_CM22
CF5_CB1_CM33

Sent0

CF0_CB1_CM11

CF0_CB1_CM22
CF0_CB1_CM33

TNXTPTR *

CF5_CB1_CM10

CF0_CB1_CM01

CBuffer1

CFIFO5

CFIFO0

(a) CFIFO0 and CFIFO5 both have commands to be sent to CBuffer1, and both are not triggered

(b) CFIFO5 becomes triggered and transfers two commands to CBuffer1

(c) CFIFO0 becomes triggered and transfers a command to CBuffer1. The sequence sent through

CFx_CBa_CMn - Command n in CFIFOx bound for CBuffera

CFIFO5 becomes non-coherent.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1117

Figure 25-72. Non-Coherency Event when Different CFIFOs are using Different External CBuffers

* TNXTPTR - Transfer Next Data Pointer

TNXTPTR *

Sent0

Sent1
CF5_CB3_CM22
CF5_CB3_CM33

CF0_CB2_CM00

CF0_CB2_CM11

CF0_CB2_CM22
CF0_CB2_CM33

TNXTPTR *

CFIFO5

CFIFO0

EMPTY0
EMPTY1

CBuffer2

CF5_CB3_CM00
CF5_CB3_CM11

CBuffer3 EQADC SSI

(a) CFIFO0 and CFIFO5 both have commands to be sent to external CBuffers. CFIFO0 is not
triggered. CFIFO5 is triggered and sent two commands to CBuffer3

TNXTPTR *

Sent0
Sent1

CF5_CB3_CM22
CF5_CB3_CM33

Sent0

Sent1

CF0_CB2_CM22
CF0_CB2_CM33

TNXTPTR *

CFIFO5

CFIFO0

CF0_CB2_CM00

CF0_CB2_CM11

CBuffer2

EMPTY0

CF5_CB3_CM11

CBuffer3 EQADC SSI

(b) CFIFO0 is triggered and sent two commands to CBuffer2. CFIFO5 cannot send commands
to CBuffer3 because the EQADC SSI is busy transferring commands from CFIFO0. Execution
of first command of CFIFO5 is completed.

TNXTPTR *

Sent0
Sent1

CF5_CB3_CM22
CF5_CB3_CM33

Sent0

Sent1

Sent2
CF0_CB2_CM33 TNXTPTR *

CFIFO5

CFIFO0

CF0_CB2_CM10

CF0_CB2_CM21

CBuffer2

EMPTY0

CF5_CB3_CM11

CBuffer3 EQADC SSI

(c) Execution of first command of CFIFO0 is completed and CFIFO0 sends new command to
CBuffer2.

TNXTPTR *

Sent0

Sent1
CF5_CB3_CM22
CF5_CB3_CM33

Sent0

Sent1

Sent2
Sent3

TNXTPTR *

CFIFO5

CFIFO0

CF0_CB2_CM20

CF0_CB2_CM31

CBuffer2

EMPTY0

EMPTY1

CBuffer3 EQADC SSI

(d) Second command in CBuffer3 completes. CBuffer3 became empty before the complete
command sequence in CFIFO5 is sent to it. NCF5 becomes asserted when the EQADC
receives an indication that CBuffer3 is empty, by the BUSY fields in the returning serial
message.

CFx_CBa_CMn - Command n in CFIFOx bound for CBuffera

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1118 Freescale Semiconductor

Figure 25-73. Non-coherency Detection when Transfers from a Command Sequence are Interrupted

25.6.5 EQADC Result FIFOs

25.6.5.1 RFIFO Basic Functionality

There are six RFIFOs located in the EQADC. Each RFIFO is four entries deep, and each RFIFO entry is
16 bits long. Each RFIFO serves as a temporary storage location for the one of the RQueues allocated in
system memory. Result data is saved in the RFIFOs before being moved into the system RQueues. When
an RFIFO is not empty, the EQADC sets the corresponding RFDF bit in Section 25.5.2.9, EQADC FIFO
and Interrupt Status Registers (EQADC_FISR). If RFDE is asserted in Section 25.5.2.8, EQADC Interrupt
and DMA Control Registers (EQADC_IDCR), the EQADC generates a request so that an RFIFO entry is
moved to the RQueue. An interrupt request, served by the host CPU, is generated when RFDS is negated,
and a DMA request, served by the DMAC, is generated when RFDS is asserted. The host CPU or the
DMAC responds to these requests by reading Section 25.5.2.6, EQADC Result FIFO Pop Registers
(EQADC_RFPR), to retrieve data from the RFIFO.

NOTE

The DMAC should be configured to read a single result (16-bit data) from
the RFIFO pop registers for every asserted DMA request it acknowledges.
Refer to Section 25.7.2, EQADC/DMAC Interface, for DMAC
configuration guidelines.

NOTE

Reading a word, a half-word, or any bytes from EQADC_RFPRx will pop
an entry from RFIFOx, and the RFCTRx field will be decremented by one.

Figure 25-74 describes the important components in the RFIFO. Each RFIFO is implemented as a circular
set of registers to avoid the need to move all entries at each push/pop operation. The Pop Next Data Pointer
always points to the next RFIFO message to be retrieved from the RFIFO when reading EQADC_RFPR.

CF5_CB1_CM0

CF5_CB1_CM1

CF5_CB1_CM2

CF5_CB1_CM3

CF5_CB1_CM4

CF5_CB1_CM5

CF5_CB1_CM6

CF5_CB1_CM7

CF5_CB1_CM8

CF5_CB1_CM9

CF5_CB1_CM10

CF5_CB1_CM11

CF5_CB1_CM12

CF5_CB1_CM13

Command sequence became non-coherent before command 4
was transferred. Once command transfers are resumed, EQADC
will only check for coherency after command 4.

Command sequence became non-coherent before command 11
was transferred. Once command transfers are resumed, EQADC
will only check for coherency after command 11.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1119

The Receive Next Data Pointer points to the next available RFIFO location for storing the next incoming
message from the on-chip ADCs or from the external device. The RFIFO Counter Logic counts the
number of entries in RFIFO and generates interrupt or DMA requests to drain the RFIFO.

POPNXTPTR in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR),
indicates which entry is currently being addressed by the Pop Next Data Pointer, and RFCTR, in the same
register, provides the number of entries stored in the RFIFO. Using POPNXTPTR and RFCTR, the
absolute addresses for Pop Next Data Pointer and Receive Next Data Pointer can be calculated using the
following formulas:

Pop Next Data Pointer Address= RFIFOx_BASE_ADDRESS + POPNXTPTRx*4

Receive Next Data Pointer Address = RFIFOx_BASE_ADDRESS +
[(POPNXTPTRx+RFCTRx) mod RFIFO_DEPTH] * 4

where

• a mod b returns the remainder of the division of a by b.

• RFIFOx_BASE_ADDRESS is the smallest memory mapped address allocated to an RFIFOx
entry.

• RFIFO_DEPTH is the number of entries contained in a RFIFO - four in this implementation.

When a new message arrives and RFIFOx is not full, the EQADC copies its contents into the entry pointed
by the Receive Next Data Pointer. The RFIFO counter RFCTRx in Section 25.5.2.9, EQADC FIFO and
Interrupt Status Registers (EQADC_FISR), is incremented by one, and the Receive Next Data Pointer x is
also incremented by one (or wrapped around) to point to the next empty entry in RFIFOx. However, if the
RFIFOx is full, the EQADC sets the RFOF in Section 25.5.2.9, EQADC FIFO and Interrupt Status
Registers (EQADC_FISR). The RFIFOx will not overwrite the older data in the RFIFO, the new data will
be ignored, and the Receive Next Data Pointer x is not incremented or wrapped around. RFIFOx is full
when the Receive Next Data Pointer x equals the Pop Next Data Pointer x and RFCTRx is not zero.
RFIFOx is empty when the Receive Next Data Pointer x equals the Pop Next Data Pointer x and RFCTRx
is zero.

When the EQADC RFIFO Pop Register x is read and the RFIFOx is not empty, the RFIFO counter
RFCTRx is decremented by one, and the POP Next Data Pointer is incremented by one (or wrapped
around) to point to the next RFIFO entry.

When the EQADC RFIFO Pop Register x is read and RFIFOx is empty, EQADC will not decrement the
counter value and the POP Next Data Pointer x will not be updated. The read value will be undefined.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1120 Freescale Semiconductor

Figure 25-74. RFIFO Diagram

The detailed behavior of the Pop Next Data Pointer and Receive Next Data Pointer is described in the
example shown in Figure 25-75 where an RFIFO with 16 entries is shown for clarity of explanation, the
actual hardware implementation has only four entries. In this example, RFIFOx with 16 entries is shown
in sequence after popping or receiving entries.

Data Entry 2

Data Entry 1

POP Next

Data Pointer *

Receive Next
Data Pointer *

RFIFO
Pop Register

Data from

RFIFO Counter
Control Logic

DMA Done

Interrupt/DMA Request

external
device or
from on-chip
ADCs or from

Control
Signals

* All RFIFO entries are memory mapped and the entries addressed by
these pointers can have their absolute addresses calculated using
POPNXTPTR and RFCTR.

parallel
side interface

Read from
slave-bus interface
by CPU or DMA

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1121

Figure 25-75. RFIFO Entry Pointer Example

Receive Pop
RFIFOx

First In

After reset or
invalidation

Next
Data
Pointer

Next
Data
Pointer

Last In

Valid Entry

Empty Entry

Receive

Pop
RFIFOx

Some entries received
but none popped

Next
Data
Pointer

Next
Data
Pointer

Pop

RFIFOx

No entries received
but some popped

Next
Data
Pointer

First In

Last InReceive
Next
Data
Pointer

Receive

RFIFOx

Entries received until
full and none popped

Next
Data
Pointer

RFIFOx

No entries received
but some popped

Pop

RFIFOx

Some entries received
and some popped

Next
Data
Pointer

First In

Last InReceive
Next
Data
Pointer

Pop
Next
Data
Pointer

First In
Last In Receive

Next
Data
Pointer

Pop
Next
Data
Pointer

First In

Last In

NOTE: x=0, 1, 2, 3, 4, 5

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1122 Freescale Semiconductor

25.6.5.2 Distributing Result Data into RFIFOs

Data to be moved into the RFIFOs can come from four sources: from ADC0, from ADC1, from the
external device or from the decimation filter A or B, or reaction module through the PSI. All result data
comes with a MESSAGE_TAG field and a DEST field defining what should be done with the received
data. The EQADC hardware decodes the MESSAGE_TAG and DEST fields and:

• stores the 16-bit data into the appropriate RFIFO if the MESSAGE_TAG indicates a valid RFIFO
number, or;

• sends the 16-bit data, the MESSAGE_TAG and the DEST data through the PSI to decimation filter
A or B or reaction module, or;

• ignores the data in case of a null or “reserved for customer use” MESSAGE_TAG.

In general received data is moved into RFIFOs as they become available, while an exception happens when
multiple results from different sources become available at the same time. In that case, result data from
ADC0 is processed first, result data from ADC1 is only process after all ADC0 data is processed, result
data from the external device is only processed after all data from ADC0/1 is processed, and finally
returned data from companion module is only processed after all data from ADC0/1 and external device
is processed.

When time-stamped results return from the on-chip ADCs, the conversion result and the time stamp are
always moved to the RFIFOs in consecutive clock cycles in order to guarantee they are always stored in
consecutive RFIFO entries.

25.6.6 On-Chip ADC Configuration and Control

25.6.6.1 Enabling and Disabling the On-chip ADCs

The on-chip ADCs have an enable bit (ADC0/1_EN) in the Section 25.5.3.1, ADC0/1 Control Registers
(ADC0_CR and ADC1_CR), which allows the enabling of the ADCs only when necessary. When the
enable bit for an ADC is negated, the clock input to that ADC is stopped. The ADCs are disabled out of
reset - ADC0/1_EN bits are negated - to allow for their safe configuration. The ADC must only be
configured when its enable bit is negated. Once the enable bit of an ADC is asserted, clock input to is
started.

NOTE

Conversion commands sent to the CBuffer of a disabled ADC are ignored
by the ADC control hardware.

NOTE

A 8ms wait time from VDDA power up to enabling ADC is required to
pre-charge the external 100nf capacitor on REFBYPC pin. This time must
be guaranteed by crystal startup time plus reset duration or user.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1123

NOTE

Due to legacy reasons, the EQADC will always wait 120 ADC clocks before
issuing the first conversion command following the enabling of one of
on-chip ADCs, or the exiting of stop mode. There are two independent
counters checking for this delay: one clocked by ADC0_CLK and another
by ADC1_CLK. Conversion commands can start to be executed whenever
one of these counters completes counting 120 ADC clocks.

25.6.6.2 ADC Clock and Conversion Speed

The clock input to the ADCs is defined by setting the ADC0/1_ODD_PS, the ADC0/1_CLK_SEL and the
ADC0/1_CLK_PS fields in the Section 25.5.3.1, ADC0/1 Control Registers (ADC0_CR and ADC1_CR).
When the ADC0/1_CLK_SEL is set, the ADC clock frequency is the same as the system clock, but it has
the inverted phase. When it is clear, the ADC0/1_ODD_PS and the ADC0/1_CLK_PS fields select the
clock divide factor by which the system clock will be divided as showed in Table 25-35. The ADC clock
frequency is calculated as below and it must not exceed 15 MHz. This is also the maximum frequency of
system clock when the ADC0/1_CLK_SEL is asserted.

Figure 25-76 depicts how the ADC clocks for ADC0 and ADC1 are generated.

Figure 25-76. ADC0/1 Clock Generation

ADCClockFrequency
SystemClockFrequency MHz 

SystemClockDivideFactor
-- ADCClockFrequency 15MHz ;=

Divide by:
2, 3, 4, .. , 63, 64, 65

ADC0 Control Register

ADC0_CLK_PS

To ADC0
System Clock Divider

System Clock
ADC0Clock

SEL

ADC0_CLK_SEL

Divide by:
2, 3, 4, .. , 63, 64, 65

ADC1 Control Register

ADC1_CLK_PS

To ADC1
System Clock Divider

System Clock
ADC1Clock

SEL

ADC1_CLK_SEL

ADC0_ODD_PS

ADC1_ODD_PS

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1124 Freescale Semiconductor

The ADC conversion speed (in K samples per second - Ksps) is calculated by the following formula. The
number of sampling cycles is determined by the LST bits in the command message - see Section ,
Conversion Command Format for the Standard Configuration” - and it can take one of the following
values: 2, 8, 64, or 128 ADC clock cycles. The number of AD conversion cycles is 13 for differential
conversions and 14 for single-ended 12-bit resolution and unitary input gain. The maximum conversion
speed is achieved when the ADC Clock frequency is set to its maximum (15 MHz) and the number of
sampling cycles set to its minimum (2 cycles). The maximum conversion speed for differential and
single-ended conversions are 1Msps and 937.5Ksps, respectively.

Table 25-65 shows an example of how the ADC0/1_CLK_PS can be set when using a 120 MHz system
clock and the corresponding conversion speeds for all possible ADC clock frequencies. The table also
shows that according to the system clock frequency, certain clock divide factors are invalid (2, 4, 6, 8 clock
divide factors in the example) since their use would result in a ADC clock frequency higher than the
maximum one supported by the ADC. ADC clock frequency must not exceed 15 MHz.

Table 25-65. ADC Clock Configuration Example (System Clock Frequency=120 MHz)

ADC0/1_CLK_PS [0:4]
ADC0/1_
ODD_PS

System Clock
Divide Factor

ADC Clock
(System Clock =

120 MHz)

Differential
Conversion Speed

with Default
Sampling Time (2

cycles)

Single-Ended
Conversion Speed

with Default
Sampling Time (2

cycles)

0b00000 0 2 N/A N/A N/A

1 3 N/A N/A N/A

0b00001 0 4 N/A N/A N/A

1 5 N/A N/A N/A

0b00010 0 6 N/A N/A N/A

1 7 N/A N/A N/A

0b00011 0 8 15.0 MHz 1.0 Msps 938 Ksps

1 9 13.3 MHz 889 Ksps 833 Ksps

0b00100 0 10 12.0 MHz 800 Ksps 750 Ksps

1 11 10.9 MHz 727 Ksps 682 Ksps

0b00101 0 12 10.0 MHz 667 Ksps 625 Ksps

1 13 9.23 MHz 615 Ksps 577 Ksps

0b00110 0 14 8.57 MHz 571 Ksps 536 Ksps

1 15 8.0 MHz 533 Ksps 500 Ksps

0b00111 0 16 7.5 MHz 500 Ksps 469 Ksps

1 17 7.06 MHz 471 Ksps 441 Ksps

0b01000 0 18 6.67 MHz 444 Ksps 417 Ksps

1 19 6.32 MHz 421 Ksps 395 Ksps

0b01001 0 20 6.0 MHz 400 Ksps 375 Ksps

1 21 5.71 MHz 381 Ksps 357 Ksps

ADCConversionSpeed
ADCClockFrequency MHz 

NumberOfSamplingCycles NumberOfADConversionCycles+ 
---=

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1125

0b01010 0 22 5.45 MHz 364 Ksps 341 Ksps

1 23 5.22 MHz 348 Ksps 326 Ksps

0b01011 0 24 5.0 MHz 333 Ksps 313 Ksps

1 25 4.80 MHz 320 Ksps 300 Ksps

0b01100 0 26 4.62 MHz 308 Ksps 288 Ksps

1 27 4.44 MHz 296 Ksps 278 Ksps

0b01101 0 28 4.29 MHz 286 Ksps 268 Ksps

1 29 4.14 MHz 276 Ksps 259 Ksps

0b01110 0 30 4.0 MHz 267 Ksps 250 Ksps

1 31 3.87 MHz 258 Ksps 242 Ksps

0b01111 0 32 3.75 MHz 250 Ksps 234 Ksps

1 33 3.64 MHz 242 Ksps 227 Ksps

0b10000 0 34 3.53 MHz 235 Ksps 221 Ksps

1 35 3.43 MHz 229 Ksps 214 Ksps

0b10001 0 36 3.33 MHz 222 Ksps 208 Ksps

1 37 3.24 MHz 216 Ksps 203 Ksps

0b10010 0 38 3.16 MHz 211 Ksps 198 Ksps

1 39 3.08 MHz 205 Ksps 192 Ksps

0b10011 0 40 3.0 MHz 200 Ksps 188 Ksps

1 41 2.93 MHz 195 Ksps 183 Ksps

0b10100 0 42 2.86 MHz 190 Ksps 179 Ksps

1 43 2.79 MHz 186 Ksps 174 Ksps

0b10101 0 44 2.73 MHz 182 Ksps 170 Ksps

1 45 2.67 MHz 178 Ksps 167 Ksps

0b10110 0 46 2.61 MHz 174 Ksps 163 Ksps

1 47 2.55 MHz 170 Ksps 160 Ksps

0b10111 0 48 2.5 MHz 167 Ksps 156 Ksps

1 49 2.45 MHz 163 Ksps 153 Ksps

0b11000 0 50 2.4 MHz 160 Ksps 150 Ksps

1 51 2.35 MHz 157 Ksps 147 Ksps

0b11001 0 52 2.31 MHz 154 Ksps 144 Ksps

1 53 2.26 MHz 151 Ksps 142 Ksps

0b11010 0 54 2.22 MHz 148 Ksps 139 Ksps

1 55 2.18 MHz 145 Ksps 136 Ksps

0b11011 0 56 2.14 MHz 143 Ksps 134 Ksps

1 57 2.11 MHz 140 Ksps 132 Ksps

0b11100 0 58 2.07 MHz 138 Ksps 129 Ksps

1 59 2.03 MHz 136 Ksps 127 Ksps

Table 25-65. ADC Clock Configuration Example (System Clock Frequency=120 MHz) (continued)

ADC0/1_CLK_PS [0:4]
ADC0/1_
ODD_PS

System Clock
Divide Factor

ADC Clock
(System Clock =

120 MHz)

Differential
Conversion Speed

with Default
Sampling Time (2

cycles)

Single-Ended
Conversion Speed

with Default
Sampling Time (2

cycles)

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1126 Freescale Semiconductor

25.6.6.3 ADC Sampling Delay after Power-Up

To guarantee accuracy specifications, a delay of at least 8 ms must be present between the power-up of the
VDDA supply and the start of the first ADC conversion. This delay allows internal ADC references to
settle. The accuracy of a conversion during the first 8 ms is not guaranteed by the specifications, however
conversion within the first 8 ms will be possible on the eQADC if this delay is not implemented in
software.

25.6.6.4 Time Stamp Feature

The on-chip ADCs can provide a time stamp for the conversions they execute. A time stamp is the value
of the time base counter latched when the EQADC detects the end of the analog input voltage sampling.
A time stamp for a conversion command is requested by setting the TSR bit in the corresponding
command. When TSR is negated, that is a time stamp is not requested, the ADC returns a single result
message containing the conversion result. When TSR is asserted, that is a time stamp is requested, the
ADC returns two result messages; one containing the conversion result, and afterwards another containing
the time stamp for that conversion. The result messages are sent in this order to the RFIFOs and both
messages are sent to the same RFIFO was specified in the MESSAGE_TAG field of the executed
conversion command.

The time stamp can be provided by an external source using the STAC bus interface (more details in
Section 25.6.6.4.1, STAC Client Submodule (REDLC)) or by the internal time base counter. The selection
between the two sources is done by field ADC0/1_TBSEL in the ADC0/1_CR register or by field ATBSEL
in registers ADC_ACR1-8. Refer to Table 25-34 and Table 25-44 for selection details.

The time base counter is a 16-bit up counter that wraps after reaching 0xFFFF. It is disabled after reset and
it is enabled according to the setting of TBC_CLK_PS field in Section 25.5.3.2, ADC Time Stamp Control
Register (ADC_TSCR). TBC_CLK_PS defines if the counter is enabled or disabled, and, if enabled, at
what frequency it is incremented. The time stamps are returned regardless of whether the time base counter
is enabled or disabled. The time base counter can be reset by writing 0x0000 to the Section 25.5.3.3, ADC
Time Base Counter Registers (ADC_TBCR), with a write configuration command.

0b11101 0 60 2.0 MHz 133 Ksps 125 Ksps

1 61 1.97 MHz 131 Ksps 123 Ksps

0b11110 0 62 1.94 MHz 129 Ksps 121 Ksps

1 63 1.90 MHz 127 Ksps 119 Ksps

0b11111 0 64 1.88 MHz 125 Ksps 117 Ksps

1 65 1.85 MHz 123 Ksps 115 Ksps

Table 25-65. ADC Clock Configuration Example (System Clock Frequency=120 MHz) (continued)

ADC0/1_CLK_PS [0:4]
ADC0/1_
ODD_PS

System Clock
Divide Factor

ADC Clock
(System Clock =

120 MHz)

Differential
Conversion Speed

with Default
Sampling Time (2

cycles)

Single-Ended
Conversion Speed

with Default
Sampling Time (2

cycles)

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1127

25.6.6.4.1 STAC Client Submodule (REDLC)

The shared time and angle count (STAC) bus provides access to one external time base, imported from the
STAC bus to the eQADC. The eTPU2 module's time bases and angle count can be exported through the
STAC client submodule interface. Time base and/or angle information of the eTPU2 engine can be
exported to the eMIOS module and the eQADC, which are STAC clients.

The device’s STAC server identification assignment is shown in Table 25-66. The time slot assignment is
fixed, so only time bases running at system clock divided by four or slower can be integrally exported. The
STAC client submodule runs with the system clock, and its time slot timing is synchronized with the
eTPU2 timing on reset. The time slot sequence is 0-1-2-3, such that they alternate between eTPU time
bases.

Figure 25-77. REDLC Block Diagram

The eQADC_REDLCCR[SRV1] bit selects the time slot of the STAC timebase 1 output and the
eQADC_REDLCCR[SRV2] bit selects the time slot of the STAC timebase 2 output.

Figure 25-78 shows a timing diagram for the STAC client submodule.

Table 25-66. STAC Client Submodule Server Slot Assignment

eTPU2 Engine Time Base Server ID

TCR1 0

TCR2 2

SRV3 SRV2 SRV1 SRV0

STAC bus Time baseSTAC client submodule 1
(24-bit wide) output

Time slot selector bits

SRV3 SRV2 SRV1 SRV0

Time baseSTAC client submodule 2
output

Time slot selector bits

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1128 Freescale Semiconductor

Figure 25-78. Timing Diagram for the STAC Bus and
STAC Client Submodule Output

Every time the selected time slot changes, the STAC client submodule output is updated.

After the slot selection is done and the timebase data is extracted, the STAC client submodule selects 16
bits from the original 24-bit timebase data. These selected bits are the timebase to be used internal to the
EQADC.

25.6.6.5 ADC pre-gain feature

Each ADC can be configured to have a selectable input gain as defined in Section 25.5.3.6, Alternate
Configuration 1-8 Control Registers (ADC_ACR1-8). This means the input signal is sampled and the
result is amplified by factor 2, or 4 before the conversion phase. In present implementation of this feature,
the conversion is 1 or 2 ADC clock cycles longer for gain 2 or gain 4, respectively.

25.6.6.6 ADC resolution selection feature

The ADCs conversion resolutions can be 8 bits, 10 bits or 12 bits as described in Section 25.5.3.6,
Alternate Configuration 1-8 Control Registers (ADC_ACR1-8). For conversions at a resolution less than
12, the ADC is executing less operations and the conversion time is smaller. In this ADC, it is verified that
there is 1 ADC clock cycle for each bit of resolution. Therefore, for the same ADC clock frequency, the
ADC sample frequency is higher for lower resolutions.

When a conversion is undertaken at a resolution less than 12, the result is presented by the ADC in right
justified format in the 12-bit input bus e.g.: 0000xxxxxxxx for 8 bits and 00xxxxxxxxxx for 10 bits. The
EQADC inverts the result to left justified format i.e.: xxxxxxxx0000 for 8 bits and xxxxxxxxxx00 for 10
bits. This is because the same calibration coefficients in the MAC can then be used. The left shift operation
is done just after the conversion result enters the EQADC, in the Resolution Adjustment block prior to the
MAC, as illustrated in Figure 25-81.

TS[02]STAC bus
(submodule input) TS[00] TS[01] TS[02]

Time base
(submodule output) TS[01]xx

The SRV bits are set to capture TS[01].

TS[03] TS[00] TS[03] TS[00] TS[01]

System clock

TS[01]

STAC bus (REDC input) TS[00] TS[01] TS[02]

1. Maximum of 16 time slots (TSn)
NOTES:

TS[01]TS[00]TSn1 TS[02]

 Time base (REDC output) TS[01] TS[01]xx

2. The SRV bits capture TS[01]

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1129

25.6.6.7 ADC Calibration Feature

25.6.6.7.1 Overview

NOTE

Details of the recommended calibration procedure can be found in
Applications Note AN2989 “Design, Accuracy and Calibration of Analog
to Digital Converts on the MPC5500 family” available from
www.freescale.com. This contains recommended settings to avoid
unexpected behavior when performing calibration.

There are three sets of calibration coefficients for each ADC. Each set is composed by a gain factor and
an offset factor: GCCn/OCCn, ALTGCCn1/ALTGCCn1, and ALTGCCn2/ALTGCCn2, where n is the
ADC number 0 or 1. The pair GCCn/OCCn is selected when it is used the normal configuration or the
alternate configurations 3 to 8. The pair ALTGCCn1/ALTGCCn1 is used only when the alternate
configuration 1 is selected. And the pair ALTGCCn2/ALTGCCn2 is for the alternate configuration 2. The
description below is for a generic pair of gain/offset GCC/OCC.

The EQADC provides a calibration scheme to remove the effects of gain and offset errors from the results
generated by the on-chip ADCs. Only results generated by the on-chip ADCs are calibrated. The results
generated by ADCs on the external device are directly sent to RFIFOs unchanged. The main component
of calibration hardware is a Multiply-and-Accumulate (MAC) unit, one per on-chip ADC, that is used to
calculate the following transfer function which relates a calibrated result to a raw, uncalibrated one.

CAL_RES = GCC * RAW_RES + OCC+2;

where:

• CAL_RES is the calibrated result corresponding the input voltage Vi.

• GCC is the gain calibration constant.

• RAW_RES is the raw, uncalibrated result with resolution adjustment corresponding to an specific
input voltage Vi.

• OCC is the offset calibration constant.

• The addition of two reduces the maximum quantization error of the ADC. See Section 25.7.6.3,
Quantization Error Reduction During Calibration.

Calibration constants GCC and OCC are determined by taking two samples of known reference voltages
and using these samples to calculate the values for the constants. For details and an example about how to
calculate the calibration constants and use them in result calibration refer to Section 25.7.6, ADC Result
Calibration. Once calculated, GCC is stored in the Section 25.5.3.4, ADC0/1 Gain Calibration Constant
Registers (ADC0_GCCR and ADC1_GCCR), and OCC in Section 25.5.3.5, ADC0/1 Offset Calibration
Constant Registers (ADC0_OCCR and ADC1_OCCR), from where their values are fed to the MAC unit.
The alternate gain values are stored in Section 25.5.3.7, ADC0/1 Alternate Gain Registers
(ADC0_AGR1-2 and ADC1_AGR1-2), and the alternate offset values in Section 25.5.3.8, ADC0/1
Alternate Offset Register (ADC0_AOR1-2 and ADC1_AOR1-2). Since the analog characteristics of each
on-chip ADCs differs, each ADC has an independent pair of calibration constants.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1130 Freescale Semiconductor

A conversion result is calibrated according to the status of CAL bit in the command that initiated the
conversion. If the CAL bit is asserted, the EQADC will automatically calculate the calibrated result before
sending the result to the appropriate RFIFO or companion module. If the CAL bit is negated, the result is
not calibrated, it bypasses the calibration hardware, and is directly sent to the appropriate RFIFO or
companion module.

25.6.6.7.2 MAC Unit and Operand Data Format

The MAC unit diagram is shown in Figure 25-79. Each on-chip ADC has a separate MAC unit to fine-tune
its conversion results. The description below considers the general calibration constant registers but it is
the same for the alternate calibration constants.

The OCC0/1 operand is a 14-bit signed value stored in the Section 25.5.3.5, ADC0/1 Offset Calibration
Constant Registers (ADC0_OCCR and ADC1_OCCR). The RAW_RES operand is the raw uncalibrated
result, and it is the direct output from the on-chip ADCs but passing through the resolution adjustment
block. The GCC0/1 operand is a 15-bit fixed point unsigned value stored in the Section 25.5.3.4, ADC0/1
Gain Calibration Constant Registers (ADC0_GCCR and ADC1_GCCR). The GCC is expressed in the
GCC_INT.GCC_FRAC binary format. The integer part of the GCC (GCC_INT=GCC[1]) contains a single
binary digit while its fractional part (GCC_FRAC=GCC[2:15]) contains 14 bits - see Figure 25-80. The
gain constant equivalent decimal value ranges from 0 to 1.999938..., as shown in Table 25-67. Two is
always added to the MAC output - see Section 25.7.6.3, Quantization Error Reduction During Calibration.
CAL_RES output is the calibrated result, and it is a 14-bit unsigned value. CAL_RES is truncated to
0x3FFF, in case of a overflow, and to 0x0000, in case of an underflow.

Figure 25-79. MAC Unit Diagram

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
GCC_INT GCC_FRAC

GCC[1] GCC[2:15]

Figure 25-80. Gain Calibration Constant Format

MAC Unit

Calibrated Result (CAL_RES)
(14-bit unsigned value)

Raw Uncalibrated Result
(RAW_RES)
(12-bit unsigned value)

Gain Calibration Constant (GCC0/1)
(15-bit fixed point unsigned value
from ADC0/1_GCCR register)

Offset Calibration Constant (OCC0/1)
(14-bit signed value
from ADC0/1_OCCR register)

+
2

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1131

GCC_INT - Integer part of the gain calibration constant for ADC0/1

GCC_INT is the integer part of the gain calibration constant for ADC0/1.

GCC_FRAC[1:14] - Fractional part of the gain calibration constant for ADC0/1

GCC_FRAC is the fractional part of the gain calibration constant for ADC0/1. GCC_FRAC expresses
decimal values ranging from 0 to 0.999938...

25.6.6.8 ADC Control Logic overview and command execution

Figure 25-81 shows the basic logic blocks involved in the ADC Control and how they interact.
CFIFOs/RFIFOs interact with CBuffers/Abort Cont/Result Message Return Logic through the FIFO
Control Unit. The EB and BN bits in the Command Message uniquely identify the CBuffer to which a
command should be sent. The FIFO Control Unit decodes these bits and sends the ADC command to the
proper CBuffer. Other blocks of logic are the Resolution Adjustment, Result Format and Calibration
Sub-Block, the Time Stamp Logic, and the MUX Control Logic.

The Resolution Adjustment Sub-Block receives the 12-bit data bus directly from the ADC and changes the
received conversion results from right aligned format of ADC to the left aligned format depending on the
selected resolution of the conversion. This operation helps the calibration processing to use the calibration
coefficients always with the same format.

The Result Format and Calibration Sub-Block formats the returning data into Result Messages and sends
them to the RFIFOs1. The returning data can be data read from an ADC register, a conversion result, or a
time stamp. The formatting and calibration of conversion results also take place inside this sub-block.

The Time Stamp Logic latches the value of the time base counter or the STAC bus time base when detecting
the end of the analog input voltage sampling, and sends it to the Result Format and Calibration Sub-Block
as time stamp information.

The MUX Control Logic generates the proper MUX control signals and, when the ADC0/1_EMUX bits
are asserted, the MA signals based on the channel numbers extracted from the ADC Command.

Table 25-67. Binary and Decimal Representations of the Gain Constant

Gain Constant
(GCC_INT.GCC_FRAC binary format)

Corresponding Decimal Value

0.0000_0000_0000_00 0

... ...

0.1000_0000_0000_00 0.5

... ...

0.1111_1111_1111_11 0.999938...

1.0000_0000_0000_00 1

... ...

1.1100_0000_0000_00 1.75

... ...

1.1111_1111_1111_11 1.999938...

1. The result messages may also be routed to an on-chip companion module via the side interface, and then fed back to the
RFIFOs.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1132 Freescale Semiconductor

When the on-chip ADC abort feature is not enabled, ADC Commands are stored in the CBuffers as they
come and they are executed in the first-in-first-out basis. After the execution of a command in ENTRY1
finishes all commands are shifted one entry. After the shift, ENTRY0 is always empty and ready to receive
a new command. Execution of configuration commands only start when they reach ENTRY1. Consecutive
conversion commands are pipelined and their execution can start while in ENTRY0. This is explained
below.

AD conversion accuracy can be affected by the settling time of the input channel multiplexers. Some time
is required for the channel multiplexers internal capacitances to settle after the channel number is changed.
If the time prior to sampling is not long enough to absorb this settling, then the settling time will take from
ADC sampling time which may result in inaccurate sampling and ultimately compromise conversion result
accuracy - see Figure 25-82 (a). This could be avoided by switching the multiplexers in preparation for the
next command’s sampling during the AD conversion phase of the current command as showed in
Figure 25-82 (b). In EQADC, this is done in the following way; when a conversion command is in buffer
ENTRY1 and another conversion command is identified in ENTRY0, then the channel number of
ENTRY0 is sent to the MUX Control Logic some cycles before the sampling phase of the command in
ENTRY0 starts. In this way, sampling for the next command can promptly start after the current
conversion finishes because the internal capacitance of the multiplexers will be settled by that time,
allowing for more accurate sampling. This is specially important for applications that require high
conversion speeds, that is with the ADC running at maximum clock frequency and with the analog input
voltage sampling time set to a minimum (2 ADC clock cycles), when the short sampling time does not
allow the multiplexers to completely settle. The second advantage of pipelining conversion commands is
to provide precise conversion intervals, which means the time intervals between two consecutive
conversions are the same. This is important for any digital signal process application.

When the on-chip ADC abort feature is enabled, ADC Commands from CFIFO0 should be considered
immediately, even stopping the execution of some command that is already in ENTRY1. When the abort
request is sent to the ADC, the already stored commands in the CBuffers are copied in a temporary set of
registers. The first ADC command from CFIFO0 is sent after the abort acknowledge indication from ADC.
The process is the same as usual until the transfer of the last command from CFIFO0. Then the temporarily
stored commands that were postponed by the abortion are recovered and they are pipelined for execution.
After the last command from this temporary memory is transferred, the next commands are pipelined from
the CFIFOs.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1133

Figure 25-81. On-Chip ADC Control Scheme

CHANNEL_NUMBER1

M
U

X
 4

0:
1

ADC0

ADC1

CFIFOx

RFIFOx

M
U

X
 4

0:
1

BIAS
GEN

MUX

AN0-AN39

REFBYPC

Control

16 bits
Time

Stamp

Result1

Time Stamp 0

Result0

TSR0

MESSAGE_TAG1; FMT1, CAL1

EMUX1

TBC_CLK_PS

32 bits

MA0, MA1, MA2

E
N

T
R

Y
1

E
N

T
R

Y
0

Configuration

E
N

T
R

Y
1

E
N

T
R

Y
0

TSR1

ADDR or/and DATA

A
D

D
R

 o
r/

an
d

D
A

T
A

Register Data 0/1

CHANNEL_NUMBER0

Time Stamp1

Registers

CBuffer1

CBuffer0

Logic

Logic

F
IF

O
 C

on
tr

ol
 U

ni
t

EMUX0

REGISTER FIELD
Words in shaded boxes represent
configuration register fields

ADC1_Result1

ADC0_Result0

LST1

LST0

NOTE: x=0, 1, 2, 3, 4, 5

MESSAGE_TAG0; FMT0, CAL0

Pre-Charge

REF
GEN

PSI

Abort
Cont

Abort
Cont

Resolution
Adjust
Resolution
Adjust

Result Format
and
Calibration
Sub-block

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1134 Freescale Semiconductor

Figure 25-82. Overlapping Consecutive Conversion Commands

25.6.7 Internal/External Multiplexing

25.6.7.1 Channel assignment

The internal analog multiplexers select one of the 40 analog input pins for conversion, based on the
CHANNEL_NUMBER field of a Command Message. The analog input pin channel number assignments
and the pin definitions vary depending on how the ADC0/1_EMUX are configured. Allowed combinations
of ADC0/1_EMUX bits are shown in Table 25-68 together with references to tables indicating how
CHANNEL_NUMBER field of each conversion command must be set to avoid channel selection
conflicts.

During differential conversions the analog multiplexer passes differential signals to both the positive and
negative terminals of the ADC. The differential conversions can only be initiated on four channels: DAN0,

Channel # Change
and Sample Start

(a) Command Execution Sequence for Two Non-Overlapped Commands

(b) Command Execution Sequence for Two Overlapped Commands

Minimum time necessary to perform a single
conversion after channel number is changed

Channel # Change
and Sample Start

AD Conversion
MUX Settle Time
and Sampling AD Conversion

MUX Settle Time
and Sampling

Conversion starts immediately after channel #
change.ADC sample time should compensate
for MUX internal capacitance settling and for the
sampling on the sampling capacitor. If sample
time is not long enough, this can lead to
inaccurate conversion results.

AD Conversion

Change
Channel #

MUX Settle Time
and Sampling

Channel # Change
and Sample Start

AD ConversionSampling

Sample Start

Channel # changes before sampling starts leading to
more time for MUX internal capacitance to settle.

MUX Settle Time

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1135

DAN1, DAN2, and DAN3. Refer to Table 25-69 and Table 25-70 for the channel numbers used to select
differential conversions.

 Table 25-69 shows the channel number assignments for the non-multiplexed mode. The 43 single-ended
channels and 4 differential pairs are shared between the two ADCs.

Table 25-68. ADC0/1_EMUX Bits Combinations

ADC0_EMUX ADC1_EMUX
CHANNEL_NUMBER should be set as in

ADC0 ADC1

0 0 Refer to Table 25-69 Refer to Table 25-69

0 1 Refer to Table 25-69 Refer to Table 25-70

1 0 Refer to Table 25-70 Refer to Table 25-69

1 1 Reserved 1

1 ADC0_EMUX and ADC1_EMUX must not be asserted at the same time.

Table 25-69. Non-multiplexed Channel Assignments1

Input Pins ADC
Channel Number in

CHANNEL_NUMBER Field

Analog
Pin Name

Other
Functions

Conversion
Type

ADC
Number

Binary Decimal

AN0 to AN39 Single-ended ADC0/ADC1 0000_0000 to
0010_0111

0 to 39

VRH Single-ended ADC0/ADC1 0010_1000 40

VRL Single-ended ADC0/ADC1 0010_1001 41

50% x VREF 2,3
(do not use for

calibration)

Single-ended ADC0/ADC1 0010_1010 42

75% x VREF 2 Single-ended ADC0/ADC1 0010_1011 43

25% x VREF 2 Single-ended ADC0/ADC1 0010_1100 44

INA_ADC0/1_0 Buffered
bandgap

Single-ended ADC0/ADC1 0010_1101 45

Reserved 0010_1110 to 0101_1111 46 to 95

DAN0+ and DAN0- Differential ADC0/ADC1 0110_0000 96

DAN1+ and DAN1- Differential ADC0/ADC1 0110_0001 97

DAN2+ and DAN2- Differential ADC0/ADC1 0110_0010 98

DAN3+ and DAN3- Differential ADC0/ADC1 0110_0011 99

Reserved 0110_0100 to 0111_1111 100 to 127

INA_ADC0/1_1 Temp Sensor Single-ended ADC0/ADC1 1000_0000 128

INA_ADC0/1_2 Spare Single-ended ADC0/ADC1 1000_0001 129

Reserved 1000_0010 to
1000_1111

130 to 143

Device Specific Use ADC0 1001_0000 to
1001_0011

144 to 147

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1136 Freescale Semiconductor

Table 25-70 shows the channel number assignments for multiplexed mode. The ADC with the
ADC0/1_EMUX bit asserted can access 4 differential pairs, 39 single-ended, and, at most, 64 externally
multiplexed channels. Refer to Section 25.6.7.2, External multiplexing, for a detailed explanation about
how external multiplexing can be achieved.

Reserved ADC1 1001_0000 to
1001_0011

144 to 147

Reserved 1001_0100 to
1010_0001

148 to 161

Reserved ADC1 1010_0010 to
1010_0111

162 to 167

INA_ADC0_3 Device Specific Single-ended ADC0 1010_0010 162

INA_ADC0_4 Device Specific Single-ended ADC0 1010_0011 163

INA_ADC0_5 Device Specific Single-ended ADC0 1010_0100 164

INA_ADC0_6 Device Specific Single-ended ADC0 1010_0101 165

INA_ADC0_7 Device Specific Single-ended ADC0 1010_0110 166

INA_ADC0_8 Device Specific Single-ended ADC0 1010_0111 167

Reserved 1010_1000 to
1100_0001

168 to 193

Reserved ADC0 1100_0010 to 1100_0111 194 to 199

INA_ADC1_3 Device Specific Single-ended ADC1 1100_0010 194

INA_ADC1_4 Device Specific Single-ended ADC1 1100_0011 195

INA_ADC1_5 Device Specific Single-ended ADC1 1100_0100 196

INA_ADC1_6 Device Specific Single-ended ADC1 1100_0101 197

INA_ADC1_7 Device Specific Single-ended ADC1 1100_0110 198

INA_ADC1_8 Device Specific Single-ended ADC1 1100_0111 199

Reserved 1100_1000 to 1111_1111 200 to 255

1 The two on-chip ADCs can access the same analog input pins but simultaneous conversions are not allowed. Also,
when one ADC is performing a differential conversion on a pair of pins, the other ADC must not access either of
these two pins as single-ended channels.

2 VREF=VRH-VRL.
3 50% x VREF = 50% ref = (VRH / VRL)/2, but this only applies before calibration. After calibration, the 50% reference

point will actually return approximately 20 mV lower than the expected 50% of the difference between the High
Reference Voltage (VRH) and the Low Reference Voltage (VRL).The 50% reference point should not be used to
calibrate ADC. For calibration of the ADC only the 25% and 75% points should be used as described in
Section 25.7.6, ADC Result Calibration.

Table 25-69. Non-multiplexed Channel Assignments1 (continued)

Input Pins ADC
Channel Number in

CHANNEL_NUMBER Field

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1137

Table 25-70. Multiplexed Channel Assignments1

Input Pins ADC
Channel Number in

CHANNEL_NUMBER Field

Analog
Pin Name

Other Functions
Conversion

Type
ADC

Number
Binary Decimal

AN0 to AN39 2 Single-ended ADC0/ADC1 0000_0000 to
0010_0111

0 to 39

VRH Single-ended ADC0/ADC1 0010_1000 40

VRL Single-ended ADC0/ADC1 0010_1001 41

50% x VREF 3,4 Single-ended ADC0/ADC1 0010_1010 42

75% x VREF 3 Single-ended ADC0/ADC1 0010_1011 43

25% x VREF 3 Single-ended ADC0/ADC1 0010_1100 44

INA_ADC0/1_0 Buffered bandgap Single-ended ADC0/ADC1 0010_1101 45

Reserved 0010_1110 to 0011_1111 46 to 63

ANW — Single-ended ADC0/ADC1 0100_0xxx 64 to 71

ANX — Single-ended ADC0/ADC1 0100_1xxx 72 to 79

ANY — Single-ended ADC0/ADC1 0101_0xxx 80 to 87

ANZ — Single-ended ADC0/ADC1 0101_1xxx 88 to 95

DAN0+ and
DAN0-

Differential ADC0/ADC1 0110_0000 96

DAN1+ and
DAN1-

Differential ADC0/ADC1 0110_0001 97

DAN2+ and
DAN2-

Differential ADC0/ADC1 0110_0010 98

DAN3+ and
DAN3-

Differential ADC0/ADC1 0110_0011 99

Reserved 0110_0100 to 0111_1111 100 to 127

INA_ADC0/1_1 Temp Sensor Single-ended ADC0/ADC1 1000_0000 128

INA_ADC0/1_2 Spare Single-ended ADC0/ADC1 1000_0001 129

Reserved 1000_0010 to
1000_1111

130 to 143

Device Specific Use ADC0 1001_0000 to
1001_0011

144 to 147

Reserved ADC1 1001_0000 to
1001_0011

144 to 147

Reserved 1001_0100 to
1010_0001

148 to 161

Reserved ADC1 1010_0010 to
1010_0111

162 to 167

INA_ADC0_3 Device Specific Single-ended ADC0 1010_0010 162

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1138 Freescale Semiconductor

25.6.7.2 External multiplexing

The EQADC can use from one to eight external multiplexer chips to expand the number of analog signals
that may be converted. Up to 64 analog channels can be converted through external multiplexer selection.
The externally multiplexed channels are automatically selected by the CHANNEL_NUMBER field of a
Command Message, in the same way done with internally multiplexed channels. The software selects the
external multiplexed mode by setting the ADC0/1_EMUX bit in either ADC0_CR or ADC1_CR
depending on which ADC will perform the conversion. Table 25-70 shows the channel number
assignments for the multiplexed mode. There are 4 differential pairs, 39 single-ended, and, at most, 64
externally multiplexed channels which can be selected. Only one ADC can have its ADC0/1_EMUX bit
asserted at a time.

INA_ADC0_4 Device Specific Single-ended ADC0 1010_0011 163

INA_ADC0_5 Device Specific Single-ended ADC0 1010_0100 164

INA_ADC0_6 Device Specific Single-ended ADC0 1010_0101 165

INA_ADC0_7 Device Specific Single-ended ADC0 1010_0110 166

INA_ADC0_8 Device Specific Single-ended ADC0 1010_0111 167

Reserved 1010_1000 to
1100_0001

168 to 193

Reserved ADC0 1100_0010 to
1100_0111

194 to 199

INA_ADC1_3 Device Specific Single-ended ADC1 1100_0010 194

INA_ADC1_4 Device Specific Single-ended ADC1 1100_0011 195

INA_ADC1_5 Device Specific Single-ended ADC1 1100_0100 196

INA_ADC1_6 Device Specific Single-ended ADC1 1100_0101 197

INA_ADC1_7 Device Specific Single-ended ADC1 1100_0110 198

INA_ADC1_8 Device Specific Single-ended ADC1 1100_0111 199

Reserved 1100_1000 to
1101_1111

200 to 223

Reserved 1110_0xxx to 1111_1xxx 224 to 255

1 The two on-chip ADCs can access the same analog input pins but simultaneous conversions are not allowed. Also,
when one ADC is performing a differential conversion on a pair of pins, the other ADC must not access either of
these two pins as single-ended channels.

2 Old version has reserved values for channel numbers 8 to 11 when EMUX =1. Therefore, now the behavior is
different because it is converted the signal at AN8 to AN11, respectively.

3 VREF=VRH-VRL.
4 50% x VREF = 50% ref = (VRH / VRL)/2, but this only applies before calibration. After calibration, the 50% reference

point will actually return approximately 20 mV lower than the expected 50% of the difference between the High
Reference Voltage (VRH) and the Low Reference Voltage (VRL). For calibration of the ADC only the 25% and 75%
points should be used as described in Section 25.7.6, ADC Result Calibration.

Table 25-70. Multiplexed Channel Assignments1 (continued)

Input Pins ADC
Channel Number in

CHANNEL_NUMBER Field

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1139

Figure 25-83 shows the maximum configuration of eight external multiplexer chips connected to the
EQADC. The external multiplexer chip selects one of eight analog inputs and connects it to a single analog
output, which is fed to a specific input of the EQADC. The EQADC provides three multiplexed address
signals, MA0, MA1, and MA2, to select one of eight inputs. These three multiplexed address signals are
connected to all eight external multiplexer chips. The analog output of the eight multiplex chips are each
connected to eight separate EQADC inputs, ANR, ANS, ANT, ANU, ANW, ANX, ANY, and ANZ. The
MA pins correspond to the three least significant bits of the channel number that selects ANR, ANS, ANT,
ANU, ANW, ANX, ANY, and ANZ with MA0 being the most significant bit - See Table 25-71.

When the external multiplexed mode is selected for either ADC, the EQADC automatically creates the
MA output signals from CHANNEL_NUMBER field of a Command Message. The EQADC also converts
the proper input channel (ANW, ANX, ANY, and ANZ) by interpreting the CHANNEL_NUMBER field.
As a result, up to 64 externally multiplexed channels appear to the conversion queues as directly connected
signals.

Table 25-71. Encoding of MA Pins1

1 ‘0’ means pin is driven LOW and ‘1’ that pin is driven HIGH.

Channel Number selecting ANW, ANX, ANY, ANZ (decimal)
MA0 MA1 MA2

ANW ANX ANY ANZ

64 72 80 88 0 0 0

65 73 81 89 0 0 1

66 74 82 90 0 1 0

67 75 83 91 0 1 1

68 76 84 92 1 0 0

69 77 85 93 1 0 1

70 78 86 94 1 1 0

71 79 87 95 1 1 1

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1140 Freescale Semiconductor

Figure 25-83. Example of External Multiplexing

MA0
MA1
MA2

MUX

AN64
AN65
AN66
AN67
AN68
AN69
AN70
AN71

MUX

AN72
AN73
AN74
AN75
AN76
AN77
AN78
AN79

MUX

AN80
AN81
AN82
AN83
AN84
AN85
AN86
AN87

MUX

AN88
AN89
AN90
AN91
AN92
AN93
AN94
AN95

ANW
ANX
ANY
ANZ

4

AN0-AN7 32

40

M
U

X
 4

0
:1

M
U

X
 4

0
:1

ADC0

ADC1

MUX

CONTROL

Channel Number0/1

EQADC

AN12-AN15

NOTE: Limited availability of pins may result in the
sharing of ADC inputs and mux outputs.

MUX

AN224
AN225
AN226
AN227
AN228
AN229
AN230
AN231

MUX

AN232
AN233
AN234
AN235
AN236
AN237
AN238
AN239

MUX

AN240
AN241
AN242
AN243
AN244
AN245
AN246
AN247

MUX

AN248
AN249
AN250
AN251
AN252
AN253
AN254
AN255

ANR
ANS
ANT
ANU

4

AN20-AN39

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1141

25.6.8 EQADC DMA/Interrupt request

Table 25-72 lists methods to generate interrupt requests in the EQADC queuing control and triggering
control. The DMA/interrupt request select bits and the DMA/interrupt enable bits are described in
Section 25.5.2.8, EQADC Interrupt and DMA Control Registers (EQADC_IDCR), and the interrupt flag
bits are described in Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR).
Table 25-84 depicts all interrupts and DMA requests generated by the EQADC.

Table 25-73 describes a list of methods to generate DMA requests in the EQADC.

Table 25-72. EQADC FIFO Interrupt Summary1

1 For details refer to Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), and
Section 25.5.2.8, EQADC Interrupt and DMA Control Registers (EQADC_IDCR).

Interrupt Condition Clearing Mechanism

Non Coherency
Interrupt

NCIEx = 1
NCFx = 1

Clear NCFx bit by writing a “1” to the bit.

Result FIFO Overflow
Interrupt2

2 Apart from generating an independent interrupt request for when a RFIFO Overflow Interrupt, a CFIFO
Underflow Interrupt, and a CFIFO Trigger Overrun Interrupt occurs, the EQADC also provides a combined
interrupt request at which these requests from ALL CFIFOs are ORed. Refer to Figure 25-84 for details.

RFOIEx = 1
RFOFx = 1

Clear RFOFx bit by writing a “1” to the bit.

Command FIFO
Underflow Interrupt2

CFUIEx = 1
CFUFx = 1

Clear CFUFx bit by writing a “1” to the bit.

Result FIFO Drain
Interrupt

RFDEx = 1
RFDSx = 0
RFDFx = 1

Clear RFDFx bit by writing a “1” to the bit.

Command FIFO
Fill Interrupt

CFFEx = 1
CFFSx = 0
CFFFx = 1

Clear CFFFx bit by writing a “1” to the bit.

End of Queue Interrupt EOQIEx = 1
EOQFx = 1

Clear EOQFx bit by writing a “1” to the bit.

 Pause Interrupt PIEx = 1
PFx =1

Clear PFx bit by writing a “1” to the bit.

Trigger Overrun
Interrupt2

TORIEx = 1
TORFx =1

Clear TORFx bit by writing a “1” to the bit.

Table 25-73. EQADC FIFO DMA Summary1

1 For details refer to Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR), and
Section 25.5.2.8, EQADC Interrupt and DMA Control Registers (EQADC_IDCR).

DMA Request Condition Clearing Mechanism

Result FIFO Drain
DMA Request

RFDEx = 1
RFDSx = 1
RFDFx = 1

The EQADC automatically clears the RFDFx when RFIFOx
becomes empty. Writing “1” to the RFDFx bit is not allowed.

Command FIFO Fill
DMA Request

CFFEx = 1
CFFSx = 1
CFFFx = 1

The EQADC automatically clears the CFFFx when CFIFOx
becomes full. Writing “1” to the CFFFx bit is not allowed.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1142 Freescale Semiconductor

Figure 25-84. EQADC DMA and Interrupt Requests

NCIEx

NCFx

TORIEx

TORFx

PIEx

PFx

CFFEx
CFFFx CFIFO Fill Interrupt Request

EOQIEx

EOQFx

CFUIEx

CFUFx

RFOIEx

RFOFx

Non Coherency Interrupt Request

Pause Interrupt Request

End of Queue Interrupt Request

Trigger Overrun Interrupt Request

CFIFO Underflow Interrupt Request

RFIFO Overflow Interrupt Request

Combined Interrupt Request

CFFSx

RFDEx
RFDFx RFIFO Drain Interrupt Request
RFDSx

RFDEx
RFDFx RFIFO Drain DMA Request
RFDSx

DMA Request
Generation Logic

CFFEx
CFFFx CFIFO Fill DMA Request
CFFSx

DMA Request
Generation Logic

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1143

25.6.9 EQADC Synchronous Serial Interface (SSI) Sub-Block

Figure 25-85. EQADC Synchronous Serial Interface Block Diagram

The EQADC SSI protocol allows for a full duplex, synchronous, serial communication between the
EQADC and a single external device. Figure 25-85 shows the different components inside the EQADC
SSI block. The EQADC SSI sub-block on the EQADC is always configured as a master. The EQADC SSI
has four associated port pins:

• Free running Clock (FCK)

• Serial Data Select (SDS)

• Serial Data In (SDI)

• Serial Data Out (SDO)

The FCK clock signal times the shifting and sampling of the two serial data signals and it is free running
between transmissions, allowing it to be used as the clock for the external device. The SDS signal will be
asserted to indicate the start of a transmission, and negated to indicate the end or the abort of a
transmission. SDI is the master serial data input and SDO the master serial data output.

The EQADC SSI sub-block is enabled by setting the ESSIE field in the Section 25.5.2.1, EQADC Module
Configuration Register (EQADC_MCR). When enabled, the EQADC SSI can be optionally capable of
starting serial transmissions. When serial transmissions are disabled (ESSIE set to 0b10), no data will be
transmitted to the external device but FCK will be free-running. This operation mode permits the control
of the timing of the first serial transmission, and can be used to avoid the transmission of data to an unstable
external device, for example, a device that is not fully reset. This mode of operation is specially important
for the reset procedure of an external device that uses the FCK as its main clock.

Master

Slave In

Out

Pad
Interface

SDS

FCK

SDO

SDI

EQADC SSI Control Register

FCK
Clock

System

Transmit Shift Register

EQADC SSI Control Logic

Receive Shift Register
B

R

CFIFO Data

 RFIFO Data

EQADC FIFO
Control Unit

Control

MDT

Clock Divide by: 2, 3, 4,
.. , 15, 16, 17

Baud Clock Generator

Slave Bus interface

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1144 Freescale Semiconductor

The main elements of the EQADC SSI block are the shift registers. The 26-bit transmit shift register in the
master and 26-bit receive shift register in the slave are linked by the SDO pin. In a similar way, the 26-bit
transmit shift register in the slave and 26-bit receive shift register in the master are linked by the SDI pin.
See Figure 25-86. When a data transmission operation is performed, data in the transmit registers is
serially shifted twenty-six bit positions into the receive registers by the FCK clock from the master; data
is exchanged between the master and the slave. Data in the master transmit shift register in the beginning
of a transmission operation becomes the output data for the slave, and data in the master receive shift
register after a transmission operation is the input data from the slave.

Figure 25-86. Full Duplex Pin Connection

25.6.9.1 EQADC SSI data transmission protocol

Figure 25-87 shows the timing of an EQADC SSI transmission operation. The main characteristics of this
protocol are:

• FCK is free running, it does not stop between data transmissions. FCK will be driven low:

— When the serial interface is disabled.

— In stop/debug mode.

— Immediately after reset.

• Frame size is fixed to 26 bits.

• MSB bit is always transmitted first.

• Master drives data on the positive edge of FCK and latches incoming data on the next positive edge
of FCK.

• Slave drives data on the positive edge of FCK and latches incoming data on the negative edge of
FCK.

Master initiates a data transmission by driving SDS low, and its MSB bit on SDO on the positive edge of
FCK. Once an asserted SDS is detected, the slave shifts its data out, one bit at a time, on every FCK
positive edge. Both the master and the slave drive new data on the serial lines on every FCK positive edge.
This process continues until all the initial 26-bits in the master shift register are moved into the slave shift

MASTER SLAVE

SDO

SDI

FCK

SDSBaud Rate
Generator

Transmit Shift Register

Receive Shift Register

Receive Shift Register

Transmit Shift Register

Data RegistersCFIFOs and RFIFOs

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1145

register. tDT is the delay between two consecutive serial transmissions, time during which SDS is negated.
When ready to start of the next transmission, the slave must drive the MSB bit of the message on every
positive edge of FCK regardless of the state of the SDS signal. On the next positive edge, the second bit
of the message is conditionally driven according to if an asserted SDS was detected by the slave on the
preceding FCK negative edge. This is an important requisite since the SDS and the FCK are not
synchronous. The SDS signal is not generated by FCK, rather both are generated by the system clock, so
that it is not guaranteed that FCK edges will precede SDS ones. While SDS is negated, the slave
continuously drives its MSB bit on every positive edge of FCK until it detects an asserted SDS on the
immediately next FCK negative edge. See Figure 25-88 for three situations showing how the slave should
behave according to when SDS is asserted.

NOTE

On the master, the FCK is not used as a clock. Although, the EQADC SSI
behavior is described in terms of the FCK positive and negative edges, all
EQADC SSI related signals (SDI, SDS, SDO, and FCK) are synchronized
by the system clock on the master side. There are no restrictions regarding
the use of the FCK as a clock on the slave device.

25.6.9.1.1 Abort Feature

The master indicates it is aborting the current transfer by negating SDS before the whole data frame has
being shifted out, that is the 26th bit of data being transferred has not being shifted out. The EQADC
ignores the incompletely received message. The EQADC resends the aborted message whenever the
corresponding CFIFO becomes again the highest priority CFIFO with commands bound for not-full
external CBuffer. Refer to Section 25.6.4.3, CFIFO Common Prioritization and Command Transfer, for
more information on aborts and CFIFO priority.

25.6.9.2 Baud clock generation

As shown in Figure 25-85, the baud clock generator divides the system clock to produce the baud clock.
The BR field in Section 25.5.2.13, EQADC SSI Control Register (EQADC_SSICR), selects the system
clock divide factor as in Table 25-24. 1

1. Maximum FCK frequency is highly dependable on track delays, master pad delays, and slave pad delays.

BaudClockFrequency
SystemClockFrequency MHz 

SystemClockDivideFactor
--=

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1146 Freescale Semiconductor

Figure 25-87. Synchronous Serial Interface Protocol Timing

2 3 ... 23 24 25 26 2 3 ... 23 24 25

2 3 ... 23 24 25 2 3 ... 23 24 25

FCK

SDS

SDO

Master Sample

SDI

Slave Sample

Input

Input

tDT

Begin
Transmission

Begin
Transmission

End
Transmission

End
Transmission

1

26 26

26

1 1
MSB

1

1

MSBMSB

MSB MSB

tMDT = Minimum tDT is programmable and defined in the

Section 25.5.2.13, EQADC SSI Control Register
(EQADC_SSICR)”

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1147

Figure 25-88. Slave Driving the MSB and Consecutive Bits in a Data Transmission

SDS is asserted after positive edge of FCK.
Slave drives second bit due to detection of
an asserted SDS on the negative edge of
FCK.

Master’s SDI

25 26 1 2 3 ...

25 26 1 2 3 ...

25 26 1 1 2 3 ...

SDS

FCK

Slave Sample
Input

tDT

tDT

tDT

Begin
Transmission

Begin
Transmission

Begin
Transmission

End
Transmission

End
Transmission

SDS is asserted before positive edge of
FCK. Slave drives second bit due to
detection of an asserted SDS on the
negative edge of FCK.

Slave drives MSB bit again due to detection
of a negated SDS on the negative edge of
FCK.

(1)

(2)

(3)

Master’s SDI

SDS

FCK

Slave Sample
Input

Master’s SDI

SDS

FCK

Slave Sample
Input

End
Transmission

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1148 Freescale Semiconductor

25.6.10 EQADC Parallel Side Interface (PSI) Sub-Block

Figure 25-89. EQADC Parallel Side Interface Block Diagram

The EQADC PSI sub-block allows communication between the EQADC and the companion modules
through a local slave bus that has the EQADC block as the master and the companion modules as the
slaves. However, due to the poor processing capability of EQADC, it is defined a very limited number of
addresses and a maximum of 15 different slave blocks to be enabled.

The conversion result goes through the Result Formatting and Calibration sub-block and the
corresponding MESSAGE_TAG and DEST fields are decoded to decide the destination of the conversion
result data. When the DEST field is not zero as described in Section 25.5.3.6, Alternate Configuration 1-8
Control Registers (ADC_ACR1-8), the MESSAGE_TAG bits, and some control bits, and the conversion
result data are sent to the transmission section of the PSI sub-block. This set of data is processed and sent
to the corresponding on-chip companion module.

The companion module can also send back to EQADC the result of some processing in the received data.
In this case, the receiver section of he PSI sub-block treats this request and receives the result data with
the corresponding MESSAGE_TAG or TAG field. This TAG is used by the decoder to select which RFIFO
will be written with the received companion module data.

ADC Conv Data,

 rdata

Read / Write
Sel

Tx
Section

Result Data

Rx
Section

 addr, rwb, module_en

 wdata

DEST

MESSAGE_TAG,

Write request

 Read request

TAG

PSI Ready

Flush, Ctrl
From: FIFO

Control
Unit

To: FIFO
Control
Unit

P
S

I S
la

ve
 B

us
 in

te
rf

ac
e

DMA interface
signals

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1149

25.6.10.1 Input / Output signals description

The information content of the input and the output data buses from/to the companion modules are
described in Figure 25-90. The input data format is used in the Read cycle and corresponds to the data
supplied by some companion module. The output data format is used in the Write cycle of this interface
block and contains information / controls to some companion module.

Figure 25-90. PSI Input and Output Data Buses Content

FLUSH — Master block Flush request/control bit

The FLUSH signal is used to request a Flush flow in the slave block. More details is presented in item
Section , Conversion Command Format for Alternate Configurations.

1 = Flush request
0 = No flush request.

CTRL[0:1] — Control bits

Table 25-74 describes the CTRL[0:1] field functions. This field is used for the control of the
companion module.

MESSAGE_TAG[0:3] — Message tag bits field

Read (Input) / Write (Output) Data Buses Content

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 TAG[0:3]
W FLU

SH
CTRL[0:1] MESSAGE_TAG[0:3]

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R RESULT_DATA[0:15]
W ADC_CONV_RESULT[0:15]

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 25-74. CTRL[0:1] field description

CTRL[0:1] Description

00 INH_RET or PREFILL - This mode indicates that the companion module should not
send back some RESULT_DATA corresponding to the accompanying

ADC_CONV_RESULT data.
When the slave module is the Decimation Filter, this control enables the PREFILL

filter mode.

01 CONVERSION RESULT - It indicates that the ADC_CONV_RESULT field should be
treated as a valid sample data. This control mode is useful to Decimation Filter to put

the filter em normal mode instead of prefill mode.

10 TIME STAMP o REGISTER READ - A time stamp indicates that the
ADC_CONV_RESULT field should follow a bypass flow in the companion module,

returning back to the EQADC without any modification.

11 reserved

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1150 Freescale Semiconductor

This field indicates the RFIFO destination associated with the ADC_CONV_RESULT sample. This
value is stored by the companion module and is used to address the destination RFIFO register when
a RESULT_DATA is generated due to that ADC_CONV_RESULT sample.

TAG[0:3] — Companion module tag bits

This bit field is used to address the appropriate destination RFIFO in the EQADC for the
accompanying RESULT_DATA bits.

In eQADC application, this is used to address the appropriate RFIFO in the eQADC block. In this case,
the possible values are only from 0000 to 0101.

ADC_CONV_RESULT[0:15] — ADC Conversion Result Data

This bit field is the ADC conversion result data after passing through the calibration and formatting
block.

RESULT_DATA[0:15] — Companion Module Result Data

This bit field corresponds to the companion module data processing result to EQADC.

25.6.10.2 PSI transmitter / Write section

The transmission sub-block formats the data bus from RFIFO control sub-block to send to the PSI slave
wdata bus. The transmission data is registered and its content is described in Section 25.6.10.1, Input /
Output signals description. The transmission has higher priority than reception. This is done to avoid the
use of memory to store transmission data and it is not used waiting time for transmission.

The destination companion module for the transmission data is obtained by decoding the DEST[0:3] bits.
The not null decimal value of DEST[0:3] is used to uniquely set the corresponding module enable signal.
For example, DEST[0:3] value equal to 0xF that corresponds to the decimal value 15 is going to set only
the module enable 15. All other module enable from 1 to 14 are not set.

25.6.10.3 PSI Receiver / Read section

The receiver sub-block receives data from some companion module using the PSI slave bus interface. The
companion module sends a read request to EQADC using the DMA read request line. The PSI logic sends
a read command if there is no transmission request. The received data has the structure described in item
Section 25.6.10.1, Input / Output signals description.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1151

25.6.11 Analog Sub-Block

25.6.11.1 Analog to Digital Converter (ADC)

25.6.11.1.1 ADC architecture

Figure 25-91. RSD ADC Block Diagram

The RSD Cyclic ADC consists of two main portions, the analog RSD Stage, and the digital control and
calculation block, as shown in Figure 25-91. To begin an analog to digital conversion, a differential input
is passed into the analog RSD stage. The signal is passed through the RSD stage, and then from the RSD
stage output, back to its input to be passed again. To complete a 12-bit conversion, the signal must pass
through the RSD stage 12 times. For 10-bit and 8-bit resolution, the signal must pass 10 or 8 times through
the RSD. Each time an input signal is read into the RSD stage, a digital sample is taken by the digital
control/calculation block. The digital control/calculation block uses this sample to tell the analog block
how to condition the signal. The digital block also saves each successive sample and adds them according
to the RSD algorithm at the end of the entire conversion cycle.

 RSD SINGLE-STAGE

DIGITAL CONTROL
AND CALCULATION

pipeline_controlsample

12 bit

OUTPUT

DIFF
INPUT

CLOCK

PIPELINE

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1152 Freescale Semiconductor

25.6.11.1.2 RSD overview

Figure 25-92. RSD Stage Block Diagram

On each pass through the RSD stage, the input signal will be multiplied by exactly two, and summed with
either -VREF, 0, or VREF, depending on the Logic Control. The Logic Control will determine -VREF, 0,
or VREF depending on the two comparator inputs. As the Logic Control sets the summing operation, it
also sends a digital value to the RSD adder. Each time an analog signal passes through the RSD
single-stage, a digital value is collected by the RSD adder. At the end of an entire AD conversion cycle,
the RSD adder uses these collected values to calculate the 12-bit/10-bit/8-bit digital output.

Figure 25-93 shows the transfer function for the RSD stage. Note how the digital value (a, b) is dependent
on the two comparator inputs.

x2 Sum

VRL

 VRH

Input
Voltage

Logic
Control

Residue Voltage

+

-

+

-

-VREF,0,VREF

Digital
Signal RSD

Adder

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1153

Figure 25-93. RSD Stage Transfer Function

In each pass through the RSD stage, the residue will be sent back to be the new input, and the digital
signals, a and b, will be stored. For the 12-bit ADC, input signal is sampled during the input phase, and
after each of the 12 passes through the RSD stage. Thus, 13 total a and b values are collected. Upon
collecting all these values, they will be added according to the RSD algorithm to create the 12-bit digital
representation of the original analog input. The bits are added in the following manner:

25.6.11.1.3 RSD Adder

The array, s1 to s12,will be the digital output of the RSD ADC with s1 being the MSB and s12 being the
LSB.

VREF

VREF

-VREF

-VREF VL VH

Input
Voltage

Residue
Voltage

Vres=2Vin+VREF Vres=2Vin Vres=2Vin-VREF

a=0, b=0 a=0, b=1 a=1, b=0

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1154 Freescale Semiconductor

Figure 25-94. RSD Adder

25.6.11.1.4 Variable Gain Amplification (VGA) for Pre-gain

The VGA starts after sampling completes. It is enabled by a 2-bit signal PRE_GAIN described in
Section 25.5.3.6, Alternate Configuration 1-8 Control Registers (ADC_ACR1-8).

The ADC takes 2, 8, 64 or 128 clock cycles to do sampling which is selected by the LST[0:1] field in the
conversion command message. After the sampling, if 2x VGA is enabled, there is a 2x gain stage without
comparison before the regular conversion cycles. When 4x VGA is enabled, there are the 2x gain stage
without comparison by 2 times before the normal conversion processing.

25.7 Initialization/Application information

25.7.1 Multiple queues control setup example

This section provides an example of how to configure multiple CQueues. Table 25-75 describes how each
CQueue can be used for a different application. Also documented in this section are general guidelines on
how to initialize the on-chip ADCs and the external device, and how to configure the CQueues and the
EQADC.

Table 25-75. Application of Each CQueue

CQueue
Number

CQueue Type Running Speed
Number of

Contiguous
Conversions

 Example

0 Very fast burst
time-based CQueue

every 2 s for 200 s;
pause for 300 s and then

repeat

2 Injector current profiling

1 Fast
hardware-triggered

CQueue

every 900 s 3 Current sensing of PWM
controlled actuators

2 Fast repetitive
time-based CQueue

every 2 ms 8 Throttle position

a13
b12 a12
 b11 a11
 b10 ..

 ... a3
 b2 a2
 b1

--
s12 s11 s10 s2 s1

carry

+

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1155

25.7.1.1 EQADC initialization

The following steps provide an example about how to configure the EQADC controls and how to initialize
the on-chip ADCs and the external device. In this example, all conversion commands will be transferred
through CFIFO0.

1. Load all required configuration commands in the RAM in such way that they form a queue; this
data structure will be referred below as CQueue0. Figure 25-95 shows an example of a CQueue
able to configure the on-chip ADCs and external device at the same time. Although, this example
uses the DMAC to store commands in CFIFO0, configuration commands could have also been
directly written to the CFIFO0 push register.

2. Select source driving EQADC hardware trigger ports (ETRIG). Before proceeding to next step,
allow some time (minimum of two system clocks - filter period is set to minimum after reset) so
that the logic level at the source is filtered and reaches the EQADC control logic.

NOTE

ETRIG ports could be driven by an external pin or by the output port of
other blocks in the device, such as timers. In order to avoid unexpected
triggering of CFIFOs in hardware trigger modes, the source driving the
ETRIG port must be selected and set to a known logic level before putting
the CFIFOs into the WAITING FOR TRIGGER state.

The trigger filter bypass control inputs must be set considering the
characteristics of the trigger signal. A particular case to assert the bypass
control is when a device’s internal signal with one clock width pulse is used.

3. Configure Section 25.5.2.4, EQADC External Trigger Digital Filter Register (EQADC_ETDFR).

4. Configure Section 25.5.2.3, EQADC null message send format register (EQADC_NMSFR).

5. Configure Section 25.5.2.13, EQADC SSI Control Register (EQADC_SSICR), to communicate
with the external device.

6. Enable the EQADC SSI by programming the ESSIE field in the Section 25.5.2.1, EQADC Module
Configuration Register (EQADC_MCR).

a) Write 0b10 to ESSIE field to enable the EQADC SSI. FCK is free running but serial
transmissions are not started.

b) Wait until the external device becomes stable after reset.

3 Software-triggered
CQueue

every 3.9 ms 3 Command triggered by
software strategy

4 Repetitive
angle-based

CQueue

every 625 s 7 Airflow read every 30
degrees at 8000 RPM

5 Slow repetitive
time-based CQueue

every 100 ms 10 Temperature sensors

Table 25-75. Application of Each CQueue

CQueue
Number

CQueue Type Running Speed
Number of

Contiguous
Conversions

 Example

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1156 Freescale Semiconductor

c) Write 0b11 to ESSIE field to enable the EQADC SSI to start serial transmissions.

7. Configure the DMAC to transfer data from CQueue0 to CFIFO0 in the EQADC.

8. Configure Section 25.5.2.8, EQADC Interrupt and DMA Control Registers (EQADC_IDCR).

a) Set CFFS0 to configure the EQADC to generate a DMA request to load commands from
CQueue 0 to the CFIFO0.

b) Set CFFE0 to enable the EQADC to generate a DMA request to transfer commands from
CQueue0 to CFIFO0; Command transfers from the RAM to the CFIFO0 will start immediately.

c) Set EOQIE0 to enable the EQADC to generate an interrupt after transferring all of the
commands of CQueue0 through CFIFO0.

9. Configure Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR).

a) Write 0b0001 to the MODE0 field in EQADC_CFCR0 to program CFIFO0 for software
single-scan mode.

b) Write “1” to SSE0 to assert SSS0 and trigger CFIFO0.

10. Since CFIFO0 is in single-scan software mode and it is also the highest priority CFIFO, the
EQADC starts to transfer configuration commands to the on-chip ADCs and to the external device.

11. When all of the configuration commands have been transferred, CF0 in Section 25.5.2.9, EQADC
FIFO and Interrupt Status Registers (EQADC_FISR), will be set. The EQADC generates a End of
Queue interrupt. The initialization procedure is complete.

Figure 25-95. Example of a CQueue Configuring the On-Chip ADCs/External Device

The initialization procedure described above does not generate ADC clocks that are in phase because the
timing at which the ADC0/1_EN bits, in the Section 25.5.3.1, ADC0/1 Control Registers (ADC0_CR and
ADC1_CR), are set is different. Below follows an example on how to simultaneously set these bits so that
in-phase ADC clocks are generated. In this example, ADC0/1_CLK are configured to the same frequency.

1. Push an ADC0_CR write configuration command in CFIFO0 that enables ADC0 (ADC0_EN=1)
and that sets the ADC0_CLK_PS to an appropriate value. For example, 0x80800801.

2. Push an ADC1_CR write configuration command in CFIFO1 that enables ADC1 (ADC1_EN=1)
and that sets the ADC1_CLK_PS to an appropriate value. For example, 0x82800801.

3. Configure CFIFO0 and CFIFO1 to single scan software trigger mode and simultaneously trigger
them by writing 0x04100410 to the EQADC_CFCR0 register - see Section 25.5.2.7, EQADC
CFIFO Control Registers (EQADC_CFCR).

Configuration Command to CBuffer0 - Ex: Write ADC0_CR

CQueue in

0x0
0x1
0x2
0x3

system memory

Configuration Command to CBuffer2 - Ex: Write to external device configuration register

Configuration Command to CBuffer0 - Ex: Write ADC_TSCR

Configuration Command to CBuffer1 - Ex: Write ADC1_CR
Command
Address

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1157

25.7.1.2 Configuring EQADC for applications

This section provides an example based on the applications in Table 25-75. The example describes how to
configure multiple CQueues to be used for those applications and provides a step-by-step procedure to
configure the EQADC and the associated CQueue structures. In the example, the “Fast hardware-triggered
CQueue”, described on the second row of Table 25-75, will have its commands transferred to CBuffer1;
the conversion commands will be executed by ADC1. The generated results will be returned to RFIFO3
before being transferred to the RQueues in the RAM by the DMAC.

NOTE

There is no fixed relationship between CFIFOs and RFIFOs with the same
number. The results of commands being transferred through CFIFO1 can be
returned to any RFIFO, regardless of its number. The destination of a result
is determined by the MESSAGE_TAG field of the command that requested
the result. See Section 25.6.2.3, Message Format in EQADC, for details.

Step One: Setup the CQueues and RQueues.

1. Load the RAM with configuration and conversion commands. Table 25-76 is an example of how
CQueue1 commands should be set.

a) Each trigger event will cause four commands to be executed. When the EQADC detects the
Pause bit asserted, it will wait for another trigger to restart transferring commands from the
CFIFO.

b) At the end of the CQueue, the “EOQ” bit is asserted as shown in Table 25-76.

c) Results will be returned to RFIFO3 as specified in the MESSAGE_TAG field of commands.

2. Reserve memory space for storing results.

Table 25-76. Example of CQueue Commands1

Bit # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bit

Name

E
O

Q

P
A

U
S

E

R
E

P

R
E

S
E

R
V

E
D

E
B

B
N

R
E

S
E

R
V

E
D

MESSAGE
TAG

ADC COMMAND

CMD
1

0 0 0 0 0 1 0 0b0011 Conversion Command

CMD
2

0 0 0 0 0 1 0 0b0011 Conversion Command

CMD
3

0 0 0 0 0 1 0 0b0011 Conversion Command

CMD
4

0 1 0 0 0 1 0 0b0011 2 Configure peripheral device for next conversion sequence

CMD
5

0 0 0 0 0 1 0 0b0011 Conversion Command

CMD
6

0 0 0 0 0 1 0 0b0011 Conversion Command

CMD
7

0 0 0 0 0 1 0 0b0011 Conversion Command

CFIFO Header ADC Command

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1158 Freescale Semiconductor

Step Two: Configure the DMAC to handle data transfers between the CQueues/RQueues in RAM and the
CFIFOs/RFIFOs in the EQADC.

1. For transferring, set the source address of the DMAC to point to the start address of CQueue1. Set
the destination address of the DMAC to point to EQADC_CFPR1. Refer to Section 25.5.2.5,
EQADC CFIFO Push Registers (EQADC_CFPR).

2. For receiving, set the source address of the DMAC to point to EQADC_RFPR3. Refer to
Section 25.5.2.6, EQADC Result FIFO Pop Registers (EQADC_RFPR). Set the destination
address of the DMAC to point to the starting address of RQueue1.

Step Three: Configure the EQADC Control Registers.

1. Configure Section 25.5.2.8, EQADC Interrupt and DMA Control Registers (EQADC_IDCR).

a) Set EOQIE1 to enable the End of Queue Interrupt request.

b) Set CFFS1 and RFDS3 to configure the EQADC to generate DMA requests to push commands
into CFIFO1 and to pop result data from RFIF03.

c) Set CFINV1 to invalidate the contents of CFIFO1.

d) Set RFDE3 and CFFE1 to enable the EQADC to generate DMA requests. Command transfers
from the RAM to the CFIFO1 will start immediately.

e) Set RFOIE3 to indicate if RFIFO3 overflows.

f) Set CFUIE1 to indicate if CFIFO1 underflows.

2. Configure MODE1 to continuous-scan rising edge external trigger mode in Section 25.5.2.7,
EQADC CFIFO Control Registers (EQADC_CFCR).

Step Four: Command transfer to ADCs and Result data reception.

When an external rising edge event occurs for CFIFO1, the EQADC automatically will begin
transferring commands from CFIFO1 when it becomes the highest priority CFIFO trying to send
commands to CBuffer1. The received results will be placed in RFIFO3 and then moved to
RQueue1 by the DMAC.

CMD
8

0 1 0 0 0 1 0 0b0011 2 Configure peripheral device for next conversion sequence

0 etc. ...

CMD
EOQ

1 0 0 0 0 1 0 0b0011 EOQ Message

1 Fields LST, TSR, FMT, and CHANNEL_NUMBER are not showed for clarity. See Section , Conversion Command
Format for the Standard Configuration, for details.

2 MESSAGE_TAG field is only defined for read configuration commands.

Table 25-76. Example of CQueue Commands1 (continued)

Bit # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bit

Name
E

O
Q

P
A

U
S

E

R
E

P

R
E

S
E

R
V

E
D

E
B

B
N

R
E

S
E

R
V

E
D

MESSAGE
TAG

ADC COMMAND

CFIFO Header ADC Command

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1159

25.7.2 EQADC/DMAC Interface

This section provides an overview about the EQADC/DMAC interface and general guidelines about how
the DMAC should be configured in order for it to correctly transfer data between the queues in system
memory and the EQADC FIFOs.

NOTE

Advanced DMACs provide more functionality then the ones discussed in
this section.

25.7.2.1 CQueue/CFIFO transfers

In transfers involving CQueues and CFIFOs, the DMAC moves data from a queued source to a single
destination as showed in Figure 25-96. The location of the data to be moved is indicated by the source
address, and the final destination for that data, by the destination address. The DMAC contains a data
structure containing these addresses and other parameters used in the control of data transfers. For every
DMA request issued by the EQADC, the DMAC has to be configured to transfer a single command (32-bit
data) from the CQueue, pointed to by the source address, to the CFIFO push register, pointed to by the
destination address. After the service of a DMA request is completed, the source address has to be updated
to point to the next valid command. The destination address remains unchanged. When the last command
of a queue is transferred one of the following actions is recommended.

• The corresponding DMA channel should be disabled. This might be desirable for CFIFOs in single
scan mode.

• The source address should be updated to pointed to a valid command which can be the first
command in the queue that has just been transferred (cyclic queue), or the first command of any
other CQueue. This is desirable for CFIFOs in continuous scan mode, and at some cases, for
CFIFOs in single scan mode.

Figure 25-96. CQueue/CFIFO Interface

Source Address

Command 1
Command 2
Command 3

.....

Command n-1
Command n

CFPRx

CQueue in
system memory

CFIFO
Push Register

One command transfer per DMA
request

Destination Address

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1160 Freescale Semiconductor

25.7.2.2 RQueue/RFIFO transfers

In transfers involving RQueues and RFIFOs, the DMAC moves data from a single source to a queue
destination as showed in Figure 25-97. The location of the data to be moved is indicated by the source
address, and the final destination for that data, by the destination address. For every DMA request issued
by the EQADC, the DMAC has to be configured to transfer a single result (16-bit data), pointed to by the
source address, from the RFIFO pop register to the RQueue, pointed to by the destination address. After
the service of a DMA request is completed, the destination address has to be updated to point to the
location where the next 16-bit result will be stored. The source address remains unchanged. When the last
expected result is written to the RQueue, one of the following actions is recommended.

• The corresponding DMA channel should be disabled.

• The destination address should be updated pointed to the next location where new coming results
are stored, which can be the first entry of the current RQueue (cyclic queue), or the beginning of a
new RQueue.

Figure 25-97. RQueue/RFIFO Interface

25.7.3 Sending immediate command setup example

In the EQADC, there is no immediate command register for sending a command immediately after writing
to that register. However, a CFIFO can be configured to perform the same function as an immediate
command register. The following steps illustrate how to configure CFIFO5 as an immediate command
CFIFO. The results will be returned to RFIFO5.

1. Configure the Section 25.5.2.8, EQADC Interrupt and DMA Control Registers (EQADC_IDCR).

a) Clear CFIFO Fill Enable5 (CFFE5 = 0) in EQADC_IDCR2.

b) Clear CFIFO Underflow Interrupt Enable5 (CFUIE5 = 0) in EQADC_IDCR2.

c) Clear RFDS5 to configure the EQADC to generate interrupt requests to pop result data from
RFIF05.

d) Set RFIFO Drain Enable5 (RFDE5 = 1) in EQADC_IDCR2.

Result 1
Result 2
Result 3

.....

Result n-1
Result n

RFPRx

RQueue in
system memory

RFIFO
Pop Register

One result transfer per DMA
request

Source Address

Destination Address

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1161

2. Configure the Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR).

a) Write “1” to CFINV5 in EQADC_FCR2. This will invalidate the contents of CFIFO5.

b) Set MODE5 to Continuous-Scan Software Trigger mode in EQADC_CFCR2.

3. To transfer a command, write it to EQADC CFIFO Push Register 5 (EQADC_CFPR5) with
Message Tag = 0b0101. Refer to Section 25.5.2.5, EQADC CFIFO Push Registers
(EQADC_CFPR).

4. Up to four commands can be queued in CFIFO5. Check the CFCTR5 status in EQADC_FISR5
before pushing another command to avoid overflowing the CFIFO. Refer to Section 25.5.2.9,
EQADC FIFO and Interrupt Status Registers (EQADC_FISR).

5. When the EQADC receives a conversion result for RFIFO5, it generates an interrupt request.
RFIFO Pop Register 5 (EQADC_RFPR5) can be popped to read the result. Refer to
Section 25.5.2.6, EQADC Result FIFO Pop Registers (EQADC_RFPR).

25.7.4 Modifying queues

More CQueues may be needed than the six supported by the EQADC. These additional CQueues can be
supported by interrupting command transfers from a configured CFIFO, even if it is TRIGGERED and
transferring, modifying the corresponding CQueue in the RAM or associating another CQueue to it, and
restarting the CFIFO. More details on disabling a CFIFO are described in Section 25.6.4.6.1, Disabled
Mode.

1. Determine the resumption conditions when later resuming the scan of the CQueue at the point
before it was modified.

a) Change MODEx in Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR), to
Disabled. Refer to Section 25.6.4.6.1, Disabled Mode, for a description of what happens when
MODEx is changed to Disabled.

b) Poll CFSx until it becomes IDLE in Section 25.5.2.12, EQADC CFIFO Status Register
(EQADC_CFSR).

c) Read and save TC_CFx in Section 25.5.2.10, EQADC CFIFO Transfer Counter Registers
(EQADC_CFTCR), for later resuming the scan of the queue. The TC_CFx provides the point
of resumption.

d) Since all result data may not have being stored in the appropriate RFIFO at the time MODEx
is changed to disable, wait for all expected results to be stored in the RFIFO/RQueue before
reconfiguring the DMAC to work with the modified RQueue. The number of results that must
return can be estimated from the TC_CFx value obtained above.

2. Disable the DMAC from responding to the DMA request generated by CFFFx and RFDFx in
Section 25.5.2.9, EQADC FIFO and Interrupt Status Registers (EQADC_FISR).

3. Write “0x0000” to the TC_CFx field.

4. Load the new configuration and conversion commands into RAM. Configure the DMAC to
support the new CQueue/RQueue, but do not configure it yet to respond to DMA requests from
CFIFOx/RFIFOx.

5. If necessary, modify Section 25.5.2.8, EQADC Interrupt and DMA Control Registers
(EQADC_IDCR), to suit the modified CQueue.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1162 Freescale Semiconductor

6. Write “1” to CFINVx in Section 25.5.2.7, EQADC CFIFO Control Registers (EQADC_CFCR), to
invalidate the entries of CFIFOx. Perform any other modifications to EQADC_CFCR except
changing MODEx from Disabled.

7. Configure the DMAC to respond to DMA requests generated by CFFFx and RFDFx.

8. Change MODEx to the modified CFIFO operation mode. Write “1” to SSEx to trigger CFIFOx if
MODEx is software trigger.

25.7.5 CQueue and RQueues usage

Figure 25-98 is an example of CQueue and RQueue usage. It shows the CQueue0 commands requesting
results that will be stored in RQueue0 and RQueue1, and CQueue1 commands requesting results that will
be stored only in RQueue1. Some Command Messages request data to be returned from the on-chip
ADC/external device, but some only configure them and do not request returning data. When a CQueue
contains both write and read commands like CQueue0, the CQueue and RQueue entries will not be
aligned; as shown in Figure 25-98, the result for the second command of CQueue0 is the first entry of
RQueue0. The figure also shows that CQueue and RQueue entries can also become unaligned even if all
commands in a CQueue request data as CQueue1. CQueue1 entries became unaligned to RQueue1 entries
because a result requested by the forth CQueue0 command was sent to RQueue1. This happens because
the system can be configured so that several CQueues can have its results sent to a single RQueue.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1163

Figure 25-98. EQADC Command and Result Queues

No Result
CQueue0 Write Command 0

0x0000

Result to RQueue0
CQueue0 Read Command 1

0x0004

Result to RQueue0
CQueue0 Conversion Command 2

0x0008

Result to RQueue1
CQueue0 Conversion Command 3

0x000C

...

...

Result to RQueue0
CQueue0 Conversion Command n

0x001C

Command Queue 0 (CQueue0)

Result
CQueue0 Read Command 1

0x0000

Result
CQueue0 Conversion Command 2

0x0002

...

...

Result Queue 0 (RQueue0)

Result to RQueue1
CQueue1 Read Command 0

0x0000

Result to RQueue1
CQueue1 Read Command 1

0x0004

Result to RQueue1
CQueue1 Conversion Command 2

0x0008

...

...

Result to RQueue1
CQueue1 Conversion Command m

0x001C

Command Queue 1 (CQueue1)

Result
CQueue1 Read Command 0

0x0000

...

...

Result Queue 1 (RQueue1)

Result
CQueue1 Read Command 1

0x0002

Result
CQueue1 Conversion Command 2

0x0006

Result
CQueue0 Conversion Command 3

0x0004

RQueue0 is not aligned with CQueue0 because
the first command of CQueue0 does not request
results.

RQueue1 is not aligned with CQueue1 because
it contains results for CQueue0 and CQueue1
commands. The timing at which the CQueue0
command result is stored in RQueue1 depends
on the relative speed at which commands from
both CQueues are executed. This is influenced
by factors like resource sharing, ADC clock
frequency, sampling time, and triggering time.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1164 Freescale Semiconductor

25.7.6 ADC Result Calibration

The ADC result calibration process consists of two steps: determining the gain and offset calibration
constants, and calibrating the raw results generated by the on-chip ADCs by solving the following equation
discussed in Section 25.6.6.7, ADC Calibration Feature.

CAL_RES = GCC * RAW_RES + OCC+2; Eqn. 25-1

The calibration constants GCC and OCC can be calculated from equation Equation 25-1 provided that two
pairs of expected (CAL_RES) and measured (RAW_RES) result values are available for two different
input voltages. Most likely calibration points to be used are 25% VREF1 and 75% VREF since they are far
apart but not too close to the end points of the full input voltage range. This allows for calculations of more
representative calibration constants. The EQADC provides these voltages via channel numbers 43 and 44.
The raw, uncalibrated results for these input voltages are obtained by converting these channels with
conversion commands that have the CAL bit negated.

The transfer equations for when sampling these reference voltages are:

CAL_RES75%VREF = GCC * RAW_RES75%VREF + OCC+2;

CAL_RES25%VREF = GCC * RAW_RES25%VREF + OCC+2;

Thus;

GCC = (CAL_RES75%VREF – CAL_RES25%VREF) / (RAW_RES75%VREF – RAW_RES25%VREF); Eqn. 25-2

OCC = CAL_RES75%VREF – GCC*RAW_RES75%VREF – 2; Eqn. 25-3

or

OCC = CAL_RES25%VREF – GCC*RAW_RES25%VREF – 2; Eqn. 25-4

After being calculated, the GCC and OCC values must be written to ADC registers: Section 25.5.3.4,
ADC0/1 Gain Calibration Constant Registers (ADC0_GCCR and ADC1_GCCR), and Section 25.5.3.5,
ADC0/1 Offset Calibration Constant Registers (ADC0_OCCR and ADC1_OCCR), using write
configuration commands.

The EQADC will automatically calibrate the results, according to equation Equation 25-1, of every
conversion command that has its CAL bit asserted using the GCC and OCC values stored in the ADC
calibration registers.

NOTE

For accurate calibration, the 25% VREF channel must be converted using
the Long Sample Time (LST) setting for either 64 or 128 ADC sample
cycles in the ADC Conversion Command Message (LST = 0b10 or 0b11).

1. VREF=VRH-VRL

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1165

25.7.6.1 MAC Configuration Procedure

The following steps illustrate how to configure the calibration hardware, namely, determining the values
of the gain and offset calibration constants, and the writing of these constants to the calibration registers.
The procedure below should be performed for ADC0 and for ADC1.

1. Convert channel 44 with a command that has its CAL bit negated and obtain the raw, uncalibrated
result for 25%VREF (RAW_RES25%VREF).

2. Convert channel 43 with a command that has its CAL bit negated and obtain the raw, uncalibrated
result for 75%VREF (RAW_RES75%VREF).

3. Since the expected values for the conversion of these voltages are known (CAL_RES25%VREF and
CAL_RES75%VREF), GCC and OCC values can be calculated from equations Equation 25-2 and
Equation 25-3 using these values, and the ones determined in steps 1 and 2.

4. Reformat GCC and OCC to the proper data formats as specified in Section 25.6.6.7.2, MAC Unit
and Operand Data Format. GCC is an unsigned 15-bit fixed point value and OCC is a signed 14-bit
value.

5. Write GCC value to Section 25.5.3.4, ADC0/1 Gain Calibration Constant Registers
(ADC0_GCCR and ADC1_GCCR), and OCC value to Section 25.5.3.5, ADC0/1 Offset
Calibration Constant Registers (ADC0_OCCR and ADC1_OCCR), using write configuration
commands.

25.7.6.2 Example

The raw results obtained when sampling reference voltages 25%VREF and 75%VREF were, respectively,
3798 and 11592. The results that should have been obtained from the conversion of these reference
voltages are, respectively, 4096 and 12288. Therefore, using equations Equation 25-2 and Equation 25-3,
the gain and offset calibration constants are:

GCC=(12288-4096)/(11592-3798) = 1.05106492-> 1.05102539 = 0x4388

OCC=12288 - 1.05106492*11592 - 2 = 102.06-> 102 = 0x0066

Table 25-77 shows, for this particular case, examples of how the result values change according to GCC
and OCC when result calibration is executed (CAL=1) and when it is not (CAL=0).

Table 25-77. Calibration example

Input Voltage
Raw result (CAL=0) Calibrated result (CAL=1)

Hexadecimal Decimal Hexadecimal Decimal

25% VREF1

1 For accurate calibration, the 25% VREF channel must be converted using the Long Sample Time (LST)
setting for either 64 or 128 ADC sample cycles in the ADC Conversion Command Message (LST = 0b10
or 0b11).

0x0ED6 3798 0x1000 4095.794

75% VREF 0x2D48 11592 0x3000 12287.486

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1166 Freescale Semiconductor

25.7.6.3 Quantization Error Reduction During Calibration

Figure 25-99 shows how the ADC transfer curve changes due to the addition of two to the MAC output
during the calibration - see MAC output equation at Section 25.6.6.7.1, Overview. The maximum absolute
quantization error is reduced by half leading to an increase in accuracy.

Figure 25-99. Quantization error reduction during calibration

25.7.7 EQADC versus QADC

This section describes how the EQADC upgrades the QADC functionality. The section also provides a
comparison between the EQADC and QADC in terms of their functionality. This section targets the users

0

1
/2

 L
S

B

L
S

B

Input
Voltage

Digital
Value

4

Error for ADC Transfer Curve

Shifted

Ideal Transfer Curve

Transfer Curve

0
Input
Voltage

- 4

2

Quantization
Error

- 2

(12-bit AD resolution)

(12-bit AD resolution)

1/
2

L
S

B

L
S

B

(14-bit result)

Error for Shifted
Transfer Curve

ADC Transfer Curve

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1167

familiar with terminology in QADC. Figure 25-100 is an overview of a QADC. Figure 25-101 is an
overview of the EQADC system.

Figure 25-100. QADC Overview

External
Triggers

Result QueuesCommand Queues

Analog to Digital Converter

Interrupt Request

Digital Control
Logic for analog
device

Trigger and
Queue Control
Logic

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1168 Freescale Semiconductor

Figure 25-101. EQADC System Overview

The EQADC system consists of four parts: queues in RAM, the EQADC, on-chip ADCs, and an external
device. As compared with the QADC, the EQADC system requires two pieces of extra hardware.

1. A DMA or an MCU is required to move data between the EQADC’s FIFOs and Queues in the
system memory.

2. A serial interface (EQADC Synchronous Serial Interface - EQADC SSI) is implemented to
transmit and receive data between the EQADC and the external device.

Since there are only FIFOs inside the EQADC, much of the terminology or use of the register names,
register contents, and signals of the EQADC involve “FIFO” instead of “Queue”. These register names,
register contents, and signals are functionally equivalent to the “Queue” counterparts in the QADC.
Table 25-78 lists how the EQADC register, register contents, and signals are related to QADC.

External
Triggers

CQueues RQueuesDMAC/CPU

DMA/Interrupt
Requests

EQADC

Trigger and
FIFO Control
Logic

System Bus

Analog to Digital Converter

CFIFOs RFIFOs

Analog to Digital Converter

EQADC SSI

External
Device

Serial
Connection

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1169

.

The EQADC and QADC also have similar procedures for the configuration or execution of applications.
Table 25-79 shows the steps required for the QADC versus the steps required for the EQADC system.

Table 25-78. Terminology Comparison between QADC and EQADC

QADC Terminology EQADC Terminology Function

CCW Command Message In the QADC, the hardware only executes conversion command
words.
In the EQADC, not all commands are conversion commands; some
are configuration commands.

Queue Trigger CFIFO Trigger In the QADC, a trigger event is required to start the execution of a
queue.
In the EQADC, a trigger event is required to start command
transfers from a CFIFO. When a CFIFO is TRIGGERED and
transferring, commands are continuously moved from CQueues to
CFIFOs. Thus, the trigger event initiates the “execution of a queue”
indirectly.

Current Word Pointer
Queue x (CWPQx)

Counter Value of
Commands

Transferred from
Command FIFOx

(TC_CFx)

In the QADC, CWPQx allows the last executed command on queue
x to be determined.
In the EQADC, the TC_CFx value allows the last transferred
command on CQueue x to be determined.

Queue Pause Bit (P) CFIFO Pause Bit In the QADC, detecting a pause bit in the CCW will pause the queue
execution.
In the EQADC, detecting a pause bit in the Command will pause
command transfers from a CFIFO.

Queue Operation
Mode (MQx)

CFIFO Operation
Mode (MODEx)

The EQADC supports all queue operation modes in the QADC
except operation modes related to a periodic timer. A timer
elsewhere in the system can provide the same functionality if it is
connected to ETRIGx.

Queue Status (QS) CFIFO Status (CFSx) In the QADC, the Queue Status is read to check whether a queue
is idle, active, paused, suspended, or trigger pending.
In the EQADC, the CFIFO Status is read to check whether a queue
is IDLE, WAITING FOR TRIGGER (idle or paused in QADC), or
TRIGGERED (suspended or trigger pending in QADC). What
CFIFO is currently “active” can be determined by reading the
LCFTCBz field on the EQADC_CFSSR registers.

Table 25-79. Usage Comparison between QADC and EQADC System

Procedure QADC EQADC System

Analog Control Configuration Configure analog device by writing to
the QADC registers.

Program configuration commands into
command queues.

Prepare Scan Sequence Program scan commands into
command queues.

Program scan commands into
command queues.

Queue Control Configuration Write to the QADC Control Registers. Write to the EQADC Control Registers.

Data Transferred between
Queues and Buffers

Not Required. Program the DMAC or the CPU to
handle the data transfer.

Serial Interface Configuration Not Required. Write to the EQADC SSI Registers.

Enhanced Queued Analog-to-Digital Converter (EQADC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1170 Freescale Semiconductor

Queue Execution Require Software or External Trigger
events to start queue execution.

Require Software or External Trigger
events to start command transfers from
a CFIFO.

Table 25-79. Usage Comparison between QADC and EQADC System (continued)

Procedure QADC EQADC System

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1171

Chapter 26
Decimation Filter

26.1 Information specific to this device

This section presents device-specific parameterization and customization information not specifically
referenced in the remainder of this chapter.

26.1.1 Device-specific features

Two Decimation Filter modules are implemented in MPC5644A. The Decimation filter is used to decimate
conversion results from the eQADC block. A dedicated slave-bus interface provides bidirectional
communication between the eQADC and Decimation filters. Another slave-bus interface is also provided
for setting up the filter parameters and configuration registers. The Decimation Filter receives conversion
results generated by the eQADC block. These results can be generated from eight different ADC setup
configurations which are identified by an specific eQADC Control address within a conversion command.
Conversion commands with Register Address set to zero use the standard configuration setup. The
samples generated by the standard configuration setup are sent to one of the local eQADC RFIFO buffers.
The samples generated by the Alternate Configurations, with address from 1 to 6, can be sent to the internal
RFIFO or to the eQADC dedicated slave-bus interface to communicate with the external Decimation Filter
IP block or any other block that can communicate with this interface. A bit field in the Alternate
Configuration Control Register selects the Internal RFIFO or this slave-bus interface as the destination for
the conversion result.

26.1.2 Device-specific parameters

MDIS_DEFAULT resets MDIS bit in Decimation Filter Module Configuration Register to 0.

26.2 Introduction

26.2.1 Overview

The decimation filter is a dedicated hardware block, designed to decimate fixed point sample conversion
results, generated by master block, usually an eQADC. A dedicated parallel side interface (PSI) provides
bi-directional communication between the master block and the filter. A second interface is provided for
use by the CPU, allowing setup of the filter parameters and read/write of the configuration registers.

The Decimation Filter receives data samples from the master block (eQADC) in the PSI RX sub-block.
Each sample arrives at the decimation filter with an identifier tag and associated commands. The input
information is decoded by the PSI RX and control logic sub-blocks. When receiving a filtering command,

Table 26-1. Decimation Filter Parameters for MPC5644A

Parameter Name Description Value

MDIS_DEFAULT DECFILTER_MCR[31], MDIS reset state 0

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1172 Freescale Semiconductor

the data is transferred to the filter tap register’s sub-block and is processed by the filter using the MAC,
the coefficient register, and the control logic sub-blocks. Then the result is returned to the master block by
the PSI TX sub-block. This result is accompanied by the corresponding tag information that provides an
address for the data.

To summarize normal mode, the decimation filter works as a slave block on this second slave-bus line, and
there is a PSI master block such as the eQADC to send and read data. This is illustrated in the application
example in Section 26.7, Application information.

The decimation filter can also work in a standalone mode. In this mode, the input data is supplied and the
output results are read by the chip core processor (CPU) using status and interrupt signals or DMA
requests.

Mixed modes are also provided, allowing input data fed from the PSI interface, and output results read by
the CPU or DMA, or input fed from CPU or DMA and output directed to the PSI interface.

An integrator unit independently accumulates the values of filter outputs. The integration can be restricted
to time windows defined by hardware signals or software.

Two or more decimation filter blocks can also be configured to work in the cascade mode of operation to
obtain a more complex filtering function. The output result of a filter block is connected to the input of the
next filter by means of a dedicated interface.

All signals in the interface are generated in the system clock domain.

Figure 26-1 is the block diagram for the decimation filter.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1173

Figure 26-1. Decimation filter block diagram

26.2.2 Features

The Decimation Filter block includes these distinctive features:

• Selectable 4th order IIR filter, or an 8th order FIR filter

— Input/output with 16-bit (fixed point) two’s complement signed values

— Internal taps with 16-bit (feed-forward portion of first IIR) and 24-bit (feedback portion)
resolutions (fixed point) for two’s complement signed value

— 24-bit programmable filter coefficients (fixed point) for two’s complement signed value

— MAC unit with 51-bit fixed point accumulator

— Convergent rounding methodology

— Two’s complement overflow or saturation selection

— 58 clock cycles to process the input

• Implements a local slave-bus interface to a master block (e.g. the eQADC block)

• Input and output buffers with DMA capability

• Slave-bus interface to device

Control

Coefficient
Register File

Logic Enable/Clear

Counter

Tx En

MAC Done
Bypass Select

en

data-in 1

data-in 2

Decimated
Result

Intermediary
Result

MAC

done
Coefficient

Select

Clear/Load

Rx DataPSI
Rx

Decimated
Sample

Tap Data

Filter Tap Result

Bypass Data Path

Data

New
Sample/
Control

Field

PSI
Tx

PSI Slave-Bus Line

Device Slave-Bus Line

En

Data

Decoder
Counter

Filter Tap
Registers

Cascade
Input

Cascade
Output

Integrator
Integration

control signals

External trigger signal

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1174 Freescale Semiconductor

• Filter taps access for debug

• Filter initialization (flush) and stabilization (prefill) commands

• Timestamp support

• Decimation controlled by an internal counter or from an on-chip independent trigger signal
(triggered output result)

• Integrator unit accumulates filter output values, signaled or absolute, with 32-bit resolution. The
integrator can be controlled by software or hardware signals.

• Cascade of 2 or more individual blocks to compose a more complex filter

26.2.3 Modes of operation

This section describes the operation modes of the Decimation Filter. The modes are selected using the
DECFILTER_MCR fields MDIS, FREN, FRZ, ISEL, MIXM, and CASCD (see Section 26.4.2.1,
Decimation Filter Module Configuration Register (DECFILTER_MCR)”). The mode selection is
summarized in Table 26-2.

26.2.3.1 Normal mode

This is the default operational mode of the decimation filter block. It corresponds to the prefill/filter
operation with input data supplied through the PSI slave-bus interface (i.e. its input data is the ADC
conversion result), with output going to the same PSI interface.

26.2.3.2 Standalone mode

Standalone mode differs from normal mode because the input data is not supplied by the master block
through the PSI slave-bus interface. In this case, the data is provided by the central processor using the
device slave-bus interface or DMA interface signals. Once the data is filtered the decimated result is
available in the Output Buffer register. The filter output is also consumed by a CPU or DMA mastering
the same device slave-bus interface. This operation mode can be used to debug the filter stability or to
decimate data in System RAM.

Table 26-2. Operation mode selection

Mode MDIS FREN, FRZ ISEL MIXM CASCD

Normal

0

(0, 0)
or

(0, 1)
or

(1, 0)

0 0

00Standalone 1 0

PSI Input Mixed 0 1

PSI Output Mixed 1 1

Cascade 0 or 1 0 01 or 10 or 11

Freeze1

1 Freeze mode can also be activated from outside the Decimation Filter, depending on the MCU, if
FREN = 1.

1, 1 X X X

Low Power 1 X X X X

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1175

26.2.3.3 PSI Input Mixed mode

In this mode the input is selected from the PSI slave-bus interface, but the output is directed to the device
slave-bus interface, where it can be read by the CPU or DMA.

26.2.3.4 PSI Output Mixed mode

This mode works inverted from the PSI Input Mixed Mode: the input is selected from the device slave-bus
interface, fed either by the CPU or DMA, and the output is directed to the PSI slave-bus interface. If an
eQADC is connected to the PSI interface, the output is directed to an RFIFO selected by the tag field in
the DECFILTER_IB register (see Section 26.4.2.5, Decimation Filter Interface Input Buffer Register
(DECFILTER_IB)”).

26.2.3.5 Cascade mode

Cascade mode is a filter structure mode with two or more individual filter blocks connected in a chain to
form a more complex filter function. The output result of the first block (head block) is connected to the
input of the next block (middle or tail block) to be filtered again. More details in Section 26.5.16, Cascade
mode description”.

26.2.3.6 Low Power mode

Low power mode corresponds to the module disable mode or stop mode. In the module disable mode the
PSI slave-bus line is disabled and it is not possible to enter Freeze mode. The system clock is stopped. And
in stop mode, the system clock is also stopped.

26.2.3.7 Freeze mode

This mode is also known as debug mode. All filter action is frozen, either through software or by the
hardware SoC debug request signal. If a freeze request comes when the filter is processing an input, it
enters freeze mode only after the processing finishes.

26.3 External signal description

NOTE

The Decimation Filter does not provide metastability protection nor
filtering for these signals.

26.3.1 Decimation trigger signal

This signal is used to control the output of the decimation filter, allowing decimation to be driven
externally. For more details, see Section 26.5.4.2, Triggered output result description”.

26.3.2 Integrator enable signal

This signal is used to enable the hardware integrator. For more details, see Section 26.5.15.4, Integrator
enabling and halting”.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1176 Freescale Semiconductor

26.3.3 Integrator halt signal

This signal is used to halt the hardware integrator. For more details, see Section 26.5.15.4, Integrator
enabling and halting”.

26.3.4 Integrator reset signal

This signal is used to reset the hardware integrator. For more details, see Section 26.5.15.3, Integrator
reset”.

26.3.5 Integrator output request signal

This signal is used to update the integrator output result. For more details, see Section 26.5.15.2, Integrator
outputs”.

26.4 Memory map and register definition

This section provides the memory maps and detailed descriptions of all registers. Accesses to reserved
areas of the memory map can return a bus error, depending on the device integration.

This module communicates with two distinct slave-bus lines. One is related to the device integration and
the second is related to a PSI master block for data transfers. Below both memory maps are described.

26.4.1 Decimation filter device memory map

The addresses of the Decimation Filter registers are specified as offsets from the module’s base address,
described in Table 26-3. The registers allocated in this memory map are sufficient for a 4th order IIR filter
implementation.

Table 26-3. Decimation filter device memory map

Offset from DECFILTER_
BASE

0xFFF8_8000 (Filter A)
0xFFF8_C000 (Filter B)

Register Location

0x000 Decimation Filter Module Configuration Register
(DECFILTER_MCR)

on page
26-1178

0x004 Decimation Filter Module Status Register
(DECFILTER_MSR)

on page
26-1184

0x008 Decimation Filter Module Extended Configuration
Register (DECFILTER_MXCR)

on page
26-1187

0x00C Decimation Filter Module Extended Status Register
(DECFILTER_MXSR)

on page
26-1191

0x010 Decimation Filter Interface Input Buffer Register
(DECFILTER_IB)

on page
26-1193

0x014 Decimation Filter Interface Output Buffer Register
(DECFILTER_OB)

on page
26-1194

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1177

0x018–0x01F Reserved

0x020 Decimation Filter Coefficient 0 Register
(DECFILTER_COEF0)

on page
26-1195

0x024 Decimation Filter Coefficient 1 Register
(DECFILTER_COEF1)

0x028 Decimation Filter Coefficient 2 Register
(DECFILTER_COEF2)

0x02C Decimation Filter Coefficient 3 Register
(DECFILTER_COEF3)

0x030 Decimation Filter Coefficient 4 Register
(DECFILTER_COEF4)

0x034 Decimation Filter Coefficient 5 Register
(DECFILTER_COEF5)

0x038 Decimation Filter Coefficient 6 Register
(DECFILTER_COEF6)

0x03C Decimation Filter Coefficient 7 Register
(DECFILTER_COEF7)

0x040 Decimation Filter Coefficient 8 Register
(DECFILTER_COEF8)

0x044–0x077 Reserved

0x078 Decimation Filter TAP0 Register (DECFILTER_TAP0)1 on page
26-1195

0x07C Decimation Filter TAP1 Register (DECFILTER_TAP1)

0x080 Decimation Filter TAP2 Register (DECFILTER_TAP2)

0x084 Decimation Filter TAP3 Register (DECFILTER_TAP3)

0x088 Decimation Filter TAP4 Register (DECFILTER_TAP4)

0x08C Decimation Filter TAP5 Register (DECFILTER_TAP5)

0x090 Decimation Filter TAP6 Register (DECFILTER_TAP6)

0x094 Decimation Filter TAP7 Register (DECFILTER_TAP7)

0x098–0x0CF Reserved

0x0D0 Decimation Filter Interface Enhanced Debug Input Data
Register (DECFILTER_EDID)

on page
26-1196

0x0D4–0x0DF Reserved

0x0E0 Decimation Filter Final Integration Value Register
(DECFILTER_FINTVAL)

on page
26-1197

0x0E4 Decimation Filter Final Integration Count Value
Register (DECFILTER_FINTCNT)

on page
26-1198

Table 26-3. Decimation filter device memory map (continued)

Offset from DECFILTER_
BASE

0xFFF8_8000 (Filter A)
0xFFF8_C000 (Filter B)

Register Location

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1178 Freescale Semiconductor

26.4.2 Decimation filter register descriptions

All registers are 32-bit wide.

26.4.2.1 Decimation Filter Module Configuration Register (DECFILTER_MCR)

The Decimation Filter module configuration register provides configuration control bits for the
Decimation Filter internal logic.

NOTE

One must not modify this register contents when the status bit BSY is set,
except for fields FREN, FRZ and IDIS. To guarantee that BSY does not set
during the read-modify-write operation, it is advisable to set IDIS = 1 and
wait for BSY = 0 beforehand.

0x0E8 Decimation Filter Current Integration Value Register
(DECFILTER_CINTVAL)

on page
26-1198

0x0EC Decimation Filter Current Integration Count Value
Register (DECFILTER_CINTCNT)

on page
26-1199

0x0F0–0x1FF Reserved

1 The TAP register stores, on each filter node, the input sample data and, for the IIR type, the filter
intermediary results.

Address: DECFILTER_BASE + 0x000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

MDIS

F
R

E
N

0

FRZ

0

CASCD[1:0] IDEN

O
D

E
N

E
R

R
E

N 0

FTYPE[1:0]

0

SCAL[1:0]W

S
R

E
S

Reset —1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
IDIS SAT ISEL

M
IX

M

DEC_RATE[3:0] SDIE

D
S

E
L

IBIE OBIE

E
D

M
E

T
O

R
E

TMODE[1:0]
W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Reset value is defined by the MDIS_DEFAULT parameter value.

Figure 26-2. Decimation Filter Module Configuration Register (DECFILTER_MCR)

Table 26-3. Decimation filter device memory map (continued)

Offset from DECFILTER_
BASE

0xFFF8_8000 (Filter A)
0xFFF8_C000 (Filter B)

Register Location

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1179

Table 26-4. DECFILTER_MCR Register Field Descriptions

Field Description

0
MDIS

Module Disable. The MDIS bit puts the Decimation Filter in low power mode. Communication
through the PSI slave-bus Interface is ignored in this mode. Writes to the configuration register
are allowed with the exception of writes to the FREN and SRES bits, which are ignored. Writes
to the Coefficient registers are also allowed. The Decimation Filter cannot enter Freeze mode
once in disable mode. Once the module is disabled it no longer receives the system clock.
1 Low Power Mode
0 Normal Mode

1
FREN

Freeze Enable. The FREN bit enables the Decimation Filter to enter freeze mode if the SoC
debug request signal or the FRZ bit is asserted. See Section 26.5.13, Freeze mode description,
for more details.
1 Decimation Filter Freeze mode enabled
0 Decimation Filter Freeze mode disabled

2 Reserved, should be cleared.

3
FRZ

Freeze Mode
The FRZ bit controls the freeze mode of the Decimation Filter. For this bit to take effect the FREN
freeze enable bit also needs to be asserted. While in freeze mode the MAC operations are
halted. See Section 26.5.13, Freeze mode description, for more details.
1 Decimation Filter in Freeze Mode
0 Decimation Filter in Normal Mode

4
SRES

Software-reset bit
The SRES is a self-negated bit which provides the CPU with the capability to initialize the
Decimation Filter through the slave-bus interface. This bit always reads as zero. See
Section 26.5.10, Soft-reset command description, for more details.
1 Software-Reset
0 No action

5–6
CASCD[1:0]

Cascade Mode Configuration. The CASCD[1:0] bit field configures the block to work in cascade
mode of operation according to Table 26-5. For more details about the cascade mode, see
Section 26.5.16, Cascade mode description.

Note: Any change to this field must follow the procedure described in the Section 26.5.16.1,
Cascade freeze, stop, and configuration change procedures”.

IDEN
7

Input Data Interrupt Enable. The IDEN bit enables the Decimation Filter to generate interrupt
requests on all new input data written to the Interface Input Buffer register or Input/Output Buffers
register.
1 Input Data Interrupt Enabled
0 Input Data Interrupt Disabled

Table 26-5. CASCD[1:0] – Filter Cascade mode configuration selection

CASCD[1:0] Description

00 No cascade mode (single block)

01 Cascade Mode, Head block configuration

10 Cascade Mode, Tail block configuration

11 Cascade Mode, Middle block configuration

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1180 Freescale Semiconductor

ODEN
8

Output Data Interrupt Enable. The ODEN bit enables the Decimation Filter to generate interrupt
requests on all new data written to the filter Output buffer. It is independent of how ISEL and
MIXM are set.
1 Output Data Interrupt Enabled
0 Output Data Interrupt Disabled

ERREN
9

Error Interrupt Enable. The ERREN bit enables the Decimation Filter to generate interrupt
requests based on the assertion of the DECFILTER_MSR error flags OVF, DIVR, SVR, OVR or
IVR.
1 Error Interrupts Enabled
0 Error Interrupts Disabled

10 Reserved, should be cleared.

FTYPE[1:0]
11–12

 Filter Type Selection bits. The FTYPE[1:0] bits select the filter type according to Table 26-6.

Note: Bypass must not be configured in cascade mode (see field CASCD).

13 Reserved, should be cleared.

14–15
SCAL[1:0]

Filter Scaling Factor. The SCAL[1:0] bit field selects the scaling factor used by the filter algorithm
according to Table 26-7.

Table 26-4. DECFILTER_MCR Register Field Descriptions (continued)

Field Description

Table 26-6. FTYPE[1:0] – Filter type selection

FTYPE[1:0] Description

00 Filter Bypass1

1 In Bypass configuration the filter is disabled.

01 IIR Filter - 1 x 4th order

10 FIR Filter - 1 x 8th order

11 reserved

Table 26-7. SCAL[1:0] – Filter scaling factor definition

SCAL[1:0] Description

00 Scaling Factor = 1

01 Scaling Factor = 4

10 Scaling Factor = 8

11 Scaling Factor = 16

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1181

16
IDIS

Input Disable. The IDIS bit disables the block input, so that writes to the input buffer have no
effect (either from the device slave-bus or from the PSI interface), and input DMA or interrupt
requests are not issued. Input disabling is needed to change the block configuration to or from
cascade mode. See Section 26.5.16, Cascade mode description” for more details.
1 Input disabled
0 Input enabled
Note: IDIS resets in 1 (hardware reset only), and the module configuration procedures for

previous versions (without IDIS bit) are upward compatible provided that the
DECFILTER_MCR is written with 0 into the IDIS position (previously reserved).

17
SAT

Saturation Enable. The SAT bit enables the saturation of the filter output. See Section 26.5.6.2,
Saturation, for more details.
1 Enable Saturation
0 Disables Saturation

ISEL
18

Input Selection. The ISEL bit selects the source of input data to the Filter. Possible data sources
are the master block of the PSI slave-bus interface, or the CPU/DMA on the device slave-bus
interface. Each device slave-bus write to the Interface Input Buffer register or DMA transfer to
the input buffer is interpreted as a new sample to be processed by the filter. The output interface
used is the same as the one selected by ISEL if the output selection bit MIXM = 0. When MIXM
= 1, the output selection (slave-bus or device slave-bus) is contrary to the input selection (see
Table 26-8 and the MIXM bit definition), configuring a mixed mode operation. The slave-bus
interface can always read the input/output buffers, however the PSI slave-bus interface can only
read the output buffer by request of the decimation filter, in normal or input mixed modes. This
behavior is outlined in detail in Table 26-8.
1 Filter input from the device slave-bus interface
0 Filter input from PSI slave-bus interface

Note: ISEL completely selects the output when the filter is configured as cascade tail, and is
ignored when it is configured as cascade middle. ISEL must not be modified during the
filter operation (when the status bit BSY is set). In addition, the interface not selected by
ISEL must not be used to write into the input buffer.

Table 26-4. DECFILTER_MCR Register Field Descriptions (continued)

Field Description

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1182 Freescale Semiconductor

ISEL
18

(cont)

19
MIXM

Mixed Mode. The MIXM field selects the interface used for filter output, either device slave-bus
or the PSI slave-bus, in relation to the interface selected by ISEL (see ISEL bit definition and
Table 26-8 for more details):
1 Interface NOT selected by ISEL is used for output, configuring mixed mode.
0 Interface selected by ISEL is used for output, configuring normal or standalone mode
Note: MIXM must be set to 0 (zero) when the filter is configured as cascade mode.

Table 26-4. DECFILTER_MCR Register Field Descriptions (continued)

Field Description

Table 26-8. ISEL/MIXM definition — Read/Write from/to Input/Output buffers

ISEL MIXM Mode Operation

Device slave-bus
Interface

PSI slave-bus
interface

Input
Buffer

Output
Buffer

Input
Buffer

Output
Buffer

0 0 Normal Read Always,
by DMA or
interrupt1
request if
EDME = 1

1 Bit DSEL selects between interrupt or DMA request

Always,
no DMA

or
interrupt

Forbidden,
write only

By decfil
request2

2 Decimation filter issues a read request to the master block

1 PSI Input
Mixed

Always,
issues

DMA or
interrupt1

Disabled

0 Normal Write Forbidden No effect,
read only

Enabled (read only)

1 PSI Input
Mixed

1 0 Standalone Read Always,
no DMA

or
interrupt

Always,
issues

DMA or
interrupt1

Forbidden,
write only

Disabled

1 PSI Output
Mixed

Always,
no DMA

or
interrupt

By decfil
request2

0 Standalone Write Enabled,
by DMA or
interrupt
request1

No effect,
read only

Forbidden read only

1 PSI Output
Mixed

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1183

20–23
DEC_RATE[3:0]

Decimation Rate Selection. The DEC_RATE[3:0] field selects the decimation rate used by the
Decimation Filter. The decimation rate defines the number of data samples from the master block
that is required to generate one decimated result in the Decimation Filter output.

24
SDIE

Integrator Data Interrupt Enable. The SDIE field enables output buffer interrupts due to integrator
data result being ready (at registers DECFILTER_FINTVAL and DECFILTER_FINTCNT):
1 Integration ready causes an output interrupt
0 Integration ready does not cause an output interrupt.

25
DSEL

DMA Selection. The DSEL bit determines whether the data transfers — to the input buffer (write
to) and from the output buffer (read from) — are performed by DMA requests or by interrupt
requests. This bit can also be active when PSI input is selected with Enhanced Debug (ISEL = 0,
EDME = 1), in which case the input buffer generates read requests only (see Section 26.5.14,
Enhanced debug monitor description”).
1 DMA requests are generated
0 Interrupt requests are generated

26
IBIE

Input Buffer Interrupt Request Enable. The IBIE bit enables the Decimation Filter to generate
interrupt requests when:
 • device slave-bus input is selected (ISEL = 1) and DSEL = 0 when the input buffer is available

to receive new data;
 • PSI input is selected with Enhanced debug (ISEL = 0, EDME = 1) and DSEL = 0 when the

input buffer has data to be read by the device CPU.
1 Input Buffer Interrupt Request Enabled
0 Input Buffer Interrupt Request Disabled

27
OBIE

Output Buffer Interrupt Request Enable
The OBIE bit enables the Decimation Filter interrupt requests when outputs are directed to the
device slave-bus (ISEL!= MIXM) and DMA is not selected (DSEL = 0).
1 Output Buffer Interrupt Request Enabled
0 Output Buffer Interrupt Request Disabled

28
EDME

Enhanced Debug Monitor Enable
The EDME bit defines the enhanced debug monitor when input selection is from PSI (ISEL = 0).
In this case, the raw data fed from the PSI Master block is also, in parallel, made available in the
register DECFILTER_EDID (see Section 26.5.14, Enhanced debug monitor description”),
generating and input interrupt or DMA request.
1 Enhanced debug monitor enabled (read requests of input data from master block enabled)
0 Enhanced debug monitor disabled

Table 26-4. DECFILTER_MCR Register Field Descriptions (continued)

Field Description

Table 26-9. DEC_RATE[3:0] definition

DEC_RATE[3:0] Description

0000 No Decimation: one filter output for each sample input

0001 – 1111 One filter output for each (DEC_RATE+1) sample inputs

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1184 Freescale Semiconductor

26.4.2.2 Decimation Filter Module Status Register (DECFILTER_MSR)

29
TORE

Triggered Output Result Enable. The TORE bit enables an input trigger signal to force the
decimation filter to send the next result of the filter back to the master block. For more details,
see Section 26.5.4.2, Triggered output result description.
1 Output buffer update using an external signal is enabled
0 Output buffer update using an external signal is disabled
Note: TORE must only be asserted when PSI is selected as output (normal or PSI output mixed

modes).TORE must not be asserted with the filter bypassed (FTYPE = 00).

30–31
TMODE[1:0]

Trigger Mode. The TMODE field selects the way the trigger signal controls the output result
sampling function enabled by the TORE bit, as shown in Table 26-10.

Note: The TMODE definition replaces, and is upward compatible with, the TRFE bit definition
found in previous versions of the Decimation Filter.

Address: DECFILTER_BASE + 0x004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BSY 0 DEC_COUNTER[3:0] 0 0 0 0 0 0 0 0 0 0

W
IDFC

O
D

F
C

IBIC OBIC

D
IV

R
C

O
V

F
C

O
V

R
C

IVRC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 IDF ODF 0 IBIF OBIF 0 DIVR OVF OVR IVR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-3. Decimation Filter Status Register (DECFILTER_MSR)

Table 26-4. DECFILTER_MCR Register Field Descriptions (continued)

Field Description

Table 26-10. TMODE[1:0] definition

TMODE[1:0] Description

00 Output is posted at the rising edge of the trigger signal

01 Output is posted whenever the trigger signal is a logical 0

10 Output is posted at the falling edge of the trigger signal

11 Output is posted whenever the trigger signal is a logical 1

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1185

Table 26-11. DECFILTER_MSR Register Field Descriptions

Field Description

0
BSY

Decimation Filter Busy indication. The BSY bit indicates that the Decimation Filter is processing
new input data from the master block in normal mode or from the device core in standalone
mode. BSY is not asserted when the filter is disabled (FTYPE = 00). However, the BSY bit is
asserted when the soft reset is executed.
1 Decimation Filter Busy
0 Decimation Filter Idle

1 Reserved, should be cleared.

2–5
DEC_COUNTER

[3:0]

Decimation Counter. The DEC_COUNTER[3:0] field indicates the current value of the
DEC_COUNTER Decimation Counter (see Figure 26-1), which counts the number of input data
samples received by the Decimation Filter. When the value of this counter matches the
DEC_RATE[3:0] Configuration Register field, one decimated result is generated and the
DEC_COUNTER counter is reinitialized at zero. This register is cleared by a soft reset or a flush
command.

6
IDFC

Input Data Flag Clear bit. The IDFC bit clears the IDF Flag bit in the Status Register. This bit is
self negated, therefore it is always read as zero.
1 Clears IDF
0 No action

7
ODFC

Output Data Flag Clear bit. The ODFC bit clears the ODF Flag bit in the Status Register. This bit
is self negated, therefore it is always read as zero.
1 Clears ODF
0 No action

8 Reserved, should be cleared.

9
IBIC

Input Buffer Interrupt Request Clear bit. The IBIC bit clears the IBIF Flag bit in the Status
Register. This bit is self negated, therefore it is always read as zero.
1 Clears IBIF
0 No action

10
OBIC

Output Buffer Interrupt Request Clear bit. The OBIC bit clears the OBIF Flag bit in the Status
Register. This bit is self negated, therefore it is always read as zero.
1 Clears OBIF
0 No action

11 Reserved, should be cleared.

12
DIVRC

DIVR Clear bit. The DIVRC bit clears the DIVR Debug Filter Input Data Read Overrun indication
bit in the Status Register. This bit is self negated, therefore it is always read as zero.
1 Clears DIVR
0 No action

13
OVFC

OVF Clear bit. The OVFC bit clears the OVF Output Overflow bit in the Status Register. This bit
is self negated, therefore it is always read as zero.
1 Clears OVF
0 No action

14
OVRC

OVR Clear bit. The OVRC bit clears the OVR Output Overrun bit in the Status Register. This bit
is self negated, therefore it is always read as zero.
1 Clears OVR
0 No action

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1186 Freescale Semiconductor

15
IVRC

IVR Clear bit. The IVRC bit clears the IVR Filter Input Overrun indication bit in the Status
Register. This bit is self negated, therefore it is always read as zero.
1 Clears IVR
0 No action

16–21 Reserved, should be cleared.

22
IDF

Input Data Flag. The IDF bit flag indicates when new data is available at the DECFILTER_IB
register or at the DECFILTER_IOB register. This flag generates an Interrupt Request if enabled
by the IDEN bit in the Configuration Register. This Flag is cleared by the IDFC Status bit or by a
soft reset of the decimation filter.
1 New Sample received
0 Sample not received
Note: OBS: This flag is not used for read / write requests. It is used only to announce the input

data event. For read / write request flag, refer to IBIF.

23
ODF

Output Data Flag. The ODF bit flag indicates when a new decimated sample is available at the
DECFILTER_OB register or at the DECFILTER_IOB register. This flag generates an Interrupt
Request if enabled by the ODEN bit in the Configuration Register. This Flag is cleared by the
ODFC Status bit or by a soft reset of the decimation filter.
1 New Decimated Output Sample available
0 No new Decimated Output Sample available
Note: OBS: This flag is not used for read requests. It is used only to announce the output data

event. For read request flag, refer to OBIF.

24 Reserved, should be cleared.

25
IBIF

Input Buffer Interrupt Request Flag. The IBIF bit flag indicates that the input buffer
DECFILTER_IB is available to be filled with new data, when Enhanced Debug Monitor is off. In
Enhanced Debug Monitor, it indicates the input buffer DECFILTER_IB was filled with a new
sample and is ready to be read. IBIF assertion also asserts the interrupt signal when enabled by
the IBIE bit in the Configuration Register when DMA is not selected (DSEL = 0) and the input
buffer requires access from the device slave-bus (ISEL!= EDME). This Flag is cleared by the
IBIC Status bit or by a soft reset of the decimation filter.
1 New Sample is requested (ISEL = 1, EDME = 0) or new sample is available in Enhanced

Debug Monitor (ISEL = 0, EDME = 1).
0 No action

26
OBIF

Output Buffer Interrupt Request Flag. The OBIF bit flag indicates that either a new decimated
sample is available at the DECFILTER_OB register. This flag generates an Interrupt Request if
enabled by the OBIE bit in the Configuration Register and with ISEL!=MIXM and DSEL = 0. This
Flag is cleared by the OBIC Status bit or by a soft reset of the decimation filter.
1 New Decimated Output available
0 No new Decimated Output available

27 Reserved, should be cleared.

28
DIVR

Enhanced Debug Monitor Input Data Read Overrun. The DIVR bit indicates that a received
sample in the Filter Interface Input Register was overwritten by a new sample and was not read
by the Core. This flag generates an Interrupt Request if enabled by the ERREN bit in the
Configuration Register. This Flag is cleared by the DIVRC Status bit or by a soft reset of the
decimation filter.
1 Enhanced Debug Monitor Input Data Read Overrun occurred
0 Input Data Read Overrun did not occur in Enhanced Debug monitor

Table 26-11. DECFILTER_MSR Register Field Descriptions (continued)

Field Description

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1187

26.4.2.3 Decimation Filter Module Extended Configuration Register
(DECFILTER_MXCR)

29
OVF

Filter Overflow Flag. The OVF bit indicates that an overflow occurred in the filtered sample result.
This flag generates an Interrupt Request if enabled by the ERREN bit in the Configuration
Register. This Flag is cleared by the OVFC Status bit or by a soft reset of the decimation filter.
1 Overflow occurred
0 No overflow

30
OVR

Output Interface Buffer Overrun. The OVR bit indicates that a decimated sample was overwritten
by a new sample in the Interface Output Buffer Register. This flag generates an Interrupt Request
if enabled by the ERREN bit in the Configuration Register. This Flag is cleared by the OVRC
Status bit or by a soft reset of the decimation filter.
1 Filter Output Overrun occurred
0 No Output Overrun

31
IVR

Input Interface Buffer Overrun. The IVR bit indicates that a received sample in the Filter Interface
Input Register was overwritten by a new sample. This was probably caused by a violation of the
Decimation Filter maximum throughput. This flag generates an Interrupt Request if enabled by
the ERREN bit in the Configuration Register. This Flag is cleared by the IVRC Status bit or by a
soft reset of the decimation filter.
1 Input Buffer Overrun occurred
0 Input Buffer Overrun did not occur
Note: IVR does not set due to input register writes when input is disabled (DECFILTER_MCR bit

IDIS = 1).

Address: DECFILTER_BASE + 0x008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
D

M
A

E

SSIG

S
S

A
T

S
C

S
A

T 0 0 0 0 0 0 0 0 0 0 0 0

W
SRQ

S
Z

R
O

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

S
IS

E
L 0

SZROSEL
0 0

SHLTSEL
0

SRQSEL
0 0

SENSEL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-4. Decimation Filter Extended Configuration Register (DECFILTER_MXCR)

Table 26-11. DECFILTER_MSR Register Field Descriptions (continued)

Field Description

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1188 Freescale Semiconductor

Table 26-12. DECFILTER_MXCR Register Field Descriptions

Field Description

0
SDMAE

Integrator DMA Enable. The SDMAE bit enables the DMA request when an integrator output is
requested (see Section 26.5.15.2, Integrator outputs”).
1 integrator DMA request enabled
0 integrator DMA request disabled
Note: The DMA channel used is the same one used for filter outputs, and any configuration that

generates DMA requests from both of those sources is not allowed.

1
SSIG

Integrator Signal operation selection. The SSIG bit defines how the filtered data signal is treated
for integration:
1 integrator input takes signaled filter output
0 integrator input takes the absolute value of filter output

2
SSAT

Integrator Saturated operation selection. The SSAT bit defines how the integrator accumulator
behaves in case of an overflow.
1 integrator accumulator saturates on an overflow
0 integrator accumulator holds a modulo 217 value (considering the 15-bit fractional part) on an

overflow.
Note: In saturated operation the overflown integration sum holds the value 0xFFFFFFFF for

absolute integration (SSIG = 0), or values 0x7FFFFFFF (positive saturation) and
0x80000000 (negative saturation) for signaled integration (SSIG = 1). Non-saturated
mode is not supported with signaled integration, therefore one must not configure
SSIG = 1 and SSAT = 0.

3
SCSAT

 Integrator Counter Saturated operation selection. The SCSAT bit defines how the integrator
sample counter behaves in case of an overflow.
1 integrator sample counter saturates on an overflow, holding a value of 0xFFFFFFFF.
0 integrator sample counter holds a modulo 232 value on an overflow.

4–13 Reserved, should be cleared.

14
SRQ

Integrator Output Request. The SRQ bit is used to command the update of the integrator output,
reflected in the registers DECFILTER_FINTVAL and DECFILTER_FINTCNT. It may also cause
a DMA or interrupt request, depending on the DECFILTER_MCR bit SDIE and
DECFILTER_MXCR bit SDMAE. This is a write-only bit, so reads always return 0. For more
details see Section 26.5.15.2, Integrator outputs”.
1 requests integrator output update
0 no integrator output update request

15
SZRO

Integrator Zero. The SZRO bit is used to zero the integrator sum. This is a write-only bit, reads
always return 0. For more details see Section 26.5.15.3, Integrator reset”.
1 zeroes integrator sum
0 does not zero integrator sum
Note: If bits SRQ and SZRO are both written 1 at the same time, the integrator is reset only after

the registers DECFILTER_FINTVAL and DECFILTER_FINTCNT are updated.

16
SISEL

Integrator Input Selection. The SISEL bit selects the input of the integrator. For more details see
Section 26.5.15.1, Integrator inputs”.
1 filter outputs before the decimation feed the integrator
0 decimated filter outputs feed the integrator

17 Reserved, should be cleared.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1189

18–19
SZROSEL[1:0]1

Integrator Zero Control Mode Selection
The SZROSEL field defines the use of the integrator zero hardware input signal, according to
Table 26-13. For more details see Section 26.5.15.3, Integrator reset”.

20–21 Reserved, should be cleared.

22–23
SHLTSEL[1:0]2

Integrator Halt Control Selection. The SHLTSEL field defines the integrator halting mechanism,
according to Table 26-14. When the integrator is halted, the integration accumulator remains
unaltered on filter outputs independently of the enabling selected by SENSEL. For more details
see Section 26.5.15.4, Integrator enabling and halting”

24 Reserved, should be cleared.

Table 26-12. DECFILTER_MXCR Register Field Descriptions (continued)

Field Description

Table 26-13. SZROSEL – Integrator Zero mode

SZROSEL[1:0] Description

00 Hardware integrator zero request disabled

01 Integrator zero on toggle of hardware signal

10 Integrator zero on rising edge of hardware signal

11 Integrator zero on falling edge of hardware signal

.

Table 26-14. SHLTSEL – Integrator halt control selection

SHLTSEL[1:0] Description

00 Hardware halt control signal disabled

01 Integrator halted, independently of the hardware signal

10 Integrator halted when signal is at logical 0

11 Integrator halted when signal is at logical 1

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1190 Freescale Semiconductor

25–27
SRQSEL[2:0]1

Integrator Output Read Request Mode Selection. The SRQSEL field defines the use of the
integrator output request hardware input signal, according to Table 26-15. An integrator output
request updates the registers DECFILTER_FINTVAL and DECFILTER_FINTCNT, also causing
a DMA or interrupt request. Note that DMA or interrupt requests due to integrator output updates
depend on the DECFILTER_MXCR bit SDMAE and DECFILTER_MCR bit SDIE.
When continuous output is on, an integrator output request is issued whenever a new filter output
is accumulated. For more details see Section 26.5.15.2, Integrator outputs”.

28–29 Reserved, should be cleared.

30–31
SENSEL[1:0]1

Integrator Enable Control Selection. The SENSEL field defines the integrator enabling
mechanism, according to Table 26-16. When the integrator is enabled, filter outputs selected by
the SISEL bit are added to the integration accumulator. When the integrator is disabled, the
integration accumulator remains unaltered on filter outputs. For more details see
Section 26.5.15.4, Integrator enabling and halting”.

Table 26-12. DECFILTER_MXCR Register Field Descriptions (continued)

Field Description

Table 26-15. SRQSEL – Integrator output request mode

SRQSEL[2:0] Description

000 Hardware output request disabled

001 Integrator output request on toggle of hardware signal

010 Integrator output request on rising edge of hardware signal

011 Integrator output request on falling edge of hardware signal

100 Reserved

101 Continuous output request on, independently of hardware signal

110 Continuous output request on when signal is at logical 0

111 Continuous output request on when signal is at logical 1

Table 26-16. SENSEL – Integrator enable control selection

SENSEL[1:0] Description

00 Integrator disabled, independently of the hardware enable control
signal

01 Integrator enabled, independently of the hardware signal

10 Integrator enabled when signal is at logical 0

11 Integrator enabled when signal is at logical 1

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1191

26.4.2.4 Decimation Filter Module Extended Status Register (DECFILTER_MXSR)

1 The hardware input signals are ZSELA for Decimation filter A and ZSELB for Decimation filter B, defined in
Section 16.6.24, IMUX Select Register 10 (SIU_ISEL10).

2 The hardware input signals are HSELA for Decimation filter A and HSELB for Decimation filter B, defined in
Section 16.6.24, IMUX Select Register 10 (SIU_ISEL10).

Address: DECFILTER_BASE + 0x00C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

S
D

F
C

S
S

E
C

S
C

E
C

S
S

O
V

F
C

S
C

O
V

F
C

S
V

R
C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
0 0 0 0 0 0 0 SDF 0 0 SSE SCE 0

S
S

O
V

F

S
C

O
V

F

SVR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-5. Decimation Filter Extended Status Register (DECFILTER_MXSR)

Table 26-17. DECFILTER_MXSR Register Field Descriptions

Field Description

0–6 Reserved, should be cleared.

7
SDFC

 Integrator Output Data Flag Clear bit. The SDFC bit clears the SDF Flag bit in the Status
Register. This bit is self negated, therefore it is always read as zero.
1 Clears SDF
0 No action

8–9 Reserved, should be cleared.

10
SSEC

Integrator Sum Exception Clear bit. The SSEC bit clears the SSE flag bit in the Status Register.
This bit is self negated, therefore it is always read as zero.
1 Clears SSE
0 No action

11
SCEC

Integrator Count Exception Clear bit. The SCEC bit clears the SCE flag bit in the Status Register.
This bit is self negated, therefore it is always read as zero.
1 Clears SCE
0 No action

12 Reserved, should be cleared.

13
SSOVFC

Integrator Sum Overflow Clear bit. The SSOVFC bit clears the SSOVF Flag bit in the Status
Register. This bit is self negated, therefore it is always read as zero.
1 Clears SSOVF
0 No action

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1192 Freescale Semiconductor

14
SCOVFC

Integrator Count Overflow Clear bit. The SCOVFC bit clears the SCOVF Flag bit in the Status
Register. This bit is self negated, therefore it is always read as zero.
1 Clears SCOVF
0 No action

15
SVRC

SVR Clear bit. The SVRC bit clears the SVR Integrator Data Overrun indication bit in the Status
Register. This bit is self negated, therefore it is always read as zero.
1 Clears SVR
0 No action

16–22 Reserved, should be cleared.

23
SDF

Integrator Data Flag. The SDF bit flag indicates when a new integrator result is available at the
DECFILTER_FINTVAL register. This flag generates an Interrupt Request if enabled by the SDIE
bit in the Configuration Register. This Flag is cleared by the SDFC Status bit or by a soft reset of
the decimation filter.
1 New integrator result available
0 No new integrator result available

24–25 Reserved, should be cleared.

26
SSE

Integrator Sum Exception flag. The SSE bit indicates an exceptional condition of the integrator
accumulator. This flag generates an Interrupt Request if enabled by the DECFILTER_MCR bit
ERREN, and it is cleared by the SSEC bit or by a soft reset. Integrator exceptions are defined in
Section 26.5.15.5, Integrator exceptions”.
1 Integrator accumulator exception.
0 No exception in the integrator accumulator.

27
SCE

Integrator Count Exception flag. The SCE bit indicates an exceptional condition of the integrator
counter. This flag generates an Interrupt Request if enabled by the DECFILTER_MCR bit
ERREN, and it is cleared by the SCEC bit or by a soft reset. Integrator exceptions are defined in
Section 26.5.15.5, Integrator exceptions”.
1 Integrator counter exception.
0 No exception in the integrator counter.

28 Reserved, should be cleared.

29
SSOVF

Integrator Sum Overflow Flag. The SSOVF bit indicates an overflow of the integrator
accumulator. This Flag is cleared by the SSOVFC bit or by a soft reset.
1 Integrator accumulator overflown.
0 No overflow in the integrator accumulator.
Note: The SSOVF bit samples the integrator accumulator overflow condition when and only

when either registers DECFILTER_FINTVAL or DECFILTER_CINTCNT are updated.
Therefore, only one of the register pairs (DECFILTER_FINTVAL/DECFILTER_FINTCNT
and DECFILTER_CINTVAL/DECFILTER_CINTCNT) must be used by the application, in
order to avoid races.

Table 26-17. DECFILTER_MXSR Register Field Descriptions (continued)

Field Description

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1193

26.4.2.5 Decimation Filter Interface Input Buffer Register (DECFILTER_IB)

The Input Buffer Register provides access to the Input buffer of the decimation filter when the filter is in
the standalone or PSI output mixed modes of operation. Writes to this register are interpreted as requests
to the Decimation Filter to process new sample data. Writes to this register when ISEL = 0 are not allowed.

30
SCOVF

Integrator Count Overflow Flag. The SCOVF bit flag indicates an overflow of the internal
integrated sample counter. This Flag is cleared by the SCOVFC bit or by a soft reset.
1 Integrator sample counter overflown.
0 No overflow in the integrator sample counter.
Note: The SCOVF bit samples the integrator accumulator overflow condition when and only

when either registers DECFILTER_FINTVAL or DECFILTER_CINTCNT are updated.
Therefore, only one of the register pairs (DECFILTER_FINTVAL/DECFILTER_FINTCNT
and DECFILTER_CINTVAL/DECFILTER_CINTCNT) must be used by the application, in
order to avoid races.

31
SVR

Integrator Data Overrun. The SVR bit indicates that an integration value and count in the
registers DECFILTER_FINTVAL and DECFILTER_FINTCNT was overwritten by a new
integrator output request and was not read by the CPU or DMA. This flag generates an Interrupt
Request if enabled by the ERREN bit in the Configuration Register. This Flag is cleared by the
SVRC bit or by a soft reset.
1 Integrator Data Overrun occurred.
0 Integrator Data Overrun did not occur.

Address: DECFILTER_BASE + 0x010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0

INTAG[3:0]

0 0 0 0 0 0

P
R

E
F

IL
L

F
LU

S
H

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
INPBUF[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-6. Decimation Filter Interface Input Buffer Register (DECFILTER_IB)

Table 26-18. DECFILTER_IB Register Field Descriptions

Field Description

0–3 Reserved, should be cleared.

4–7
INTAG[3:0]

Decimation filter input tag bits
The INTAG[3:0] bit field is defined as a selector signal and it is used to identify different
destinations for the INBUF[15:0] data.
When the PSI master block is an eQADC, it is used in PSI output mixed mode to address the
appropriate RFIFO in the eQADC block.

Table 26-17. DECFILTER_MXSR Register Field Descriptions (continued)

Field Description

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1194 Freescale Semiconductor

26.4.2.6 Decimation Filter Interface Output Buffer Register (DECFILTER_OB)

8–13 Reserved, should be cleared.

14
PREFILL

Decimation Filter Prefill/Filter control bit
The PREFILL bit selects the Decimation Filter operation mode. For more details, see
Section 26.5.7, Filter prefill control description.
1 Decimation Filter prefill sample
0 Decimation Filter normal sample

15
FLUSH

Decimation Filter Flush control bit
Assertion of the FLUSH bit initializes the Decimation Filter to a initial state, as defined in
Section 26.5.9, Flush command description”. This bit is self negated and it is cleared only when
the data is read and the flush is executed.
1 Flush request
0 No flush request

16–31
INPBUF[15:0]

Input Buffer Data
The INPBUF[15:0] bit field carries the sample data to be filtered. This data buffer can be written
from the PSI slave-bus interface or by the device slave-bus interface. See Section 26.5.3, Input
buffer description, for more details.

Address: DECFILTER_BASE + 0x014 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 OUTTAG[3:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OUTBUF[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-7. Decimation Filter Interface Output Buffer Register (DECFILTER_OB)

Table 26-19. DECFILTER_OB Register Field Descriptions

Field Description

0–11 Reserved, should be cleared.

12–15
OUTTAG[3:0]

Decimation filter output tag bits. The OUTTAG[3:0] bit field is defined as a selector signal and it
is used to identify different destinations for the OUTBUF[15:0] data.
When an eQADC is the PSI block master, it holds the same number used to address the
destination RFIFO.

15–31
OUTBUF[15:0]

Output Buffer Data. The OUTPBUF[15:0] bit field is the result data in the decimation filter Output
Buffer. It represents a fixed point signed number in two’s complement format and is updated only
when a decimated result is ready to be transmitted, meaning it contains the last decimated result
from the filter.

Table 26-18. DECFILTER_IB Register Field Descriptions (continued)

Field Description

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1195

26.4.2.7 Decimation Filter Coefficient n Register (DECFILTER_COEFn)

26.4.2.8 Decimation Filter TAPn Register (DECFILTER_TAPn)

Address: DECFILTER_BASE + 0x020–0x040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 8{COEFn[23]}
COEFn[23:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
COEFn[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-8. Decimation Filter Coefficient n Register (DECFILTER_COEFn)

Table 26-20. DECFILTER_COEFn Register Field Descriptions

Field Description

0–7

8–31
COEFn[23:0]

Coefficient n field
The COEFn[23:0] bit fields are the digital filter coefficients registers. The coefficients are
fractional signed values in two’s complement format, in the range (-1  coef < 1).
Note: Reads to this register are sign-extended, meaning the coefficient’s sign bit is copied to all

eight most significant register bits.Writing to these fields when BSY = 1 is not allowed.

Address: DECFILTER_BASE + 0x078–0x094 Access: User read only

0 1 2 3
4

5 6 7 8 9 10 11 12 13 14 15

R 8{TAPn[23]} TAPn[23:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TAPn[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-9. Decimation Filter TAPn Register (DECFILTER_TAPn)

Table 26-21. DECFILTER_TAPn Register Field Descriptions

Field Description

8–31
TAPn[23:0]

TAPn Register
The read-only TAPn[23:0] bit fields shows the contents of the digital filter tap registers, as
fractional signed values in two’s complement format, in the range (-1  coef < 1).

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1196 Freescale Semiconductor

NOTE

Reads to this register are sign-extended, meaning the coefficient’s sign bit
is copied to all eight most significant register bits.

The content of these registers is meaningless when BSY = 1.

26.4.2.9 Decimation Filter Interface Enhanced Debug Input Data Register
(DECFILTER_EDID)

The Enhanced Debug Input Data Register provides read-only access to the sample data received by the
decimation filter when the input is selected from the device slave-bus (ISEL = 0), allowing the monitoring
of filter operation. See Section 26.5.14, Enhanced debug monitor description” for more details. Writes to
this register are not allowed.

Address: DECFILTER_BASE + 0x0D0 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SAMP_DATA[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-10. Decimation Filter Interface Input Buffer Register (DECFILTER_EDID)

Table 26-22. DECFILTER_EDID Register Field Descriptions

Field Description

0–31
SAMP_DATA

[15:0]

 Conversion Sample Data. The SAMP_DATA[15:0] bit field carries the data that was loaded in
the decimation filter to be processed by the FIR/IIR sub-block. This conversion data is supplied
by the PSI slave-bus interface only. See Section 26.5.11, Interrupts requests description, and
Section 26.5.12, DMA requests description, for more details.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1197

26.4.2.10 Decimation Filter Final Integration Value Register
(DECFILTER_FINTVAL)

NOTE

If the DEFILTER_MXCR bit SSAT = 1, the integration sum is saturated, so
that if the accumulation overflows DECFILTER_FINTVAL holds the value
0xFFFFFFFF for absolute integration (SSIG = 0), or values 0x7FFFFFFF
(positive saturation) and 0x80000000 (negative saturation) for signaled
integration (SSIG = 1).

If SSAT = 0, DECFILTER_FINTVAL holds the integration sum modulo 217
(considering the 15-bit fractional part).

Address: DECFILTER_BASE + 0x0E0 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SUM_VALUE[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SUM_VALUE[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-11. Decimation Filter Final Integration Value Register (DECFILTER_FINTVAL)

Table 26-23. DECFILTER_FINTVAL Register Field Descriptions

Field Description

0–31
SUM_VALUE

[31:0]

Integration Sum Value. The SUM_VALUE[31:0] field holds the sum of filtered output values. The
17 most significant bits hold the integer part, and the 15 least significant ones the fractional part
of the integration value. The control of the integration sum and update of this register is
determined by the register DECFILTER_MXCR (see Section 26.4.2.3, Decimation Filter Module
Extended Configuration Register (DECFILTER_MXCR)”). The register is updated only upon an
integration output request.
SUM_VALUE should be taken as an unsigned number when the integrator is configured for
absolute operation (DECFILTER_MXCR bit SSIG = 0), and a two’s complement signed number
otherwise.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1198 Freescale Semiconductor

26.4.2.11 Decimation Filter Final Integration Count Value Register
(DECFILTER_FINTCNT)

26.4.2.12 Decimation Filter Current Integration Value Register
(DECFILTER_CINTVAL)

Address: DECFILTER_BASE + 0x0E4 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R COUNT[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R COUNT[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-12. Decimation Filter Final Integration Count Value Register (DECFILTER_FINTCNT)

Table 26-24. DECFILTER_FINTCNT Register Field Descriptions

Field Description

0–31
COUNT[31:0]

Integration Count Value
The COUNT field holds the count of filtered outputs integrated. The control of the integration sum
and update of this register is determined by the register DECFILTER_MXCR (see
Section 26.4.2.3, Decimation Filter Module Extended Configuration Register
(DECFILTER_MXCR)”). The register is updated together with DECFILTER_FINTVAL, only upon
an integration output request.

Address: DECFILTER_BASE + 0x0E8 Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SUM_VALUE[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SUM_VALUE[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-13. Decimation Filter Current Integration Value Register (DECFILTER_CINTVAL)

Table 26-25. DECFILTER_CINTVAL Register Field Descriptions

Field Description

0–31
SUM_VALUE

[31:0]

Integration Sum Value. The SUM_VALUE[31:0] field holds an unsigned number representing the
sum of filtered output values, continuously updated as the integration proceeds. The control of
the integration sum is determined by the register DECFILTER_MXCR (see Section 26.4.2.3,
Decimation Filter Module Extended Configuration Register (DECFILTER_MXCR)”).

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1199

NOTE

If the DEFILTER_MXCR bit SSAT = 1, the integration sum is saturated, so
that if the accumulation overflows DECFILTER_CINTVAL holds the value
0xFFFFFFFF for absolute integration (SSIG = 0), or values 0x7FFFFFFF
(positive saturation) and 0x80000000 (negative saturation) for signaled
integration (SSIG = 1).

If SSAT = 0, DECFILTER_FINTVAL holds the integration sum modulo 217
(considering the 15-bit fractional part).

NOTE

A read on this register automatically commands an update of the register
DECFILTER_CINTCNT.

26.4.2.13 Decimation Filter Current Integration Count Value Register
(DECFILTER_CINTCNT)

26.4.3 Decimation Filter Memory Map for Parallel Side Interface

The Decimation Filter exchanges data with the master block through the PSI. The master block sends data
to the input buffers and reads data from the output buffers of the filter. To implement this exchange, only
a single register is required as described in Table 26-27, therefore the PSI address is ignored.

Address: DECFILTER_BASE + 0x0EC Access: User read only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R COUNT[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R COUNT[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-14. Decimation Filter Current Integration Count Value Register (DECFILTER_CINTCNT)

Table 26-26. DECFILTER_CINTCNT Register Field Descriptions

Field Description

0–31
COUNT[31:0]

Integration Count Value. The COUNT field holds the count of filtered outputs integrated. The
value is updated only when register DECFILTER_CINTVAL is read, to keep the coherency
between the integration and count values.

Table 26-27. Parallel side interface memory map for decfilter data exchange

Decimation filter address Description Access

0x0 DECFILTER_IOB - Decimation Filter1 input/output Registers

1 The input registers are addressed for write only and output registers are addressed for read only.

R/W

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1200 Freescale Semiconductor

26.4.4 PSI Register Description

This register is defined as 24-bit.

26.4.4.1 Decimation Filter Input/Output Buffers Register (DECFILTER_IOB)

The Input/Output Buffers Register is used by the PSI master block to access the Input and Output buffers
of the decimation filter. Writes to this register are interpreted as requests to the Decimation Filter to process
new sample data or to bypass timestamp data. Reads from this register frees the decimation filter output
buffer from filtered data or from bypass timestamp data.

Address: PSI_BASE + 0x0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 OUT_TAG[3:0]

W

M
_F

LU
S

H

M_CTRL
[1:0]

INP_TAG[3:0]

Reset — — — — — — — — 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OUT_BUFF[15:0]

W INP_BUFF[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 26-15. Decimation Filter Interface Input/Output Buffers Register (DECFILTER_IOB)

Table 26-28. DECFILTER_IOB Register Field Descriptions

Field Description

0–7 Reserved, should be cleared.

8
M_FLUSH

Master block Flush request/control bit. Assertion of the M_FLUSH bit initializes the Decimation
Filter to a initial state, as defined in Section 26.5.9, Flush command description”. The sample or
timestamp data written with a flush request in the same IOB register write is processed normally
after the flush.
1 flush request
0 no flush request

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1201

9–10
M_CTRL[1:0]

Decimation Filter mode control bits. Table 26-29 describes the M_CTRL[1:0] field functions. This
field is used for control of the Decimation Filter.

11 Reserved, should be cleared.

12–15
INP_TAG[3:0]

Decimation filter input tag bits. The INP_TAG[3:0] field indicates the destination associated with
the INPBUFF[15:0] sample. This value is stored by the Decimation Filter and used to address
the destination register when a decimated sample is available to be read by the master block.
Since several input data samples can be received before a decimated result is generated, the
INP_TAG[3:0] used for the decimated sample corresponds to the latest INP_TAG[3:0] received.
Therefore it is expected that the tag field be constant during the decimation process.

12–15
OUT_TAG[3:0]

Decimation filter output tag bits. The OUT_TAG[3:0] bit field is used to address the appropriate
destination register in the master block for the accompanying OUTBUF[15:0] data. When this
value is updated, it is a copy of the INP_TAG[3:0] value that was received with the last processed
input data.
When an eQADC is the PSI master block, this is used to address the appropriate RFIFO in the
eQADC block.

16–31
INP_BUFF[15:0]

Input Buffer Data. The INP_BUFF[15:0] bit field is the data input from the master block. The input
register can be written with this data when ISEL = 0. This data can be timestamp information that
is not processed by the filter, or sample data that is processed by the digital filter. In this case,
the information is a signed signal in two’s complement format.

16–31
OUT_BUFF[15:0]

Output Buffer Data. The OUT_BUFF[15:0] bit field corresponds to the data result of the
decimation filter that has been processed to the master block. This data can be timestamp
information or a digital filter result. In this case, the information is a signed signal in two’s
complement format.

Table 26-28. DECFILTER_IOB Register Field Descriptions (continued)

Field Description

Table 26-29. M_CTRL[1:0] – Decimation filter control functions

M_CTRL[1:0] Description

00 PREFILL — A prefill indicates to the Decimation Filter to accept
INP_BUFF[15:0] as valid data but no decimated samples are generated out of
these master samples. The prefill function is used to initialize and stabilize the
Decimation Filter without generating decimated samples.

01 CONVERSION RESULT — A conversion result indicates that the
INP_BUFF[15:0] field is data to be treated as valid sample data and it is
considered for decimation counting and output buffer update.

10 TIMESTAMP — A timestamp indicates that the INP_BUFF[15:0] field has data
that bypasses the flow in the decimation filter logic, returning back to the
master block without any modification when:
 • the previous accompanying data is not for prefill, and
 • when the previous accompanying input data is generating decimated filter

output.
Also, bit M_FLUSH is always 0 for timestamp data type.

11 Reserved

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1202 Freescale Semiconductor

26.5 Functional description

26.5.1 Overview

Figure 26-1 shows the block diagram of the Decimation Filter. The Control Logic provides the control
signals for all other sub-modules. The PSI data interface is subdivided into two sub-modules, transmitter
and receiver, that are accessed by the PSI slave-bus interface. The bypass path is used when the filter is
disabled and the incoming data can be transmitted back to the master block without being processed by the
Filter algorithm. The Filter hardware is implemented in such a way that an IIR (1 x 4 poles) or FIR filter
type can be implemented. The selection between the two types of filter algorithms is implemented by the
Control Logic sub-block.

The Coefficient register file provides the digital filter coefficients. This block is a register bank with
read/write access by the device slave-bus interface. The Filter TAP registers are also accessed through the
device slave-bus line interface, providing additional debug capabilities to the Decimation Filter block. The
MAC (Multiply Accumulate) sub-block executes the filter arithmetic operations controlled by the Control
Logic. The MAC results are routed to the Filter TAP registers and to the output buffer when the result is a
decimated filter sample.

26.5.2 Parallel Side Interface (PSI) description

This section describes the operation of the Parallel Side Interface (PSI) sub-block which is responsible for
communication and data exchange between the master block (for instance, the eQADC block) and the
Decimation Filter block.

The decimation filter receives sample data from the master block. The input data bus format is presented
in Figure 26-15. The sample data arrives along with the control bits. These control bits are decoded and
the proper action is decided in the Control Logic sub-block. When the decimation filter finishes its
processing and a result is available, the read request signal is issued to the master block. This data transfer
request remains set until the result is read by the master block.

When using two or more decimation filter blocks in the device, the output of the second block is connected
to the input data of the next block, and the output of the first block is connected to the read data input of
the PSI master block.

26.5.3 Input buffer description

The decimation filter receives data samples for filtering from a master block (e.g., eQADC) using the PSI
interface, or from the CPU using the device slave-bus interface. The data source is selected by the ISEL
bit of the module configuration register DECFILTER_MCR.

When the device slave-bus interface is selected and DMA operation is chosen (DECFILTER_MCR bit
DSEL = 1), the input data request signal is asserted when the input buffer is empty. When DMA operation
is not chosen (DSEL = 0) in standalone or PSI output mixed modes, the logic asserts an input interrupt
request and the input buffer waits for data from the device slave-bus.

Input buffer filling is flagged by the DECFILTER_MSR bit IDF. The IDF flag remains set, even after the
input data has been consumed and the buffer is free, until it is cleared by software.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1203

Input buffer overrun is detected and flagged by the DECFILTER_MSR bit IVR. The idle (BSY = 0)
Decimation Filter is able to receive two consecutive input writes without input overrun. For more details,
see Section 26.5.3.1, Input buffer overrun”.

When the selected input source is the PSI master block, the PSI master may send timestamp data after
related sample data for filtering. The timestamp is sent back to the PSI following the respective filter
output, using the same request mechanism. As the decimation filter takes several clock cycles to process
a sample, the timestamp is copied into an internal timestamp register until the filtered output is sent out,
therefore freeing the input buffer for yet another sample data.

When the input buffer is loaded with a sample data coming from the PSI interface and enhanced debug
monitor enabled is enabled (DECFILTER_MCR bits ISEL = 0, EDME = 1), input DMA or interrupt
requests are asserted, so that the PSI input samples can be monitored from the device slave-bus interface.
These interrupt or DMA requests result in input read accesses from the DECFILTER_IB register, unlike
write accesses needed when the same requests are made and the device slave-bus interface is selected for
input (ISEL = 1). Only the sample data input (not timestamps), can be monitored in this way. See also
Section 26.5.14, Enhanced debug monitor description”.

Soft reset clears the input buffer indication flags and any data write/read request that was generated in any
mode.

26.5.3.1 Input buffer overrun

An input overrun occurs when the input buffer is holding input data and new data is received by the filter.
See Section 26.5.3, Input buffer description, for details of the input buffer.

The input buffer overrun can occur only when the input is enabled (DECFILTER_MCR bit IDIS = 0), and
in the following cases:

• When the input buffer has sample data to be processed but the filter is busy and another input (data
or timestamp) is received.

• When the input buffer has a timestamp, the internal timestamp register is loaded and the next input
data is received.

As an example of the input data sequence, assume that the filter is enabled and not busy, and all registers
are empty. Then a word of sample data is received followed by a timestamp and another word of sample
data. No input overrun occurs in this case, because the first sample is immediately transferred to the tap
input register, the timestamp is immediately transferred to the internal timestamp storage register, and the
second sample can be held in the input buffer until the end of the processing of the sample data by the filter.
The input overrun may occur if more input is received before the end of the processing, or if the filter is
busy at the beginning of the received sequence.

When the filter is in bypass/disable mode (DECFILTER_MCR field FTYPE = 00), the data from the input
buffer is transferred to the output buffer, if it is not already full. If the output buffer is full, the input buffer
is loaded, and another word of input data is sent, then an input overrun occurs.

NOTE

Configuring ISEL = 1, MIXM = 1 and FTYPE = 00 (bypass), writes to the
DECFILTER_IB are routed directly to the PSI output.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1204 Freescale Semiconductor

26.5.4 Output buffer description

The decimation filter has an output buffer to send filtering results to a master block using the PSI, or to the
CPU using the device slave-bus, as selected through the DECFILTER_MCR bits ISEL and MIXM bits.

Filtering of prefill inputs do not update the output buffer, so the flag ODF is not set.

When filter types IIR and FIR are selected and the input source is the PSI master block (normal or PSI
input mixed modes), the output buffer receives data from the MAC sub-block or from the timestamp
storage register. The result from the MAC is written immediately after the processing if the decimation is
enabled. However, the timestamp data is enabled to be written in the output buffer only when the output
buffer is empty, the decimation count is reached, and the corresponding data was also ready to be
transmitted. When a new word of data is available in the output buffer, a read request signal is sent to the
master block. The master block has to send the corresponding read commands to clear the read request
signal. In this configuration, the core can always read the output buffer. The flag ODF is set when the
buffer is updated.

When in filter operation mode with input from the device slave-bus (ISEL = 1), only sample data is
processed by the filter, as there is no way to input timestamps. When the filter result from the MAC is
ready, this is immediately written to the output buffer when the decimation count is reached. The flag ODF
is set when the buffer is updated. It also generates a DMA read request if DSEL = 1 in standalone or PSI
input mixed modes.

When the filter is bypassed (FTYPE = 00), and PSI is selected as output (normal mode or PSI output mixed
mode), the data written into the input buffer waits until the output buffer is empty before passing the data.
This is needed because the master block takes some clock cycles to send the read commands to the
decimation filter after the read request signal is asserted. When the filter is bypassed and the device
slave-bus is selected as output (standalone mode or PSI input mixed mode), the data written into the input
buffer is immediately written into the output buffer. The flag ODF is set when the buffer is updated and a
DMA read request is asserted if DSEL = 1.

Soft reset clears the output buffer, as well as any data read request generated in any mode.

26.5.4.1 Output buffer overrun

An output overrun occurs when the output buffer is holding output data (sample or timestamp) that has not
been read is overwritten with another word of data (sample or timestamp).

Output overruns are flagged by the DECFILTER_MSR bit OVR, if the output buffer is updated when not
empty. The output buffer empty condition depends on the mode and output selection as follows:

• if PSI is selected as output (normal mode or PSI output mixed mode), the output buffer is
considered empty when the last output has been read.

• if cascade mode is selected, the output buffer is considered empty if the last output request was
acknowledged.

• if the device slave-bus is selected (standalone or PSI input mixed mode) for output and DMA is
selected (DSEL = 1), the output buffer is considered empty if the last output has been read.

• if the device slave-bus is selected (standalone or PSI input mixed mode) for output and DMA is
not selected (DSEL = 0), the output buffer is considered empty when the ODF flag is negated.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1205

NOTE

When the device slave-bus is selected (standalone or PSI input mixed mode)
for output and DMA is not selected (DSEL = 0), the ODF flag must be
cleared to avoid overrun, even if its corresponding interrupt is not used
(ODEN = 0).

Prefill inputs do not cause IIR or FIR output overrun in standalone, normal, and cascade tail modes, but
can cause overruns in cascade head or middle configurations (see Section 26.2.3.5, Cascade mode”).

When bypass is selected, the output overrun does not occur because the data written into the input buffer
is written into the output buffer only when this buffer is empty, but an input overrun may still occur (see
Section 26.5.3.1, Input buffer overrun”).

26.5.4.2 Triggered output result description

The posting of a filter output, either to the PSI interface or to the device slave-bus can be controlled by an
additional input trigger signal (see Section 26.3.1, Decimation trigger signal”). It allows the decimation to
be controlled by another circuit, instead of the internal decimation counter.

Triggered output operation is enabled by the bit TORE in the configuration register DECFILTER_MCR.
When triggered output is enabled, the decimation count configured by DECFILTER_MCR field
DEC_COUNTER is ignored. The decimation filter detects the rising edge or the falling edge of the trigger
signal as selected by the configuration field TMODE in the DECFILTER_MCR. When the corresponding
edge is detected, the output buffer is enabled to receive the next filter result.

The input trigger signal can also be used as a simple filtered output enable: in this trigger mode, when the
input trigger signal is asserted, every filtered output is posted to the output buffer; no output is posted when
the signal is negated. This trigger mode and the assertion polarity (active 0 or 1) of the input trigger signal
is also defined in the DECFILTER_MCR field TMODE.

26.5.5 Bypass configuration description

Bypass operation is configured by setting the field FTYPE[1:0] of module configuration register
DECFILTER_MCR to 00. In this case, the input sample and tag are sent to the output with no change. This
behavior is independent of the ISEL/MIXM setting. The following applies to the bypass configuration:

• flush is ignored

• prefill is ignored

• trigger or counted decimation is ignored

• BSY bit is not set

• the input and output flags are set

NOTE

Bypass must not be configured in cascade mode (see Section 26.5.16,
Cascade mode description”).

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1206 Freescale Semiconductor

26.5.6 IIR and FIR filter

This section describes the IIR filters implemented in the Decimation Filter block. Figure 26-16 shows the
filters functional diagrams. The figure shows a IIR filter of fourth order (4 poles). The filter topology, not
the hardware, is represented. The hardware implementation is based on a MAC unit controlled by an FSM
which implements the filter algorithm.

Figure 26-16. 1 x 4 poles IIR filter functional diagram

The difference equation for the IIR filter of Figure 26-16 can be written as:

Eqn. 26-1

where x(n) is the filter input at time n, y(n) is the filter output at time n, N is the number of feed-forward
filter coefficients minus one, Bi are the feed-forward filter coefficients, M is the number of feed-back filter
coefficients, and Aj are the feedback filter coefficients.

Equation 26-1 can be written as:

Eqn. 26-2

y(n)

Z
-1

Z
-1

Z
-1

Z
-1

+

+

+

+B0

Z
-1

Z
-1

Z
-1

Z
-1

+

+

+

+

x(n)

A4

A3

A2

A1

B4

B3

B2

B1x(n-1) y(n-1)

x(n-2)

x(n-3)

x(n-4)

y(n-2)

y(n-3)

y(n-4)

y n  Bix n i–  Ajy n j– 

j 1=

M

+

i 0=

N

=

w n 
Bi

S
-----x n i– 

i 0=

N

=

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1207

Eqn. 26-3

Where all the coefficients are scaled down by S. The block diagram for Equation 26-2 and Equation 26-3
is shown in Figure 26-17 in a fourth-order IIR filter implementation where the coefficients Aj and Bi are
called coefficient n, where n = 0-8.

Figure 26-17. Fourth order IIR filter implementation block diagram

The fourth order IIR filter is implemented with a FIR section followed by an IIR section. If the FIR type
filter mode is selected, the IIR section is converted into an FIR section. In this case the order of the FIR
filter is twice the IIR filter order, since all the TAP and coefficient registers are allocated for the FIR
section. The Filter configuration paths are shown in Figure 26-18. Multiplexer A controls the bypass filter
path and multiplexer B controls/selects the filter mode of operation, to either IIR mode or FIR mode. The
selection is controlled by the FTYPE[1:0] bits in the Filter Module Configuration register. The order of the
filter can be controlled by setting the appropriate filter coefficients to zero.

y n  S w n 
Aj

S
-----y n j– 

j 1=

M

+

 
 
 
 
 

=

Z
-1

Z
-1

Z
-1

Z
-1

+

Coefficient 2Tap1

Coefficient 4

Coefficient 3Tap2

Tap3

Tap0

Coefficient 0

Coefficient 1

) +

Coefficient 6 Tap5

Coefficient 8

Coefficient 7 Tap6

Tap7

Tap4

Scale Factor S

Coefficient 5

y

FIR Section IIR Section

Z
-1

Z
-1

Z
-1

Z
-1

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1208 Freescale Semiconductor

Figure 26-18. Filter configuration paths (FIR or 1x4 poles IIR)

26.5.6.1 Rounding

The Decimation Filter performs rounding operations in two different locations, as shown in Figure 26-18:

• to obtain the filter output result with 16 bits

• to obtain the IIR feedback result to be stored in tap4 registers with 24 bits

The rounding mechanism implements the Convergent Rounding methodology (also known as
round-to-nearest even number), which makes the decision on rounding up or down based on the value of
the lower portion of data to be rounded (LS_WORD). The rounding up/down condition is equal to the
traditional rounding except when the LS_WORD has the format {1000...00}. In this particular case, the
rounding procedure is like the example of Figure 26-19. If the MS_WORD is odd, the value is rounded
up. Otherwise the value is rounded down.

By-pas

FI

Z
-1

Z
-1

Z
-1

Z
-1

+

Coefficient 2Tap1

Coefficient 4

Coefficient 3Tap2

Tap3

Tap0 Coefficient 1

x(n) +

Coefficient 6 Tap5

Coefficient 8

Coefficient 7 Tap6

Tap7

Tap4Coefficient 5

y(n)

01 10
B

Z
-1

Z
-1

Z
-1

Z
-1

Round/Sat

FTYPE[1:0]

Round/Sat
IIR

00
A

Scale Factor SRegister Coefficient 0

FIR Section IIR Section

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1209

Figure 26-19. Convergent rounding methodology

26.5.6.2 Saturation

Filter output saturation occurs when an overflow or underflow condition of the filter is detected by
dedicated logic, and if it is enabled by the SAT control bit of the configuration register
DECFILTER_MCR. In this condition, the filter output is set to a saturated value equal to the maximum or
minimum value that can be represented by the 16-bit output port. Also, for the IIR filter an equivalent logic
is used to assert the saturation for the 24-bit feedback result.

26.5.7 Filter prefill control description

A prefill indicates that the input data should be accepted by the Decimation Filter, but no decimated output
should be generated while the control field indicates prefill. Therefore the prefill function is used in the
beginning of the filter operation to initialize and stabilize the Decimation Filter without generating
decimated samples. In addition, the prefill does not operate when the filter is in bypass (FTYPE = 0b00).

The prefill is controlled by the value in the M_CTRL[1:0] field in the DECFILTER_IOB register. When
ISEL = 0, the M_CTRL[1:0] field in the DECFILTER_IOB register controls the prefill. When ISEL = 1,
it is controlled by the PREFILL field in the DECFILTER_IB register. The prefill control is usually
activated only in a certain number of words of sample data in the beginning of the input data sequence.

When the prefill control is set, the decimation filter block operates as follows:

• Input data is processed normally by the digital filter and tap values are updated.

• The decimation counter is maintained in reset value.

• The output buffer is not updated and no output interrupt or read request is generated.

• The accompanying timestamp for the identified prefill conversion data is not bypassed.

• The overflow detector/flag operates normally and the error interrupt request is set if enabled.

xx.......xx.......00101

xx.......xx.......00100xx...xx 1000.....00......00 Before Rounding

xx.......xx.......00100xx...xx Rounded Down

MS_WORD LS_WORD

+0

xx...xx 1000.....00......00 Before Rounding

xx.......xx.......00110xx...xx Rounded Up

+1

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1210 Freescale Semiconductor

In Cascade Mode, prefill control is ignored in all cascaded filters except the Tail one: the prefill samples
are filtered, decimated and forwarded to the next block with the prefill indication. The Tail block takes the
samples with prefill indication, filter them and discard the result.

NOTE

The combined decimation count of the cascade combo may not be reset after
the last prefill sample. Unlike in a single (non-cascaded) filter, the number
of non-prefill inputs until an output comes out depends on the number of
past prefill inputs.

26.5.8 Timestamp data transmission

The timestamp information is identified by the master block using the M_CTRL[1:0] bit field of the
register DECFILTER_IOB. For timestamp data, the input data and tag values that come with
M_CTRL[1:0] bits set to 0b10 are sent back to the master block without changing. However, some
additional conditions are considered:

• The timestamp is additional information that accompanies a sample conversion data. The PSI
master block sends the decimation filter the conversion data with control bits for either prefill or
filter operation. This data may optionally be followed by the corresponding timestamp data. When
the corresponding conversion data is marked for prefill, the timestamp data is not sent to the output
buffer. This occurs because the filter result is not sent to the output buffer.

• Similarly, when the filter is decimating the results, the timestamp is only sent to the output buffer
if the corresponding received conversion data has generated a filter output that is selected by the
decimation counter to be sent to the output buffer. Other received timestamps that come with data
not selected by the decimator are discarded.

• Sending two consecutive words of timestamp data is not allowed: there must be at least one
conversion data between two timestamp inputs. In normal operation, the filter should receive only
one timestamp for each word of conversion data to be filtered.

• Timestamps are not allowed in PSI Input Mixed Mode.

26.5.9 Flush command description

The flush signal is used by the Decimation Filter to execute a partial reset of the filter. This is useful when
the same filter is used on a new set of data samples after finishing the filtering of another set of data.

When the flush control is detected, all filter TAPs are cleared and the DEC_COUNTER[3:0] field in the
status register DECFILTER_MSR is reset.

The flush function does not clear the Coefficient registers file in the Decimation Filter, thus it is not
required to re-write these registers after a flush. The integrator accumulator and sample count are not
cleared either. The output buffer also keeps the last result and may be retrieved until the next output is
posted.

The flush control precedes the input data to be filtered. Therefore, the corresponding sample data is
processed by the block after the flush. When ISEL = 0, the field M_FLUSH in the DECFILTER_IOB
register is processed. When ISEL = 1, the field FLUSH in the DECFILTER_IB register is processed. Note

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1211

that a word of valid sample data can be available at the same time the flush signal is asserted. In this case
the flush is executed and the sample is processed after the flush.

When ISEL = 0, flush bit M_FLUSH must not be asserted when the input data is a timestamp
(M_CTRL = 10).

When the filter is disabled by the FTYPE[1:0] control bit field, the flush command is not executed.

NOTE

In Cascade Mode, the flush command is forwarded to the next cascaded
block together with the output, after the decimation count. Therefore it is
possible that, in a given moment, the taps of a cascaded block are zeroed
after a flush input, while the following ones still retain the old values.

26.5.10 Soft-reset command description

The Soft-Reset command is requested through the self-negated bit SRES of the DECFILTER_MCR
register and provides the CPU with the capability to initialize the Decimation Filter through the slave-bus
interface. The procedure below must be performed for a software reset when the filter is active:

1. disable filter inputs, writing DECFIL_MCR bit IDIS = 1.

2. poll the register DECFIL_MSR until the bit BSY is 0.

3. repeat the step 2 polling; this is necessary to cover the case when a sample is left in the input buffer.

4. write DECFILTER_MCR bit SRES = 1.

After the software reset is issued, all internal Filter TAP registers, the decimation counter, the integrator
outputs (except DECFILTER_CINTCNT) and the state machine are put in the initial state. The status
register DECFILTER_MSR is also cleared. The Coefficient registers are not affected by the SRES. In case
there is some filter processing, the filter process is aborted and the last sample is discarded. In addition,
data in the input buffer waiting to be processed, and data in the output buffer waiting to be read, are
discarded (the requests of service are cleared). The software reset command has high priority and the BSY
bit is set during its operation.

The configuration registers DECFILTER_MXCR and DECFILTER_MCR are also not affected by a soft
reset, except the bit SRES that is self-negated and is always read as zero.

When in debug or freeze mode, the soft reset is executed but the filter remains in debug or freeze mode.

NOTE

It is recommended to clear the IBIE bit before a software reset, especially if
ISEL changes, in order to avoid unwanted interrupt requests.

NOTE

DMA transfers must not be active during soft reset. Data loss can occur.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1212 Freescale Semiconductor

26.5.11 Interrupts requests description

26.5.11.1 Block interrupt request

There are several interrupt request events that can be enabled using the module configuration register
DECFILTER_MCR. Basically, the interrupt request can be issued under any of the following conditions:

• when a word of input data is received
• when a word of output data is available
• when an error has occurred.

The input data flag IDF is set when a word of data is received from the CPU when in standalone mode, or
when a word of data is received in the PSI when it is not in standalone mode (normal mode). It is not used
to generate the read or write requests (as defined in Section 26.5.11.2, Input buffer interrupt request) when
DSEL = 0.

Output data is available and its flag (ODF) is set when the input data sample is processed by the filter and
the decimation counter matches the decimation rate value. It is not used to generate the read requests (as
defined in Section 26.5.11.3, Output buffer interrupt request) when DSEL = 0.

An error event in the decimation filter block is defined as one of these events:

• Overflow in the filter, flagged by OVF
• Overrun in the decimation filter input, flagged by IVR
• Overrun in the decimation filter output, flagged by OVR
• Overrun in enhanced debug monitor, flagged by DIVR
• Integrator overrun, flagged by SVR
• Integrator value exception, flagged by SSE
• Integrator count exception, flagged by SCE

An overflow occurs when the two’s-complement result value from the MAC accumulator is out of the
range of values that can be stored in tap register 4 (IIR) or in the output register.

An input overrun occurs when the input buffer is holding a word of input data and one more word of data
is received by the filter. See Section 26.5.3.1, Input buffer overrun, for more details.

An output overrun occurs when a new word of data is sent to the output buffer but the previous word of
data has not been handled yet. See Section 26.5.4.1, Output buffer overrun, for more details.

These flags can be set by the PSI events, however they are only cleared by
• the CPU, or
• by the soft reset command in the DECFILTER_MCR, or
• by the clear flag fields in the DECFILTER_MSR.

26.5.11.2 Input buffer interrupt request

This interrupt is enabled by the register IBIE in the DECFILTER_MCR and is asserted only when DSEL
= 0. This request is flagged in the DECFILTER_MSR by field IBIF.

In standalone and PSI output mixed modes, the input buffer interrupt request is asserted when the input
buffer is available to receive a conversion sample and DMA operation is not selected (DSEL = 0), meaning

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1213

the block is requesting data to be written into the input buffer. The interrupt request is cleared when the
CPU writes a one in field IBIC of the DECFILTER_MSR, or by the soft reset command.

When in normal, cascade or PSI input mixed modes with enhanced debug enabled (ISEL = 0 and
EDME = 1, DSEL = 0), the input sample data can be read by the CPU when this interrupt request is
asserted. The interrupt is asserted just when a new word of sample data is supplied to the filter sub-block
to be processed. As this filter register is overwritten by the next word of sample data, an input read overrun
event can occur (the DIVR bit in DECFILTER_MSR is asserted) if the interrupt request is not cleared
before, or at the same time as, the new sample arrives to set the interrupt. This DIVR bit is cleared by the
DIVRC bit in the status register DECFILTER_MSR. However, in enhanced debug monitoring, the set
condition has higher priority than the clear. This means that if the set condition and the clear bit IBIC occur
at the same time, the interrupt remains asserted.

26.5.11.3 Output buffer interrupt request

This interrupt is enabled by the register OBIE in the DECFILTER_MCR and is asserted only when DSEL
= 0. This request is also indicated in the field OBIF of the DECFILTER_MSR.

When in standalone mode, the output buffer can be read by the CPU with the DMA disabled. The output
buffer interrupt request is asserted when the output buffer receives a new result from the filter sub-block.
This means the block is requesting data to be read by the CPU.

The output buffer interrupt request can also be asserted due to an integrator result being ready, as flagged
by the DECFILTER_MXSR bit SDF, when the DECFILTER_MCR bit SDIE = 1. Note that both the filter
output and integrator share the same interrupt source.

This interrupt request is cleared when a one is written in the bit OBIC and/or bit SDFC of the
DECFILTER_MXSR, or by the soft reset command.

26.5.12 DMA requests description

The DMA function for integrator result, input and output buffers is enabled using DSEL = 1 in the
DECFILTER_MCR.

26.5.12.1 Input Buffer DMA request

This DMA request is enabled by the ISEL and DSEL bits in the DECFILTER_MCR.

When in standalone mode, the input buffer can be written by the DMA. The input buffer DMA request is
asserted when the input buffer is available to receive a conversion sample (it is not holding a word of data).
This DMA request is cleared when an input data word is written in the input buffer. Therefore, the DMA
request is always cleared before it is asserted again.

When in normal mode with enhanced debug enabled (ISEL = 0 and EDME = 1, DSEL = 1), the input
sample data can be read by the DMA when this DMA request is asserted. The request is asserted when a
new word of sample data is written into the input buffer to be processed. As this filter register is
overwritten by the next word of sample data, a DMA read overrun event can occur (the DIVR bit in
DECFILTER_MSR is asserted) if the DMA request is not cleared before, or at the same time as, a new

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1214 Freescale Semiconductor

sample arrives to set the DMA request. This DIVR bit is cleared by the DIVRC bit in the status register
DECFILTER_MSR or by soft reset.

This DMA request is cleared when the DMA transfer is complete or by soft reset.

26.5.12.2 Output buffer DMA request

This DMA request is enabled by the ISEL, MIXM and DSEL bits in the DECFILTER_MCR.

When in standalone mode, the output buffer can be read using the DMA. The output buffer DMA request
is asserted when the output buffer receives a new result from the internal filter sub-block. This DMA
request is cleared when the output buffer is read by the processor.

The output buffer DMA request is also asserted when an integrator output is ready, if
DECFILTER_MXCR bit SDMAE = 1 and the filter output is directed to the PSI interface
(ISEL = MIXM).

The DMA request is also cleared by soft reset.

26.5.13 Freeze mode description

The freeze mode operation is asserted using the FREN enable bit and FRZ bit in the DECFILTER_MCR
or by the modules debug input.

It is not possible to enter freeze mode when the module is disabled by the configuration bit MDIS.

In case of a freeze mode request during the processing of an input sample, the current processing is finished
and then the module enters freeze mode.

Access to input and output buffers remain operational in freeze, as well as their related flags.

NOTE

For cascaded blocks (see Section 26.5.16, Cascade mode description”), it is
recommended to freeze only the Head block. If it is really necessary to
freeze all the blocks, it is recommended that they are frozen sequentially
starting from the Head block towards the Tail one. Unfreezing is
recommended to be done sequentially from the Tail block towards the Head
one.

26.5.14 Enhanced debug monitor description

This feature is enabled by the EDME bit in the configuration register DECFILTER_MCR. The monitoring
operation works either in normal or cascade modes, when the sample data is supplied by a master block
through the PSI slave-bus interface (ISEL = 0) or another cascaded block (see Section 26.5.16, Cascade
mode description). The Enhanced Debug Monitor feature makes the input sample data also available in
the DECFILTER_EDID register. A DMA or interrupt request (selected by DSEL) indicates a new input
was fed and DECFILTER_EDID was updated. The input is processed normally by the filter.

An Enhanced Debug Input Data Register (DECFILTER_EDID) overrun can occur if a sample is not read
by the CPU or DMA before overwritten by a new sample. The overrun is indicated in a separate flag DIVR

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1215

in the status register DECFILTER_MSR. If the ERREN bit is set in the DECFILTER_MCR configuration
register, this overrun asserts the module interrupt request.

26.5.15 Integrator

The hardware sample integrator accumulates the filter output values for determined periods.

26.5.15.1 Integrator inputs

The integrator can be fed either by raw or decimated filter outputs, selected by the DECFILTER_MXCR
bit SISEL (see Section 26.4.2.3, Decimation Filter Module Extended Configuration Register
(DECFILTER_MXCR)“). The accumulated input value taken can be the filtered sample “as is” (signaled),
or its absolute value, depending on the DECFILTER_MXCR bit SSIG.

NOTE

The integrator accumulates input samples when bypass is selected.

26.5.15.2 Integrator outputs

The integrator output is either:
• the 32-bit, fixed point unsigned accumulation of the absolute values from the filter output, when

the integrator is configured for absolute operation (DECFILTER_MXCR bit SSIG = 0). This
resolution allows a minimum of 131071 samples to be integrated before an overflow occurs in
absolute operation, or 65536 samples in signed operation.

• the 32-bit, fixed point signed two’s complement accumulation of the signed values from the filter
output, when the integrator is configured for signed operation (SSIG = 1).

The fractional part of the accumulation is 15 bits wide in both cases.

An accumulation overflow is flagged by the DECFILTER_MXSR bit SSOVF. The accumulator can
overflow in either of the ways below, selected through the DECFILTER_MXCR bit SSAT:

• saturated accumulation (SSAT = 1), so that an overflow results in the value of 0xFFFFFFFF for
absolute value accumulation (SSIG = 0), or 0x7FFFFFFF (positive) and 0x80000000 (negative)
for signaled accumulation (SSIG = 1).

• non-saturated accumulation (SSAT = 0), so that an overflow results in the modulo 217
accumulation value. This operation is only allowed in absolute accumulation (SSIG = 0).

The integrator output value becomes available in register DECFILTER_FINTVAL (see Section 26.4.2.10,
Decimation Filter Final Integration Value Register (DECFILTER_FINTVAL)“) when an integrator output
request is issued. The integrator output request can be issued in the following ways:

• by hardware, controlled by an external signal; the enabling and the selection of the signal request
modes is done through the DECFILTER_MXCR field SRQSEL (see Section 26.4.2.3, Decimation
Filter Module Extended Configuration Register (DECFILTER_MXCR)”);

• by software, writing 1 to the DECFILTER_MXCR bit SRQ;

The SSOVF flag is asserted upon an integrator output request, based on the overflow state of the internal
accumulator. This internal overflow state is cleared upon an output request, just after SSOVF is asserted,
or upon an integrator reset (see Section 26.5.15.3, Integrator reset”). The internal overflow state is also

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1216 Freescale Semiconductor

cleared by writing SSOVFC to 1, but only in saturated accumulation. Therefore, a non-saturated overflow
that occurs before an SSOVF clear is still flagged in the next output request.

The integrator output request also updates the register DECFILTER_FINTCNT, which holds the number
of samples accumulated into the register DECFILTER_FINTVAL. This internal accumulated sample
counter can operate either in a saturated or “wrapped” count mode, as selected by the
DECFILTER_MXCR bit SCSAT. In both cases, the counter overflow is flagged by the
DECFILTER_MXSR bit SCOVF.

The SCOVF flag is asserted upon an integrator output request, based on the overflow state of the internal
counter. This internal overflow state is negated upon an output request, just after SCOVF is asserted, or
upon an integrator reset (see Section 26.5.15.3, Integrator reset”). The internal overflow state is also
negated by writing SCOVFC to 1, but only in saturated count. Therefore, a non-saturated overflow that
occurs before an SCOVF clear is still flagged in the next output request.

An integrator output update can also issue a DMA or interrupt request. The interrupt and DMA requests
are the same ones used for the filter output buffer (see Section 26.5.11.3, Output buffer interrupt request”
and Section 26.5.12.2, Output buffer DMA request”). The DECFILTER_MCR bit SDIE is used to enable
integrator interrupts, and the DECFILTER_MXCR bit SDMAE enables the DMA integrator requests. The
integrator DMA request uses the same signal as the filter output DMA request, so one must never use any
configuration that allows both the integrator and filter output to make DMA requests.

Integrator output updates are flagged by the DECFILTER_MXSR bit SDF. The integrator overrun is
detected in the same way as a filter output buffer overrun, and is flagged by DECFILTER_MXSR bit SVR.
An integrator overrun also generates an error interrupt if the DECFILTER_MCR bit ERREN = 1 (see
Section 26.5.4.1, Output buffer overrun“).

Registers DECFILTER_CINTVAL and DECFILTER_CINTCNT provide a way to poll intermediate
integration values and sample counts, respectively (see Section 26.4.2.12, Decimation Filter Current
Integration Value Register (DECFILTER_CINTVAL)” and Section 26.4.2.13, Decimation Filter Current
Integration Count Value Register (DECFILTER_CINTCNT)“). DECFILTER_CINTVAL is updated
whenever the integrator is reset or a new sample is accumulated. DECFILTER_CINTCNT is updated only
when DECFILTER_CINTVAL is read, so that coherency between the value and count values is
guaranteed. Therefore, the read access order of that pair of registers must be DECFILTER_CINTVAL first,
followed by DECFILTER_CINTCNT.

NOTE

The flags SSOVF and SCOVF can also asserted when
DECFILTER_CINTVAL is read. The SSOVF and SCOVF set and clearing
rules apply for the DECFILTER_CINTVAL read the same way as for an
integrator output request.

26.5.15.3 Integrator reset

The integration value is reset to the value of zero, in the following ways:
• by hardware: on hardware reset, or controlled by an external signal; the enabling and the selection

of the zero signal modes is done through the DECFILTER_MXCR field SZROSEL (see

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1217

Section 26.4.2.3, Decimation Filter Module Extended Configuration Register
(DECFILTER_MXCR)”);

• by software: on software reset, or writing 1 to the DECFILTER_MXCR bit SZRO;

The integrator reset also zeroes the internal counter of accumulated samples and the internal overflow state
(but not SSOVF and SCOVF). Software and hardware reset resets all integrator registers immediately.
Integrator zero command from external signal or by software (SZRO) affects the integrator registers and
flags as follows:

• DECFILTER_CINTVAL resets immediately;
• DECFILTER_CINTCNT does not reset immediately; it is updated only upon a

DECFILTER_CINTVAL read, loaded with the number of integrated samples occurred after the
reset;

• DECFILTER_FINTVAL and DECFILTER_FINTCNT do not reset immediately; being updated
only upon a new output request (see Section 26.5.15.2, Integrator outputs”); if a integrator software
zero command (through SZRO bit) and an integrator output request (through SRQ bit) are made at
the same time, the registers DECFILTER_FINTVAL and DECFILTER_FINTCNT are updated
with the last internal values before reset; the same applies to simultaneous integrator zero
command and output request by hardware signal;

• the SSOVF and SCOVF flags do not negate; however, the internal overflow states which assert
SSOVF and SCOVF do reset immediately, so that the next output update (either by hardware
request, software request or DECFILTER_CINTVAL read) before an overflow does not assert
SSOVF/SCOVF.

NOTE

The integrator reset does not depend on the integrator enabling (see
Section 26.5.15.4, Integrator enabling and halting“).

26.5.15.4 Integrator enabling and halting

Two mechanisms, enabling and halting, drive the integrator accumulation, allowing it to be controlled by
a combination of two distinct sources, both software, both hardware, or one hardware and other software.
Values are accumulated when the integrator is enabled and not halted. The integrator halt and enable states
can be controlled in the following ways:

• by hardware, through external signals; the enabling and the selection of the signal request modes
is done through the DECFILTER_MXCR fields SENSEL and SHLTSEL, respectively (see
Section 26.4.2.3, Decimation Filter Module Extended Configuration Register
(DECFILTER_MXCR)”);

• by software, through the same DECFILTER_MXCR fields SENSEL and SHLTSEL. Note that
these fields are in different bytes, so that two distinct, concurrent software tasks can avoid
coherency problems by changing the fields using byte read-modify-write accesses.

NOTE

Enabling and halting does not affect output requests or integrator reset.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1218 Freescale Semiconductor

26.5.15.5 Integrator exceptions

Integrator may run into exception states due to overflow, either of the accumulated value or the sample
counter. Exceptions are flagged by the DECFILTER_MXSR bits SSE, for sum value exception, and SCE,
for counter exception. These flags generate an error interrupt, if it is enabled (see Section 26.5.11.1, Block
interrupt request”).

The accumulator exception condition depends on whether it operates in saturated mode or not, as follows:
• In Saturated operation (DECFILTER_MXCR bit SSAT = 1): a sum exception occurs (SSE = 1)

whenever an overflow is flagged; SSE asserts together with SSOVF.
• In Non-saturated operation (DECFILTER_MXCR bit SSAT = 0): a sum exception occurs

(SSE = 1) when an overflow is flagged and the DECFILTER_MXSR bit SSOVF is already set to 1.
• In Non-saturated operation, an accumulator exception also occurs if the accumulator overflows

twice without any update of the final integrator value DECFILTER_FINTVAL or the current
integrator counter DECFILTER_CINTCNT (by a read to the DECFILTER_CINTVAL register),
neither an integrator reset occurs. The SSOVF flag does not assert in this situation.

NOTE
The SSOVF flag can only be asserted upon a hardware request, a software
request, or when DECFILTER_CINTVAL is read, based on the internal
accumulator overflow state.

Similarly, the sample counter exception condition depends on whether it operates in saturated mode or not,
as follows:

• In Saturated operation (DECFILTER_MXCR bit SCSAT = 1): a counter exception occurs
(SCE = 1) whenever an overflow is flagged; SCE asserts together with SCOVF.

• In Non-saturated operation (DECFILTER_MXCR bit SCSAT = 0): a counter exception occurs
(SCE = 1) when an overflow is flagged and the DECFILTER_MXSR bit SCOVF is already set to 1.

• In Non-saturated operation, a counter exception also occurs if the counter overflows twice without
any update of the final count DECFILTER_FINTCNT or the current integrator counter
DECFILTER_CINTCNT (by a read to the DECFILTER_CINTVAL register), neither an
integration reset occurs. The SCOVF flag does not assert in this situation.

NOTE

The Scovf Flag Can Only Be Asserted Upon A Hardware Request, A
Software Request, Or When Decfilter_cintval Is Read (Also Updating
Decfilter_cintcnt), Based On The Internal Counter Overflow State.

26.5.16 Cascade mode description

The cascade mode is defined as a configuration mode of the decimation filter to work together with other
ones in a chain arrangement. All blocks in the arrangement, hereafter called a cascade combo, are
configured to operate in cascade mode by the CASCD[1:0] field in the DECFILTER_MCR. Figure 26-20
shows an example of cascade combo:

• The figure shows PSI being used for both data input and output, but cascade can also work in
standalone or mixed modes.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1219

• The leftmost block, named Head. receives the raw data to be filtered from the PSI master block (or
from the device slave-bus interface in standalone/PSI output modes). The head type is configured
using CASCD[1:0] = 01 in the configuration register DECFILTER_MCR.

• The rightmost block, named Tail, is the last filter block in the chain. It sends the output result back
to the PSI master block (or to the device slave-bus interface in standalone/PSI input modes). This
type of cascaded block is configured using CASCD[1:0] = 10.

• The blocks in between, named Middle, do not exchange data (receive / transmit) with the PSI
master, only with other decimation filter blocks. This type of block is configured by setting
CASCD[1:0] = 11. Middle blocks are optional in a cascaded combo: two blocks, one Head block
feeding a Tail one, can be used in cascade.

NOTE

The values passed between cascaded blocks can be monitored using
Enhanced Debug Monitor (see Section 26.5.14, Enhanced debug monitor
description”).

• Each decimation filter block has one cascade-in and one cascade-out ports, besides the PSI
connections used in normal mode. The format of the cascade bus is described in Section 26.5.16.2,
Cascade Mode Data/Control Bus description”. The arrows show how they are physically
connected. The bold arrows show the connections used in cascade mode.

• The block configurations as Head, Tail or Middle must respect their physical connections such that
all the following apply:
— a Head block feeds a Middle or Tail one
— a Middle block feeds another Middle block or a Tail one
— Tail feeds no other block, and Head is fed by no other block.

• As a consequence of the conditions above, there must be one and only one Head block and one and
only one Tail block in a cascade combo.

• A group of physically chained blocks can form more than one cascade combo. For instance,
Figure 26-21 shows the same physical chain, but now with blocks 1 and 2 configured as Head and
Tail, respectively, forming one combo. The remaining blocks form another combo starting with
block 3 (Head), and ending with block N (Tail). Note that the chain-in inputs of blocks from block
3 on are used to carry output data from the first cascaded combo (Tail block 2) to the PSI master
block.

• Blocks not used in a cascaded chain can be used normally, isolated (DEFILTER_MCR field
CASCD[1:0] = 00), as exemplified in Figure 26-22.

• The optional connection show from block N to block 1 in Figure 26-20 allows block N to be
configured as Head or Middle, feeding block 1 configured as Middle or Tail, yielding more
flexibility, as in the last example of Figure 26-22.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1220 Freescale Semiconductor

Figure 26-20. Cascade mode chain structure

The input to a cascaded configuration is selected by the DECFILTER_MCR bit ISEL of the Head block.
The output target of the cascaded blocks is selected by the DECFILTER_MCR bit ISEL of the Tail block,
with the same values used for input selection (ISEL = 0 for PSI, ISEL = 1 for device slave-bus).
DECFILTER_MCR bit MIXM must be written 0 for all cascaded blocks.

Head

PSI master block

cascade cascade

(Optional connections)

PSI bus

Tail

PSI bus

Middle

PSI bus

Middle

PSI bus

in out in out in out in out

data in data out

outin
cascade cascade

outin
cascade cascade

outin
cascade cascade

outin

chain in chain in chain in

physical connection
unused in cascade mode

physical connection
active in cascade mode (PSI)

1 2 3 N

cascade
ack in

cascade
ack in

cascade
ack in

cascade
ack out

cascade
ack out

cascade
ack out

cascade
ack in

cascade
ack out

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1221

Figure 26-21. Multiple cascade mode chain structure

Head

PSI master block

cascade cascade

(Optional connections)

PSI bus

Tail

PSI bus

Tail

PSI bus

Head

PSI bus

in out in out in out in out

data in data out

outin
cascade cascade

outin
cascade cascade

outin
cascade cascade

outin

chain in chain in chain in

physical connection
unused in cascade mode

physical connection
active in cascade mode (PSI)

1 2 3 N

first cascade combo second cascade combo

cascade
ack in

cascade
ack in

cascade
ack in

cascade
ack out

cascade
ack out

cascade
ack out

cascade
ack in

cascade
ack out

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1222 Freescale Semiconductor

Figure 26-22. Examples of mixed cascaded and single blocks

26.5.16.1 Cascade freeze, stop, and configuration change procedures

To change a block configuration mode to or from cascade mode, the following safe procedures must be
observed:

• To modify a cascade combo, either to single or any other cascade combo combination, all the
cascade combo blocks must have their inputs disabled (using DECFILTER_MCR bit IDIS), in
order, from the Head to the Tail block. After a block IDIS bit has been set to 1 (one), one must wait
for its DECFILTER_MSR bit BSY to be 0 (zero) before disabling the input of the next block in the
sequence.

• Each block in a new cascade combo must be configured with its input disabled. When the mode
configuration is done, the combo blocks must have their inputs enabled in order, from the Tail
towards the Head block.

• A single block must also be reconfigured the same way, to or from a cascade combo configuration:
first disabling its input, and then waiting for a non-busy state before writing DECFILTER_MCR
field CASCD.

To take cascade combo blocks to or from freeze or low power modes, a similar procedure must be used:
• Take the Head to freeze or low-power first, wait for DECFILTER_MSR bit BSY = 0, and repeat

the procedure for the other blocks in the chain in sequence, towards the Tail block.
• Take the blocks out of freeze or low-power modes in the inverse sequence, from Tail to Head.

single Head Middle Tail single Head Tail single

(arrows show just the physical cascading order)

Head Tail Head Tail single single Head Tail

single Head Middle Middle Middle Tail single single

Tail single Head Middle Tail single Head Middle

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1223

26.5.16.2 Cascade Mode Data/Control Bus description

A separate data bus is used to cascade the filters. The bus content is presented in Figure 26-23 and the
signals descriptions are present below.

Cascade Middle and Tail blocks do not make input feed requests, either on PSI or slave-bus interfaces.
Similarly, cascade Head and Middle block do not make filtered (not integrator) output data requests, either
on PSI or slave-bus interfaces.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
F

C
IN

/O
U

T
_S

T
O

P

D
F

C
IN

/O
U

T
_R

E
Q

Reserved

D
F

C
IN

/O
U

T
_F

LU
S

H

DFCIN/OUT
_CTRL[1:0]

Res. DFCIN/OUT_TAG[3:0]

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DFCIN/OUT_DATA[15:0]

Figure 26-23. Decimation filter cascade mode data bus

Table 26-30. Decimation filter cascade mode data bus field description

Field Description

0
DFCIN/OUT_STOP

Decimation Filter Cascade Input/Output Stop flag
The DFCIN/OUT_STOP bit indicates that a cascade bus driver block in a cascade
configuration is stopped. When the block is configured as Cascade Middle or Tail, it only
stops when this bit is asserted.

1
DFCIN/OUT_REQ

Decimation Filter Cascade Request
The DFCIN/OUT_REQ bit indicates that a cascade bus driver block in a cascade
configuration has data ready to be sent. The driven block responds to the request asserting
its decfil_cascade_ack signal at the same time it copies the relevant cascade data bus fields.

8
DFCIN/OUT_FLUSH

Decimation Filter Cascade Input/Output Flush control bit
The DFCIN/OUT_FLUSH bit indicates to the receiver Decimation Filter block that it should
execute a flush command — thus some internal registers are placed in the initial state.

9-10
DFCIN/OUT_CTRL

[1:0]

Decimation Filter Cascade Input/Output Control bits
The DFCIN/OUT_CTRL[1:0] field has the same function as the M_CTRL[1:0] control bits
described in Table 26-29. This field defines the operation to be executed with the
DFCIN/OUT_DATA[15:0] data.

12-15
DFCIN/OUT_TAG

[3:0]

Decimation Filter Cascade Input/Output Tag bits
The DFCIN/OUT_TAG[3:0] field indicates the destination associated with the
DFCIN/OUT_DATA[15:0] data. This value is stored by the Decimation Filter and used to
address the destination register when a decimated sample is available to be read by the
master block.

DFCIN/OUT_DATA
[15:0]

Decimation Filter Cascade Input/Output Data
The DFCIN/OUT_DATA[15:0] bit field carries the data to be transmitted in the chain of
cascaded decimation filter blocks.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1224 Freescale Semiconductor

Cascaded blocks can be configured with different filter types (DECFILTER_MCR field FTYPE),
including bypass. The Table 26-31 shows how Decimation Filter features work in each of the Cascade
Mode configurations.

26.6 Initialization information
Following are some simple initialization steps to be done before using the decimation filter block. These
steps assume that the user has already calculated the filter coefficients using a filter design tool.

26.6.1 Initialization procedure
The sequence of steps for the block initialization is as follows:

1. Program the configuration registers DECFILTER_MCR and DECFILTER_MXCR as desired for
your application.

2. Write all filter coefficient registers DECFILTER_COEFn with the previously calculated values.
3. Enable the filter input, writing DECFILTER_MCR bit IDIS = 0.
4. Run a soft-reset cycle if necessary.
5. The module is ready to receive data from PSI or from the device slave-bus interface.

26.7 Application information

26.7.1 eQADC IP as the PSI master block

The system block diagram for the eQADC application is shown in Figure 26-24. In this case, the
Decimation Filter receives conversion results generated by the eQADC block. These results can be
generated from eight different ADC setup configurations which are identified by a specific eQADC
Control address within a Conversion command. Conversion commands with Register Address set to zero
use the standard configuration setup. The samples generated by the standard configuration setup are sent
to one of the local eQADC RFIFO buffers. The samples generated by the Alternate Configurations, with
an address from 1–8, can be sent to the internal RFIFO or to the eQADC dedicated slave-bus interface
(Parallel Side Interface PSI) to communicate with the external Decimation Filter IP block or any other
block that can communicate with this interface. A bit field in the Alternate Configuration Control Register
selects the Internal RFIFO or this slave-bus interface as the destination for the conversion result. The

Table 26-31. Features in cascade mode

Feature Head Middle Tail

Prefill Output and prefill command are forwarded to the next cascaded
block

Effective

Flush Effective, and forwarded to the next cascaded block Effective

Decimation Effective in each block

Timestamp Forwarded to the next cascaded block Effective

Enhanced Debug Effective in each block

Integrator Effective in each block

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1225

eQADC can send either conversion data or timestamp data. The conversion data is filtered by the
decimation filter and the timestamp is bypassed and sent back to the eQADC.

In the eQADC application, the TAG field is used to address the appropriate RFIFO in the eQADC block.
In this case, only addresses 0–5 are used since there are only six RFIFOS available in the eQADC block.

Figure 26-24. Decimation filter/eQADC interface

26.8 Filter example simulation
The decimation filter block operation was checked in a Verilog simulation using calculated filter
coefficient values and noisy input data. The expected output values and the RMS error were then
calculated.

26.8.1 Coefficients calculation
The coefficients were calculated using a digital filter design tool. We have supplied some hypothetical filter
parameters to the tool and obtained the filter coefficients. The input parameters are:

• Filter characteristics: elliptic/low pass
• Filter type: 4th order IIR
• Input sample rate: 800k sample/s
• Passband edge: 100 kHz
• Stopband edge: 150 kHz
• Passband attenuation: £ 1 dB

The software tool gives the IIR filter coefficients in the Z-transform format expressed by Equation 26-4:

Eqn. 26-4

The coefficient results in fixed point decimal representation are shown in Table 26-32.

ADC

eQADC

(Analog)

Buffer

CAL
FIFO

Control

PSI
(Master)

PSI
(Slave)

CFIFO

RFIFO

Control

Coefficients

Filter

Decimation Filter

Serial

Slave-Bus

Y s 
X s 

B0 B1s B2s2 B3s3 B4s4+ + + +

A0 A1s– A2s2– A3s3– A4s4–
---=

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1226 Freescale Semiconductor

Comparing Equation 26-3 with Equation 26-4, we obtain the relationship between the calculated values of
coefficients and the values to be loaded in the DECFILTER_COEFn registers. See Table 26-33 below to
obtain the coefficients. A scale factor of eight is used, being the smallest divider factor to have all
coefficient values in the range (–1 £ Coef < +1). Also note that the signal of the An coefficients has signals
inverted.

26.8.2 Input data calculation

The 24-bit words of input data are samples of a sum of two tones: one tone of 30 kHz and another tone of
250 kHz. The samples were calculated at the rate of 800k samples per second. The tones have the same
amplitude and it is assured that the resultant amplitude is smaller than 1 so as to obtain samples in the range
(–1  sample < +1). It is supposed the input data are signed values in the two’s complement format in the
range (–1  sample < +1).

Table 26-32. Coefficient values given by SPW digital filter design tool

Coefficient Decimal value Coefficient Decimal value

B0 0.0221455 A0 1.0

B1 0.00445582948893748 A1 -2.69772868375858

B2 0.0318517846509088 A2 3.234056294853

B3 0.00445582948893748 A3 -1.92028561712454

B4 0.0221455 A4 0.47939080709495

Table 26-33. Coefficient values for decimation filter

SCALE S = 1 S = 8

COEFn Decimal value Decimal value
Hexadecimal values

(24 bits)

Coef0 = B0/S 0.0221455 0.00276815891266 0x005AB5

Coef1 = B1/S 0.00445582948893748 0.00055694580078 0x001240

Coef2 = B2/S 0.0318517846509088 0.00398147106171 0x008277

Coef3 = B3/S 0.00445582948893748 0.00055694580078 0x001240

Coef4 = B4/S 0.0221455 0.00276815891266 0x005AB5

Coef5 = –A1/S 2.69772868375858 0.33721613883972 0x2B29E6

Coef6 = –A2/S –3.234056294853 –0.40425717830658 0xCC414E

Coef7 = –A3/S 1.92028561712454 0.24003565311432 0x1EB97D

Coef8 = –A4/S –0.47939080709495 –0.05992400646210 0xF8546A

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1227

26.8.3 Filter results

The decimation filter block was used in a Verilog simulator using the calculated coefficients and the input
data samples. A scaling factor of eight in the configuration register DECFILTER_MCR, and no
decimation factor, were used to obtain the maximum of output results from the filter.The theoretical
expected values from this filter were also calculated, and these results were compared with those from the
decimation filter. The resultant RMS error when considering about 500 samples was about –97 dB.

Decimation Filter

MPC5644A Microcontroller Reference Manual, Rev. 6

1228 Freescale Semiconductor

Temperature Sensor

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1229

Chapter 27
Temperature Sensor

27.1 Overview

MPC5644A MCUs include an onboard temperature sensor that monitors device temperature and produces
a voltage directly proportional to the internal junction temperature. Internal junction temperature must be
calculated by software based on the sampled temperature sensor voltage, sampled bandgap voltage and
calibration parameter values stored in internal flash memory.

27.2 Detailed description

The temperature sensor generates a voltage that increases linearly with temperature. Since the voltage is
an amplified version of a VBE voltage it is proportional to absolute temperature. This voltage,
VTSENS(T), is read by software using the onboard eQADC module and used with the bandgap voltage and
constants stored in flash memory during factory test to calculate device junction temperature.

Five calibration parameters are stored in flash memory during factory test:

• TLOW is the low temperature factory calibration temperature value.

• THIGH is the hot factory calibration temperature value.

• VBG_CODE(TLOW) is the bandgap voltage at low calibration temperature (TLOW) sampled by the
eQADC and converted to a 14-bit value.

• TTSENS_CODE(TLOW) is the temperature sensor voltage at low calibration temperature (TLOW)
sampled by the eQADC and converted to a 14-bit value.

• TTSENS_CODE(THIGH) is the temperature sensor voltage at high calibration temperature (THIGH)
sampled by the eQADC and converted to a 14-bit value.

The calibration points are illustrated in Figure 27-1.

Temperature Sensor

MPC5644A Microcontroller Reference Manual, Rev. 6

1230 Freescale Semiconductor

Figure 27-1. Calibration points

27.3 Temperature formula

The temperature formula is shown in Figure 27-2.

T
JUNCTION

V
BG

TLOW THIGH

T
JUNCTION

V
TSENS

VBG(TLOW)

TLOW THIGH

VTSENS(TLOW)

VTSENS(THIGH)

Temperature Sensor

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1231

Figure 27-2. Temperature formula

The following sections detail the values required and where to obtain them.

27.3.1 TLOW and THIGH

TLOW is the factory low calibration temperature; THIGH is the hot factory calibration temperature. These
values are stored in shadow flash memory during factory calibration. See Section 27.3.6.1, Temperature
Calculation Constants Register 0 (TSENS_TCCR0) for details.

27.3.2 TTSENS_CODE(TLOW) and TTSENS_CODE(THIGH)

TTSENS_CODE(TLOW) is the sampled output voltage of the temperature sensor during low temperature
factory calibration. TTSENS_CODE(THIGH) is the sampled output voltage of the temperature sensor during
hot temperature factory calibration. These values are stored in shadow flash memory during factory
calibration. See Section 27.3.6.1, Temperature Calculation Constants Register 0 (TSENS_TCCR0), for
details.

 =
VBG_CODE(TLOW)

TTSENS_CODE(T) x  – TTSENS_CODE(TLOW)

TTSENS_CODE(THIGH) – TTSENS_CODE(TLOW)
T = TLOW + x (THIGH – TLOW)

TTSENS_CODE(T) =
VTSENS(T)

Vref

x 214

TTSENS_CODE(TLOW) =
VTSENS(TLOW)

Vref0

x 214

TTSENS_CODE(THIGH) =
VTSENS(THIGH)

Vref0

x 214

VBG_CODE(T) =
VBG(T)

Vref

x 214

VBG_CODE(TLOW) =
VBG(TLOW)

Vref0

x 214

VBG_CODE(T)

where:

Notes:
1 VTSENS(T) is the temperature sensor output sampled by the ADC.
2 VBG(T) is the bandgap voltage sampled by the ADC.
3 Vref is the ADC reference voltage.
4 Vref0 is the ADC reference voltage during factory calibration.
5 TLOW is the low temperature factory calibration temperature (stored in device flash).
6 THIGH is the hot factory calibration temperature (stored in device flash).

(Stored in device flash during factory calibration)

(Stored in device flash during factory calibration)

(Stored in device flash during factory calibration)

Temperature Sensor

MPC5644A Microcontroller Reference Manual, Rev. 6

1232 Freescale Semiconductor

27.3.3 VBG_CODE(TLOW)

VBG_CODE(TLOW) is the value of the bandgap voltage sampled during low temperature factory calibration.
This value is stored in shadow flash memory during factory calibration. See Section 27.3.6.2, Temperature
Calculation Constants Register 1 (TSENS_TCCR1), for details.

27.3.4 Temperature sensor voltage (VTENS(T))

VTENS(T) is the output voltage of the device temperature sensor. Software must sample the voltage from
eQADC_A channel 128 (ADC0 and ADC1).

27.3.5 Bandgap reference voltage (VBG_CODE(T))

VBG is the bandgap reference voltage. Software must sample the voltage from eQADC_A channel 144
(ADC0).

27.3.6 Registers

The calibration constants described previously, that is, TLOW, THIGH, TSENS_CODE(TLOW),
TSENS_CODE(THIGH), and VBG_CODE(TLOW), are stored in device shadow flash memory during factory
test. This section details the registers where the values reside.

27.3.6.1 Temperature Calculation Constants Register 0 (TSENS_TCCR0)

This register contains the calibration temperatures and temperature sensor outputs measured during factory
calibration:

• THIGH

• TSENS_CODE(THIGH)

• TLOW

• TSENS_CODE(TLOW)

Figure 27-3. Temperature Calculation Constants Register 0 (TSENS_TCCR0)

Address: 0xFFFE_C000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R TSCV2
W

RESET: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R TSCV1
W

RESET: – – – – – – – – – – – – – – – –

= Unimplemented or Reserved

Temperature Sensor

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1233

27.3.6.2 Temperature Calculation Constants Register 1 (TSENS_TCCR1)

This register contains the VBG_CODE(TLOW) parameter value used in the temperature calculation.

Table 27-1. Temperature Calculation Constants Register 0 (TSENS_TCCR0) field descriptions

Field Bits Description

TSCV2 0–15 Combination of encoded hot factory calibration temperature (THIGH) and the temperature
sensor output at that temperature (TSENS_CODE(THIGH)).

Bits 0–1 contain a value representing the hot factory calibration temperature (THIGH).

The values are as follows:
 • 00: THIGH = Reserved
 • 01: THIGH = Reserved
 • 10: THIGH = 145 °C
 • 11: THIGH = 150 °C

Bits 2–15 are the temperature sensor voltage sampled and converted by the eQADC during
factory test with device at hot temperature (THIGH). This is the TSENS_CODE(THIGH)
parameter value referenced in the temperature calculation formula (see Figure 27-2).

Note: The reset value of this register is device-dependent. The value is set during factory
test.

TSCV1 16–31 Combination of encoded low factory calibration temperature (TLOW) and the temperature
sensor output at that temperature (TSENS_CODE(TLOW)).

Bits 16–17 contain a code indicating the value of TLOW. The values are as follows:
 • 00: TLOW = 25 °C
 • 01: TLOW = -40 °C
 • 10: TLOW = Reserved
 • 11: TLOW = Reserved

Bits 18–31 are the temperature sensor voltage sampled and converted by the eQADC
during factory test with device at the low calibration temperature. This is the
TSENS_CODE(TLOW) parameter value referenced in the temperature calculation formula (see
Figure 27-2).

Note: The reset value of this register is device-dependent. The value is set during factory
test.

Temperature Sensor

MPC5644A Microcontroller Reference Manual, Rev. 6

1234 Freescale Semiconductor

Figure 27-4. Temperature Calculation Constants Register 1 (TSENS_TCCR1)

Address: 0xFFFE_C004

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R

Reserved
TSCV3

W
RESET: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

Reserved
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 27-2. Temperature Calculation Constants Register 1 (TSENS_TCCR1) field descriptions

Field Bits Description

Reserved 0–1 Reserved

TSCV3 2–15 Bandgap voltage sampled and converted by ADC during factory test. This is the
VBG_CODE(TLOW) parameter value referenced in the temperature calculation formula (see
Figure 27-2).

Note: The reset value of this register is device-dependent. The value is set during factory
test.

Reserved 16–31 Reserved

System Information Module and Trim (SIM)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1235

Chapter 28
System Information Module and Trim (SIM)

28.1 Overview

The System Information Module loads configuration data for the device, and trims data used by various
analog IP blocks to calibrate current/voltage references or other tunable circuits from flash module test
rows.

Configuration data is maintained by the System Information Module. Some, but not all, of the data is
readable by the user.

28.2 User trim values

Table 28-1 specifies the MPC5644A microcontroller temperature sensor calibration values from address
offset 0x00 – 0x3C.

NOTE

The SIM base address is 0xFFFE_C000 (same as the temperature sensor
base). The temperature sensor calibration values are available as for
read-only access.

Table 28-1. User trim values

Offset from
TSENS_Base

Bits 0:15 Bits 16:31

0x00 Temperature sensor calibration1 16 bits

1 The temperature sensor calibration values, are available as a read-only slave-bus access in user
mode. See the temperature sensor chapter for further details.

Temperature sensor calibration1 16 bits

0x04 Temperature sensor calibration1 16 bits Reserved

0x08 Reserved

0x0C

0x10 Unique device ID2

2 The unique device ID is a serial number that is different for every device manufactured.

0x14

0x18

0x1c

0x20 – 0x3C Reserved

System Information Module and Trim (SIM)

MPC5644A Microcontroller Reference Manual, Rev. 6

1236 Freescale Semiconductor

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1237

Chapter 29
Cyclic Redundancy Checker (CRC) Unit

29.1 Overview

The CRC module provides a fast on-chip capability for verifying code and data integrity. This capability
is particularly important in safety applications. Examples include:

• Verifying memory integrity by setting it to a known value, calculating a checksum and comparing
the calculated checksum against a stored checksum value

• Verifying code integrity by comparing its calculated checksum to its stored checksum value

• Verifying the integrity of data received from a network by comparing its received checksum to its
calculated checksum

CRC functionality can be implemented in software but there are significant speed advantages to be gained
by offloading CRC computation tasks from the processor core to the CRC module. Further gains are made
when data is written to the CRC module via DMA.

NOTE

This chapter does not discuss the details of computing CRC checksums but
there are many articles to be found via internet searches. One that might be
of particular interest is “A Painless Guide to CRC Error Detection
Algorithms” by Ross Williams.

29.2 Features

The CRC module on the MPC5644A includes the following features:

• 3 “contexts”—A context is a CRC engine with its own independent set of configuration and data
registers. The MPC5644A CRC module can process up to three separate data streams concurrently.

• Each context supports CRC-16-CCITT and CRC-32 ethernet polynomials

• Bit-swap and bit-inversion operations can be applied on the final CRC signature

• Support for byte/half-word/word width of the input data stream

• Computation is performed with zero wait states

29.2.1 Access and performance

All CRC registers are accessible (read/write) in each access mode: user, supervisor or test.

The following bus operations (contiguous byte enables) are supported:

• 32-bit data read/write operations to any register

• Low and high half-word read/write operations to any register1

• Byte data write/read operations to any register2

1. 16-bit operations must be aligned to 16-bit boundaries, i.e., bits 0–15 or bits 16–31. Any unaligned operation results in a bus
error.

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

1238 Freescale Semiconductor

Bus performance of the operations is as follows:

• Zero wait state (single bus cycle) for each read/write to the CRC_CFG and CRC_INP registers

• Zero wait state (single bus cycle) for each write operation to the CRC_ CSTAT register

• Double wait state (3 bus cycles) for each read operation to the CRC_ CSTAT or CRC_OUTP
registers immediately following (next clock cycle) a write operation to the CRC_CSTAT,
CRC_INP or CRC_CFG registers belonging to the same context. In all the other cases no wait
states are inserted.

The following will result in transfer errors:

• Unaligned reads or writes

• Any attempt to read or write an address that is assigned to the CRC module but not actually mapped
to a register.

29.3 Calculating a CRC checksum

The MPC5644A CRC module has three independent sets of CRC engines and registers, each set called a
context. Each context supports a single data stream, structured as a sequence of bytes, half-words or words,
written to its input register. Since the context operate independently, the CRC module can process up to
three data streams concurrently.

Figure 29-1 illustrates the steps to calculating a CRC checksum (also called a signature) for a data stream:

1. Configure the context to be used.

2. Write a seed value into the CRC Current Status Register (CRC_CSTAT).

3. Write the data to the CRC Input Register (CRC_INP), until the end of the data to be checked.

4. Retrieve the calculated checksum from the CRC Output Register (CRC_OUTP) and verify the
checksum against a stored value.

2. Byte operations must be aligned to 8-bit boundaries, i.e., bits 0–7, bits 8–15, bits 16–23, or bits 24–31. Any unaligned operation
results in a bus error.

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1239

Figure 29-1. CRC checksum processing flow

The following sections describe each step in the process.

29.3.1 Configuring the context

A context consists of a CRC engine and a dedicated set of registers. The MPC5644A CRC module includes
three contexts.

The configuration step consists of:

• Selecting the polynomial

• Specifying whether a swap operation is to be performed on the output

• Specifying whether a bit inversion is to be performed on the output

Selections are made by writing the appropriate values to fields in the CRC_CFG register.

Two standard polynomials are provided by the CRC module: CRC-16-CCITT (x25 protocol) and CRC-32
(ethernet protocol). They are illustrated in Equation 29-1 and Equation 29-2.

Configure Context
Select polynomial, swap, inversion
via the CRC_CFG register

Start

Initialize Seed Value
Write seed value to CRC_CSTAT
register

Write Data to CRC Input
Write 32-bit word, half word or
byte to CRC_INP register

End of
Data Stream

Reached

Read CRC Checksum
Read signature from CRC_OUTP
register

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

1240 Freescale Semiconductor

CRC-CCITT (x25 protocol) Eqn. 29-1

CRC-32 (ethernet protocol) Eqn. 29-2

The polynomial to be used is based on system requirements.

In case of usage of the CRC signature for encapsulation in the data frame of a communication protocol
(e.g., SPI) a bit swap (MSB  LSB, LSB  MSB) and/or bit inversion of the final CRC signature can be
applied (CRC_OUTP register).

29.3.2 Initializing the context seed value

A CRC checksum can be thought of as the remainder of a division of a long, arbitrary number (the data
stream) by a known fixed value. The known fixed value is known as the seed value. The same seed value
must be used to generate the checksums that are to be compared to each other.

The seed value is specified in the CRC current status register (CRC_CSTAT), which as a dual purpose.
Before CRC checksum calculation is performed, i.e., during the configuration phase, the CRC_CSTAT
register is used to program the seed value. During CRC checksum calculation, the register contains the
current checksum value.

The seed value can be any arbitrary 32-bit value.

NOTE

As with the CRC configuration register (CRC_CFG) the CRC_CSTAT
register can only be written during the configuration phase. A write
protection error generated by a write operation to this register indicates it is
currently in use.

29.3.3 Writing the data stream to the context input

After the context is configured and a seed is written, the data stream is written to the context’s input register
(CRC_INP). The CRC_INP register can be written at byte, half-word (high and low) or word in any
sequence. In case of half-word write operation, the bytes must be contiguous.

NOTE

The CRC_INP register only supports aligned writes. Half-word (16-bit)
writes must be either to bits 0–15 or 16–31. Byte writes must be to bits 0–7,
bits 8–15, bits 16–23, or bits 24–31.

X
16

X
12

X
5

1+ + +

X
32

X
26

X
23

X
22

X
16

X
12

X
11

X
10

X
8

X
7

X
5

X
4

X
2

X 1+ + + + + + + + + + + + + +

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1241

The writes can be by the processor core or by DMA transfer. The writes continue until the end of the data
stream is reached.

29.3.4 Reading the checksum

After writing of the data stream to the input register has been completed, the checksum is read from the
output register (CRC_OUTP). The CRC_OUTP register includes the final checksum (signature)
corresponding to the CRC_CSTAT register value with swap and inversion operations applied, if selected
via the CRC_CFG register.

In case of CRC-16-CCITT polynomial only the 16 least significant bits have meaning. The 16 most
significant bits are set to 0 during the computation.

29.4 Register descriptions
Table 29-1. CRC register map

Context Address1

1 CRC_BASE for the MPC5644A is 0xFFE6_8000

Register Location

1

CRC_BASE + 0x0000 CRC Configuration Register (CRC_CFG) on page
29-1242

CRC_BASE + 0x0004 CRC Input Register (CRC_INP) on page
29-1243

CRC_BASE + 0x0008 CRC Current Status Register (CRC_CSTAT) on page
29-1244

CRC_BASE + 0x000C CRC Output Register (CRC_OUTP) on page
29-1245

2

CRC_BASE + 0x0010 CRC Configuration Register (CRC_CFG) on page
29-1242

CRC_BASE + 0x0014 CRC Input Register (CRC_INP) on page
29-1243

CRC_BASE + 0x0018 CRC Current Status Register (CRC_CSTAT) on page
29-1244

CRC_BASE + 0x001C CRC Output Register (CRC_OUTP) on page
29-1245

3

CRC_BASE + 0x0020 CRC Configuration Register (CRC_CFG) on page
29-1242

CRC_BASE + 0x0024 CRC Input Register (CRC_INP) on page
29-1243

CRC_BASE + 0x0028 CRC Current Status Register (CRC_CSTAT) on page
29-1244

CRC_BASE + 0x002C CRC Output Register (CRC_OUTP) on page
29-1245

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

1242 Freescale Semiconductor

29.4.1 CRC Configuration Register (CRC_CFG)

Offset: PMC_BASE + 0x0000
PMC_BASE + 0x0010
PMC_BASE + 0x0020

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0

P
O

LY
G

S
W

A
P

IN
V

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0/11

1 Reset value is 1 for Context 2 and 0 for Context 1 and Context 3.

0 0

Figure 29-2. CRC Configuration Register (CRC_CFG)

Table 29-2. CRC_CFG field descriptions

Field Description

0–28 Reserved

29
POLYG

POLYG: Polynomial selection
0: CRC-CCITT polynomial.
1: CRC-32 polynomial.
This bit can be read and written by software.
This bit can be written only during the configuration phase.

30
SWAP

SWAP: SWAP selection
0: No swap selection applied on the CRC_OUTP content
1: Swap selection (MSB  LSB, LSB  MSB) applied on the CRC_OUTP content. In case of
CRC-CCITT polynomial the swap operation is applied on the 16 LSB bits.
This bit can be read and written by software.
This bit can be written only during the configuration phase.

31
INV

INV: INV selection
0: No inversion selection applied on the CRC_OUTP content
1: Inversion selection (bit x bit) applied on the CRC_OUTP content. In case of CRC-CCITT polynomial the
inversion operation is applied on the 16 LSB bits.
This bit can be read and written by software.
This bit can be written only during the configuration phase.

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1243

29.4.2 CRC Input Register (CRC_INP)

Offset: PMC_BASE + 0x0004
PMC_BASE + 0x0014
PMC_BASE + 0x0024

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R INP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R INP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 29-3. CRC Input Register (CRC_INP)

Table 29-3. CRC_INP field descriptions

Field Description

0–31 INP: Input data for the CRC computation
The INP register can be written at byte, half-word (high and low) or word in any sequence. In case of
half-word write operation, the bytes must be contiguous.
This register can be read and written by software.

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

1244 Freescale Semiconductor

29.4.3 CRC Current Status Register (CRC_CSTAT)

Offset: PMC_BASE + 0x0008
PMC_BASE + 0x0018
PMC_BASE + 0x0028

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CSTAT

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CSTAT

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 29-4. CRC Current Status Register (CRC_CSTAT)

Table 29-4. CRC_CSTAT field descriptions

Field Description

0–31 CSTAT: Status of the CRC signature
The CSTAT register includes the current status of the CRC signature. No bit swap and inversion are
applied to this register.
In case of CRC-CCITT polynomial only the16 least significant bits have meaning. The 16 most significant
bits are tied to 0 during the computation.
The CSTAT register can be written at byte, half-word or word.
This register can be read and written by software.
This register can be written only during the configuration phase.

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1245

29.4.4 CRC Output Register (CRC_OUTP)
A

Offset: PMC_BASE + 0x000C
PMC_BASE + 0x001C
PMC_BASE + 0x002C

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OUTP

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OUTP

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 29-5. CRC Output Register (CRC_OUTP)

Table 29-5. CRC_OUTP field descriptions

Field Description

0–31 OUTP: Final CRC signature
The OUTP register includes the final signature corresponding to the CRC_CSTAT register value after
swap/inversion operations, if specified.
In case of CRC-CCITT polynomial only the16least significant bits have meaning. The 16 most significant
bits are tied to 0 during the computation.
This register can be read by software.

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

1246 Freescale Semiconductor

29.5 Use cases and limitations

Two main use cases are considered:

• Calculation of the CRC of the configuration registers during the process safety time

• Calculation of the CRC on the incoming and outgoing frames for the communication protocols (not
protected with CRC by definition of the protocol itself) used as a safety-relevant peripheral.

29.5.1 Checksums for configuration registers

The checksum (signature) of configuration registers is computed in a correct way only if these registers do
not contain any status bits, i.e., configuration register contents must not dynamically change during, or as
a result of, a CRC checksum calculation.

29.5.2 Calculations on incoming/outgoing protocol frames

The following sections show the sequence for managing CRC checksums as part of a communication
external to the device.

29.5.2.1 Calculating checksums on data to be transmitted

Figure 29-6 illustrates the sequence used to calculate a CRC checksum on a data stream, append the
checksum and transfer it to the peripheral to be used for transmission. The sequence is as follows:

1. Software configures the DMA channel and CRC context to be used.

2. DMA copies the data to be transmitted to the CRC context’s input register (CRC_INP) to calculate
the CRC signature (Phase 1)

3. Software copies the CRC checksum (signature) from the CRC module (CRC_OUTP register) to
the memory location immediately following the transmission data. (Phase 2)

4. DMA transfers the data block (payload + CRC checksum from memory to the peripheral module
(e.g., SPI Tx FIFO) (Phase 3)

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1247

Figure 29-6. Transmission sequence

Data to be
Transmitted

CRC_OUTP

CRC_INP

Memory

CRC Context

CPU

Transmission Phase 2

Data to be
Transmitted

CRC_OUTP

CRC_INP

Memory

CRC Context
DMA

Transmission Phase 1

CRC Checksum

Data to be
Transmitted

Tx FIFO

Memory

SPI
CPU

Transmission Phase 3

CRC Checksum

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

1248 Freescale Semiconductor

29.5.2.2 Calculating checksums on received data

Figure 29-7 illustrates the sequence used to calculate a CRC checksum on a received data stream. The
sequence is as follows:

1. Software configures the DMA channel and /CRC context to be used

2. DMA copies the received data block (payload + CRC) from the peripheral (e.g., SPI Rx FIFO)
module to memory (Phase 1)

3. DMA copies the received data block transfer (payload + CRC) from memory to the CRC context
(CRC_INP register) to calculate the CRC signature (Phase 2)

4. The CRC signature is read from the CRC context (CRC_OUTP register) by software (Phase 3)

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1249

Figure 29-7. Reception sequence

CRC_OUTP

CRC_INP

Memory

CRC Context
DMA

Received Data

CRC Checksum

Received Data Rx FIFO

Memory

SPI
DMA

Reception Phase 1

CRC Checksum

Received Data

Reception Phase 2

CRC_OUTP

CRC_INP

CRC Context

Reception Phase 3

Software Check

Cyclic Redundancy Checker (CRC) Unit

MPC5644A Microcontroller Reference Manual, Rev. 6

1250 Freescale Semiconductor

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1251

Chapter 30
Deserial Serial Peripheral Interface (DSPI)

30.1 Introduction

Figure 30-1 is a block diagram of the Deserial Serial Peripheral Interface (DSPI) module.

Figure 30-1. DSPI block diagram

30.2 Overview

The Deserial Serial Peripheral Interface (DSPI) module provides a synchronous serial interface for
communication between the MPC5644A and external devices. The DSPI supports pin count reduction
through serialization and deserialization of eTPU channels, eMIOS channels and memory-mapped

Baud Rate, Delay &
Transfer Control

SOUT

SIN

HT

PCS[x]/SS/PCSS/MTRIG

Shift Register

SPI

SCKSPI and DSI

Internal

Internal

Parallel Inputs

Parallel Outputs
Priority
Logic

CSI

32
32

8

CMD Data

DMA and Interrupt Control

Data

T
X

 F
IF

O

R
X

 F
IF

O

DSI

32

32

32

32

eDMA INTC Slave Bus Interface Clock/Reset

DSPI_PUSHR DSPI_POPR

S
D

R
A

S
D

R
D

D
R

Frame data
selection logic

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1252 Freescale Semiconductor

registers. Incoming deserialized data can also be used to trigger external interrupt requests. The channels
and register content are transmitted using a SPI-like protocol. There are three identical DSPI modules
(DSPI_B, DSPI_C and DSPI_D) on the MPC5644A.

The DSPIs have three configurations:

• Serial Peripheral Interface (SPI)—DSPI operates as a SPI with support for queues

• Deserial Serial Interface (DSI)—DSPI serializes eTPU and eMIOS output channels and
deserializes the received data by placing it on the eTPU and eMIOS input channels and as inputs
to the External Interrupt Request sub-block of the SIU

• Combined Serial Interface (CSI)—DSPI operates in both SPI and DSI configurations interleaving
DSI frames with SPI frames, giving priority to SPI frames

For queued operations, the SPI queues reside in system memory external to the DSPI. Data transfers
between the memory and the DSPI FIFOs are accomplished through the use of the eDMA controller or
through host software.

30.3 Features

The DSPI supports these SPI features:

• Full-duplex, synchronous transfers

• Selectable LVDS Pads working at 40 MHz for SOUT and SCK pins (only in DSPI_B and DSPI_C)

• Master and Slave Mode

• Buffered transmit operation using the TX FIFO with depth of 4 entries

• Buffered receive operation using the RX FIFO with depth of 4 entries

• TX and RX FIFOs can be disabled individually for low-latency updates to SPI queues

• Visibility into the TX and RX FIFOs for ease of debugging

• FIFO Bypass Mode for low-latency updates to SPI queues

• Programmable transfer attributes on a per-frame basis:

— Parameterized number of transfer attribute registers (from 2 to 8)

— Serial clock with programmable polarity and phase

— Various programmable delays:

– PCS to SCK delay

– SCK to PCS delay

– Delay between frames

— Programmable serial frame size of 4 to 32 bits, expandable with software control

— Continuously held chip select capability

• 8 Peripheral Chip Selects, expandable to 256 with external demultiplexer

• Deglitching support for up to 128 Peripheral Chip Selects with external demultiplexer

• DMA support for adding entries to TX FIFO and removing entries from RX FIFO:

— TX FIFO is not full (TFFF)

— RX FIFO is not empty (RFDF)

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1253

• 6 interrupt conditions:

— End of queue reached (EOQF)

— TX FIFO is not full (TFFF)

— Transfer of current frame complete (TCF)

— Attempt to transmit with an empty Transmit FIFO (TFUF) ‘OR’ Serial frame received while
RX FIFO is full (RFOF). These two interrupts are ORed and given out as FIFO Overrun
interrupt.

— RX FIFO is not empty (RFDF)

— FIFO Underrun (slave only and SPI mode, the slave is asked to transfer data when the Tx FIFO
is empty)

• Modified transfer formats for communication with slower peripheral devices

• Continuous Serial Communications Clock (SCK)

• Power-saving architectural features

— Support for IPI Green-line Stop Mode

• Enhanced DSI logic to implement a 32-bit Timed Serial Bus (TSB) configuration, supporting the
Micro Second Channel (MSC) bus downstream frame format

The DSPIs also support these features unique to the DSI and CSI configurations:

• 2 sources of the serialized data:

— eTPU_A and eMIOS output channels

— Memory-mapped register in the DSPI

• Destinations for the deserialized data:

— eTPU_A and eMIOS input channels

— SIU External Interrupt Request inputs

— Memory-mapped register in the DSPI

• Deserialized data is provided as Parallel Output signals and as bits in a memory-mapped register

• Transfer initiation conditions:

— Continuous

— Edge sensitive hardware triggered

— Change in data

• Pin serialization/deserialization with interleaved SPI frames for control and diagnostics

• Continuous serial communications clock

• Support for parallel and serial chaining of up to 3 DSPI modules

• Parity generation and checking

30.4 DSPI configurations

The DSPI module can operate in three configurations: SPI, DSI and CSI.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1254 Freescale Semiconductor

30.4.1 SPI configuration

The SPI configuration allows the DSPI to send and receive serial data. This configuration allows the DSPI
to operate as a basic SPI block with internal FIFOs supporting external queues operation. Transmit data
and received data reside in separate FIFOs. The host CPU or a DMA controller read the received data from
the receive FIFO and write transmit data to the transmit FIFO.

For queued operations the SPI queues can reside in system RAM, external to the DSPI. Data transfers
between the queues and the DSPI FIFOs are accomplished by a DMA controller or host CPU. Figure 30-2
shows a system example with DMA, DSPI and external queues in system RAM.

Figure 30-2. DSPI with queues and DMA

30.4.2 DSI configuration

The DSI configuration supports pin count reduction by serializing eTPU and eMIOS output channels or
bits from a memory-mapped register and shifting them out with a SPI-like protocol. The DSPI deserializes
the received data, and provides the received data to the eTPU’s and eMIOS’ input channels, the SIU IRQ
inputs, or to a memory-mapped register in the DSPI. See Section 30.9.17, DSPI connections to eTPU_A,
eMIOS and SIU” for the source of the serialization data for each DSPI module.

Figure 30-3 shows an example of how a master DSPI block connects to a DSI slave in DSI configuration.

System RAM

DSPI

DMA Controller

TX Queue

RX FIFOTX FIFO

Shift Register

Data

Data

Addr/Ctrl

RX Queue

Data Data

Addr/Ctrl

Done

Req

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1255

Figure 30-3. DSPI connections for SPI and DSI transfers

Specifically in the TSB configuration, detailed in Section 30.9.8, Timed serial bus (TSB)”, the DSPI
serializes from 4 to 32 Parallel Input signals or register bits. The TSB downstream frame used to
communicate with a single slave is shown in Figure 30-38.

30.4.3 CSI configuration

The CSI configuration allows serialized data to be interleaved with configuration or diagnostic data and
be transferred to a slave device using only one serial link. The CSI configuration supports SPI and DSI
functionality on a frame by frame basis. CSI configuration allows interleaving of DSI data frames from
the eTPU’s and eMIOS’ output channels with SPI commands and data from the TX FIFO. In the CSI
configuration, transmission of SPI data has higher priority than DSI data. The data returned from the bus
slave is either used to drive the eTPUs or eMIOS input channels, or the data is stored in the RX FIFO. The
DSPI only supports CSI configuration in Master Mode. Figure 30-4 shows an example of how a DSPI can
be used with a deserializing peripheral that supports SPI control for control and diagnostic frames.

Figure 30-4. DSPI Connections for CSI Transfer

30.5 DSPI frequency support

The DSPI supports frequencies up to 40 MHz when used with LVDS outputs (DSPI_B and DSPI_C only),
and frequencies up to 20 MHz in non-LVDS mode. Table 30-1 shows possible divider settings to achieve
maximum frequency for different system clock frequencies.

Shift Register

SIN

SINSOUT

SOUT

SCK SCK

SSPCSx

DSPI Master SPI/DSI Slave

Shift Register

Baud Rate
Generator

Shift Register Shift Register

SIN

SINSOUT

SOUT

SCK SCK

SS0PCSx

DSPI Master External Slave Deserializer

SS1PCSy
SPI

DSI

TX Priority
Control

SPI
Frame
Select
Logic

Frame
DSI

Frame
 TX FIFO

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1256 Freescale Semiconductor

30.6 Modes of operation

The DSPI has four modes of operation that can be divided into two categories: module-specific modes and
an MCU-specific mode. Master Mode, Slave Mode and Module Disable Mode are the module-specific
modes, and Debug Mode is the MCU-specific mode.

The module-specific modes are entered by host software writing to a register bit. The MCU-specific mode
is selected by a signal external to the DSPI. The MCU-specific mode is a mode that MPC5644A may enter
in parallel to the DSPI being in one of its module-specific modes.

30.6.1 Master mode

Master Mode allows the DSPI to initiate and control serial communication. In this mode the SCK,
DSPI_x_PCS and SOUT signals are controlled by the DSPI and configured as outputs.

30.6.2 Slave mode

Slave Mode allows the DSPI to communicate with SPI/DSI bus masters. In this mode the DSPI responds
to externally controlled serial transfers. The DSPI cannot initiate serial transfers in Slave Mode.

30.6.3 Module Disable mode

The Module Disable mode is used for MCU power management. The clock to the non-memory mapped
logic in the DSPI is stopped while in Module Disable Mode. The DSPI enters the Module Disable Mode
when bit DSPI_MCR[MDIS] is set.

30.6.4 Debug mode

Debug Mode is used for system development and debugging. If the MPC5644AMCU enters Debug Mode
while bit DSPI_MCR[FRZ] is set, the DSPI halts operation on the next frame boundary. If the MPC5644A
enters Debug Mode while the FRZ bit is negated, the DSPI behavior is unaffected and remains dictated by
the module-specific mode and configuration of the DSPI.

Table 30-1. DSPI channel frequency support

System clock
(MHz)

DSPI use
mode

Max. usable
frequency (MHz)

Notes

150 LVDS 37.5 Use sysclock /4 divide ratio

Non-LVDS 18.75 Use sysclock /8 divide ratio

120 LVDS 40 Use sysclock /3 divide ratio. Gives 33/66 duty cycle. Use DSPI
configuration DBR = 0b1 (double baud rate), BR = 0b0000
(scaler value 2) and PBR = 0b01 (prescaler value 3).

Non-LVDS 20 Use sysclock /6 divide ratio

80 LVDS 40 Use sysclock /2 divide ratio

Non-LVDS 20 Use sysclock /4 divide ratio

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1257

30.7 External signal description

30.7.1 Overview

Table 30-2 lists the signals that may connect off-chip depending on the device implementation.

30.7.2 Detailed signal description

30.7.2.1 DSPI_x_PCS[0]/SS — Peripheral Chip Select/Slave Select

In master mode, the DSPI_x_PCS[0] signal is a Peripheral Chip Select output that selects which slave
device the current transmission is intended for.

In slave mode, the active low SS signal is a Slave Select input signal that allows a SPI master to select the
DSPI as the target for transmission.

30.7.2.2 DSPI_x_PCS[1] – PCS[3] — Peripheral Chip Selects 1 – 3

DSPI_x_PCS[1] – PCS[3] are Peripheral Chip Select output signals in master mode. In slave mode these
signals are unused.

30.7.2.3 DSPI_x_PCS[4]/MTRIG — Peripheral Chip Select 4/Master Trigger

In master mode, DSPI_x_PCS[4] is a Peripheral Chip Select output signal.

In slave mode, the active low MTRIG is an output trigger signal that indicates that a change in data to be
serialized has occurred. The MTRIG provides a pulse in DSI configuration when a change in data to be
serialized occurs. The MTRIG pulse is four system clock cycles in duration. If the DSPI is in slave mode
and the MTO is disabled, the DSPI_x_PCS[4]/MTRIG signal is unused.

Table 30-2. Signal properties

Name I/O type
Function

Master mode Slave mode

DSPI_x_PCS[0]/SS Output / Input Peripheral Chip Select 0 Slave Select

DSPI_x_PCS[1] – PCS[3] Output Peripheral Chip Select 1 – 3 Unused

DSPI_x_PCS[4]/MTRIG Output Peripheral Chip Select 4 Master Trigger

DSPI_x_PCS[5]/PCSS Output Peripheral Chip Select 5 /
Peripheral Chip Select Strobe

Unused

DSPI_x_SIN Input Serial Data In Serial Data In

DSPI_x_SOUT Output Serial Data Out Serial Data Out

DSPI_x_SCK Output / Input Serial Clock (output) Serial Clock (input)

HT Input Hardware Trigger Hardware Trigger

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1258 Freescale Semiconductor

30.7.2.4 DSPI_x_PCS[5]/PCSS — Peripheral Chip Select 5/Peripheral Chip Select
Strobe

DSPI_x_PCS[5] is a Peripheral Chip Select output signal. When the DSPI is in master mode and the
DSPI_MCR[PCSSE] bit is cleared, this signal selects which slave device the current transfer is intended
for.

When the DSPI is in master mode and the DSPI_MCR[PCSSE] bit is set, the PCSS signal acts as a strobe
to external peripheral chip select demultiplexer, which decodes the DSPI_x_PCS[0] – PCS[4] signals,
preventing glitches on the demultiplexer outputs.

This signal is not used in slave mode.

30.7.2.5 DSPI_x_SIN — Serial input

DSPI_x_SIN is a serial data input signal.

30.7.2.6 DSPI_x_SOUT — Serial output

DSPI_x_SOUT is a serial data output signal.

30.7.2.7 DSPI_x_SCK — Serial clock

DSPI_x_SCK is a serial communication clock signal. In master mode, the DSPI generates the SCK. In
slave mode, SCK is an input from an external bus master.

30.7.2.8 HT — Hardware trigger

HT is a trigger input signal that is used with Multiple Transfer Operations in DSI configuration.

In master mode while in DSI or CSI configurations, the HT signal initiates a data transfer when the TRRE
bit in the DSPI_DSICR is set and a rising or falling edge is detected on HT. Which edge to trigger on is
determined by the TPOL bit in the DSPI_DSICR.

In slave mode, the DSPI generates a trigger pulse on the MTRIG pin, when a rising or falling edge is
detected on HT. Which edge that generates an output pulse is selected by the TPOL bit in the
DSPI_DSICR.

30.8 Memory map and register definition

30.8.1 Memory map

Register accesses to memory addresses that are reserved or undefined result in a transfer error. Write
access to the DSPI_POPR also result in a transfer error.

Table 30-3 shows the DSPI memory map.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1259

Table 30-3. Memory map

Address Register name Location

DSPI_BASE
DSPI Module Configuration Register (DSPI_MCR)

on page
30-1260

DSPI_BASE+0x4 DSPI Hardware Configuration Register (DSPI_HCR)
on page
30-1262

DSPI_BASE+0x8 DSPI Transfer Count Register (DSPI_TCR)
on page
30-1263

DSPI_BASE+0xC –
DSPI_BASE+0x28

DSPI Clock and Transfer Attributes Register 0 (DSPI_CTAR0) –
DSPI Clock and Transfer Attributes Register 7 (DSPI_CTAR7)

on page
30-1264

DSPI_BASE+0x2C DSPI Status Register (DSPI_SR)
on page
30-1270

DSPI_BASE+0x30 DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)
on page
30-1272

FIFO Registers

DSPI_BASE+0x34 DSPI Push TX FIFO Register (DSPI_PUSHR)
on page
30-1274

DSPI_BASE+0x38 DSPI Pop RX FIFO Register (DSPI_POPR)
on page
30-1276

DSPI_BASE+0x3C –
DSPI_BASE+0x48

DSPI Transmit FIFO Register 0 (DSPI_TXFR0) –
DSPI Transmit FIFO Register 3 (DSPI_TXFR3)

on page
30-1277

DSPI_BASE+0x4C –
DSPI_BASE+0x78

Reserved

DSPI_BASE+0x7C –
DSPI_BASE+0x88

DSPI Receive FIFO Register 0 (DSPI_RXFR0) –
DSPI Receive FIFO Register 3 (DSPI_RXFR3)

on page
30-1277

DSPI_BASE+0x8C –
DSPI_BASE+0xB8

Reserved

DSI Registers

DSPI_BASE+0xBC DSPI DSI Configuration Register (DSPI_DSICR)
on page
30-1278

DSPI_BASE+0xC0 DSPI DSI Serialization Data Register (DSPI_SDR)
on page
30-1280

DSPI_BASE+0xC4 DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)
on page
30-1281

DSPI_BASE+0xC8 DSPI DSI Transmit Comparison Register (DSPI_COMPR)
on page
30-1282

DSPI_BASE+0xCC DSPI DSI Deserialization Data Register (DSPI_DDR)
on page
30-1282

DSPI_BASE+0xD0 DSPI DSI Configuration Register 1 (DSPI_DSICR1)
on page
30-1283

DSPI_BASE+0xD4 DSPI DSI Serialization Source Select Register (DSPI_SSR) on page
30-1284

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1260 Freescale Semiconductor

30.8.2 Register descriptions

30.8.2.1 DSPI Module Configuration Register (DSPI_MCR)

The DSPI_MCR contains bits which configure various attributes associated with DSPI operation. The
HALT and MDIS bits can be changed at any time, but only take effect on the next frame boundary. Only
the HALT and MDIS bits in the DSPI_MCR are allowed to be changed, while the DSPI is in the Running
state.

DSPI_BASE+0xD8 DSPI DSI Parallel Input Select Register 0 (DPSI_PISR0)1 on page
30-1285

DSPI_BASE+0xDC DSPI DSI Parallel Input Select Register 1 (DPSI_PISR1)1 on page
30-1285

DSPI_BASE+0xE0 DSPI DSI Parallel Input Select Register 2 (DPSI_PISR2)1 on page
30-1285

DSPI_BASE+0xE4 DSPI DSI Parallel Input Select Register 3 (DPSI_PISR3)1 on page
30-1285

DSPI_BASE+0xE8 DSPI DSI Deserialized Data Interrupt Mask Register (DSPI_DIMR) on page
30-1288

DSPI_BASE+0xEC DSPI DSI Deserialized Data Polarity Interrupt Register (DSPI_DPIR) on page
30-1289

1 DSPI_PISR0-3 registers and assosiated with them functionality may be not implemented in particular DSPI
instances of the SOC.

Address: DSPI_BASE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

MSTR

C
O

N
T

_S
C

K
E

DCONF FRZ

M
T

F
E

P
C

S
S

E

R
O

O
E

P
C

S
IS

7

P
C

S
IS

6

P
C

S
IS

5

P
C

S
IS

4

P
C

S
IS

3

P
C

S
IS

2

P
C

S
IS

1

P
C

S
IS

0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

MDIS

D
IS

_T
X

F

D
IS

_
R

X
F

0 0

SMPL_PT

0 0 0 0 0 0

PES HALTW

C
LR

_T
X

F

C
LR

_R
X

F

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 30-5. DSPI Module Configuration Register (DSPI_MCR)

Table 30-3. Memory map (continued)

Address Register name Location

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1261

Table 30-4. DSPI_MCR field description

Field Description

0
MSTR

Master/Slave Mode Select
The MSTR bit configures the DSPI for either master mode or slave mode.
0 DSPI is in slave mode
1 DSPI is in master mode

1
CONT_SCK

E

Continuous SCK Enable
The CONT_SCKE bit enables the Serial Communication Clock (SCK) to run continuously. See
Section 30.9.7, Continuous serial communications clock, for details.
0 Continuous SCK disabled
1 Continuous SCK enabled

2–3
DCONF[0:1]

DSPI Configuration
The DCONF field selects between the three different configurations of the DSPI:
00 SPI
01 DSI
10 CSI
11 Reserved

4
FRZ

Freeze
The FRZ bit enables the DSPI transfers to be stopped on the next frame boundary when the device
enters Debug mode.
0 Do not stop serial transfers
1 Stop serial transfers

5
MTFE

Modified Timing Format Enable
The MTFE bit enables a modified transfer format to be used. See Section 30.9.6.4, Modified SPI/DSI
transfer format (MTFE = 1, CPHA = 1), for more information.
0 Modified SPI transfer format disabled
1 Modified SPI transfer format enabled

6
PCSSE

Peripheral Chip Select Strobe Enable
The PCSSE bit enables the DSPI_x_PCS[5]/PCSS to operate as a PCS Strobe output signal. See
Section 30.9.5.5, Peripheral chip select strobe enable (PCSS), for more information.
0 DSPI_x_PCS[5]/PCSS is used as the Peripheral Chip Select[5] signal
1 DSPI_x_PCS[5]/PCSS is used as an active-low PCS Strobe signal

7
ROOE

Receive FIFO Overflow Overwrite Enable
The ROOE bit enables in RX FIFO overflow condition to ignore the incoming serial data or to
overwrite existing data. If the RX FIFO is full and new data is received, the data from the transfer,
generated the overflow, is ignored or shifted in to the shift register. See Section 30.9.10.6, Receive
FIFO overflow interrupt request, for more information.
0 Incoming data is ignored
1 Incoming data is shifted in to the shift register

8–15
PCSISx

Peripheral Chip Select Inactive State
The PCSIS bit determines the inactive state of the PCSx signal.
0 The inactive state of PCSx is low
1 The inactive state of PCSx is high

17
MDIS

Module Disable
The MDIS bit allows the clock to be stopped to the non-memory mapped logic in the DSPI effectively
putting the DSPI in a software controlled power-saving state. See Section 30.9.18, Power saving
features, for more information. The reset value of the MDIS bit is parameterized, with a default reset
value of ‘0’.
0 Enable DSPI clocks.
1 Allow external logic to disable DSPI clocks.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1262 Freescale Semiconductor

30.8.2.2 DSPI Hardware Configuration Register (DSPI_HCR)

DSPI Hardware Configuration Register provides particular implementation details about the DSPImodule, i.e. number of Receive
and Transmit FIFO entries, number of CTAR registers and if DSI featuresare implemented in the module or not. It is read only
register.

18
DIS_TXF

Disable Transmit FIFO
When the TX FIFO is disabled, the transmit part of the DSPI operates as a simplified double-buffered
SPI. See Section 30.9.2.3, FIFO disable operation, for details.
0 TX FIFO is enabled
1 TX FIFO is disabled

19
DIS_RXF

Disable Receive FIFO
When the RX FIFO is disabled, the receive part of the DSPI operates as a simplified double-buffered
SPI. See Section 30.9.2.3, FIFO disable operation, for details.
0 RX FIFO is enabled
1 RX FIFO is disabled

20
CLR_TXF

Clear TX FIFO
CLR_TXF is used to flush the TX FIFO. Writing a ‘1’ to CLR_TXF clears the TX FIFO Counter. The
CLR_TXF bit is always read as zero.
0 Do not clear the TX FIFO Counter
1 Clear the TX FIFO Counter

21
CLR_RXF

Clear RX FIFO
CLR_RXF is used to flush the RX FIFO. Writing a ‘1’ to CLR_RXF clears the RX Counter. The
CLR_RXF bit is always read as zero.
0 Do not clear the RX FIFO Counter
1 Clear the RX FIFO Counter

22–23
SMPL_PT

Sample Point
SMPL_PT field controls when the DSPI master samples SIN in Modified Transfer Format.
Figure 30-40 shows where the master can sample the SIN pin.
00 DSPI samples SIN at driving SCK edge.
01 DSPI samples SIN one system clock after driving SCK edge
10 DSPI samples SIN two system clocks after driving SCK edge
11 Reserved

24–29 Reserved, should be cleared.

30
PES

Parity Error Stop
PES bit controls SPI operation when a parity error detected in received SPI frame.
0 SPI frames transmission continue.
1 SPI frames transmission stop.

31
HALT

Halt
The HALT bit starts and stops DSPI transfers. See Section 30.9.1, Start and stop of DSPI transfers,
for details on the operation of this bit.
0 Start transfers
1 Stop transfers

Table 30-4. DSPI_MCR field description (continued)

Field Description

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1263

30.8.2.3 DSPI Transfer Count Register (DSPI_TCR)

The DSPI_TCR contains a counter that indicates the number of SPI transfers made. The transfer counter
is intended to assist in queue management. Do not write the DSPI_TCR, when the DSPI is in the Running
state.

Address: DSPI_BASE + 0x4 Access:

R DSI PISR 0 0 0 CTAR TXFR RXFR

W

Reset -1

1 The reset bits in the DSPI_HCR are set by configuration parameters in the SOC.

- 0 0 0 - - - - - - - - - - -

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-6. DSPI Hardware Configuration Register (DSPI_HCR)

Table 30-5. DSPI_HCR field description

Field Description

DSI DSI features are implemented for the module.
0 - DSI features are not implemented, DSI registers don’t exist.
1 - DSI features are implemented

PISR PISR, PISR0-3 and parallel inputs frame positions selection logic are implemented for the module.
0 - DSPI_PISR0-3 registers are not implemented.
1 - DSPI_PISR0-3 registers are implemented

Reserved, should be cleared.

CTAR[]
CTAR, Maximum implemented DSPI_CTAR register number.

TXFR]
TXFR, Maximum implemented DSPI_TXFR register number.

RXFR]
RXFR, Maximum implemented DSPI_RXFR register number.

Reserved, should be cleared.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1264 Freescale Semiconductor

30.8.2.4 DSPI Clock and Transfer Attributes Registers 0–7
(DSPI_CTAR0–DSPI_CTAR7)

The DSPI_CTAR registers are used to define different transfer attributes. The number of CTAR registersis
parameterized in the RTL and can be from two to eight registers. Do not write to the DSPI_CTARregisters,
while the DSPI is in the Running state.

In master mode, the DSPI_CTAR0 - DSPI_CTAR7 registers define combinations of transfer attributessuch
as frame size, clock phase and polarity, data bit ordering, baud rate, and various delays. In slave mode,a
subset of the bitfields in the DSPI_CTAR0 and DSPI_CTAR1 registers are used to set the slave transfer
attributes.

When the DSPI is configured as a SPI master, the CTAS field in the command portion of the TX FIFOentry
selects which of the DSPI_CTAR register is used. When the DSPI is configured as a SPI bus slave,the
DSPI_CTAR0 register is used.

When the DSPI is configured as a DSI master, the DSICTAS field in the DSPI DSI Configuration Register
(DSPI_DSICR), selects which of the DSPI_CTAR register is used. When the DSPI is configured as a DSI
bus slave, the DSPI_CTAR1 register is used.

In CSI Configuration, the transfer attributes are selected based on whether the current frame is SPI data or
DSI data. SPI transfers in CSI Configuration follow the protocol described for SPI Configuration, and DSI
transfers in CSI Configuration follow the protocol described for DSI Configuration. CSI Configuration is

Address: DSPI_BASE + 0x8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-7. DSPI Transfer Count Register (DSPI_TCR)

Table 30-6. DSPI_TCR field description

Field Description

0–15
TCNT[0:15]

SPI Transfer Counter
The SPI_TCNT field counts the number of SPI transfers the DSPI makes. The
SPI_TCNT field increments every time the last bit of a SPI frame is transmitted. A value written to
SPI_TCNT presets the counter to that value. SPI_TCNT is reset to zero at the beginning of the frame
when the CTCNT field is set in the executing SPI command. The Transfer Counter ‘wraps around’ i.e.
incrementing the counter past 65535 resets the counter to zero.

16–31 Reserved, should be cleared.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1265

only valid in conjunction with master mode. See Section 1.5.4, “Combined Serial Interface (CSI)
Configuration,” for more details..

TSB mode sets some limitations on transfer attributes:

• Clock phase is forced to be CPHA = 1 and the CPHA bit setting has no effect.

• PCS lines are driven at the driving edge of the SCK clock together with SOUT, so PCS assertion
and negation delays control is unavailable and PCSSCK, PASC, CSSCK and ASC fields have no
effect.

• Delay after transfer can be set from 1 to 64 serial clocks with help of PDT and DT fields.

Address: DSPI_BASE + 0xC–DSPI_BASE + 0x28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DBR FMSZ CPOL CPHA LSBFE PCSSCK PASC PDT PBR

W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CSSCK ASC DT BR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-8. DSPI Clock and Transfer Attributes Register 0–7 (DSPI_CTAR0–DSPI_CTAR7) in the master
mode

Address: DSPI_BASE + 0xC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
FMSZ CPOL CPHA PE PP Not used

W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
Not used

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-9. DSPI Clock and Transfer Attributes Register 0 (DSPI_CTAR0) in the slave mode

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1266 Freescale Semiconductor

Table 30-7. DSPI_CTARn field description in master mode

Field Descriptions

0
DBR

Double Baud Rate
The DBR bit doubles the effective baud rate of the Serial Communications Clock (SCK). This field is
only used in master mode. It effectively halves the Baud Rate division ratio supporting faster
frequencies and odd division ratios for the Serial Communications Clock (SCK). When the DBR bit
is set, the duty cycle of the Serial Communications Clock (SCK) depends on the value in the Baud
Rate Prescaler and the Clock Phase bit as listed in Table 30-8. See the BR field description for details
on how to compute the baud rate.

0 The baud rate is computed normally with a 50/50 duty cycle
1 The baud rate is doubled with the duty cycle depending on the Baud Rate Prescaler

1–4
FMSZ[0:3]

Frame Size
The number of bits transferred per frame is equal to FMSZ field value plus 1. Minimum valid FMSZ
field value is 3.
When operating in TSB mode, detailed in Section 30.9.8, Timed serial bus (TSB), the FMSZ field
value plus 1 is equal the data frame bit number, where control of the PCS assertion switches from
the DSPI_DSICR to the DSPI_DSICR1 register.

5
CPOL

Clock Polarity
The CPOL bit selects the inactive state of the Serial Communications Clock (SCK). This bit is used
in both master and slave mode. For successful communication between serial devices, the devices
must have identical clock polarities. When the Continuous selection format is selected, switching
between clock polarities without stopping the DSPI can cause errors in the transfer due to the
peripheral device interpreting the switch of clock polarity as a valid clock edge.
0 The inactive state value of SCK is low
1 The inactive state value of SCK is high

6
CPHA

Clock Phase
The CPHA bit selects which edge of SCK causes data to change and which edge causes data to be
captured. This bit is used in both master and slave mode. For successful communication between
serial devices, the devices must have identical clock phase settings. In Continuous SCK mode or
TSB mode the bit value is ignored and the transfers are done as CPHA bit is set to 1.
0 Data is captured on the leading edge of SCK and changed on the following edge
1 Data is changed on the leading edge of SCK and captured on the following edge

7
LSBFE

LSB First
The LSBFE bit selects if the LSB or MSB of the frame is transferred first. When operating in TSB
configuration, this bit should be set to be compliant to MSC specification.
0 Data is transferred MSB first
1 Data is transferred LSB first

8–9
PCSSCK[0:1

]

PCS to SCK Delay Prescaler
The PCSSCK field selects the prescaler value for the delay between assertion of PCS and the first
edge of the SCK. See the CSSCK field description how to compute the PCS to SCK delay. In the TSB
mode the PCSSCK field has no effect.
00 PCS to SCK prescaler value is 1
01 PCS to SCK prescaler value is 3
10 PCS to SCK prescaler value is 5
11 PCS to SCK prescaler value is 7

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1267

10–11
PASC[0:1]

After SCK Delay Prescaler
The PASC field selects the prescaler value for the delay between the last edge of SCK and the
negation of PCS. See the ASC field description how to compute the After SCK delay. In the TSB
mode the PASC field has no effect.
00 After SCK delay prescaler value is 1
01 After SCK delay prescaler value is 3
10 After SCK delay prescaler value is 5
11 After SCK delay prescaler value is 7

12–13
PDT[0:1]

Delay after Transfer Prescaler
The PDT field selects the prescaler value for the delay between the negation of the PCS signal at the
end of a frame and the assertion of PCS at the beginning of the next frame. The PDT field is only
used in master mode. In the TSB mode the PDT field defines two MSB bits of the Delay after Transfer.
See the DT field description for details on how to compute the Delay after Transfer.
00 Delay after Transfer prescaler value is 1
01 Delay after Transfer prescaler value is 3
10 Delay after Transfer prescaler value is 5
11 Delay after Transfer prescaler value is 7

14–15
PBR[0:1]

Baud Rate Prescaler
The PBR field selects the prescaler value for the baud rate. This field is only used in master mode.
The Baud Rate is the frequency of the Serial Communications Clock (SCK). The system clock is
divided by the prescaler value before the baud rate selection takes place. See the BR field description
for details on how to compute the baud rate.
00 Baud Rate prescaler value is 2
01 Baud Rate prescaler value is 3
10 Baud Rate prescaler value is 5
11 Baud Rate prescaler value is 7

16–19
CSSCK[0:3]

PCS to SCK Delay Scaler
The CSSCK field selects the scaler value for the PCS to SCK delay. This field is only used in master
mode. The PCS to SCK delay is the delay between the assertion of PCS and the first edge of the
SCK. Table 30-9 list the scaler values.The PCS to SCK delay is a multiple of the system clock period
and it is computed according to the following equation:

Eqn. 30-1

See Section 30.9.5.2, PCS to SCK delay (tCSC), for more details.In the TSB mode the field has no
effect.

20–23
ASC[0:3]

After SCK Delay Scaler
The ASC field selects the scaler value for the After SCK Delay. This field is only used in master mode.
The After SCK Delay is the delay between the last edge of SCK and the negation of PCS. Table 30-9
list the scaler values.The After SCK Delay is a multiple of the system clock period, and it is computed
according to the following equation:

Eqn. 30-2

See Section 30.9.5.3, After SCK delay (tASC), for more details. In the TSB mode the field has no
effect.

Table 30-7. DSPI_CTARn field description in master mode (continued)

Field Descriptions

tCSC
1

fSYS
----------- PCSSCK CSSCK=

tASC
1

fSYS
----------- PASC ASC=

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1268 Freescale Semiconductor

24–27
DT[0:3]

Delay after Transfer Scaler
The DT field selects the Delay after Transfer Scaler. This field is only used in master mode. The Delay
after Transfer is the time between the negation of the PCS signal at the end of a frame and the
assertion of PCS at the beginning of the next frame. Table 30-9 lists the scaler values.
In the Continuous Serial Communications Clock operation the DT value is fixed to one SCK clock
period, The Delay after Transfer is a multiple of the system clock period and it is computed according
to the following equation:

Eqn. 30-3

In the TSB mode the Delay after Transfer is equal to a number formed by concatenation of PDT and
DT fields plus 1 of the SCK clock periods.
See Section 30.9.5.4, Delay after transfer (tDT), for more details.

28–31
BR[0:3]

Baud Rate Scaler
The BR field selects the scaler value for the baud rate. This field is only used in master mode. The
prescaled system clock is divided by the Baud Rate Scaler to generate the frequency of the SCK.
Table 30-10 lists the Baud Rate Scaler values.The baud rate is computed according to the following
equation:

Eqn. 30-4

See Section 30.9.5.1, Baud rate generator, for more details.

Table 30-8. DSPI SCK duty cycle

DBR CPHA PBR SCK duty cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43

Table 30-9. Delay scaler encoding

Field value Scaler value Field value Scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

Table 30-7. DSPI_CTARn field description in master mode (continued)

Field Descriptions

tDT
1

fSYS
----------- PDT DT=

SCK baud rate
fSYS

PBR

1 DBR+
BR

----------------------=

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1269

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 30-10. DSPI baud rate scaler

BR Baud rate scaler value BR Baud rate scaler value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768

Table 30-11. DSPI_CTAR0 field description in slave mode

Field Descriptions

0–4
FMSZ[0:4]

Frame Size
The number of bits transferred per frame is equal FMSZ field value plus 1. Minimum valid FMSZ field
value is 3.

5
CPOL

Clock Polarity
The CPOL bit selects the inactive state of the Serial Communications Clock (SCK).
0 The inactive state value of SCK is low
1 The inactive state value of SCK is high

6
CPHA

Clock Phase
The CPHA bit selects which edge of SCK causes data to change and which edge causes data to be
captured.
0 Data is captured on the leading edge of SCK and changed on the following edge
1 Data is changed on the leading edge of SCK and captured on the following edge

7
PE

Parity Enable
PE bit enables parity bit transmission and reception for the frame
0 No parity bit included/checked.
1 Parity bit is transmitted instead of last data bit in frame, parity checked for received frame.

Table 30-9. Delay scaler encoding (continued)

Field value Scaler value Field value Scaler value

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1270 Freescale Semiconductor

30.8.2.5 DSPI Status Register (DSPI_SR)

The DSPI_SR contains status and flag bits. The bits reflect the status of the DSPI and indicate the
occurrence of events that can generate interrupt or DMA requests. Software can clear flag bits in the
DSPI_SR by writing a ‘1’ to it. Writing a ‘0’ to a flag bit has no effect. This register may not be writable
in module disable mode due to the use of power saving mechanisms.

8
PP

Parity Polarity
PP bit controls polarity of the parity bit transmitted and checked
0 Even Parity: number of “1” bits in the transmitted frame is even. The DSPI_SR[SPEF] bit is set if

in the received frame number of “1” bits is odd.
1 Odd Parity: number of “1” bits in the transmitted frame is odd. The DSPI_SR[SPEF] bit is set if in

the received frame number of “1” bits is even.

29–31
—

Not used, write always zero to keep software compatible with future updates.

Address: DSPI_BASE + 0x2C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TCF TXRXS 0 EOQF TFUF 0 TFFF 0 0 DPEF SPEF DDIF RFOF 0 RFDF 0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXCTR TXNXTPTR RXCTR POPNXTPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-10. DSPI Status Register (DSPI_SR)

Table 30-12. DSPI_SR field description

Field Description

0
TCF

Transfer Complete Flag
The TCF bit indicates that all bits in a frame have been shifted out. The TCF bit remains set until
cleared by writing 1 to it.
0 Transfer not complete
1 Transfer complete

1
TXRXS

TX & RX Status
The TXRXS bit reflects the run status of the DSPI. Section 30.9.1, Start and stop of DSPI transfers,
explains what causes this bit to be set or cleared.
0 TX and RX operations are disabled (DSPI is in STOPPED state)
1 TX and RX operations are enabled (DSPI is in RUNNING state)

2 Reserved, should be cleared.

Table 30-11. DSPI_CTAR0 field description in slave mode (continued)

Field Descriptions

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1271

3
EOQF

End of Queue Flag
The EOQF bit indicates that the last entry in a queue has been transmitted when the DSPI in the
master mode. The EOQF bit is set when TX FIFO entry has the EOQ bit set in the command halfword
and the end of the transfer is reached. The EOQF bit remains set until cleared by writing 1 to it. When
the EOQF bit is set, the TXRXS bit is automatically cleared.
0 EOQ is not set in the executed command
1 EOQ bit is set in the executed SPI command

4
TFUF

Transmit FIFO Underflow Flag
The TFUF bit indicates that an underflow condition in the TX FIFO has occurred. The transmit
underflow condition is detected only for DSPI modules operating in slave mode and SPI
configuration. The TFUF bit is set when the TX FIFO of a DSPI operating in SPI slave mode is empty,
and a transfer is initiated by an external SPI master. The TFUF bit remains set until cleared by writing
1 to it.
0 TX FIFO underflow has not occurred
1 TX FIFO underflow has occurred

5 Reserved, should be cleared.

6
TFFF

Transmit FIFO Fill Flag
The TFFF bit provides a method for the DSPI to request more entries to be added to the TX FIFO.
The TFFF bit is set while the TX FIFO is not full. The TFFF bit can be cleared by writing 1 to it or by
acknowledgement from the DMA controller to the TX FIFO full request.
0 TX FIFO is full
1 TX FIFO is not full

7–8 Reserved, should be cleared.

9
DPEF

DSI Parity Error Flag
The DPEF flag indicates that a DSI frame with parity error had been received. The bit remains set
until cleared by writing 1 to it.
0 Parity Error has not occurred
1 Parity Error has occurred

10

SPEF

SPI Parity Error Flag
The SPEF flag indicates that a SPI frame with parity error had been received. The bit remains set
until cleared by writing 1 to it.
0 Parity Error has not occurred
1 Parity Error has occurred

11

DDIF

DSI data received with active bits

The DDIF flag indicates that DSI frame had been received with bits, selected by DSPI_DIMR with
active polarity, defined by DSPI_DPIR. The bit remains set until cleared by writing 1 to it.
0 No DSI data with active bits was received
1 DSI data with active bits was received

12
RFOF

Receive FIFO Overflow Flag
The RFOF bit indicates that an overflow condition in the RX FIFO has occurred. The bit is set when
the RX FIFO and shift register are full and a transfer is initiated. The bit remains set until cleared by
writing 1 to it.
0 RX FIFO overflow has not occurred
1 RX FIFO overflow has occurred

13 Reserved, should be cleared.

Table 30-12. DSPI_SR field description (continued)

Field Description

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1272 Freescale Semiconductor

30.8.2.6 DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)

The DSPI_RSER controls DMA and interrupt requests. Do not write to the DSPI_RSER while the DSPI
is in the Running state.

14
RFDF

Receive FIFO Drain Flag
The RFDF bit provides a method for the DSPI to request that entries be removed from the RX FIFO.
The bit is set while the RX FIFO is not empty. The RFDF bit can be cleared by writing 1 to it or by
acknowledgement from the DMA controller when the RX FIFO is empty.
0 RX FIFO is empty
1 RX FIFO is not empty

15 Reserved.

16–20
TXCTR

TX FIFO Counter
The TXCTR field indicates the number of valid entries in the TX FIFO. The TXCTR is incremented
every time the DSPI _PUSHR is written. The TXCTR is decremented every time a SPI command is
executed and the SPI data is transferred to the shift register.

20–23
TXNXTPTR

Transmit Next Pointer
The TXNXTPTR field indicates which TX FIFO Entry is transmitted during the next transfer. The
TXNXTPTR field is updated every time SPI data is transferred from the TX FIFO to the shift register.
See Section 30.9.10.4, Transmit FIFO underflow interrupt request, for more details.

24–27
RXCTR

RX FIFO Counter
The RXCTR field indicates the number of entries in the RX FIFO. The RXCTR is decremented every
time the DSPI _POPR is read. The RXCTR is incremented every time data is transferred from the
shift register to the RX FIFO.

28–31
POPNXTPT

R

Pop Next Pointer
The POPNXTPTR field contains a pointer to the RX FIFO entry that will be returned when the
DSPI_POPR is read. The POPNXTPTR is updated when the DSPI_POPR is read. See
Section 30.9.2.5, Receive first-in first-out (RX FIFO) buffering mechanism, for more details.

Address: DSPI_BASE + 0x30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

T
C

F
_R

E 0 0

E
O

Q
F

R
E

T
F

U
F

R
E 0

T
F

F
F

R
E

T
F

F
F

D
IR

S 0

D
P

E
F

R
E

S
P

E
F

R
E

D
D

IF
R

E

R
F

O
F

R
E 0

R
F

D
F

R
E

R
F

D
F

D
IR

S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-11. DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)

Table 30-12. DSPI_SR field description (continued)

Field Description

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1273

Table 30-13. DSPI_RSER field description

Field Description

0
TCF_RE

Transmission Complete Request Enable
The TCF_RE bit enables TCF flag in the DSPI_SR to generate an interrupt request.
0 TCF interrupt requests are disabled
1 TCF interrupt requests are enabled

1–2 Reserved, should be cleared.

3
EOQFRE

DSPI Finished Request Enable
The EOQFRE bit enables the EOQF flag in the DSPI_SR to generate an interrupt request.
0 EOQF interrupt requests are disabled
1 EOQF interrupt requests are enabled

4
TFUFRE

Transmit FIFO Underflow Request Enable
The TFUFRE bit enables the TFUF flag in the DSPI_SR to generate an interrupt request.
0 TFUF interrupt requests are disabled
1 TFUF interrupt requests are enabled

5 Reserved, should be cleared.

6
TFFFRE

Transmit FIFO Fill Request Enable
The TFFFRE bit enables the TFFF flag in the DSPI_SR to generate a request. The TFFFDIRS bit
selects between generating an interrupt request or a DMA requests.
0 TFFF interrupt requests or DMA requests are disabled
1 TFFF interrupt requests or DMA requests are enabled

7
TFFFDIRS

Transmit FIFO Fill DMA or Interrupt Request Select
The TFFFDIRS bit selects between generating a DMA request or an interrupt request. When the
TFFF flag bit in the DSPI_SR is set, and the TFFFRE bit in the DSPI_RSER is set, this bit selects
between generating an interrupt request or a DMA request.
0 Interrupt request will be generated
1 DMA request will be generated

8 Reserved, should be cleared.

9

DPEFRE

DSI Parity Error Request Enable
The DPEFRE bits enables DPEF flag in the DSPI_SR to generate an interrupt requests.
0 PEF interrupt requests are disabled
1 PEF interrupt requests are enabled

10

SPEFRE

SPI Parity Error Request Enable
The SPEFRE bits enables SPEF flag in the DSPI_SR to generate an interrupt requests.
0 PEF interrupt requests are disabled
1 PEF interrupt requests are enabled

11

DDIFRE

DSI data received with active bits Request Enable
The DDIFRE bit enables the DDIF flag in the DSPI_SR to generate an interrupt requests.
0 DDIF interrupt requests are disabled
1 DDIF interrupt requests are enabled

12
RFOFRE

Receive FIFO Overflow Request Enable
The RFOFRE bit enables the RFOF flag in the DSPI_SR to generate an interrupt requests.
0 RFOF interrupt requests are disabled
1 RFOF interrupt requests are enabled

13 Reserved, should be cleared.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1274 Freescale Semiconductor

30.8.2.7 DSPI PUSH TX FIFO Register (DSPI_PUSHR)

The DSPI_PUSHR provides means to write to the TX FIFO. Data written to this register is transferred to
the TX FIFO. See Section 30.9.2.4, Transmit first-in first-out (TX FIFO) buffering mechanism” for more
information. Eight or 16-bit write accesses to the DSPI_PUSHR transfers all 32 register bits to the TX
FIFO.

The register structure is different in master and slave modes. In master mode the register provides 16-bit
commands and 16-bit data to the TX FIFO. In slave mode all 32 register bits can be used as data,
supporting up to 32-bit SPI frame operation.

14
RFDFRE

Receive FIFO Drain Request Enable
The RFDFRE bit enables the RFDF flag in the DSPI_SR to generate a request. The RFDFDIRS bit
selects between generating an interrupt request or a DMA request.
0 RFDF interrupt requests or DMA requests are disabled
1 RFDF interrupt requests or DMA requests are enabled

15
RFDFDIRS

Receive FIFO Drain DMA or Interrupt Request Select
The RFDFDIRS bit selects between generating a DMA request or an interrupt request. When the
RFDF flag bit in the DSPI_SR is set, and the RFDFRE bit in the DSPI_RSER is set, the RFDFDIRS
bit selects between generating an interrupt request or a DMA request.
0 Interrupt request will be generated
1 DMA request will be generated

Address: DSPI_BASE + 0x34

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CONT CTAS EOQ CTCNT PE PP PCS7 PCS6 PCS5 PCS4 PCS3 PCS2 PCS1 PCS0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-12. DSPI PUSH TX FIFO Register (DSPI_PUSHR) in master mode

Table 30-13. DSPI_RSER field description (continued)

Field Description

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1275

Table 30-14. DSPI_PUSHR field description in master mode

Field Descriptions

0
CONT

Continuous Peripheral Chip Select Enable
The CONT bit selects a Continuous Selection Format. The bit is used in SPI master mode. The bit
enables the selected PCS signals to remain asserted between transfers. See Section 30.9.6.5,
Continuous selection format, for more information.
0 Return Peripheral Chip Select signals to their inactive state between transfers
1 Keep Peripheral Chip Select signals asserted between transfers

1–3
CTAS[0:2]

Clock and Transfer Attributes Select
The CTAS field selects the number of the DSPI_CTAR to be used to set the transfer attributes for the
associated SPI frame. The field is only used in SPI master mode. In SPI slave mode DSPI_CTAR0
is used. The number of DSPI_CTAR registers is implementation specific and the CTAS should be set
to select only implemented one.

4
EOQ

End Of Queue
The EOQ bit provides a means for host software to signal to the DSPI that the current SPI transfer is
the last in a queue. At the end of the transfer the EOQF bit in the DSPI_SR is set.
0 The SPI data is not the last data to transfer
1 The SPI data is the last data to transfer

5
CTCNT

Clear Transfer Counter
The CTCNT bit clears field DSPI_TCR[TCNT]. The TCNT field is cleared before transmission of the
current SPI frame begins.
0 Do not clear field DSPI_TCR[TCNT]
1 Clear field DSPI_TCR[TCNT]

6
PE

Parity Enable
PE bit enables parity bit transmission and parity reception check for the SPI frame
0 No parity bit included/checked.
1 Parity bit is transmitted instead of last data bit in frame, parity checked for received frame.

7
PP

Parity Polarity
PP bit controls polarity of the parity bit transmitted and checked
0 Even Parity: number of “1” bits in the transmitted frame is even. The DSPI_SR[SPEF] bit is set if

in the received frame number of “1” bits is odd.
1 Odd Parity: number of “1” bits in the transmitted frame is odd. The DSPI_SR[SPEF] bit is set if in

the received frame number of “1” bits is even.

8–15
PCSx

Peripheral Chip Select 0–7
The PCS bits select which PCS signals will be asserted for the transfer.
0 Negate the PCS[x] signal
1 Assert the PCS[x] signal

16–31
TXDATA[0:15]

Transmit Data
The TXDATA field holds SPI data to be transferred according to the associated SPI command.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1276 Freescale Semiconductor

30.8.2.8 DSPI POP RX FIFO Register (DSPI_POPR)

The DSPI_POPR provides the means to read the RX FIFO. See Section 30.9.2.5, Receive first-in first-out
(RX FIFO) buffering mechanism” for a description of the RX FIFO operations. Eight or 16-bit read
accesses to the DSPI_POPR have the same effect on the RX FIFO as 32-bit read access.

Address: DSPI_BASE + 0x34

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-13. DSPI PUSH TX FIFO Register (DSPI_PUSHR) in slave mode

Table 30-15. DSPI_PUSHR field description in slave mode

Field Descriptions

0–31
TXDATA[0:31]

Transmit Data
The TXDATA field holds SPI data to be transferred.

Address: DSPI_BASE + 0x38

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-14. DSPI POP RX FIFO Register (DSPI_POPR)

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1277

30.8.2.9 DSPI Transmit FIFO Registers 0–15 (DSPI_TXFR0–DSPI_TXFR15)

The DSPI_TXFR0 – DSPI_TXFR15 registers provide visibility into the TX FIFO for debugging purposes.
Each register is an entry in the TX FIFO. The registers are read-only and cannot be modified. Reading the
DSPI_TXFRx registers does not alter the state of the TX FIFO. The number of registers used to implement
the TX FIFO is device specific. If a four-entry TX FIFO is implemented, DSPI_TXFR0 – DSPI_TXFR3
are accessible.

30.8.2.10 DSPI Receive FIFO Registers 0–15 (DSPI_RXFR0–DSPI_RXFR15)

The DSPI_RXFR0 – DSPI_RXFR15 registers provide visibility into the RX FIFO for debugging
purposes. Each register is an entry in the RX FIFO. The DSPI_RXFR registers are read-only. Reading the
DSPI_RXFRx registers does not alter the state of the RX FIFO. The number of registers used to implement
the RX FIFO is device specific. If a four-entry RX FIFO is implemented, DSPI_RXFR0 – DSPI_RXFR3
exist, for example.

Table 30-16. DSPI_POPR field description

Field Description

0–31
RXDATA[0:31]

Received Data
The RXDATA field contains the SPI data from the RX FIFO entry pointed to by the Pop Next Data
Pointer.

Address: DSPI_BASE+0x3C–DSPI_BASE+0x78

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TXCMD/TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-15. DSPI Transmit FIFO Register 0–15 (DSPI_TXFR0–DSPI_TXFR15)

Table 30-17. DSPI_TXFRn field description

Field Description

0–15
TXCMD[0:15]/
TXDATA[0:15]

Transmit Command or Transmit Data
In master mode the TXCMD field contains the command that sets the transfer attributes for the SPI
data. See Section 30.8.2.7, DSPI PUSH TX FIFO Register (DSPI_PUSHR), for details on the
command field. In slave mode the TXDATA contains 16 MSB bits of the SPI data to be shifted out

16–31
TXDATA[16:31]

Transmit Data
The TXDATA field contains the SPI data to be shifted out.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1278 Freescale Semiconductor

30.8.2.11 DSPI DSI Configuration Register (DSPI_DSICR)

The DSI Configuration Register selects various attributes associated with DSI and CSI Configurations. Do
not write to the DSPI_DSICR, while the DSPI is in the Running state.

Address: DSPI_BASE + 0x7C–DSPI_BASE + 0xB8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-16. DSPI Receive FIFO Registers 0–15 (DSPI_RXFR0–DSPI_RXFR15)

Table 30-18. DSPI_RXFRn field description

Field Description

0–31
RXDATA[0:31]

Receive Data
The RXDATA field contains the received SPI data.

Address: DSPI_BASE + 0xBC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTOE

F
M

S
Z

[4
]

MTOCNT
0 0 0

TSBC TXSS TPOL TRRE CID
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DCONT DSICTAS DMS PES PE PP

D
P

C
S

7

D
P

C
S

6

D
P

C
S

5

D
P

C
S

4

D
P

C
S

3

D
P

C
S

2

D
P

C
S

1

D
P

C
S

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-17. DSPI DSI Configuration Register (DSPI_DSICR)

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1279

Table 30-19. DSPI_DSICR field description

Field Description

0
MTOE

Multiple Transfer Operation Enable
The MTOE bit enables multiple DSPIs to be connected in a parallel or serial configuration. See
Section 30.9.3.6, Multiple transfer operation (MTO), for more information.
0 Multiple Transfer Operation disabled
1 Multiple Transfer Operation enabled
The MTOE and TSB bits should not be set simultaneously.

1 MSB of the Frame Size
If the bit is set, 16 is added to the frame size, defined by field DSPI_CTARn[FMSZ]. DSPI_CTARn
register is selected by field DSPI_DSICR[DSICTAS].

2–7
MTOCNT[0:5]

Multiple Transfer Operation Count
The MTOCNT field selects number of bits to be shifted out during a transfer in Multiple Transfer
Operation. The field sets the number of SCK cycles that the bus master will generate to complete the
transfer. The number of SCK cycles used will be one more than the value in the MTOCNT field. The
number of SCK cycles defined by MTOCNT must be equal to or greater than the frame size. When
TSBC is set, MTOCNT field has no effect.

8–10 Reserved, should be cleared.

11
TSBC

Timed Serial Bus Configuration
The TSBC bit enables the Timed Serial Bus Configuration. This configuration allows 32-bit data to be
used. It also allows tDT to be programmable. See Section 30.9.8, Timed serial bus (TSB)” for detailed
information.
0 Timed Serial Bus Configuration disabled
1 Timed Serial Bus Configuration enabled
If this bit is clear the DSPI_DSICR1 register value has no effect.

12
TXSS

Transmit Data Source Select
The TXSS bit selects the source of data to be serialized. The source can be either data from host
Software written to the DSPI DSI Alternate Serialization Data Register (DSPI_ASDR), or Parallel
Input pin states latched into the DSPI DSI Serialization Data Register (DSPI_SDR).
0 Source of serialized data is the DSPI_SDR
1 Source of serialized data is the DSPI_ASDR

13
TPOL

Trigger Polarity
The TPOL bit selects the active edge of the hardware trigger input signal (HT). initiating DSI frames
transfer. See Section 30.9.3.5, DSI transfer initiation control, for more information.
0 Falling edge will initiate a transfer
1 Rising edge will initiate a transfer

14
TRRE

Trigger Reception Enable
The TRRE bit enables the DSPI to initiate DSI frames transfer with external trigger signal. See
Section 30.9.3.5, DSI transfer initiation control, for more information.
0 Trigger signal reception disabled
1 Trigger signal reception enabled

15
CID

Change In Data Transfer Enable
The CID bit enables a change in serialization data to initiate DSI frames transfer. in DSI and CSI
configurations. When the CID bit is set, DSI frames are initiated when the current DSI data differs
from the previous DSI data shifted out. Refer to Section 30.9.3.5, DSI transfer initiation control, for
more information.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1280 Freescale Semiconductor

30.8.2.12 DSPI DSI Serialization Data Register (DSPI_SDR)

The DSPI_SDR contains the states of the Parallel Input signals. The states of the Parallel Input signals are
latched into the DSPI_SDR on the rising edge of every system clock. The DSPI_SDR is read-only. When
the TXSS bit in the DSPI_DSICR is cleared, the data in the DSPI_SDR is used as the source of the DSI
frames.

16
DCONT

DSI Continuous Peripheral Chip Select Enable
The DCONT bit enables the PCS signals to remain asserted between transfers. The DCONT bit only
affects the PCS signals in DSI master mode. See Section 30.9.6.5, Continuous selection format, for
details. When TSBC bit is set, DCONT bit has no effect.
0 Return Peripheral Chip Select signals to their inactive state after transfer is complete
1 Keep Peripheral Chip Select signals asserted after transfer is complete

17–19
DSICTAS[0:2]

DSI Clock and Transfer Attributes Select
The DSICTAS field selects which of the DSPI_CTAR registers is used to provide transfer attributes
for DSI frames. The DSICTAS field is used in DSI master mode. In DSI slave mode, the DSPI_CTAR1
is always selected.

20
DMS

Data Match Stop. DMS bit if set stops DSI frames transmissions if DDIF flag is set in the DSPI_SR
register.
0 DDIF flag does not have effect on DSI frames transmissions.
1 DDIF flag stops DSI frame transmissions.

21
PES

Parity Error Stop. PES bit if set stops DSI operation if the parity error had happened in received DSI
frame.
0 parity error does not stop DSI frame transmissions.
1 parity error stops all DSI frame transmissions

22
PE

Parity Enable. PE bit enables parity bit transmission and parity reception check for the DSI frames
0 No parity bit included/checked.
1 Parity bit is transmitted instead of last data bit in frame, parity checked for received frame

23
PP

Parity Polarity. PP bit controls polarity of the parity bit transmitted and checked
0 Even Parity: number of “1” bits in the transmitted frame is even. The DSPI_SR[DPEF] bit is set if
in the received frame number of “1” bits is odd.
1 Odd Parity: number of “1” bits in the transmitted frame is odd. The DSPI_SR[DPEF] bit is set if in
the received frame number of “1” bits is even

24–31
DPCSx

DSI Peripheral Chip Select 0–7
The DPCS bits select which of the PCS signals to assert during a DSI master mode transfer.
0 Negate PCS[x]
1 Assert PCS[x]

Table 30-19. DSPI_DSICR field description (continued)

Field Description

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1281

30.8.2.13 DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)

The DSPI_ASDR provides means for host software to write the data to be serialized. When the TXSS bit
in the DSPI_DSICR is set, the data in the DSPI_ASDR is the source of the DSI frames. Writes to the
DSPI_ASDR take effect on the next frame boundary.

Address: DSPI_BASE + 0xC0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-18. DSPI DSI Serialization Data Register (DSPI_SDR)

Table 30-20. DSPI_SDR field description

Field Description

0–31
SER_DATA

[30:31]

Serialized Data
The SER_DATA field contains the signal states of the Parallel Input signals.

Address: DSPI_BASE + 0xC4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ASER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ASER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-19. DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1282 Freescale Semiconductor

30.8.2.14 DSPI DSI Transmit Comparison Register (DSPI_COMPR)

The DSPI_COMPR holds a copy of the last transmitted DSI data. The DSPI_COMPR is read-only. DSI
data is transferred to this register as it is loaded into the TX Shift Register.

30.8.2.15 DSPI DSI Deserialization Data Register (DSPI_DDR)

The DSPI_DDR holds the signal states for the Parallel Output signals. The DSPI_DDR is read-only and
host software can read data from incoming DSI frames.

Table 30-21. DSPI_ASDR field description

Field Descriptions

0–31
ASER_DATA [0:31]

Alternate Serialized Data
The ASER_DATA field holds the alternate data to be serialized.

Address: DSPI_BASE + 0xC8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R COMP_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R COMP_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-20. DSPI DSI Transmit Comparison Register (DSPI_COMPR)

Table 30-22. DSPI_COMPR field description

Field Description

0–31
COMP_DATA[0:31]

Compare Data
The COMP_DATA field holds the last serialized DSI data.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1283

30.8.2.16 DSPI DSI Configuration Register 1 (DSPI_DSICR1)

The DSI Configuration Register 1 selects various attributes associated with TSB Configuration. The user
must not write to the DSPI_DSICR1 while the DSPI is in the Running state. If TSBC bit is cleared the
register value is ignored.

Address: DSPI_BASE + 0xCC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DESER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DESER_DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-21. DSPI Deserialization Data Register (DSPI_DDR)

Table 30-23. DSPI_DDR field description

Field Descriptions

0–31
DESER_DAT

A[0:31]

Deserialized Data
The DESER_DATA field holds deserialized data which is presented as signal states to the Parallel
Output signals.

Address: DSPI_BASE + 0xD0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
TSBCNT

0 0 0 0 0 0

D
S

E
1

D
S

E
2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0

D
P

C
S

1_
7

D
P

C
S

1_
6

D
P

C
S

1_
5

D
P

C
S

1_
4

D
P

C
S

1_
3

D
P

C
S

1_
2

D
P

C
S

1_
1

D
P

C
S

1_
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-22. DSPI DSI Configuration Register 1 (DSPI_DSICR1)

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1284 Freescale Semiconductor

30.8.2.17 DSPI DSI Serialization Source Select Register (DSPI_SSR)

DSPI DSI Serialization Source Select Register provides means to create combined frame for transmission,
containing bits from DSPI_ASDR register and from DSPI_SDR register. Each bit in the DSPI_SSR
register selects corresponding bit to be serialized. When DSPI_DSICR[TXSS] is set, the DSPI_SSR
register value has no effect.

Table 30-24. DSPI_DSICR1 field description

Field Description

0–2 Reserved, should be cleared.

3–7
TSBCNT[0:4]

Timed Serial Bus Operation Count
When TSBC is set, TSBCNT defines the length of the data frame. TSBCNT field valid value is from
3 to 31.
The TSBCNT field selects number of data bits to be shifted out during a transfer in TSB mode. The
number of data bits in the data frame is one more than the value in the TSBCNT field.

8–13 Reserved, should be cleared.

14
DSE1

Data Select Enable1. When TBSC bit is set, the DSE1 bit controls insertion of the zero bit (Data
Select) in the middle of the data frame. The insertion bit position is defined by FMSZ field of
DSPI_CTARn register, selected by DSICTAS field of the DSPI_DSICR register.
0 No Zero bit inserted in the middle of the data frame.
1 Zero bit is inserted at the middle of the data frame. Total number of bits in the data frame is

increased by 1.

15
DSE0

Data Select Enable0. When TBSC bit is set, the DSE0 bit controls insertion of the zero bit (Data
Select) in the beginning of the data frame.
0 No Zero bit inserted in the beginning of the frame.
1 Zero bit is inserted at the beginning of the data frame. Total number of bits in the data frame is
increased by 1.

16–23 Reserved, should be cleared.

24–31
DPCS1_x

DSI Peripheral Chip Select 0–7
These bits define the PCSs to assert for the second part of the DSI frame when operating in TSB
configuration with dual receiver. The DPCS1 bits select which of the PCS signals to assert during the
second part of the DSI frame. The DPCS1 bits only control the assertions of the PCS signals in TSB
mode.
0 Negate PCS[x]
1 Assert PCS[x]

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1285

30.8.2.18 DSPI DSI Parallel Input Select Registers 0 - 3 (DPSI_PISR0 - DPSI_PISR3)

DSPI DSI Parallel Input Select Registers 0 - 3 provide means to select each data bit for transmitted frame
from 16 Parallel Input pins. Each Input Pin Select (IPS) field controls one bit in the transmitted frame.
Each register contains control fields for 8 bits in the frame. The select field value is defined as 4 bits signed
integer number. Selected Parallel Input pin number is defined as a the field number and field value.

For example, if IPS16 is equal binary number 1111 (minus 1 decimal) bit 16 in the frame will be taken
from Parallel Input pin number . When the IPS0 is equal -1, the bit 0 in the frame is taken from Parallel
Input . When the IPS0 is equal +1, the bit 0 in the frame is taken from Parallel Input and etc.

Please, note that the DSPI_PISR0-3 only preselect Parallel Input pins, final selection to the transmitted
frame is done by DSPI_SSR register bits or DSPI_DSICR[TXSS] bit.

Address: DSPI_BASE + 0xD4 Access:

R
SS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R
SS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-23. DSPI DSI Serialization Source Select Register (DSPI_SSR)

Table 30-25. DSPI_SSR Field Descriptions

Field Description

SS[]
Source Select. The SS bits select serialization source for DSI frame. Each SS bit selects data for
corresponded bit in the transmitted frame.
0 the bit in transmitted frame is taken from Parallel Input pin;
1 the bit in transmitted frame is taken from DSPI_ASDR register

Address: DSPI_BASE + 0xD8 Access:

R
IPS IPS IPS IPS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R
IPS IPS IPS IPS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-24. DSPI DSI Parallel Input Select Register 0 (DSPI_PISR0)

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1286 Freescale Semiconductor

Table 30-26. DSPI_PISR0 Field Descriptions

Field Description

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

Address: DSPI_BASE + 0xDC Access:

R
IPS IPS IPS IPS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R
IPS IPS IPS IPS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-25. DSPI DSI Parallel Input Select Register 1 (DSPI_PISR1)

Table 27. DSPI_PISR1 Field Descriptions

Field Description

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1287

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

Address: DSPI_BASE + 0xE0 Access:

R
IPS IPS IPS IPS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R
IPS IPS IPS IPS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-26. DSPI DSI Parallel Input Select Register 2 (DSPI_PISR2)

Table 30-28. DSPI_PISR2 Field Descriptions

Field Description

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

Table 27. DSPI_PISR1 Field Descriptions

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1288 Freescale Semiconductor

30.8.2.19 DSPI DSI Deserialized Data Interrupt Mask Register (DSPI_DIMR)

The DSPI DSI Deserialized Data Interrupt Mask Register selects bits in the received DSI frame to
be checked to generate the DDI interrupt.

Address: DSPI_BASE + 0xE4 Access:

R
IPS IPS IPS IPS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R
IPS IPS IPS IPS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-27. DSPI DSI Parallel Input Select Register 3 (DSPI_PISR3)

Table 30-29. DSPI_PISR3 Field Descriptions

Field Description

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

IPS
Input Pin Select . The IPS field selects Parallel Input pin for transmitted frame bit .

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1289

30.8.2.20 DSPI DSI Deserialized Data Polarity Interrupt Register (DSPI_DPIR)

The DSPI DSI Deserialized Data Polarity Interrupt Register defines what data bits value in thereceived
DSI frame generates the DDI interrupt.

Address: DSPI_BASE + 0xE8 Access:

R
MASK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R
MASK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-28. DSPI DSI Deserialized Data Interrupt Mask Register (DSPI_DIMR)

Table 30-30. DSPI_DIMR Field Descriptions

Field Description

MASK[]
MASK. The MASK bits define which bits in received deserialization data should be checked to
produce the Deserialized Data Interrupt (DDI).
0 the bit in received DSI frame does not produce DDI interrupt.
1 the bit in received DSI frame can produce DDI interrupt if the data bit matches to configured

polarity.

Address: DSPI_BASE + 0xEC Access:

R
DP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R
DP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 30-29. DSPI DSI Deserialized Data Polarity Interrupt Register (DSPI_DIPR)

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1290 Freescale Semiconductor

30.9 Functional description

The Deserial Serial Peripheral Interface (DSPI) module supports full-duplex, synchronous serial
communications between MCUs and peripheral devices. The DSPI can also be used to reduce the number
of pins required for I/O by serializing and deserializing up to 32 Parallel Input/Output signals. All
communications are done with SPI-like protocol.

The DSPI has three configurations:

• SPI configuration in which the DSPI operates as a basic SPI or a queued SPI.

• DSI configuration in which the DSPI serializes and deserializes Parallel Input/Output signals or
bits from memory mapped register.

• CSI configuration in which the DSPI combines the functionality of the SPI and DSI configurations.

Field DSPI_MCR[DCONF] determines the DSPI configuration. See Table 30-4 for the DSPI
configuration values.

Registers DSPI_CTAR0 – DSPI_CTAR7 hold clock and transfer attributes. The SPI configuration allows
to select which DSPI_CTAR to use on a frame by frame basis by setting a field in the SPI command. The
DSI configuration statically selects which DSPI_CTAR to use. In CSI configuration priority logic
determines if SPI data or DSI data is transferred and dictates what DSPI_CTAR is used for the data
transfer. See Section 30.8.2.4, DSPI Clock and Transfer Attributes Registers 0–7
(DSPI_CTAR0–DSPI_CTAR7), for information on the fields of the DSPI_CTAR registers.

Typical master to slave connections are shown in Figure 30-30. When a data transfer operation is
performed, data is serially shifted a predetermined number of bit positions. Because the modules are
linked, data is exchanged between the master and the slave. The data that was in the master shift register
is now in the shift register of the slave, and vice versa. At the end of a transfer, bit DSPI_SR[TCF] is set
to indicate a completed transfer.

Table 30-31. DSPI_DIPR Field Descriptions

Field Description

DP[]
Data Polarity. The DP bits define what value of the received deserialization data sets the
DSPI_SR[DDIF] bit.
0 if received bit is 0 the DSPI_SR[DDIF] bit is set.
1 if received bit is 1 the DSPI_SR[DDIF] bit is set.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1291

Figure 30-30. SPI and DSI Serial Protocol Overview

Generally more than one slave device can be connected to the DSPI master. Eight Peripheral Chip Select
(PCS) signals of the DSPI masters can be used to select which of the slaves to communicate with.

The three DSPI configurations share transfer protocol and timing properties which are described
independently of the configuration in Section 30.9.6, Transfer formats”. The transfer rate and delay
settings are described in Section 30.9.5, DSPI baud rate and clock delay generation.

30.9.1 Start and stop of DSPI transfers
The DSPI has two operating states: STOPPED and RUNNING. The states are independent of DSPI configuration. The default
state of the DSPI is STOPPED. In the STOPPED state no serial transfers are initiated in master mode and no transfers are
responded to in slave mode. The STOPPED state is also a safe state for writing the various configuration registers of the DSPI
without causing undetermined results. In the RUNNING state serial transfers take place.

Bit DSPI_SR[TXRXS] indicates the DSPI’s operating state. The bit is set if the module is in RUNNING state.

The DSPI is started (DSPI transitions to RUNNING) when all of the following conditions are true:

• DSPI_SR[EOQF] bit is clear

• Device is not in the debug mode is or the DSPI_MCR[FRZ] bit is clear

• DSPI_MCR[HALT] bit is clear

The DSPI stops (transitions from RUNNING to STOPPED) after the current frame when any one of the following conditions exist:

• DSPI_SR[EOQF] bit is set

• Device in the debug mode and the DSPI_MCR[FRZ] bit is set

• DSPI_MCR[HALT] bit is set

State transitions from RUNNING to STOPPED occur on the next frame boundary if a transfer is in progress, or immediately if no
transfers are in progress.

30.9.2 Serial peripheral interface (SPI) configuration
The SPI configuration transfers data serially using a shift register and a selection of programmable transfer attributes. The DSPI
is in SPI configuration when field DSPI_MCR[DCONF] is 0b00. The SPI frames can be from 4 to 16 bits long. Host CPU or a
DMA controller transfer the SPI data from the external to DSPI RAM queues to a transmit First-In First-Out (TX FIFO) buffer. The
received data is stored in entries in the Receive FIFO (RX FIFO) buffer. Host CPU or the DMA controller transfer the received
data from the RX FIFO to memory external to the DSPI. The FIFO buffers operation is described in Section 30.9.2.4, Transmit
first-in first-out (TX FIFO) buffering mechanism, and Section 30.9.2.5, Receive first-in first-out (RX FIFO) buffering mechanism.
The interrupt and DMA request conditions are described in Section 30.9.10, Interrupts/DMA requests.

Shift Register

Baud Rate
Generator

Shift Register

SIN

SINSOUT

SOUT

SCK SCK

SSPCSx

DSPI Master DSPI Slave

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1292 Freescale Semiconductor

The SPI configuration supports two module-specific modes: master mode and slave mode. The FIFO operations are similar for
both modes. The main difference is that in master mode the DSPI initiates and controls the transfer according to the fields in the
SPI command field of the TX FIFO entry. In slave mode the DSPI only responds to transfers initiated by a bus master external to
the DSPI and the SPI command field space is used for the 16 most significant bitS of the transmit data.

30.9.2.1 Master mode

In SPI master mode the DSPI initiates the serial transfers by controlling the Serial Communications Clock
(SCK) and the Peripheral Chip Select (PCS) signals. The SPI command field in the executing TX FIFO
entry determines which of the DSPI_CTAR registers will be used to set the transfer attributes and which
PCS signal to assert. The command field also contains various bits that help with queue management and
transfer protocol. See Section 30.8.2.7, DSPI PUSH TX FIFO Register (DSPI_PUSHR)” for details on the
SPI command fields. The data field in the executing TX FIFO entry is loaded into the shift register and
shifted out on the Serial Out (SOUT) pin. In SPI master mode, each SPI frame to be transmitted has a
command associated with it allowing for transfer attribute control on a frame by frame basis.

30.9.2.2 Slave mode

In SPI slave mode the DSPI responds to transfers initiated by a SPI bus master. The DSPI does not initiate
transfers. Certain transfer attributes such as clock polarity, clock phase and frame size must be set for
successful communication with a SPI master. The SPI slave mode transfer attributes are set in the
DSPI_CTAR0.

30.9.2.3 FIFO disable operation

The FIFO disable mechanisms allow SPI transfers without using the TX FIFO or RX FIFO. The DSPI
operates as a double-buffered simplified SPI when the FIFOs are disabled. The FIFOs are disabled
separately; setting the DSPI_MCR[DIS_TXF] bit disables the TX FIFO, and setting the
DSPI_MCR[DIS_RXF] bit disables the RX FIFO.

The FIFO Disable mechanisms are transparent to the user and to host software; Transmit data and
commands are written to the DSPI_PUSHR and received data is read from the DSPI_POPR.

When the TX FIFO is disabled the TFFF, TFUF and TXCTR fields in DSPI_SR behave as if there is a
one-entry FIFO but the contents of the DSPI_TXFR registers and TXNXTPTR are undefined. Likewise,
when the RX FIFO is disabled, the RFDF, RFOF and RXCTR fields in the DSPI_SR behave as if there is
a one-entry FIFO, but the contents of the DSPI_RXFR registers and POPNXTPTR are undefined.

30.9.2.4 Transmit first-in first-out (TX FIFO) buffering mechanism

The TX FIFO functions as a buffer of SPI data and SPI commands for transmission. The TX FIFO holds
from 1 to 16 words, each consisting of a command field and a data field. The number of entries in the TX
FIFO is device specific. SPI commands and data are added to the TX FIFO by writing to the DSPI PUSH
TX FIFO Register (DSPI_PUSHR). TX FIFO entries can only be removed from the TX FIFO by being
shifted out or by flushing the TX FIFO.

The TX FIFO Counter field DSPI_SR[TXCTR] indicates the number of valid entries in the TX FIFO.
Field DSPI_SR[TXCTR] is updated every time the DSPI _PUSHR is written or SPI data is transferred into
the shift register from the TX FIFO.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1293

Field DSPI_SR[TXNXTPTR] indicates which TX FIFO Entry will be transmitted during the next transfer.
Field DSPI_SR[TXNXTPTR] contains the positive offset from DSPI_TXFR0 in number of 32-bit
registers. For example, TXNXTPTR equal to two means that the DSPI_TXFR2 contains the SPI data and
command for the next transfer. Field DSPI_SR[TXNXTPTR] is incremented every time SPI data is
transferred from the TX FIFO to the shift register. The maximum value of the field is equal to
DSPI_HCR[TXFR] and it rolls over after reaching the maximum.

30.9.2.4.1 Filling the TX FIFO

Host software or other intelligent blocks can add (push) entries to the TX FIFO by writing to the
DSPI_PUSHR. When the TX FIFO is not full, the TX FIFO Fill Flag (TFFF) in the DSPI_SR is set. The
TFFF bit is cleared when TX FIFO is full and the DMA controller indicates that a write to DSPI_PUSHR
is complete. Writing a ‘1’ to the TFFF bit also clears it. The TFFF can generate a DMA request or an
interrupt request. See Section 30.9.10.2, Transmit FIFO fill interrupt or DMA request, for details.

The DSPI ignores attempts to push data to a full TX FIFO, the state of the TX FIFO does not change and
no error condition is indicated.

30.9.2.4.2 Draining the TX FIFO

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift register. Entries are
transferred from the TX FIFO to the shift register and shifted out as long as there are valid entries in the
TX FIFO. Every time an entry is transferred from the TX FIFO to the shift register, the TX FIFO Counter
decrements by one. At the end of a transfer, bit DSPI_SR[TCF] is set to indicate the completion of a
transfer. The TX FIFO is flushed by writing a ‘1’ to bit DSPI_MCR[CLR_TXF].

If an external bus master initiates a transfer with a DSPI slave while the slave’s DSPI TX FIFO is empty,
the Transmit FIFO Underflow Flag (TFUF) in the slave’s DSPI_SR is set. See Section 30.9.10.4, Transmit
FIFO underflow interrupt request, for details.

30.9.2.5 Receive first-in first-out (RX FIFO) buffering mechanism

The RX FIFO functions as a buffer for data received on the SIN pin. The RX FIFO holds from 1 to 16
received SPI data frames. The number of entries in the RX FIFO is device specific. SPI data is added to
the RX FIFO at the completion of a transfer when the received data in the shift register is transferred into
the RX FIFO. SPI data are removed (popped) from the RX FIFO by reading the DSPI POP RX FIFO
Register (DSPI_POPR). RX FIFO entries can only be removed from the RX FIFO by reading the
DSPI_POPR or by flushing the RX FIFO.

The RX FIFO Counter field DSPI_SR[RXCTR] indicates the number of valid entries in the RX FIFO.
Field DSPI_SR[RXCTR] is updated every time the DSPI _POPR is read or SPI data is copied from the
shift register to the RX FIFO.

Field DSPI_SR[POPNXTPTR] points to the RX FIFO entry that is returned when the DSPI_POPR is read.
Field DSPI_SR[POPNXTPTR] contains the positive offset from DSPI_RXFR0 in number of 32-bit
registers. For example, POPNXTPTR equal to two means that the DSPI_RXFR2 contains the received SPI
data that will be returned when DSPI_POPR is read. Field DSPI_SR[POPNXTPTR] is incremented every

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1294 Freescale Semiconductor

time the DSPI_POPR is read. The maximum value of the field is equal to DSPI_HCR[RXFR] and it rolls
over after reaching the maximum.

30.9.2.5.1 Filling the RX FIFO

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO is not full,
SPI frames from the shift register are transferred to the RX FIFO. Every time a SPI frame is transferred to
the RX FIFO the RX FIFO Counter is incremented by one.

If the RX FIFO and shift register are full and a transfer is initiated, the RFOF bit in the DSPI_SR is set
indicating an overflow condition. Depending on the state of the ROOE bit in the DSPI_MCR, the data from
the transfer that generated the overflow is either ignored or shifted in to the shift register. If the ROOE bit
is set, the incoming data is shifted in to the shift register. If the ROOE bit is cleared, the incoming data is
ignored.

30.9.2.5.2 Draining the RX FIFO

Host CPU or a DMA can remove (pop) entries from the RX FIFO by reading the DSPI POP RX FIFO
Register (DSPI_POPR). A read of the DSPI_POPR decrements the RX FIFO Counter by one. Attempts to
pop data from an empty RX FIFO are ignored and the RX FIFO Counter remains unchanged. The data,
read from the empty RX FIFO, is undetermined.

When the RX FIFO is not empty, the RX FIFO Drain Flag (RFDF) in the DSPI_SR is set. The RFDF bit
is cleared when the RX_FIFO is empty and the DMA controller indicates that a read from DSPI_POPR is
complete or by writing a ‘1’ to it.

30.9.3 Deserial serial interface (DSI) configuration

The DSI configuration supports pin count reduction by serializing Parallel Input signals or register bits and
shifting them out in a SPI-like protocol. The timing and transfer protocol is described in Section 30.9.6,
Transfer formats. The received serial frames are converted to a parallel form (deserialized) and placed on
the Parallel Output signals or in the DSPI_DDR. The various features of the DSI configuration are set in
the DSPI DSI Configuration Register (DSPI_DSICR).

The DSI frames can be from 4 to 32 bits. With Multiple Transfer Operation (MTO) the DSPI supports
serial chaining of DSPI modules within a device to create DSI frames up to 64 bits, consisting of
concatenated bits from multiple DSPIs. The DSPI also supports parallel chaining allowing several DSPIs
and off-chip SPI devices to share the same Serial Communications Clock (SCK) and Peripheral Chip
Select (PCS) signals. See Section 30.9.3.6, Multiple transfer operation (MTO), for details on the serial and
parallel chaining support.

30.9.3.1 DSI Master mode

In DSI master mode the DSPI initiates and controls the DSI transfers. The DSI master has four different
conditions that can initiate a transfer:

• Continuous

• Change in data

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1295

• Trigger signal

• Trigger signal combined with a change in data

The four transfer initiation conditions are described in Section 30.9.3.5, DSI transfer initiation control.
Transfer attributes are set during initialization. Field DSPI_DSICR[DSICTAS] determines which of the
DSPI_CTAR registers will control the transfer attributes.

30.9.3.2 Slave mode

In DSI slave mode the DSPI responds to transfers initiated by a SPI or DSI bus master. In this mode the
DSPI does not initiate DSI transfers. Certain transfer attributes such as clock polarity and phase must be
set for successful communication with a DSI master. The DSI slave mode Transfer attributes are set in the
DSPI_CTAR1.

If the CID bit in the DSPI_DSICR is set and the data in the DSPI_COMPR differs from the selected source
of the serialized data, the slave DSPI will assert the MTRIG signal. If the slave’s HT signal is asserted and
the TRRE is set, the slave DSPI asserts MTRIG. These features are included to support chaining of several
DSPI. Details about the MTRIG signal is found in Section 30.9.3.6, Multiple transfer operation (MTO).

30.9.3.3 DSI serialization

In the DSI configuration from 4 to 16 bits can be serialized using 2 different sources. The TXSS bit in the
DSPI_DSICR selects between the DSPI DSI Serialization Data Register (DSPI_SDR) and the DSPI DSI
Alternate Serialization Data Register (DSPI_ASDR) as the source of the serialized data. The DSPI_SDR
holds the latest Parallel Input signal values which is sampled at every rising edge of the system clock. The
DSPI_ASDR is written by host software and used as an alternate source of serialized data.

The DSPI_PISR0–3 registers allow to change relative position of the Parallel input pins in the transmitted
frame. Each transmitted frame bit can be selected from 16 adjacent Parallel Inputs by writing IPSn fields.
The IPSn field is treated as a 4-bit integer number, representing numbers from 8 to 7. The Parallel Input
pin number, selected by IPSn field is defined by the difference between sum IPSn field number (n) and the
IPSn field value. If the operation result is negative the number 32 should be added. If the result is higher
than 32, 32 should be subtracted from the result.

For example, IPS0, set to minus 1 (binary 1111), preselects Parallel Input 1 to 0 position in the transmitted
frame.

IPS6, set to 3 (binary 0011), preselects Parallel Input 3 to be bit number 6 in the transmitted frame, while
the value minus 2 (1110) preselects Parallel Input 8.

IPS31, set to minus 8 (binary 1000), preselects Parallel Input 7 to be bit number 31 in the transmitted
frame.

(Of course, the Parallel Input pin state, to be transmitted, should be selected by TXSS and the frame size
should be higher than the bit position in the preselected frame.)

The DSPI_SSR provides additional way to create the frame for transmission. Each bit from this register is
OR’d with the TXSS bit and controls individual transmitted bit source. This way, the transmitted frame
can have any combination of the DSPI_SDR and DSPI_ASDR bits. This feature allows control SPI based

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1296 Freescale Semiconductor

devices, requiring control and data fields in the frame. Control field may come from DSPI_ASDR, set by
the device’s CPU, while data field can be generated by device peripheral modules, such as PWM timers.

A copy of the last 32-bit DSI frame shifted out of the Shift Register is stored in the DSPI DSI Transmit
Comparison Register (DSPI_COMPR). This register provides added visibility for debugging and it serves
as a reference for transfer initiation control. Figure 30-31 shows the DSI Serialization logic.

Figure 30-31. DSI serialization diagram

30.9.3.4 DSI deserialization

When all bits in a DSI frame have been shifted in, the frame is copied to the DSPI DSI Deserialization
Data Register (DSPI_DDR). This register presents the deserialized data as Parallel Output signal values.
The DSPI_DDR is memory mapped to allow host software to read the deserialized data directly.

The received data is bit-wise compared to the value of the DSI Deserialized Data Polarity Interrupt
Register, bit-wise AND’ed with DSI Deserialized Interrupt Mask Register and the results OR’ed to
produce the DDIF flag in the DSPI_SR, which in turn can cause a DDI interrupt request if the DDIFRE
bit of DSPI_RSER is set.

Figure 30-32 shows the DSI deserialization logic.

DSI Config.

SOUT

Shift Register

HT

0 1

Clock

Logic SCK

T
X

S
S

0

1

Register

Control

Logic

 DSI Transmit
Comparison Register

PCS

D
S

I
S

e
ri

a
liz

at
io

n
D

at
a

 R
e

g
is

te
r

32

32

32

Parallel

Inputs 32

3
2

 x
 1

6
to

 1
 M

u
xe

s

DSPI Parallel Inputs
Select Registers 0-3

DSPI Alternate
Serialization Data Register

Slave Bus Interface

DSI Serialization
Source Register

32

N

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1297

Figure 30-32. DSI deserialization diagram

30.9.3.5 DSI transfer initiation control

Data transfers for a master DSPI in DSI configuration are initiated by a condition. The transfer initiation
conditions are selected by the TRRE and CID bits in the DSPI_DSICR. Table 30-32 lists the four transfer
initiation conditions.

30.9.3.5.1 Continuous control

For Continuous Control a new DSI frame shifts out when the previous transfer cycle has completed and
the Delay after Transfer (tDT) has elapsed.

30.9.3.5.2 Change in data control

For Change in Data Control a transfer is initiated when the data to be serialized has changed since the
transfer of the last DSI frame. A copy of the previously transferred DSI data is stored in the
DSPI_COMPR. When the data selected for the transfer from the DSPI_SDR and DSPI_ASDR registers is
different from the data in the DSPI_COMPR a new DSI frame is transmitted. The MTRIG output signal
is asserted every time a change in data is detected.

Table 30-32. DSI data transfer initiation control

DSPI_DSICR bits
Transfer initiation control

TRRE CID

0 0 Continuous

0 1 Change in Data

1 0 Triggered

1 1 Triggered or Change in Data

SIN

Shift Register

0 1 N-1

Control
Logic

DSI Deserialization
Data Register

3232 Parallel

Outputs

Slave Bus Interface

32

DSI Deserialized Data
Polarity Interrupt Register

DSI Deserialized Data
Interrupt Mask Register

DDIF

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1298 Freescale Semiconductor

30.9.3.5.3 Triggered control

For Triggered Control initiation of a transfer is controlled by the Hardware Trigger signal (HT). The TPOL
bit in the DSPI_DSICR selects the active edge of HT. For HT to have any affect, the TRRE bit in the
DSPI_DSICR must be set.

30.9.3.5.4 Triggered or change in data control

For Triggered or Change in Data Control initiation of a transfer is controlled by the HT signal or by the
detection of a change in data to be serialized.

30.9.3.6 Multiple transfer operation (MTO)

In DSI configuration the MTO feature allows for multiple DSPIs within a device to be chained together in
a parallel or serial configuration. The parallel chaining allows multiple DSPIs internal to a device and
multiple SPI devices external to a device to share SCK and PCS signals thereby helping to minimize device
pin count. The serial chaining allows bits from multiple DSPIs to be concatenated into a single DSI frame.
MTO is enabled by setting the MTOE bit in the DSPI_DSICR.

In parallel and serial chaining there is one bus master and multiple bus slaves. The bus master initiates and
controls the transfers, but the DSPI slaves generate trigger signals for the bus DSPI master when an
internal condition in the slave warrants a transfer. The DSPI slaves also propagate triggers from other
slaves to the master. When a DSPI slave detects a trigger signal on its HT input, the slave generates a
trigger signal on the MTRIG output.

Serial and parallel chaining require multiplexing of signals external to the DSPI.

NOTE

TSB operation is not available in MTO mode. TSBC and MTOE bits of
DSPI_DSICR should not be set simultaneously.

30.9.3.6.1 Parallel chaining

Parallel chaining allows the PCS and SCK signals from a Master DSPI to be shared by internal Slave
DSPIs and external Slave SPI devices, thus reducing pin utilization of the MPC5644AMCU. Signal
sharing reduces DSPI pin utilization. An example of a parallel chain is shown in Figure 30-33. In this
example, the SOUT and SIN of the three DSPIs connect to separate external SPI devices, which share a
common PCS and SCK.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1299

Figure 30-33. DSPI parallel chaining example

In the parallel chaining example, the SOUT and SIN of the three DSPIs connect to separate external SPI
devices. All internal and external SPI blocks share PCS and SCK signals. DSPI_B controls and initiates
all transfers, but the DSPI slaves each have a trigger output signal MTRIG that indicates to DSPI_B that
a trigger condition has occurred in the DSPI slaves. When the slave DSPI has a change in data to be
serialized, it asserts the MTRIG signal that propagates to DSPI_B which initiates the transfer.

30.9.3.7 Serial chaining

Serial chaining allows SPI operation with an external device that has more bits than one DSPI module. In
a serial chain, one DSPI module operates as a master, the other DSPI modules operate as slaves.

The data output (SOUT) of the master is connected to the data input (SIN) of the slave. The SOUT of a
slave is connected to the SIN of subsequent slaves until the last block in the chain, where the SOUT is
connected to an external pin, which connects to the input of an external SPI device. The slave DSPI and
external SPI device use the master peripheral chip select (PCS) and clock (SCK).

The Trigger input of the master allows a slave DSPI to trigger a transfer when a data change occurs in the
slave DSPI and the slave DSPI is operating in Change in Data mode. The Trigger input of the master is
connected to MTRIG output of the slave.

The concatenated frames can be from 8 to 64 bits long. Figure 30-34 shows an example of how the blocks
can be connected in the MPC5644A.

SOUT SOUTSINSIN

PCS[x] SSSCK SCK

DSPI_B Master DSPI_C Slave

SS SCK

SINSOUT

DEVICE

SIN

SCKSS

SOUT

MTRIGHT

SPI Slave Device SPI Slave Device

SOUTSIN

SS SCK

DSPI_D Slave

SIN

SCKSS

SOUT

MTRIG

SPI Slave Device

HT

S
O

U
T

_C

S
IN

_C

S
IN

_B

P
C

S
_B

[0
]

S
C

K
_
B

S
O

U
T

_
B

S
O

U
T

_D

S
IN

_D

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1300 Freescale Semiconductor

Figure 30-34. DSPI serial chaining example

The SOUT of DSPI_B is connected to the SIN of DSPI_C, the SOUT of DSPI_C is connected to the SIN
of DSPI_D and the SOUT of the DSPI_D is connected to the SIN of the external SPI slave. The SOUT of
the external SPI slave is connected to the SIN of DSPI_B.

DSPI_B controls and initiates all transfers, but the slave DSPIs use the trigger output signal MTRIG to
indicate to DSPI_B that a trigger condition has occurred. When an on-chip DSPI slave has a change in data
to be serialized it can assert the MTRIG signal to the DSPI master which initiates the transfer. The DSPI
slaves also propagate trigger signals from other slaves to the DSPI master.

Field DSPI_DSICR[MTOCNT] in DSPI_B must be written with the total number of bits to be transferred.
Field DSPI_DSICR[MTOCNT] must equal the sum of all FMSZ fields in the selected DSPI_CTAR
registers for DSPI_B and all on-chip DSPI slaves. For example, if one 16-bit DSI frame is created by
concatenating 8 bits from DSPI_B and 4 bits from DSPI_C and DSPI_D each, then DSPI_B’s frame size
must be set to 8, and the DSPI slaves’ frame size must be set to 4 each. Field DSPI_DSICR[MTOCNT] in
DSPI_B must be set to 16.

30.9.3.8 IMUX/SIU support for serial and parallel chaining

To support MTO, each DSPI in the MPC5644A has multiplexers on the SIN, SS, SCK, and HT inputs. The
Internal Multiplexers (IMUX) reside in the SIU module on the MPC5644A.

SOUT SOUTSINSIN

PCS[x] SSSCK SCK

DSPI_B Master DSPI_C Slave

SS SCK

SINSOUT

External SPI Slave Device

DEVICE

MTRIGHT

SOUTSIN

SS SCK

DSPI_D Slave

MTRIGHT

S
O

U
T

_
D

S
C

K
_B

S
IN

_B

P
C

S
_B

[0
]

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1301

30.9.4 Combined serial interface (CSI) configuration

The CSI configuration of the DSPI is used to support SPI and DSI functions on a frame by frame basis.
CSI configuration allows interleaving of DSI data frames from the Parallel Input signals with SPI
commands and data from the TX FIFO. The data returned from the bus slave is either used to drive the
Parallel Output signals or it is stored in the RX FIFO. The CSI configuration allows serialized data and
configuration or diagnostic data to be transferred to a slave device using only one serial link. The DSPI is
in CSI configuration when field DSPI_MCR[DCONF] is 0b10. Figure 30-35 shows an example of how a
DSPI can be used with a deserializing peripheral that supports SPI control for control and diagnostic
frames.

Figure 30-35. Example of system using DSPI in CSI configuration

In CSI configuration the DSPI transfers DSI data based on DSI transfer initiation control. When there are
SPI commands in the TX FIFO, the SPI data has priority over the DSI frames. When the TX FIFO is empty,
DSI transfer resumes.

Two peripheral chip select signals indicate whether DSI data or SPI data is transmitted. The user must
configure the DSPI so that the two DSPI_CTAR registers associated with DSI data and SPI data assert
different peripheral chip select signals denoted in the figure as PCSx and PCSy. The CSI configuration is
only supported in master mode.

Data returned from the external slave while a DSI frame is transferred is placed on the Parallel Output
signals. Data returned from the external slave while a SPI frame is transferred is moved to the RX FIFO.
The TX FIFO and RX FIFO are fully functional in CSI mode.

30.9.4.1 CSI serialization

Serialization in the CSI configuration is similar to serialization in DSI configuration. The transfer
attributes for SPI frames are determined by the DSPI_CTAR selected by the CTAS field in the SPI
command halfword. The transfer attributes for the DSI frames are determined by the DSPI_CTAR selected
by field DSPI_DSICR[DSICTAS].

The Parallel Inputs signal states are latched into the DSPI DSI Serialization Data Register (DSPI_SDR)
on the rising edge of every system clock and serialized based on the transfer initiation control settings in
the DSPI_DSICR. When SPI frames are written to the TX FIFO they have priority over DSI data from the
DSPI_SDR and are transferred at the next frame boundary. A copy of the most recently transferred DSI

Shift Register

SIN

SINSOUT

SOUT

SCK SCK

SSxPCSx

DSPI Master External Slave Deserializer

SSyPCSy

SPIFrame
Select
Logic

Frame
DSI

Frame

Shift Register

SPI
DSI

TX Priority
Control

 TX FIFO

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1302 Freescale Semiconductor

frame is stored in the DSPI_COMPR. The Transfer Priority Logic selects the source of the serialized data
and asserts the appropriate PCS signal.

30.9.4.2 CSI deserialization

The deserialized frames in CSI configuration goes into the DSPI_DDR or the RX FIFO based on the
transfer priority logic. When DSI frames are transferred the returned frames are deserialized and latched
into the DSPI_DDR. When SPI frames are transferred the returned frames are deserialized and written to
the RX FIFO.

30.9.5 DSPI baud rate and clock delay generation

The SCK frequency and the delay values for serial transfer are generated by dividing the system clock
frequency by a prescaler and a scaler with the option for doubling the baud rate. Figure 30-36 shows
conceptually how the SCK signal is generated.

Figure 30-36. Communications clock prescalers and scalers

30.9.5.1 Baud rate generator

The baud rate is the frequency of the Serial Communication Clock (SCK). The system clock is divided by
a prescaler (PBR) and scaler (BR) to produce SCK with the possibility of halving the scaler division. The
DBR, PBR and BR fields in the DSPI_CTAR registers select the frequency of SCK by the formula in the
BR field description. Table 30-33 shows an example of how to compute the baud rate.

30.9.5.2 PCS to SCK delay (tCSC)

The PCS to SCK delay is the length of time from assertion of the PCS signal to the first SCK edge. See
Figure 30-38 for an illustration of the PCS to SCK delay. The PCSSCK and CSSCK fields in the
DSPI_CTARx registers select the PCS to SCK delay by the formula in the CSSCK field description.
Table 30-34 shows an example of how to compute the PCS to SCK delay.

Table 30-33. Baud rate computation example

fsys PBR Prescaler BR Scaler DBR Baud rate

100 MHz 0b00 2 0b0000 2 0 25 Mb/s

20 MHz 0b00 2 0b0000 2 1 10 Mb/s

Table 30-34. PCS to SCK delay computation example

fsys PCSSCK Prescaler CSSCK Scaler PCS to SCK delay

100 MHz 0b01 3 0b0100 32 0.96 µs

SCKSystem Clock
Prescaler

1
Scaler

1 + DBR

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1303

PCSCSK and CSSCK fields have no effect in TSB configuration.

30.9.5.3 After SCK delay (tASC)

The After SCK Delay is the length of time between the last edge of SCK and the negation of PCS. See
Figure 30-38 and Figure 30-39 for illustrations of the After SCK delay. The PASC and ASC fields in the
DSPI_CTARx registers select the After SCK Delay by the formula in the ASC field description.
Table 30-35 shows an example of how to compute the After SCK delay.

PCASC and ASC fields have no effect in TSB configuration.

30.9.5.4 Delay after transfer (tDT)

The Delay after Transfer is the minimum time between negation of the PCS signal for a frame and the
assertion of the PCS signal for the next frame. See Figure 30-38 for an illustration of the Delay after
Transfer. The PDT and DT fields in the DSPI_CTARx registers select the Delay after Transfer by the
formula in the DT field description. Table 30-36 shows an example of how to compute the Delay after
Transfer.

When in non-continuous clock mode the tDT delay is configured according Equation 30-3. When in
continuous clock mode and TSB is not enabled the delay is fixed at 1 SCK period.

In TSB mode the Delay after Transfer is equal to a number formed by concatenation of PDT and DT fields
plus 1 of the SCK clock periods. See detailed information in Section 30.9.8, Timed serial bus (TSB)”.

30.9.5.5 Peripheral chip select strobe enable (PCSS)

The PCSS signal provides a delay to allow the PCS signals to settle after a transition occurs thereby
avoiding glitches. When the DSPI is in master mode and PCSSE bit is set in the DSPI_MCR, PCSS
provides a signal for an external demultiplexer to decode the DSPI_x_PCS[0] – PCS[4] signals into as
many as 128 glitch-free PCS signals. Figure 30-37 shows the timing of the PCSS signal relative to PCS
signals.

Table 30-35. After SCK delay computation example

fsys PASC Prescaler ASC Scaler After SCK delay

100 MHz 0b01 3 0b0100 32 0.96 µs

Table 30-36. Delay after transfer computation example

fsys PDT Prescaler DT Scaler Delay after transfer

100 MHz 0b01 3 0b1110 32768 0.98 ms

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1304 Freescale Semiconductor

Figure 30-37. Peripheral chip select strobe timing

The delay between the assertion of the PCS signals and the assertion of PCSS is selected by field
DSPI_CTAR[PCSSCK] based on the following formula:

Eqn. 30-5

At the end of the transfer the delay between PCSS negation and PCS negation is selected by field
DSPI_CTAR[PASC] based on the following formula:

Eqn. 30-6

Table 30-37 shows an example of how to compute the tpcssck delay.

Table 30-38 shows an example of how to compute the tpasc delay.

The PCSS signal is not supported when Continuous Serial Communication SCK or TSB mode are enabled.

30.9.6 Transfer formats

The SPI serial communication is controlled by the Serial Communications Clock (SCK) signal and the
PCS signals. The SCK signal provided by the master device synchronizes shifting and sampling of the data
on the SIN and SOUT pins. The PCS signals serve as enable signals for the slave devices.

When the DSPI is the bus master, the CPOL and CPHA bits in the DSPI Clock and Transfer Attributes
Registers (DSPI_CTARx) select the polarity and phase of the serial clock, SCK. The polarity bit selects
the idle state of the SCK. The clock phase bit selects if the data on SOUT is valid before or on the first
SCK edge.

When the DSPI is the bus slave, CPOL and CPHA bits in the DSPI_CTAR0 (SPI) or DSPI_CTAR1 (DSI)
select the polarity and phase of the serial clock. Even though the bus slave does not control the SCK signal,

Table 30-37. Peripheral chip select strobe assert computation example

fsys PCSSCK Prescaler Delay before transfer

100 MHz 0b11 7 70.0 ns

Table 30-38. Peripheral chip select strobe negate computation example

fsys PASC Prescaler Delay after transfer

100 MHz 0b11 7 70.0 ns

tPCSSCK

PCSS

PCSx

tPASC

tPCSSCK
1

fSYS
---------- PCSSCK=

tPASC
1

fSYS
---------- PASC=

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1305

clock polarity, clock phase and number of bits to transfer must be identical for the master and the slave
devices to ensure proper transmission.

The DSPI supports four different transfer formats:

• Classic SPI with CPHA = 0

• Classic SPI with CPHA = 1

• Modified Transfer format with CPHA = 0

• Modified Transfer format with CPHA = 1

A modified transfer format is supported to allow for high-speed communication with peripherals that
require longer setup times. The DSPI can sample the incoming data later than halfway through the cycle
to give the peripheral more setup time. The MTFE bit in the DSPI_MCR selects between Classic SPI
Format and Modified Transfer Format.

In the SPI and DSI configurations, the DSPI provides the option of keeping the PCS signals asserted
between frames. See Section 30.9.6.5, Continuous selection format, for details.

30.9.6.1 Classic SPI transfer format (CPHA = 0)

The transfer format shown in Figure 30-38 is used to communicate with peripheral SPI slave devices
where the first data bit is available on the first clock edge. In this format, the master and slave sample their
SIN pins on the odd-numbered SCK edges and change the data on their SOUT pins on the even-numbered
SCK edges.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1306 Freescale Semiconductor

Figure 30-38. DSPI transfer timing diagram (MTFE = 0, CPHA = 0, FMSZ = 8)

The master initiates the transfer by placing its first data bit on the SOUT pin and asserting the appropriate
peripheral chip select signals to the slave device. The slave responds by placing its first data bit on its
SOUT pin. After the tCSC delay elapses, the master outputs the first edge of SCK. The master and slave
devices use this edge to sample the first input data bit on their serial data input signals. At the second edge
of the SCK the master and slave devices place their second data bit on their serial data output signals. For
the rest of the frame the master and the slave sample their SIN pins on the odd-numbered clock edges and
changes the data on their SOUT pins on the even-numbered clock edges. After the last clock edge occurs
a delay of tASC is inserted before the master negates the PCS signals. A delay of tDT is inserted before a
new frame transfer can be initiated by the master.

30.9.6.2 Classic SPI transfer format (CPHA = 1)

This transfer format shown in Figure 30-39 is used to communicate with peripheral SPI slave devices that
require the first SCK edge before the first data bit becomes available on the slave SOUT pin. In this format
the master and slave devices change the data on their SOUT pins on the odd-numbered SCK edges and
sample the data on their SIN pins on the even-numbered SCK edges.

tCSC

SCK

Master and Slave

PCSx/SS

SCK

MSB first (LSBFE = 0):
 LSB first (LSBFE = 1):

MSB
LSB

LSB
MSB

Bit 5
Bit 2

Bit 6
Bit 1

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

Master SOUT/

Master SIN/

tDT tCSC

tCSC = PCS to SCK delay

tDT = Delay after Transfer (Minimum CS idle time)

(CPOL = 0)

(CPOL = 1)

tASC

Slave SIN

Slave SOUT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sample

tASC = After SCK delay

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1307

Figure 30-39. DSPI Transfer Timing Diagram (MTFE = 0, CPHA = 1, FMSZ = 8)

The master initiates the transfer by asserting the PCS signal to the slave. After the tCSC delay has elapsed,
the master generates the first SCK edge and at the same time places valid data on the master SOUT pin.
The slave responds to the first SCK edge by placing its first data bit on its slave SOUT pin.

At the second edge of the SCK the master and slave sample their SIN pins. For the rest of the frame the
master and the slave change the data on their SOUT pins on the odd-numbered clock edges and sample
their SIN pins on the even-numbered clock edges. After the last clock edge occurs a delay of tASC is inserted
before the master negates the PCS signal. A delay of tDT is inserted before a new frame transfer can be
initiated by the master.

30.9.6.3 Modified SPI/DSI transfer format (MTFE = 1, CPHA = 0)

In this Modified Transfer Format both the master and the slave sample later in the SCK period than in
Classic SPI mode to allow tolerate more delays in device pads and board traces. These delays become a
more significant fraction of the SCK period as the SCK period decreases with increasing baud rates.

The master and the slave place data on the SOUT pins at the assertion of the PCS signal. After the PCS to
SCK delay has elapsed the first SCK edge is generated. The slave samples the master SOUT signal on
every odd numbered SCK edge. The DSPI in the slave mode when the MTFE bit is set also places new
data on the slave SOUT on every odd numbered clock edge. Regular external slave, configured with
CPHA = 0 format drives its SOUT output at every even numbered SCK clock edge.

tCSC tDT

SCK

SCK

MSB first (LSBFE = 0):
 LSB first (LSBFE = 1):

MSB
LSB

LSB
MSB

Bit 5
Bit 2

Bit 6
Bit 1

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

tCSC = PCS to SCK delay

tDT = Delay after Transfer (minimum CS negation time)

(CPOL = 0)

(CPOL = 1)

tASC

Master SOUT/

Master SIN/

Slave SIN

Slave SOUT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PCSx/SS

Master and Slave
Sample

tASC = After SCK delay

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1308 Freescale Semiconductor

The DSPI master places its second data bit on the SOUT line one system clock after odd numbered SCK
edge if the system frequency to SCK frequency ratio is higher than three. If this ratio is below four the
master changes SOUT at odd numbered SCK edge. The point where the master samples the SIN is selected
by field DSPI_MCR[SMPL_PT]. Table 30-4 lists the number of system clock cycles between the active
edge of SCK and the master Sample point. The master sample point can be delayed by one or two system
clock cycles. Field DSPI_MCR[SMPL_PT] should be set to ‘0’ if the system to SCK frequency ratio is
less than 4.

The following timing diagrams illustrate the DSPI operation with MTFE = 1. Timing delays shown are:

• Tcsc = PCS to SCK assertion delay

• Tacs = After SCK PCS negation delay

• Tsu_ms = Master SIN setup time

• Thd_ms = Master SIN hold time

• Tvd_sl = Slave data output valid time, time between slave data output SCK driving edge and data
becomes valid.

• Tsu_sl = Data setup time on slave data input

• Thd_sl = Data hold time on slave data input

• Tsys = System clock period

Figure 30-40 shows the modified transfer format for CPHA = 0 and fsys/fsck = 4. Only the condition where
CPOL = 0 is illustrated. Solid triangles show the data sampling clock edges. The two possible slave
behaviors are shown.

• Signal, marked “SOUT of Ext Slave”, presents regular SPI slave serial output.

• Signal, marked “SOUT of DSPI Slave”, presents DSPI in the slave mode with MTFE bit set.

Other MTFE = 1 diagrams show DSPI SIN input as being driven by a regular external SPI slave,
configured according DSPI master CPHA programming.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1309

Figure 30-40. DSPI Modified Transfer Format (MTFE = 1, CPHA = 0, fsck = fsys/4)

Figure 30-41. DSPI Modified Transfer Format (MTFE = 1, CPHA = 0, fsck = fsys/2)

 D0 D1 D2 Dn

D0 D1 D2 Dn

 D0 D1 D2 Dn

Slave samples SOUT

SMPL_PT=2

SMPL_PT=1

DSPI samples SIN, SMPL_PT=0

Tvd_sl

Tsys

Tcsc

Tvd_sl

Tasc

Thd_sl

Tsu_sl

Thd_ms

Tsu_ms

1 32 4 5 6 2n+22n+1

sys clk

PCS

SOUT of Ext Slave

SCK

SOUT

SOUT of DSPI Slave

D0 D1 D2 Dn

 D0 D1 D2 Dn

Slave samples SOUT

DSPI samples SIN

Tcsc

Tvd_sl

Tasc

Thd_sl

Tsu_sl

Tsu_ms

Thd_ms

sys clk

PCS

SIN

SCK

SOUT

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1310 Freescale Semiconductor

Figure 30-42. DSPI modified transfer format (MTFE = 1, CPHA = 0, fsck = fsys/3)

30.9.6.4 Modified SPI/DSI transfer format (MTFE = 1, CPHA = 1)

Figure 30-43 – Figure 30-45 show the Modified Transfer Format for CPHA = 1. Only the condition, where
CPOL = 0 is shown. At the start of a transfer the DSPI asserts the PCS signal to the slave device. After the
PCS to SCK delay has elapsed the master and the slave put data on their SOUT pins at the first edge of
SCK. The slave samples the master SOUT signal on the even numbered edges of SCK. The master samples
the slave SOUT signal on the odd numbered SCK edges starting with the third SCK edge. The slave
samples the last bit on the last edge of the SCK. The master samples the last slave SOUT bit one half SCK
cycle after the last edge of SCK. No clock edge will be visible on the master SCK pin during the sampling
of the last bit. The SCK to PCS delay must be greater or equal to half of the SCK period.

Figure 30-43. DSPI modified transfer format (MTFE = 1, CPHA = 1, fsck = fsys/2)

D0 D1 D2 Dn

D0 D1 D2 Dn

Slave samples SOUT

DSPI samples SIN

Tcsc

Tvd_sl

Tasc

Thd_slTsu_sl

Thd_ms

Tsu_ms

sys clk

PCS

SIN

SCK

SOUT

D0 D1 D2 Dn

D0 D1 D2 Dn

Slave samples SOUT

DSPI samples SIN

Tcsc

Tvd_sl

Tasc

Thd_sl

Tsu_sl

Thd_ms

Tsu_ms

sys clk

PCS

SIN

SCK

SOUT

1 2 3 4 5 6 7 8 2n+1
2n+2

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1311

Figure 30-44. DSPI modified transfer format (MTFE = 1, CPHA = 1, fsck = fsys/3)

Figure 30-45. DSPI Modified transfer format (MTFE = 1, CPHA = 1, fsck = fsys/4)

30.9.6.5 Continuous selection format

Some peripherals must be deselected between every transfer. Other peripherals must remain selected
between several sequential serial transfers. The Continuous Selection Format provides the flexibility to
handle both cases. The Continuous Selection Format is enabled for the SPI configuration by setting the
CONT bit in the SPI command. Continuous Selection is enabled for the DSI configuration by setting the
DCONT bit in the DSPI_DSICR. The behavior of the PCS signals in the two configurations is identical so
only SPI configuration will be described.

D0 D1 D2 Dn

 D0 D1 D2 Dn

Slave samples SOUT

DSPI samples SIN

Tcsc

Tvd_sl

Tasc

Thd_slTsu_sl

Thd_ms

Tsu_ms

sys clk

PCS

SIN

SCK

SOUT

D0 D1 D2 Dn

 D0 D1 D2 Dn

Slave samples SOUT

DSPI samples SIN

Tcsc

Tvd_sl

Thd_sl

Tsu_sl

Thd_ms

Tsu_ms

sys clk

PCS

SIN

SCK

SOUT

Tasc

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1312 Freescale Semiconductor

When the CONT bit = 0, the DSPI drives the asserted Chip Select signals to their idle states in between
frames. The idle states of the Chip Select signals are selected by the PCSISn bits in the DSPI_MCR.
Figure 30-46 shows the timing diagram for two 4-bit transfers with CPHA = 1 and CONT = 0.

Figure 30-46. Example of non-continuous format (CPHA = 1, CONT = 0)

When the CONT bit = 1, the PCS signal remains asserted for the duration of the two transfers. The Delay
between Transfers (tDT) is not inserted between the transfers. Figure 30-47 shows the timing diagram for
two 4-bit transfers with CPHA = 1 and CONT = 1.

Figure 30-47. Example of continuous transfer (CPHA = 1, CONT = 1)

When using DSPI with continuous selection follow these rules:

tCSC tDT tCSC

SCK

PCSx

SCK

Master SOUT

Master SIN

tCSC = PCS to SCK delay

tDT = Delay after Transfer (minimum CS negation time)

(CPOL = 0)

(CPOL = 1)

tASC

tASC = After SCK delay

tCSC tCSC

SCK

PCS

SCK

Master SOUT

Master SIN

tCSC = PCS to SCK delay

(CPOL = 0)

(CPOL = 1)

tASC

tASC = After SCK delay

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1313

• all transmit commands must have the same PCSn bits programming

• the DSPI_CTARs, selected by transmit commands, must be programmed with the same transfer
attributes. Only field FMSZ can be programmed differently in these DSPI_CTARs.

NOTE

It is mandatory to fill the TXFIFO with the number of entries that will be
concatenated together under one PCS assertion for both master and slave
before the TXFIFO becomes empty. For example, while transmitting in
master mode, it should be ensured that the last entry in the TXFIFO, after
which TXFIFO becomes empty, must have the CONT bit in command
frame as deasserted (i.e. CONT bit = 0).While operating in slave mode, it
should be ensured that when the last-entry in the TXFIFO is comp.letely
transmited (i.e. the corresponding TCF flag is asserted and TXFIFO is
empty) the slave should be deselected for any further serial communication;
else an underflow error occurs.

30.9.7 Continuous serial communications clock

The DSPI provides the option of generating a continuous SCK signal for slave peripherals that require a
continuous clock.

Continuous SCK is enabled by setting bit DSPI_MCR[CONT_SCKE]. Continuous SCK is valid in all
configurations.

Continuous SCK is only supported for CPHA = 1. Clearing CPHA is ignored if bit
DSPI_MCR[CONT_SCKE] is set. Continuous SCK is supported for Modified Transfer Format.

Clock and transfer attributes for the Continuous SCK mode are set according to the following rules:

• The TX FIFO must be cleared before initiating any SPI configuration transfer.

• When the DSPI is in SPI configuration, CTAR0 shall be used initially. At the start of each SPI
frame transfer, the CTAR specified by the CTAS for the frame should be CTAR0.

• When the DSPI is in DSI configuration, the CTAR specified by the DSICTAS field shall be used
at all times.

• When the DSPI is in CSI configuration, the CTAR selected by the DSICTAS field shall be used
initially. At the start of an SPI frame transfer, the CTAR specified by the CTAS value (which is
CTAR0) for the frame shall be used. At the start of a DSI frame transfer, the CTAR specified by
the DSICTAS field shall be used.

• In all configurations, the currently selected DSPI_CTAR remains in use until the start of a frame
with a different DSPI_CTAR specified, or the Continuous SCK mode is terminated.

It is recommended to keep the baud rate the same while using the Continuous SCK. Switching clock
polarity between frames while using Continuous SCK can cause errors in the transfer. Continuous SCK
operation is not guaranteed if the DSPI is put into the External Stop mode or Module Disable mode.

Enabling Continuous SCK disables the PCS to SCK delay and the Delay after Transfer (tDT) is fixed to
one SCK cycle. When TSB configuration is enabled the tDT is programmable from 1 to 65 SCK cycles.
Figure 30-48 shows timing diagram for Continuous SCK format with Continuous Selection disabled.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1314 Freescale Semiconductor

NOTE

When in Continuous SCK mode, for the SPI transfer CTAR0 should always
be used, and the TX-FIFO must be clear using the DSPI_MCR[CLR_TXF]
field before initiating transfer.

Figure 30-48. Continuous SCK timing diagram (CONT = 0)

If the CONT bit in the TX FIFO entry is set or the DCONT in the DSPI_DSICR is set, PCS remains
asserted between the transfers. Under certain conditions, SCK can continue with PCS asserted, but with
no data being shifted out of SOUT (SOUT pulled high). This can cause the slave to receive incorrect data.
Those conditions include:

• Continuous SCK with CONT bit set, but no data in the transmit FIFO.

• Continuous SCK with CONT bit set and entering STOPPED state (refer to Section 30.9.1, Start
and stop of DSPI transfers”).

• Continuous SCK with CONT bit set and entering Stop mode or Module Disable mode.

Figure 30-49 shows timing diagram for Continuous SCK format with Continuous Selection enabled.

Figure 30-49. Continuous SCK timing diagram (CONT = 1)

tDT

SCK

PCS

SCK

Master SOUT

Master SIN

(CPOL = 0)

(CPOL = 1)

SCK

PCS

SCK

Master SOUT

Master SIN

(CPOL = 0)

(CPOL = 1)

transfer 1 transfer 2

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1315

30.9.8 Timed serial bus (TSB)

The DSPI can be programmed in Timed Serial Bus configuration by setting the TSBC bit in the
DSPI_DSICR. See Section 30.8.2.11, DSPI DSI Configuration Register (DSPI_DSICR)” for details.

TSB configuration provides the Micro Second Channel (MSC) downstream channel support.

The MSC upstream channel is not supported by the DSPI, but can be supported by any available Serial
Communication Controller (SCI or UART) in the device.

To work in TSB mode the DSPI must be in master mode and in DSI (DCONF = 0b01) or CSI
(DCONF = 0b10) configuration. Both Continuous and Non Continuous Serial Communication Clock
(controlled by bit DSPI_MCR[CONT_SCKE]) are supported in the TSB mode.

Figure 30-50 shows the signals used in the TSB interface.

In the TSB configuration the DSPI is able to send from 4 to 34 bits MSC data frames (4 to 32 serialized
data bits and up to 2 Data Selection zero bits). The serialized data bits source can be either:

• the DSPI DSI Alternate Serialization Data Register (DSPI_ASDR), written by the host software,

• Parallel Input pin states latched into the DSPI DSI Serialization Data Register (DSPI_SDR).

DSPI_DSICR TXSS bit or DSPI_SSR bits define the source of the data.

The Least Significant Bits of the DSPI_ASDR or DSPI_SDR registers are selected to be serialized if the
data frame is set to less than 32 bits.

Figure 30-50. DSPI usage in the TSB configuration

The PCS signals are driven together with SOUT. The tCSC and tASC delays are not available. Delay after
Transfer (DT) is set in SCK clock periods as a binary number formed by concatenation of the
DSPI_CTARn PDT and DT fields plus one, allowing to set DT from 1 to 64 serial clock periods. DT field
provides least significant bits and PDT field provides most significant bits of the Delay after Transfer.

SCK
SOUT

PCS1

PCS2

Slave1

Slave2

DIN

CLK

CS

CLK

DIN

CS

DSPI
downstream channel

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1316 Freescale Semiconductor

Figure 30-51. TSB Downstream frames

Figure 30-51 shows the two types of MSC downstream frames: command frame and data frame.

The first transmitted bit, called the selection bit, determines the frame type:

• The selection bit “0” indicates a data frame

• The selection bit “1” indicates a command frame

Data frame may contain up to two selection bits to support two external slave devices, (so called dual
receiver configuration) or no selection bits at all.

The command frame can be written by software, through SPI TX FIFO, using one or two FIFO entries
with help of the CONT bit. The data frame consists of up to 32 bits from the DSPI_SDR or DSPI_ASDR
registers and up to two zero selection bits. The number of data bits in the data frame is defined by field
DSPI_DSCICR1[TSBCNT].

The selection bit of the MSC command frames (1) can be implemented by software.

To comply with MSC specification, set DSPI_CTARn[LSBFE] to transmit the least significant bit first.

Regardless of the LSBFE bit setting, the Data Frame Selection Bits, if enabled, are always transmitted first,
before the corresponding data subframes.

30.9.8.1 MSC dual receiver support with PCS switchover

When in TSB mode it is possible to switch the set of PCS signals that are driven during the first part of the
frame to a different set of PCS signals during the second part of the frame. The bit, at which this switchover
occurs, is defined by field FMSZ of the DSPI_CTARn register, which is selected by field
DSPI_DSICR[DSICTAS].

Number of the bits, not including the Data Selection Bit, in the first part of the frame is equal to value of
the FMSZ field plus one. During this part of the frame the PCS signal levels are controlled by
DSPI_DSICR DPCSn bits, after that by DSPI_DSICR1 DPCS1_n bits.

tDT

Data Frame

Invalid
LSB

Active Phase

0

SCK

PCS

Master SOUT

tDT = from 1 to 64 TSCK

Invalid

Command Frame

tDT

Command Frame = 4 to 32 bits

LSB1

 Selection BitData Frame = 4 to 32 bits

(CPOL = 0)

Active Phase

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1317

The PCS switchover occurs at driving edge of the SCK clock output.

The second Data Selection Bit is inserted after the PCS switchover if enabled.

Data Frame with PCS switchover is shown in Figure 30-52.

Figure 30-52. TSB data frame format for MSC dual receiver operation

30.9.9 Parity generation and check

The DSPI module can generate and check parity in the serial frame. The parity bit replaces the last
transmitted bit in the frame. The parity is calculated for all transmitted data bits in frame, not including the
last, would be transmitted, data bit. The parity generation/control is done on frame basis. The registers
fields, setting frame size defines the total number of bits in the frame, including the parity bit. Thus, to
transmit/receive the same number of data bits with parity check, increase the frame size by one versus the
same data size frame without the parity check.

Parity can be selected as odd or even. Parity Errors in the received frame set Parity Error flags in the Status
register. The Parity Error Interrupt Requests are generated if enabled. The DSPI module can be
programmed to stop SPI or/and DSI frame transmission in case of a frame reception with parity error.

30.9.9.1 Parity for SPI frames

When the DSPI is in the master mode the parity generation is controlled by PE and PP bits of the TX FIFO
entries (DSPI_PUSHR). Setting the PE bit enables parity generation for transmitted SPI frames and parity
check for received frames. PP bit defines polarity of the parity bit.

When continuous PCS selection is used to transmit SPI data, two parity generation scenarios are available:

• Generate/check parity for the whole frame

• Generate/check parity for each subframe separately.

To generate/check parity for the whole frame set PE bit only in the last command/TX FIFO entry, forming
this frame (with the DSPI_PUSHR).

SCK

PCS0

SOUT

Data Sub frame 1 tDT

Invalid
LSB0 0

Data Selection Bits

Data Frame = 4 to 34 bits

PCS1

Data Sub frame 2

DSPI_CTARn[FMSZ] + 1
TSBCNT - FMSZ

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1318 Freescale Semiconductor

To generate/check parity for each subframe set PE bit in each command/TX FIFO entry, forming this
frame.

If the parity error occurs for received SPI frame, the DSPI_SR[SPEF] bit is set. If DSPI_MCR[PES] bit is
set, the DSPI stops SPI frames transmission. To resume SPI operation clear the DSPI_SR[SPEF] or the
DSPI_MCR[PES] bits.

In slave mode the parity is controlled by the PE and PP bits of the DSPI_CTAR0 register similar to the
master mode parity generation without continuous PCS selection.

30.9.9.2 Parity for DSI frames

Parity generation is controlled by PE and PP bits of the DSPI_DSICR similar to the SPI frames. The parity
is calculated and checked for each DSI frame. (DSPI_DSICR[DCONT] bit has no effect on parity
generation.)

If the parity error occurs for received DSI frame, the DSPI_SR[DPEF] bit is set. To resume DSI operation
clear the DSPI_SR[DPEF] bit.

30.9.10 Interrupts/DMA requests

The DSPI has several conditions that can generate interrupt requests and two conditions that can generate
both interrupt or DMA requests. Table 30-39 lists these conditions. The ‘x’ in the request type columns
indicates which signals are connected on the MPC5644A.

Each condition has a flag bit in the DSPI Status Register (DSPI_SR) and an Request Enable bit in the DSPI
DMA/Interrupt Request Select and Enable Register (DSPI_RSER). The TX FIFO Fill Flag (TFFF) and
RX FIFO Drain Flag (RFDF) generate interrupt requests or DMA requests depending on the TFFFDIRS
and RFDFDIRS bits in the DSPI_RSER.

Table 30-39. Interrupt and DMA request conditions

Condition Flag
Request type

Interrupt DMA

End of Queue (EOQ) EOQF x

TX FIFO Fill TFFF x x

Transfer Complete TCF x

TX FIFO Underflow TFUF x

RX FIFO Drain RFDF x x

RX FIFO Overflow RFOF x

SPI Parity Error SPEF x

DSI Parity Error DPEF x

DSI Deserialized Data Match DDIF x

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1319

The DSPI module also provides a global interrupt request line, which is asserted when any of individual
interrupt requests lines is asserted.

30.9.10.1 End of queue interrupt request

The End of Queue Request indicates that the end of a transmit queue is reached. The End of Queue Request
is generated when the EOQ bit in the executing SPI command is set and bit DSPI_RSER[EOQFRE] is set.

30.9.10.2 Transmit FIFO fill interrupt or DMA request

The Transmit FIFO Fill Request indicates that the TX FIFO is not full. The Transmit FIFO Fill Request is
generated when the number of entries in the TX FIFO is less than the maximum number of possible entries,
and the TFFFRE bit in the DSPI_RSER is set. The TFFFDIRS bit in the DSPI_RSER selects whether a
DMA request or an interrupt request is generated.

30.9.10.3 Transfer complete interrupt request

The Transfer Complete Request indicates the end of the transfer of a serial frame. The Transfer Complete
Request is generated at the end of each frame transfer when the TCF_RE bit is set in the DSPI_RSER.

30.9.10.4 Transmit FIFO underflow interrupt request

The Transmit FIFO Underflow Request indicates that an underflow condition in the TX FIFO has
occurred. The transmit underflow condition is detected only for the DSPI, operating in slave mode and SPI
configuration. The TFUF bit is set when the TX FIFO of a DSPI is empty, and a transfer is initiated from
an external SPI master. If the TFUF bit is set while the TFUFRE bit in the DSPI_RSER is set, an interrupt
request is generated.

30.9.10.5 Receive FIFO drain interrupt or DMA request

The Receive FIFO Drain Request indicates that the RX FIFO is not empty. The Receive FIFO Drain
Request is generated when the number of entries in the RX FIFO is not zero, and the RFDFRE bit in the
DSPI_RSER is set. The RFDFDIRS bit in the DSPI_RSER selects whether a DMA request or an interrupt
request is generated.

30.9.10.6 Receive FIFO overflow interrupt request

The Receive FIFO Overflow Request indicates that an overflow condition in the RX FIFO has occurred.
A Receive FIFO Overflow request is generated when RX FIFO and shift register are full and a transfer is
initiated. The RFOFRE bit in the DSPI_RSER must be set for the interrupt request to be generated.

Depending on the state of the ROOE bit in the DSPI_MCR, the data from the transfer that generated the
overflow is either ignored or shifted in to the shift register. If the ROOE bit is set, the incoming data is
shifted in to the shift register. If the ROOE bit is cleared, the incoming data is ignored.

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1320 Freescale Semiconductor

30.9.10.7 SPI frame parity error interrupt request

The SPI Frame Parity Error Flag indicates that a SPI frame with parity error had been received. The
SPEFRE bit in the DSPI_RSER must be set for the interrupt request to be generated.

30.9.10.8 DSI frame parity error interrupt request

The DSI Frame Parity Error Flag indicates that a DSI frame with parity error has been received. The
DPEFRE bit in the DSPI_RSER must be set for the interrupt request to be generated.

30.9.10.9 Deserialized data match interrupt request

The Deserialized Data Match Flag (DDIF) indicates that a DSI frame with data matches DSPI_DPIR data,
masked with DSPI_DIMR, had been received. The DDIFRE bit in the DSPI_RSER must be set for the
interrupt request to be generated.

30.9.11 Buffered SPI operation

The DSPI can use a FIFO buffering mechanism to transmit and receive commands and data to and from
external devices. The Transmit FIFO buffers SPI commands and data to be transferred. The Receive FIFO
buffers incoming serial data. Both FIFOs are four entries deep. The TX FIFO stores 32-bit words when the
DSPIs are configured for Master Mode. The 32-bit words are composed of 16-bit command fields and data
fields up to 16 bits wide. The RX FIFOs store 16-bit words of received data from external devices. When
the DSPI is configured for Slave Mode, the DSPI ignores the SPI command in the TX FIFO.

For queued operations, the SPI queues reside in system memory external to the DSPI. Data transfers
between the memory and the DSPI FIFOs are accomplished through the use of the eDMA controller or
through Host software. See Figure 30-53 for a conceptual diagram of the queue data transfer control in the
MPC5644A MCU.

Figure 30-53. DSPI queue transfer control in the MPC5644A

System RAM

DSPI

DMA Controller/Host

TX Queue

RX FIFOTX FIFO

Shift Register

Data

Data

Address

RX Queue

Data Data

Address
DMA

Control/
Host

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1321

30.9.12 Continuous peripheral chip select

For peripherals that must remain selected between sequential serial transfers, the DSPI provides the option
of having the PCS signals asserted between transfers. For SPI transfers, the CONT bit in the SPI command
fields selects the continuous PCS feature. For DSI and CSI transfers, the DCONT bit in the DSPI_DSICR
selects the continuous PCS feature.

30.9.13 Peripheral chip select expansion and deglitching

The DSPI supports up to 256 Peripheral Chip Select Signals with the use of an external demultiplexer. Up
to 128 Peripheral Chip Select Signals can be used if deglitching is desired. The PCSS signal provides the
appropriate timing to enable and disable the demultiplexer for the DSPI_x_PCS[0:7] signals.

Figure 30-54 shows how an external 8-to-256 demultiplexer (on-board decoder) can be connected to the
DSPI.

Figure 30-54. DSPI PCS expansion and deglitching

30.9.14 DMA and interrupt conditions

The DSPI has six conditions that can generate interrupt requests and two conditions that can generate both
interrupt or DMA requests. Table 30-40 lists the conditions. The ‘x’ in the request type columns indicates
which signals are connected on the MPC5644A.

Table 30-40. DSPI interrupt and DMA request conditions

Condition Flag
Request type

Interrupt DMA

End of queue reached EOQF x

TX FIFO is not full TFFF x x

Transfer of current frame complete TCF x

Attempt to transmit with an empty Transmit FIFO TFUF x

RX FIFO is not empty RFDF x x

Frame received while Receive FIFO is full RFOF x

 DSPI

PCS0-PCS7

PCSS

PCS0

PCS1

PCS256

8

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1322 Freescale Semiconductor

All request conditions are detected in the SPI configuration and in the CSI configuration. In DSI
configuration only the transfer of current frame complete condition is detected.

30.9.14.1 Transmit FIFO underflow flag (TFUF)

The Transmit FIFO Underflow Flag indicates that an underflow condition in the TX FIFO has occurred.
The transmit underflow condition is detected only for DSPI modules operating in slave mode and SPI
configuration. The transmit underflow condition is detected when the TX FIFO of a DSPI operating as a
SPI slave is empty, and a transfer is initiated from an external SPI master.

30.9.14.2 Receive FIFO overflow flag (RFOF)

The Receive FIFO Overflow Flag indicates that an overflow condition in the RX FIFO has occurred, and
that data may be lost. The Receive FIFO Overflow Flag is asserted when the RX FIFO is full, a new frame
has been received in the shift register, and a transfer is initiated.

30.9.15 Modified SPI transfer format

In Modified Transfer Format, the slave peripheral has more time to place data on the SOUT pin before the
DSPI samples the data. In the Modified Transfer Format, the Master samples the incoming data towards
the end of the transfer cycle. For correct operation of the Modified Transfer Format, the user must
thoroughly analyze the SPI link timing budget.

30.9.16 LVDS pad usage

The differential transmitter pad driver LVDS support data rate up to 40 MHz. Figure 30-55 describes the
pad signals interface.

Figure 30-55. LVDS transmitter pad block diagram

Signals lvds_opt0 and lvds_opt1 control the voltage swing on the LVDS pad. These two signals are
controlled by bits SRC[1:0] of the respective SIU_PCR. Table 30-41 gives the configuration for these bits.

VREF_LVDS
V_IREF_LVDS

LVDS
Transmitter

ipp_do

lvds_obe

pad_n

pad_plvds_opt0

lvds_opt1

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1323

30.9.17 DSPI connections to eTPU_A, eMIOS and SIU

The three DSPI modules connect to the input and output channels of the eTPUs and the eMIOS. Some of
the DSPI outputs connect to the External Interrupt Input Multiplexing sub-block in the SIU. See
Section 16.7.3.1, External interrupts” and Section 16.6.19, External IRQ Input Select Register
(SIU_EIISR)” for details on how the DSPI deserialized outputs can be used to trigger external interrupt
requests.

30.9.17.1 DSPI_B connectivity

The DSPI_B connects to the eMIOS, eTPU_A and SIU as shown in Figure 30-56.

Figure 30-56. DSPI_B connectivity

Table 30-42 lists the DSPI_B connections.

Table 30-41. LVDS pads voltage swing

SIU_PCRx
Current flowing in the driver Differential voltage across

pad_p and pad_nSRC[0] SRC[1]

0 0 normal default

0 1 increased increased

1 0 decreased decreased

1 1 normal same as default

DSPI_B

OUT 14

OUT 15

eMIOS

CH 13

CH 12

eTPU_A

eMIOS

CH [16:23]

CH [24:29]

CH [30:31]

CH [15:12]

eTPU_A

CH 29

CH 24

CH [8:11] IN [3:0]

IN [10:4]

IN [7:0]

IN [13:8]

IN [15:14]

IN [19:16]

OUT 8

OUT 13

OUT 0

OUT 15

CH [23] IN [11]

IN [15:12]CH [12:15]

IN1 IRQ[0]

SIU/IMUX

IN1 IRQ[15]

CH [11:0] IN [31:20]

IN [16]
CH [8:15] IN [24:17]

IN [31:25]CH [0:6]

CH [0:6]

CH [23]

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1324 Freescale Semiconductor

Table 30-42. DSPI_B connectivity table

DSPI_B
input Connected to: DSPI_B

output
Connected to:

0
eMIOS Output Channel 11

eTPU_A Output Channel 23
GPDO350

0 Input 1 on IMUX for External IRQ[0]

1
eMIOS Output Channel 10

eTPU_A Output Channel 22
GPDO351

1 Input 1 on IMUX for External IRQ[1]

2
eMIOS Output Channel 9

eTPU_A Output Channel 21
GPDO352

2 Input 1 on IMUX for External IRQ[2]

3
eMIOS Output Channel 8

eTPU_A Output Channel 20
GPDO353

3 Input 1 on IMUX for External IRQ[3]

4
eMIOS Output Channel 6

eTPU_A Output Channel 19
GPDO354

4 Input 1 on IMUX for External IRQ[4]

5
eMIOS Output Channel 5

eTPU_A Output Channel 18
GPDO355

5 Input 1 on IMUX for External IRQ[5]

6
eMIOS Output Channel 4

eTPU_A Output Channel 17
GPDO356

6 Input 1 on IMUX for External IRQ[6]

7
eMIOS Output Channel 3

eTPU_A Output Channel 16
GPDO357

7 Input 1 on IMUX for External IRQ[7]

8
eMIOS Output Channel 2

eTPU_A Output Channel 29
GPDO358

8
eTPU_A Input Channel 29,

Input 1 on IMUX for External IRQ[8]

9
eMIOS Output Channel 1

eTPU_A Output Channel 28
GPDO359

9
eTPU_A Input Channel 28,

Input 1 on IMUX for External IRQ[9]

10
eMIOS Output Channel 0

eTPU_A Output Channel 27
GPDO360

10
eTPU_A Input Channel 27,

Input 1 on IMUX for External IRQ[10]

11
eMIOS Output Channel 23

eTPU_A Output Channel 26
GPDO361

11
eTPU_A Input Channel 26,

Input 1 on IMUX for External IRQ[11]

12
eMIOS Output Channel 15

eTPU_A Output Channel 25
GPDO362

12
eTPU_A Input Channel 25,

Input 1 on IMUX for External IRQ[12]

13
eMIOS Output Channel 14

eTPU_A Output Channel 24
GPDO363

13
eTPU_A Input Channel 24,

Input 1 on IMUX for External IRQ[13]

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1325

14
eMIOS Output Channel 13

eTPU_A Output Channel 31
GPDO364

14
eMIOS Input Channel 13,

Input 1 on IMUX for External IRQ[14]

15
eMIOS Output Channel 12

eTPU_A Output Channel 30
GPDO365

15
eMIOS Input Channel 12,

Input 1 on IMUX for External IRQ[15]

16
eMIOS Output Channel 23

eTPU_A Output Channel 12
GPDO366

16 NC

17
eMIOS Output Channel 15

eTPU_A Output Channel 13
GPDO367

17 NC

18
eMIOS Output Channel 14

eTPU_A Output Channel 14
GPDO368

18 NC

19
eMIOS Output Channel 13

eTPU_A Output Channel 15
GPDO369

19 NC

20
eMIOS Output Channel 12
eTPU_A Output Channel 0

GPDO370
20 NC

21
eMIOS Output Channel 11
eTPU_A Output Channel 1

GPDO371
21 NC

22
eMIOS Output Channel 10
eTPU_A Output Channel 2

GPDO372
22 NC

23
eMIOS Output Channel 9

eTPU_A Output Channel 3
GPDO373

23 NC

24
eMIOS Output Channel 8

eTPU_A Output Channel 4
GPDO374

24 NC

25
eMIOS Output Channel 6

eTPU_A Output Channel 5
GPDO375

25 NC

26
eMIOS Output Channel 5

eTPU_A Output Channel 6
GPDO376

26 NC

27
eMIOS Output Channel 4

eTPU_A Output Channel 7
GPDO377

27 NC

Table 30-42. DSPI_B connectivity table (continued)

DSPI_B
input Connected to: DSPI_B

output
Connected to:

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1326 Freescale Semiconductor

30.9.17.2 DSPI_C connectivity

The DSPI_C connects to eTPU_A and SIU as shown in Figure 30-58.

Figure 30-57. DSPI_C connectivity

Table 30-44 lists the DSPI_C connections.

28
eMIOS Output Channel 3

eTPU_A Output Channel 8
GPDO378

28 NC

29
eMIOS Output Channel 2

eTPU_A Output Channel 9
GPDO379

29 NC

30
eMIOS Output Channel 1

eTPU_A Output Channel 10
GPDO380

30 NC

31
eMIOS Output Channel 0

eTPU_A Output Channel 11
GPDO381

31 NC

Table 30-42. DSPI_B connectivity table (continued)

DSPI_B
input Connected to: DSPI_B

output
Connected to:

DSPI_C

OUT 1

OUT 15

IN2 IRQ[0]

SIU/IMUX

IN2 IRQ[14]

OUT 0 IN2 IRQ[15]

eMIOS

CH [15:12]

CH [11:0]

CH [16:23]

CH [24:29]

eTPU_A

CH [15:12] IN [3:0]

IN [4]

IN [3:0]

IN [15:4]

IN [23:16]

IN [29:24]

CH [6:0] IN [11:5]

IN [15:12]CH [11:8]

CH [30:31] IN [31:30]

IN [22:16]
CH [15:8] IN [30:23]

IN [31]CH [23]

CH [23]

CH [6:0]

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1327

Table 30-43. DSPI_C connectivity table

DSPI_C
input Connected to: DSPI_C

output Connected to:

0

eMIOS Output Channel 7
eMIOS Output Channel 12

eTPU_A Output Channel 12
GPDO382

0 Input 2 on IMUX for External IRQ[15]

1

eMIOS Output Channel 16
eMIOS Output Channel 13

eTPU_A Output Channel 13
GPDO383

1 Input 2 on IMUX for External IRQ[0]

2

eMIOS Output Channel 17
eMIOS Output Channel 14

eTPU_A Output Channel 14
GPDO384

2 Input 2 on IMUX for External IRQ[1]

3

eMIOS Output Channel 18
eMIOS Output Channel 15

eTPU_A Output Channel 15
GPDO385

3 Input 2 on IMUX for External IRQ[2]

4

eMIOS Output Channel 19
eMIOS Output Channel 23
eTPU_A Output Channel 0

GPDO386

4 Input 2 on IMUX for External IRQ[3]

5

eMIOS Output Channel 20
eMIOS Output Channel 0

eTPU_A Output Channel 1
GPDO387

5 Input 2 on IMUX for External IRQ[4]

6

eMIOS Output Channel 21
eMIOS Output Channel 1

eTPU_A Output Channel 2
GPDO388

6 Input 2 on IMUX for External IRQ[5]

7

eMIOS Output Channel 22
eMIOS Output Channel 2

eTPU_A Output Channel 3
GPDO389

7 Input 2 on IMUX for External IRQ[6]

8
eMIOS Output Channel 3

eTPU_A Output Channel 4
GPDO390

8 Input 2 on IMUX for External IRQ[7]

9
eMIOS Output Channel 4

eTPU_A Output Channel 5
GPDO391

9 Input 2 on IMUX for External IRQ[8]

10
eMIOS Output Channel 5

eTPU_A Output Channel 6
GPDO392

10 Input 2 on IMUX for External IRQ[9]

11
eMIOS Output Channel 6

eTPU_A Output Channel 7
GPDO393

11 Input 2 on IMUX for External IRQ[10]

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1328 Freescale Semiconductor

12
eMIOS Output Channel 8

eTPU_A Output Channel 8
GPDO394

12 Input 2 on IMUX for External IRQ[11]

13
eMIOS Output Channel 9

eTPU_A Output Channel 9
GPDO395

13 Input 2 on IMUX for External IRQ[12]

14
eMIOS Output Channel 10

eTPU_A Output Channel 10
GPDO396

14 Input 2 on IMUX for External IRQ[13]

15
eMIOS Output Channel 11

eTPU_A Output Channel 11
GPDO397

15 Input 2 on IMUX for External IRQ[14]

16
eMIOS Output Channel 0

eTPU_A Output Channel 23
GPDO398

16 NC

17
eMIOS Output Channel 1

eTPU_A Output Channel 22
GPDO399

17 NC

18
eMIOS Output Channel 2

eTPU_A Output Channel 21
GPDO400

18 NC

19
eMIOS Output Channel 3

eTPU_A Output Channel 20
GPDO401

19 NC

20
eMIOS Output Channel 4

eTPU_A Output Channel19
GPDO402

20 NC

21
eMIOS Output Channel 5

eTPU_A Output Channel 18
GPDO403

21 NC

22
eMIOS Output Channel 6

eTPU_A Output Channel 17
GPDO404

22 NC

23
eMIOS Output Channel 8

eTPU_A Output Channel 16
GPDO405

23 NC

24
eMIOS Output Channel 9

eTPU_A Output Channel 29
GPDO406

24 NC

25
eMIOS Output Channel 10

eTPU_A Output Channel 28
GPDO407

25 NC

Table 30-43. DSPI_C connectivity table (continued)

DSPI_C
input Connected to: DSPI_C

output Connected to:

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1329

30.9.17.3 DSPI_D connectivity

The DSPI_D connects to SIU as shown in Figure 30-58.

Figure 30-58. DSPI_D connectivity

Table 30-44 lists the DSPI_D connections.

26
eMIOS Output Channel 11

eTPU_A Output Channel 27
GPDO408

26 NC

27
eMIOS Output Channel 12

eTPU_A Output Channel 26
GPDO409

27 NC

28
eMIOS Output Channel 13

eTPU_A Output Channel 25
GPDO410

28 NC

29
eMIOS Output Channel 14

eTPU_A Output Channel 24
GPDO411

29 NC

30
eMIOS Output Channel 15

eTPU_A Output Channel 31
GPDO412

30 NC

31
eMIOS Output Channel 23

eTPU_A Output Channel 30
GPDO413

31 NC

Table 30-43. DSPI_C connectivity table (continued)

DSPI_C
input Connected to: DSPI_C

output Connected to:

DSPI_D

OUT 4

OUT 15

IN3 IRQ[2]

SIU/IMUX

IN3 IRQ[13]

OUT 1 IN3 IRQ[15]

OUT 0 IN3 IRQ[14]

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1330 Freescale Semiconductor

30.9.18 Power saving features

The DSPI supports two power-saving strategies:

• External Stop mode

• Module Disable mode—Clock gating of non-memory mapped logic

30.9.18.1 Stop mode (External Stop mode)

The DSPI supports the stop mode protocol. When a request is made to enter external stop mode, the DSPI
module acknowledges the request. If a serial transfer is in progress, the DSPI waits until it reaches the
frame boundary before it is ready to have its clocks shut off. While the clocks are shut off, the DSPI
memory-mapped logic is not accessible. The states of the interrupt and DMA request signals cannot be
changed while in External Stop mode.

Table 30-44. DSPI_D connectivity table

DSPI_D
input

Connected to:
DSPI_D
output

Connected to:

0 NC 0 Input 3 on IMUX for External IRQ[14]

1 NC 1 Input 3 on IMUX for External IRQ[15]

2 NC 2 NC

3 NC 3 NC

4 NC 4 Input 3 on IMUX for External IRQ[2]

5 NC 5 Input 3 on IMUX for External IRQ[3]

6 NC 6 Input 3 on IMUX for External IRQ[4]

7 NC 7 Input 3 on IMUX for External IRQ[5]

8 NC 8 Input 3 on IMUX for External IRQ[6]

9 NC 9 Input 3 on IMUX for External IRQ[7]

10 NC 10 Input 3 on IMUX for External IRQ[8]

11 NC 11 Input 3 on IMUX for External IRQ[9]

12 NC 12 Input 3 on IMUX for External IRQ[10]

13 NC 13 Input 3 on IMUX for External IRQ[11]

14 NC 14 Input 3 on IMUX for External IRQ[12]

15 NC 15 Input 3 on IMUX for External IRQ[13]

16–31 NC 16–31 NC

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1331

30.9.18.2 Module disable mode

Module disable mode is a module-specific mode that the DSPI can enter to save power. Host CPU can
initiate the module disable mode by setting bit DSPI_MCR[MDIS]. The module disable mode can also be
initiated by hardware.

When the MDIS bit is set, the DSPI negates Clock Enable signal at the next frame boundary. If
implemented, the Clock Enable signal can stop the clock to the non-memory mapped logic. When Clock
Enable is negated, the DSPI is in a dormant state, but the memory mapped registers are still accessible.
Certain read or write operations have a different effect when the DSPI is in the module disable mode.
Reading the RX FIFO Pop Register does not change the state of the RX FIFO. Likewise, writing to the TX
FIFO Push Register does not change the state of the TX FIFO. Clearing either of the FIFOs has no effect
in the module disable mode. Changes to the DIS_TXF and DIS_RXF fields of the DSPI_MCR have no
effect in the module disable mode. In the module disable mode, all status bits and register flags in the DSPI
return the correct values when read, but writing to them has no effect. Writing to the DSPI_TCR during
module disable mode has no effect. Interrupt and DMA request signals cannot be cleared while in the
module disable mode.

30.10 Initialization/Application information

30.10.1 How to manage DSPI queues

The queues are not part of the DSPI, but the DSPI includes features in support of queue management.
Queues are primarily supported in SPI configuration.

1. When DSPI executes last command word from a queue, the EOQ bit in the command word is set
to indicate to the DSPI that this is the last entry in the queue.

2. At the end of the transfer, corresponding to the command word with EOQ set is sampled, the EOQ
flag DSPI_SR[EOQF] is set.

3. The setting of the EOQ flag disables serial transmission and reception of data, putting the DSPI in
the STOPPED state. The TXRXS bit is cleared to indicate the STOPPED state.

4. The DMA can continue to fill TX FIFO until it is full or step 5 occurs.

5. Disable DSPI DMA transfers by disabling the DMA enable request for the DMA channel assigned
to TX FIFO and RX FIFO. This is done by clearing the corresponding DMA enable request bits in
the DMA controller.

6. Ensure all received data in RX FIFO has been transferred to memory receive queue by reading
DSPI_SR[RXCNT] or by checking DSPI_SR[RFDF] after each read operation of the
DSPI_POPR.

7. Modify DMA descriptor of TX and RX channels for new queues

8. Flush TX FIFO by writing a ‘1’ to bit DSPI_MCR[CLR_TXF]. Flush RX FIFO by writing a ‘1’ to
bit DSPI_MCR[CLR_RXF].

9. Clear transfer count either by setting CTCNT bit in the command word of the first entry in the new
queue or via CPU writing directly to field DSPI_TCR[TCNT].

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1332 Freescale Semiconductor

10. Enable DMA channel by enabling the DMA enable request for the DMA channel assigned to the
DSPI TX FIFO, and RX FIFO by setting the corresponding DMA set enable request bit.

11. Enable serial transmission and serial reception of data by clearing the EOQF bit.

30.10.2 Switching master and slave mode

When changing modes in the DSPI, follow the steps below to guarantee proper operation.

1. Halt the DSPI by setting DSPI_MCR[HALT].

2. Clear the transmit and receive FIFOs by writing a 1 to the CLR_TXF and CLR_RXF bits in
DSPI_MCR.

3. Set the appropriate mode in DSPI_MCR[MSTR] and enable the DSPI by clearing
DSPI_MCR[HALT].

30.10.3 Baud rate settings

Table 30-45 shows the baud rate that is generated based on the combination of the baud rate prescaler PBR
and the baud rate scaler BR in the DSPI_CTAR registers. The values calculated assume a 100 MHz system
frequency and the double baud rate DBR bit is clear.

Table 30-45. Baud rate values (bit/s)

Baud rate divider prescaler values

2 3 5 7

B
a

u
d

 r
at

e
sc

a
le

r
v

al
u

es

2 25.0M 16.7M 10.0M 7.14M

4 12.5M 8.33M 5.00M 3.57M

6 8.33M 5.56M 3.33M 2.38M

8 6.25M 4.17M 2.50M 1.79M

16 3.12M 2.08M 1.25M 893k

32 1.56M 1.04M 625k 446k

64 781k 521k 312k 223k

128 391k 260k 156k 112k

256 195k 130k 78.1k 55.8k

512 97.7k 65.1k 39.1k 27.9k

1024 48.8k 32.6k 19.5k 14.0k

2048 24.4k 16.3k 9.77k 6.98k

4096 12.2k 8.14k 4.88k 3.49k

8192 6.10k 4.07k 2.44k 1.74k

16384 3.05k 2.04k 1.22k 872

32768 1.53k 1.02k 610 436

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1333

30.10.4 Delay settings

Table 30-46 shows the values for the Delay after Transfer (tDT) and CS to SCK Delay (TCSC) that can be
generated based on the prescaler values and the scaler values set in the DSPI_CTAR registers. The values
calculated assume a 100 MHz system frequency.

Table 30-46 does not apply for TSB Continuous mode.

30.10.5 DSPI Compatibility with the QSPI of the MPC500 MCUs

Table 30-47 shows the translation of commands written to the TX FIFO command halfword with
commands written to the Command Ram of the MPC500 family MCUs QSPI. The table illustrates how to
configure the DSPI_CTAR registers to match the default cases for the possible combinations of the
MPC500 Family QSPI Control Bits in its Command RAM. The defaults for QSPI are based on a system
clock of 40MHz. All delay variables below will generate the same delay, or as close a possible, from the
DSPI 100MHz system clock that an QSPI would generate from its 40MHz system clock. For other system
clock frequencies, the customer can recompute the values using Section 30.10.4, Delay settings”.

• For BITSE = 0  8 bits per transfer

• For DT = 0  0.425s delay: For this value, the closest value in the DSPI is 0.480 s

Table 30-46. Delay values

Delay prescaler values

1 3 5 7

D
el

ay
 s

c
al

er
 v

al
u

es

2 20.0 ns 60.0 ns 100.0 ns 140.0 ns

4 40.0 ns 120.0 ns 200.0 ns 280.0 ns

8 80.0 ns 240.0 ns 400.0 ns 560.0 ns

16 160.0 ns 480.0 ns 800.0 ns 1.1 µs

32 320.0 ns 960.0 ns 1.6 µs 2.2 µs

64 640.0 ns 1.9 µs 3.2 µs 4.5 µs

128 1.3 µs 3.8 µs 6.4 µs 9.0 µs

256 2.6 µs 7.7 µs 12.8 µs 17.9 µs

512 5.1 µs 15.4 µs 25.6 µs 35.8 µs

1024 10.2 µs 30.7 µs 51.2 µs 71.7 µs

2048 20.5 µs 61.4 µs 102.4 µs 143.4 µs

4096 41.0 µs 122.9 µs 204.8 µs 286.7 µs

8192 81.9 µs 245.8 µs 409.6 µs 573.4 µs

16384 163.8 µs 491.5 µs 819.2 µs 1.1 ms

32768 327.7 µs 983.0 s 1.6 ms 2.3 ms

65536 655.4 µs 2.0 ms 3.3 ms 4.6 ms

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1334 Freescale Semiconductor

• For DSCK = 0  1/2 SCK period: For this value, the value for the DSPI is 20 ns

30.10.6 Calculation of FIFO pointer addresses

Complete visibility of the TX and RX FIFO contents is available through the FIFO registers, and valid
entries can be identified through a memory mapped pointer and a memory mapped counter for each FIFO.
The pointer to the first-in entry in each FIFO is memory mapped. For the TX FIFO the first-in pointer is
the Transmit Next Pointer (TXNXTPTR). For the RX FIFO the first-in pointer is the Pop Next Pointer
(POPNXTPTR). Figure 30-59 illustrates the concept of first-in and last-in FIFO entries along with the
FIFO Counter. The TX FIFO is chosen for the illustration, but the concepts carry over to the RX FIFO.
See Section 30.9.2.4, Transmit first-in first-out (TX FIFO) buffering mechanism, and Section 30.9.2.5,
Receive first-in first-out (RX FIFO) buffering mechanism, for details on the FIFO operation.

Table 30-47. DSPI Compatibility with MPC500 family QSPI

MPC500 family control bits
 DSPI corresponding control bits

Corresponding DSPI_CTAR configuration

BITS
E

CTAS[0] DT CTAS[1] DSCK CTAS[2]
DSPI_CTAR

x
FMSZ PDT DT PCSSCK CSSCK

0 0 0 0 1111 10 0011 00 0000

0 0 1 1 1111 10 0011 user user

0 1 0 2 1111 user1

1 Selected by user

user 00 0000

0 1 1 3 1111 user user user user

1 0 0 4 user 10 0011 00 0000

1 0 1 5 user 10 0011 user user

1 1 0 6 user user user 00 0000

1 1 1 7 user user user user user

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1335

Figure 30-59. TX FIFO pointers and counter

30.10.6.1 Address calculation for the first-in entry and last-in entry in the TX FIFO

The memory address of the first-in entry in the TX FIFO is computed by the following equation:

Eqn. 30-7

The memory address of the last-in entry in the TX FIFO is computed by the following equation:

Eqn. 30-8

TX FIFO Base: Base address of TX FIFO
TXCTR: TX FIFO Counter
TXNXTPTR: Transmit Next Pointer
TX FIFO Depth: Transmit FIFO depth, implementation-specific

30.10.6.2 Address calculation for the first-in entry and last-in entry in the RX FIFO

The memory address of the first-in entry in the RX FIFO is computed by the following equation:

Eqn. 30-9

The memory address of the last-in entry in the RX FIFO is computed by the following equation:

Eqn. 30-10

RX FIFO Base: Base address of RX FIFO
RXCTR: RX FIFO counter
POPNXTPTR: Pop Next Pointer
RX FIFO Depth: Receive FIFO depth, implementation specific

Push TX FIFO Register

Transmit Next
Data Pointer

Shift Register SOUT

+1 -1TX FIFO Counter

TX FIFO Base —

—

Entry A (first-in)

Entry B

Entry C

Entry D (last-in)

—

—

First-in Entry Address TX FIFO Base 4 TXNXTPTR +=

Last-in Entry address TX FIFO Base 4 TXCTR TXNXTPTR 1–+  mod TXFIFOdepth +=

First-in Entry Address RX FIFO Base 4 POPNXTPTR +=

Last-in Entry address RX FIFO Base 4 RXCTR POPNXTPTR 1–+  mod (RXFIFOdepth)+=

Deserial Serial Peripheral Interface (DSPI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1336 Freescale Semiconductor

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1337

Chapter 31
Enhanced Serial Communication Interface (ESCI)

31.1 Introduction

The ESCI block is an enhanced SCI block with a LIN master interface layer and DMA support. The LIN
master layer complies with the specifications LIN 1.3, LIN 2.0, LIN 2.1, and SAE J2602/1.

31.1.1 Bibliography

• LIN Specification Package Revision 1.3; December 12, 2002

• LIN Specification Package Revision 2.0; September 23, 2003

• LIN Network for Vehicle Applications, SAE J2602/1, September 1, 2005

• LIN Specification Package Revision 2.1; November 24, 2006

31.1.2 Acronyms and abbreviations

Table 31-1 contains acronyms and abbreviations used in this document.

31.1.3 Glossary

Table 31-1. Acronyms and abbreviations

Term Description

eSCI Enhanced SCI block with LIN support and DMA support

SCI Serial Communications Interface

LIN Local Interconnect Network - A protocol for low-cost automobile networks

LIN PE LIN Protocol Engine, Finite State Machine to control logic of the LIN hardware.

MCLK Module Clock, defined in Section 31.4.3.1, Module clock

TCLK Transmitter Clock, defined in Section 31.4.3.2, Transmitter clock

RCLK Receiver Clock, defined in Section 31.4.3.3, Receiver clock

RSC Receiver Sample Counter, defined in Section 31.4.3.3, Receiver clock

Table 31-2. Glossary

Term Definition

Logic level one The voltage that corresponds to Boolean true (1) state.

Logic level zero The voltage that corresponds to Boolean false (0) state.

Set To set a bit or bits means to establish logic level one on the bit or bits.

Clear To clear a bit or bits means to establish logic level zero on the bit or bits.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1338 Freescale Semiconductor

31.1.4 Overview

The eSCI block allows asynchronous serial communications with peripheral devices and other CPUs. It
includes special support to interface to LIN slave devices.

Asserted A signal that is asserted is in its active state. An active low signal changes from logic level one to logic level
zero when asserted, and an active high signal changes from logic level zero to logic level one.

Preamble The term preamble describes an idle character which is transmitted by the eSCI module.

Bit time Duration of a single bit in a transmitted byte field or character, equivalent to the duration of one transmitter
clock cycle defined in Section 31.4.3.2, Transmitter clock

frame Entity that consists of the start bit followed by payload bits followed by one ore more stop bits

LIN byte field Special instance of a frame

SCI frame Special instance of a frame

LIN frame Sequence of break character followed by LIN byte fields

LIN TX frame A LIN frame with the frame header, data byte fields, and checksum field transmitted by the eSCI module

LIN RX frame A LIN frame with the header field transmitted by the eSCI module and the data byte fields and checksum field
received by the eSCI module

module is idle Module is idle, described in Section 31.1.6.1, Module idle condition

Table 31-2. Glossary (continued)

Term Definition

RECEIVE
SHIFT REGISTER

16

RXD

POLARITY
CONTROL

BAUD RATE
GENERATOR

RECEIVE
DATA REGISTER

TXD
TRANSMIT

DATA REGISTER

TRANSMIT
SHIFT REGISTER

INTERNAL DATA BUS

RECEIVE
CONTROL
WAKE UP
CONTROL

FRAME FORMAT
CONTROL

TRANSMIT
CONTROL

INTERNAL DATA BUS

INTERRUPT
GENERATION

LOOP
CONTROL

CPU
IRQ

RX DMA
CHANNEL

DMA
CTRL

TX DMA
CHANNEL

DMA
CTRL

LIN PE

TCLK

RCLKBUS
CLK

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1339

Figure 31-1. eSCI Block Diagram

31.1.5 Features

The eSCI block includes these distinctive features:

• Full-duplex operation

• Standard mark/space non-return-to-zero (NRZ) format

• 13-bit baud rate selection

• Programmable frame, payload, and character format

• Support of 2 stop bits in receiver path

• Hardware parity generation and checking

— Programmable even or odd parity

• Programmable polarity of RXD pin

• Separately enabled transmitter and receiver

• Two receiver wake-up methods:

— Idle line wake up

— Address mark wake up

• Interrupt-driven operation with eight flags:

— Transmitter empty

— Transmission complete

— Receiver full

— Idle receiver input

— Receiver overrun

— Noise error

— Framing error

— Parity error

• Receiver framing error detection

• 1/16 bit-time noise detection

• 2 channel DMA interface

• LIN support

— LIN Master Node functionality (master and slave task)

— Compatible with LIN slaves from revisions 1.x and 2.0 of the LIN standard

— Detection of Bit Errors, Physical Bus Errors and Checksum Errors

— All status bit can generate maskable interrupts

— Application layer CRC support

— Programmable CRC polynom

— Detection and generation of wake-up characters

— Programmable wake-up delimiter time

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1340 Freescale Semiconductor

— Programmable slave timeout

— Can be configured to include header bits in checksum

— LIN DMA interface

31.1.6 Modes of operation

The eSCI module has two functional operational modes, SCI and LIN mode, and low power modes. The
availability of register bits and fields depends on the selected operational mode.

31.1.6.1 Module idle condition

Some modes can only be entered if the module is idle. The module is idle if

• all five active status bits TACT, and RAF in the Interrupt Flag and Status Register are 0, and

• no interrupt request is pending, i.e either the interrupt flag or its related interrupt enable is 0.

To ensure that the module goes idle, the application should clear all interrupt enable bits before triggering
the mode change.

31.1.6.2 SCI mode

The SCI mode is the default functional operational mode and is described in Section 31.4.5, SCI mode.

31.1.6.3 LIN mode

The LIN mode is the second functional operational mode and is described in Section 31.4.6, LIN mode.

31.1.6.4 Disabled mode

In the Disabled mode the eSCI module indicates to the clocking system, that all module clocks can be
turned off.

The eSCI module is in the Disabled Mode, if the MDIS bit in the Control register 2 (eSCI_CR2) is set and
the module is idle.

31.2 External signal description

The eSCI module is connected two a total of two external pins.

31.2.1 Detailed signal descriptions

31.2.1.1 eSCI transmit pin (TXD)

This pin serves as transmit data output and as the receive data input of eSCI.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1341

31.2.1.2 eSCI receive pin (RXD)

This pin serves as receive data input of the eSCI.

31.3 Memory map and register definition

This section provides the memory map and a detailed description of the memory mapped registers.

31.3.1 Memory map

Table 31-4 provides a key for register figures and tables.

Table 31-3. eSCI 32-bit Memory Map

Offset Register

0x0000 Baud Rate Register (eSCI_BRR) Control register 1 (eSCI_CR1)

0x0004 Control register 2 (eSCI_CR2) SCI data register (eSCI_DR)

0x0008 Interrupt Flag and Status Register 1 (eSCI_IFSR1) Interrupt Flag and Status Register 2 (eSCI_IFSR2)

0x000C LIN Control Register 1 (eSCI_LCR1) LIN Control Register 2 (eSCI_LCR2)

0x0010 LIN transmit register
(eSCI_LTR)

Reserved

0x0014 LIN receive register
(eSCI_LRR)

Reserved

0x0018 LIN CRC polynomial register (eSCI_LPR) Control register 3 (eSCI_CR3)

0x001C Reserved

Table 31-4. Register Conventions

Convention Description

Depending on its placement in the read or write row, indicates that the bit is not readable or not writeable.

FIELDNAME Identifies the field. Its presence in the read or write row indicates that it can be read or written.

Register Field Types

rwm A read/write bit that may be modified by a eSCI module in some fashion other than by a reset.

w1c Write one to clear. A flag bit that can be read, is cleared by writing a one, writing 0 has no effect.

Reset Values

0 Resets to zero.

1 Resets to one.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1342 Freescale Semiconductor

31.3.2 Register descriptions

This section consists of register descriptions in address order. Each description includes a standard register
diagram with an associated figure number. Writes to a reserved register location do not have any effect and
reads of these locations return a zero. Details of register bit and field function follow the register diagrams,
in bit orderptions

31.3.2.1 Baud Rate Register (eSCI_BRR)

This register provides the control value for the serial baud rate. The baud rate and clock generation is
specified in Section 31.4.3, Baud rate and clock generation”.

A byte write access to only the upper byte of this register (eSCI_BRR[]) will not change the content of the
register, instead, the written byte is stored internally into a shadow register. A subsequent byte write access
to only the lower byte of this register (eSCI_BRR[]) updates the lower byte and copies the content of the
shadow register into the upper byte.

A byte write access to only the lower byte of this register (eSCI_BRR[]) without a preceding byte write
access to only the upper byte copies a value of all zero into the upper byte.

A word write access to this register updates both the lower and upper byte immediately and is the
recommended write access type for this register

Table 31-5. eSCI_BRR Field Descriptions

31.3.2.2 Control register 1 (eSCI_CR1)

This register provides bits to configure the functionality of the module, provides the interrupt enable bits
for the interrupt flags provided in Interrupt Flag and Status Register 1 (eSCI_IFSR1) and provides the
control bits for the transmitter and receiver.

eSCI_BASE + 0x0000 Write: Anytime

R
R SBR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Figure 31-2. Baud Rate Register (eSCI_BRR)

Field Description

R Reserved. These bits are reserved. They are read as 0. Application must not write 1 to these bits.

SBR Serial Baud Rate. This field provides the baud rate control value SBR.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1343

eSCI_BASE + 0x0000 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0
SBR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

L
O

O
P

S

R RSRC M
W

A
K

E 0
PE PT TIE TCIE RIE ILIE TE RE

RWU
SBK

W rwm

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-3. Control register 1 (eSCI_CR1)

Table 31-6. eSCI_CR1 field descriptions

Field Description

SBR Serial Baud Rate. This field provides the baud rate control value SBR.

LOOPS Loop Mode Select. This control bit together with the RSRC control bit defines the receiver source mode. The
mode coding is defined in Table 31-7 and the modes are described in Section 31.4.5.3.2, Receiver input mode
selection.

RSRC Receiver Source Control. This control bit together with the LOOPS control bit defines the receiver source mode.
The mode coding is defined in Table 1-9 and the modes are described in Section 31.4.5.3.2, Receiver input mode
selection

M Frame Format Mode. This control bit together with the M2 bit of the Control register 3 (eSCI_CR3) controls the
frame format used. The supported frame formats and the related settings are defines in Section 31.4.2, Frame
formats.

WAKE Receiver Wake-up Condition. This control bit defines the wake-up condition for the receiver. The receiver
wake-up is described in Section 31.4.5.5, Multiprocessor communication.
0 Idle line wake-up.
1 Address mark wake-up

PE Parity Enable. This control bit enables the parity bit generation and checking. The location of the parity bits is
shown in Section 31.4.2, Frame formats.
0 Parity bit generation and checking disabled.
1 Parity bit generation and checking enabled.

PT Parity Type. This control bit defines whether even or odd parity has to be used.
0 Even parity (even number of ones in character clears the parity bit).
1 Odd parity (odd number of ones in character clears the parity bit).

TIE Transmitter Interrupt Enable. This bit controls the eSCI_SR[TRDE] interrupt request generation.
0 TDRE interrupt request generation disabled.
1 TDRE interrupt request generation enabled.

TCIE Transmission Complete Interrupt Enable. This bit controls the eSCI_SR[TC] interrupt request generation.
0 TC interrupt request generation disabled.
1 TC interrupt request generation enabled.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1344 Freescale Semiconductor

31.3.2.3 Control register 2 (eSCI_CR2)

RIE Receiver Full Interrupt Enable. This bit controls the eSCI_SR[RDRF] interrupt request generation.
0 RDRF interrupt request generation disabled.
1 RDRF interrupt request generation enabled.

ILIE Idle Line Interrupt Enable. This bit controls theeSCI_SR[IDLE] interrupt request generation.
0 IDLE interrupt request generation disabled.
1 IDLE interrupt request generation enabled.

TE Transmitter Enable. This control bit enables and disables the transmitter. The control features of the transmitter
are described in Section 31.4.5.2.1, Transmitter states and transitions.
0 Transmitter disabled.
1 Transmitter enabled.

RE Receiver Enable.This control bit enables and disables the receiver. The control features of the receiver are
described in Section 31.4.5.3.1, Receiver states and transitions.
0 Receiver disabled.
1 Receiver enabled.

RWU Receiver Wake-Up Mode. This bit controls and indicates the receiver wake-up mode, which is described in
Section 31.4.5.5, Multiprocessor communication.
0 Normal receiver operation.
1 Receiver is in wake-up mode.
Note: This bit should be set in SCI mode only.

SBK Send Break Character. This bit controls the transmission of break characters, which is described in
Section 31.4.5.2.7, Break character transmission.
0 No break characters will be transmitted.
1 Break characters will be transmitted.
Note: This bit should be set in SCI mode only.

Table 31-7. Receive source mode selection

LOOPS RSCR Receiver Input Mode

0 0 Dual Wire Mode

0 1 Reserved

1 0 Loop Mode

1 1 Single Wire Mode

eSCI_BASE + 0x0004 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
D

IS

F
B

R

B
S

T
P

IE
B

E
R

R

R
X

D
M

A

T
X

D
M

A

B
IR

C
L

R
es

er
ve

d

B
E

S
M

B
E

S
T

P

R
X

P
O

L

P
M

S
K

O
R

IE

N
F

IE

F
E

IE

P
F

IE

W

Reset 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-4. Control register 2 (eSCI_CR2)

Table 31-6. eSCI_CR1 field descriptions (continued) (continued)

Field Description

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1345

This register provides bits to configure the functionality of the module, and interrupt enable bits for the
interrupt flags provided in Interrupt Flag and Status Register 1 (eSCI_IFSR1) ,Interrupt Flag and Status
Register 2 (eSCI_IFSR2)and control bits for the transmitter and receiver.

Table 31-8. eSCI_CR2 field descriptions

Field Description

MDIS Module Disabled Mode. This bit controls the Module Mode of Operation, which is described in Section 31.1.6,
Modes of operation.
0 Module is not in Disabled Mode.
1 Module is in Disabled Mode, if module is idle.

FBR Fast Bit Error Detection. This bit controls the Bit Error Detection mode.
0 Standard Bit error detection performed as described in Section 31.4.6.5.3, Standard bit error detection.
1 Fast Bit error detection performed as described in Section 31.4.6.5.4, Fast bit error detection.
Note: This bit is used in LIN mode only.

BSTP DMA Stop on Bit Error or Physical Bus Error. This bit controls the transmit DMA requests generation in case of
bit errors or physical bus errors. Bit errors are indicated by the BERR flag in the Interrupt Flag and Status Register
1 (eSCI_IFSR1) and physical bus errors are indicated by the PBERR flag in the Interrupt Flag and Status
Register 2 (eSCI_IFSR2).
0 Transmit DMA requests generated regardless of bit errors or physical bus errors.
1 Transmit DMA requests are not generated if eSCI_SR[BERR] flag or eSCI_SR[PBERR] flags are set.
Note: This bit is used in LIN mode only.

BERRIE Bit Error Interrupt Enable. This bit controls the BERR interrupt request generation.
0 BERR interrupt request generation disabled.
1 BERR interrupt request generation enabled.

RXDMA Receive DMA Control. This bit enables the receive DMA feature. When this bit is cleared, a pending receive DMA
request is deasserted.
0 Receive DMA disabled.
1 Receive DMA enabled.

TXDMA Transmit DMA Control. This bit enables the transmit DMA feature. When this bit is cleared, a pending transmit
DMA request is deasserted.
0 Transmit DMA disabled.
1 Transmit DMA enabled.

BRCL Break Character Length. This bit is used to define the length of the break character to be transmitted.
The settings are specified in Section 31.4.2.2, Break character formats.

BESM Fast Bit Error Detection Sample Mode. This bit defines the sample point for the Fast Bit Error Detection Mode.
0 Sample point is RS9.
1 Sample point is RS13.
Note: This bit is used in LIN mode only.

BESTP Bit Error Transmit Stop. This control bit defines the behavior of the eSCI Transmit Pin TXD while the bit error flag
eSCI_SR[BERR] is 1.
0 Application Data Values driven onto TXD pin.
1 Recessive Data Value 1 driven onto TXD pin.
Note: This bit is used in LIN mode only.

RXPOL RXD Pin polarity. This bit controls the polarity of the RXD pin. See Section 31.4.2.1.1, Inverted data frame
formats.
0 Normal Polarity.
1 Inverted Polarity.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1346 Freescale Semiconductor

31.3.2.4 SCI data register (eSCI_DR)

In SCI mode this register is used to provide transmit data and retrieve received data. In LIN mode any write
access to this register is ignored and any read access returns unspecified data. In case of data transmission
this register is used to provide a part of the transmit data. In case of data reception this register provides a
part of the received data and related error information.If the application writes to the lower byte of this
register (eSCI_DR[8:15]), the internal commit flag iCMT, which is not visible to the application, is set to
indicate that the register has been updated and ready to transmit new data.

If the application reads from the lower byte of this register (eSCI_DR[8:15]), a signal is send to the internal
receiver unit to indicate that the register was read and is ready to receive new data. The read access will
not change the content of any register.

PMSK Parity Bit Masking. This bit defines whether the received parity bit is presented in the related bit position in the
SCI data register (eSCI_DR).
0 The received parity bit is presented in the bit position related to the parity bit.
1 The value 0 is presented in the bit position related to the parity bit.

ORIE Overrun Interrupt Enable. This bit controls the eSCI_SR[OR] interrupt request generation.
0 OR interrupt request generation disabled.
1 OR interrupt request generation enabled.

NFIE Noise Interrupt Enable. This bit controls the eSCI_SR[NF] interrupt request generation.
0 NF interrupt request generation disabled.
1 NF interrupt request generation enabled.

FEIE Frame Error Interrupt Enable. This bit controls the eSCI_SR[FE] interrupt request generation.
0 FE interrupt request generation disabled.
1 FE interrupt request generation enabled.

PFIE Parity Error Interrupt Enable. This bit controls the eSCI_SR[PF] interrupt request generation.
0 PF interrupt request generation disabled.
1 PF interrupt request generation enabled.

eSCI_BASE + 0x0006 Write: Anytime

R RN
TN

ERR 0 RD[11:8] RD[7] RD[6:0]

W TD[7] TD[6:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-5. SCI data register (eSCI_DR)

Table 31-8. eSCI_CR2 field descriptions (continued)

Field Description

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1347

31.3.2.5 Interrupt Flag and Status Register 1 (eSCI_IFSR1)

This register provides interrupt flags that indicate the occurrence of module events. The related interrupt
enable bits are located in Control register 1 (eSCI_CR1) and Control register 2 (eSCI_CR2).

Table 31-9. eSCI_DR field descriptions

Field Description

RN Received Most Significant Bit. The semantic of this bit depends on the frame format selected by
eSCI_CR3[M2], eSCI_CR1[M], and eSCI_CR1[PE].
[M2=0,M=1,PE=0]: value of received data bit 8 or address bit.
[M2=0,M=1,PE=1]: value of received parity bit if eSCI_CR2[PMSK]=0, 0 otherwise.
[M2=1,M=0,PE=1]: value of received parity bit if eSCI_CR2[PMSK]=0, 0 otherwise.
[M2=1,M=1,PE=1]: value of received parity bit if eSCI_CR2[PMSK]=0, 0 otherwise.
It is 0 for all other frame formats.

TN Transmit Most Significant Bit. The semantic of this bit depends on the frame format selected by eSCI_CR3[M2],
eSCI_CR1[M], and eSCI_CR1[PE].
[M2=0,M=1,PE=0]: value to be transmitted as data bit 8 or address bit.
It is not used for all other frame formats.

ERR Receive Error Bit. This bit indicates the occurrence of the errors selected by the Control register 3 (eSCI_CR3)
during the reception of the frame presented in SCI data register (eSCI_DR). In case of an overrun error for
subsequent frames this bit is set too.
0 None of the selected errors occured.
1 At least one of the selected errors occured.

RD[11:8] Received Data. The semantic of this field depends on the frame format selected by eSCI_CR3[M2] and
eSCI_CR1[M].
[M2=1,M=1]: value of the received data bits 11:8. (Rx=BITx).
It is all 0 for all other frame formats.

RD[7] Received Bit 7. The semantic of this bit depends on the format selected by eSCI_CR3[M2], eSCI_CR1[M], and
eSCI_CR1[PE].
[M2=0,M=0,PE=0]: value of received BIT7 or ADDR BIT.
[M2=0;M=0,PE=1]: value of received PARITY BIT if eSCI_CR2[PMSK]=0, 0 otherwise.
For all other frame formats it is the value of received BIT7.

TD[7] Transmit Bit 7. The semantic of this bit depends on the format selected by eSCI_CR3[M2], eSCI_CR1[M], and
eSCI_CR1[PE].
[M2=0,M=0,PE=0]: value of transmit BIT7 or ADDR BIT.
[M2=0;M=0,PE=1]: not used. PARITY BIT is generated internally before transmission.
For all other frame formats it is the value of transmit BIT7.

RD[6:0] Received bits 6 to 0. Value of received BITx is shown in bit Rx

TD[6:0] Transmit bits 6 to 0. Value of bit Tx is transmitted in BITx

eSCI_BASE + 0x0008 Write: Anytime

R TDRE TC RDRF IDLE OR NF FE PF DACT BERR WACT LACT TACT RACT

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-6. Interrupt Flag and Status Register 1 (eSCI_IFSR1)

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1348 Freescale Semiconductor

Table 31-10. eSCI_IFSR1 field descriptions

Field Description

TDRE Transmit Data Register Empty Interrupt Flag. This interrupt flag is set when the content of the SCI data register
(eSCI_DR) was transferred into internal shift register.
Note: This flag is set in SCI mode only.

TC Transmit Complete Interrupt Flag. This interrupt flag is set when a frame, break or idle character transmission
has been completed and no data were written into SCI data register (eSCI_DR) after the last setting of the TDRE
flag and the SBK bit in Control register 1 (eSCI_CR1) is 0.
This flag is set in LIN mode, if the preamble was transmitted after the enabling of the transmitter.

RDRF Receive Data Register Full Interrupt Flag. This interrupt flag is set when the payload data of a received frame
was transferred into the SCI data register (eSCI_DR) and the receive DMA is disabled.
Note: This flag is set in SCI mode only.

IDLE Idle Line Interrupt Flag. This interrupt flag is set when an idle character was detected and the receiver is not in
the wake-up state.
Note: This flag is set in SCI mode only.

OR Overrun Interrupt Flag. This interrupt flag is set when an overrun was detected as described in
Section 31.4.5.3.11, Receiver overrun”.
Note: This flag is set in SCI mode only.

NF Noise Interrupt Flag. This interrupt flag is set when the receiver has detected noise during the reception of a
frame, as described in Section 31.4.5.3.13, Bit sampling”.

FE Framing Error Interrupt Flag. This interrupt flag is set when the payload data of a received frame was transferred
into the SCI data register (eSCI_DR) or LIN receive register (eSCI_LRR) and the receiver has detected a framing
error during the reception of that frame, as described in Section 31.4.5.3.17, Stop bit verification”.

PF Parity Error Interrupt Flag. This interrupt flag is set when the payload data of a received frame was transferred
into the SCI data register (eSCI_DR) and the receiver has detected a parity error for the character, as described
in Section 31.4.5.4, Reception error reporting”
Note: This flag is set in SCI mode only.

DACT DMA Active. The status bit is set when a transmit or receive DMA request is pending.
0 No DMA request pending
1 DMA request pending.

BERR Bit Error Interrupt Flag. This flag is set when a bit error was detected as described in Section 31.4.6.5.3, Standard
bit error detection”.
Note: This flag is set in LIN mode only.

WACT LIN Wake-Up Active. The status bit is set as long as the LIN wakeup engine receives a LIN wake-up signal.
0 No LIN wakeup signal reception in progress.
1 LIN wakeup signal reception in progress.

LACT LIN Active. This status bit is set as long as the LIN protocol engine is about to transmit or receive LIN frames.
0 No LIN frame transmission or reception in progress.
1 LIN frame transmission or reception in progress.

TACT Transmitter Active. This status bit is set as long as the transmission of a frame or special character is ongoing.
0 No transmission in progress.
1 Transmission in progress.

RACT Receiver Active. This status bit is set as long as the receive is active. The set and clear conditions for the SCI
mode are described in Section 31.4.5.3.1, Receiver states and transitions”.The set and clear conditions for the
LIN mode are described in Section 31.4.6.2.1, LIN byte field reception”.
0 No reception in progress.
1 Reception in progress.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1349

31.3.2.6 Interrupt Flag and Status Register 2 (eSCI_IFSR2)

This register provides interrupt flags that indicate the occurrence of LIN related events. The related
interrupt enable bits are located in LIN Control Register 1 (eSCI_LCR1) and LIN Control Register 2
(eSCI_LCR2). All interrupt flags in this register will be set in LIN mode only.

eSCI_BASE + 0x000A Write: Anytime

R

R
X

R
D

Y

T
X

R
D

Y

LW
A

K
E

STO

P
B

E
R

R

CERR

C
K

E
R

R

FRC 0 0 0 0 0 0 UREQ OVFL

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-7. Interrupt Flag and Status Register 2 (eSCI_IFSR2)

Table 31-11. eSCI_IFSR2 Field Descriptions

Field Description

RXRDY Receive Data Ready Interrupt Flag. This interrupt flag is set when the payload data of a received frame
was transferred into the LIN receive register (eSCI_LRR) and the receive DMA is disabled.

TXRDY Transmit Data Ready Interrupt Flag. This interrupt flag is set when
a) the content of the LIN transmit register (eSCI_LTR) was processed by the LIN PE to generate frame
header or frame transmit data, or
b) when the module has transmitted a LIN wakeup signal frame.

LWAKE LIN Wake-up Received Interrupt Flag. This interrupt flag is set when a LIN Wake-up character was
received, as described in Section 31.4.6.6, LIN wake up”.

STO Slave Timeout Interrupt Flag. This interrupt flag is set when a Slave-Not-Responding-Error is
detected. A detailed description is given in Section 31.4.6.5.5, Slave-not-responding-error detection”.

PBERR Physical Bus Error Interrupt Flag. This interrupt flag is set when the receiver input remains unchanged
for at least 31 RCLK clock cycles after the start of a byte transmission, as described in
Section 31.4.6.5, LIN error reporting”.

CERR CRC Error Interrupt Flag. This interrupt flag is set when an incorrect CRC pattern was detected for a
received LIN frame.

CKERR Checksum Error Interrupt Flag. This interrupt flag is set when a checksum error was detected for a
received LIN frame.

FRC Frame Complete Interrupt Flag. This interrupt flag is set when a LIN TX frame has been completely
transmitted or a LIN RX frame has been completely received.

UREQ Unrequested Data Received Interrupt Flag. This interrupt flag is set when unrequested activity has
been detected on the LIN bus, as described in Section 31.4.6.5, LIN error reporting”.

OVFL Overflow Interrupt Flag. This interrupt flag is set when an overflow as described in Section 31.4.6.5.8,
Overflow detection” was detected.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1350 Freescale Semiconductor

31.3.2.7 LIN Control Register 1 (eSCI_LCR1)

This register provides control bits to control and configure the LIN hardware. This register provides the
interrupt enable bits for the interrupt flags in Interrupt Flag and Status Register 2 (eSCI_IFSR2).

eSCI_BASE + 0x000C Write: Anytime

R
LRES

0
WUD

0 0
PRTY LIN RXIE TXIE WUIE STIE PBIE CIE CKIE FCIE

W WU

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-8. LIN Control Register 1 (eSCI_LCR1)

Table 31-12. eSCI_LCR1 Field Descriptions

Field Description

LRES LIN Protocol Engine Stop and Reset. This bit is used to stop and reset the LIN protocol engine as
described in Section 31.4.6.7, LIN protocol engine stop and reset”.
0 LIN protocol engine is operational.
1 LIN protocol engine is reset and stopped.

WU LIN Bus Wake-Up Trigger. This bit is used to trigger the generation of a wake-up signal frame on the
LIN bus, as described in Section 31.4.6.6, LIN wake up”.
0 Write has no effect.
1 Write triggers the generation of a wake-up signal.

WUD LIN Bus Wake-Up Delimiter Time. This field determines how long the LIN protocol engine waits after
the end of the transmitted wake-up signal, before starting the next LIN frame transmission.
00 3 bit times.
01 7 bit times.
10 31 bit times.
11 63 bit times.

PRTY Parity Generation Control. This bit controls the generation of the two parity bits in the LIN header.
0 Parity bits generation disabled.
1 Parity bits generation enabled.

LIN LIN Mode Control. This bit controls whether the device is in SCI or LIN Mode.
0 SCI Mode.
1 LIN Mode.

RXIE Receive Data Ready Interrupt Enable. This bit controls the eSCI_IFSR2[RXRDY] interrupt request
generation.
0 RXRDY interrupt request generation disabled.
1 RXRDY interrupt request generation enabled.

TXIE Transmit Data Ready Interrupt Enable. This bit controls the eSCI_IFSR2[TXRDY] interrupt request
generation.
0 TXRDY interrupt request generation disabled.
1 TXRDY interrupt request generation enabled.

WUIE LIN Wake-up Received Interrupt Enable. This bit controls the eSCI_IFSR2[LWAKE] interrupt request
generation.
0 LWAKE interrupt request generation disabled.
1 LWAKE interrupt request generation enabled.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1351

31.3.2.8 LIN Control Register 2 (eSCI_LCR2)

This register provides the interrupt enable bits for the interrupt flags in Interrupt Flag and Status Register

2 (eSCI_IFSR2).

STIE Slave Timeout Flag Interrupt Enable. This bit controls the eSCI_IFSR2[STO] interrupt request
generation.
0 STO interrupt request generation disabled.
1 STO interrupt request generation enabled.

PBIE Physical Bus Error Interrupt Enable. This bit controls the eSCI_IFSR2[PBERR] interrupt request
generation.
0 PBERR interrupt request generation disabled.
1 PBERR interrupt request generation enabled.

CIE CRC Error Interrupt Enable. This bit controls the eSCI_IFSR2[CERR] interrupt request generation.
0 CERR interrupt request generation disabled.
1 CERR interrupt request generation enabled.

CKIE Checksum Error Interrupt Enable. This bit controls the eSCI_IFSR2[CKERR] interrupt request
generation.
0 CKERR interrupt request generation disabled.
1 CKERR interrupt request generation enabled.

FCIE Frame Complete Interrupt Enable. This bit controls the eSCI_IFSR2[FRC] interrupt request
generation.
0 FRC interrupt request generation disabled.
1 FRC interrupt request generation enabled.

eSCI_BASE + 0x000E Write: Anytime

R 0 0 0 0 0 0
UQIE OFIE

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-9. LIN Control Register 2 (eSCI_LCR2)

Table 31-13.

Field Description

UQIE Unrequested Data Received Interrupt Enable. This bit controls the eSCI_IFSR2[UREQ] interrupt
request generation.
0 UREQ interrupt request generation disabled.
1 UREQ interrupt request generation enabled.

OFIE Overflow Interrupt Enable. This bit controls the eSCI_IFSR2[OVFL] interrupt request generation.
0 OVFL interrupt request generation disabled.
1 OVFL interrupt request generation enabled.

Table 31-12. eSCI_LCR1 Field Descriptions

Field Description

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1352 Freescale Semiconductor

31.3.2.9 LIN transmit register (eSCI_LTR)

This register is used by the application to initiate the LIN frame header generation for both LIN TX frames
and LIN RX frames. If a LIN TX frame is generated, this register is used to provide the payload data for
the LIN TX frame.

If the LIN PE is in the idle state (eSCI_LCR[LRES] = 1) or performs a wakeup, each write access to this
register is ignored.

In case of an read access, the register provides the last data written into this register in the DATA field.

If the application initiates a LIN TX frame transfer, i.e the TD bit is set to 1, the content and usage shown
in LIN transmit register (eSCI_LTR) - LIN TX frame generation applies. The initiation and transmit of a
TX frame is described in Section 31.4.6.3, LIN TX frame generation.

If the application initiates an LIN RX frame, i.e the TD bit is set to 0, the content and usage shown in LIN
transmit register (eSCI_LTR) - LIN RX frame generation applies. The initiation and transmit of a RX
frame is described in Section 31.4.6.4, LIN RX frame generation.

Each successful write access to this register increments the internal write access counter and enables the
writing to the next field. The write access counter is reset if

• the LIN PE is in the idle state (eSCI_LCR[LRES] = 1)

• a LIN TX frame was completely transmitted (eSCI_SR[FRC] was set to 1)

• a LIN RX frame was completely received (eSCI_SR[FRC] was set to 1)

eSCI_BASE + 0x0010 Write: LIN Mode

0 1 2 3 4 5 6 7

R DATA

1st W P ID

2nd W LEN

3rd W CSM CSE CRC TD (=1) TO (ignored)

4th+ W D

Reset 0 0 0 0 0 0 0 0

Figure 31-10. LIN transmit register (eSCI_LTR) - LIN TX frame generation

0 1 2 3 4 5 6 7

R DATA

1st W P[1:0] ID[5:0]

2nd W LEN

3rd W CSM CSE CRC TD (=0) TO[11:8]

4th W TO[7:0]

Reset 0 0 0 0 0 0 0 0

Figure 31-11. LIN transmit register (eSCI_LTR) - LIN RX frame generation

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1353

31.3.2.10 LIN receive register (eSCI_LRR)

This register provides the data bytes of received in case of an LIN RX frame was initiated.

Table 31-14. eSCI_LTR field descriptions

Field Description

DATA Value written in the most recent successful write access.

P Identifier Parity. This field provides the identifier parity which is used to create the protected identifier if the
automatic identifier parity generation is disabled, i.e the PRTY bit in LIN Control Register 1 (eSCI_LCR1) is 0.

ID Identifier. This field is used for the identifier field in the protected identifier.

LEN Frame Length. This field defines the number of data bytes to be transmitted or received.

CSM Checksum Model. This bit controls the checksum calculation model used.
0 Classic Checksum Model (LIN 1.3).
1 Enhanced Checksum Model (LIN 2.0).

CSE Checksum Enable. This bit control the generation and checking of the checksum byte.
0 No generation and checking of checksum byte.
1 Generation and checking of checksum byte.

CRC CRC Enable. This bit controls the generation of checking standard or enhanced LIN frames, which are described
in Section 31.4.6.2, LIN frame formats
0 Standard LIN frame generation and checking.
1 Enhanced LIN frame generation and checking.

TD Transfer Direction. This bit control the transfer direction of the data, crc, and checksum byte fields.
0 Data, CRC, and Checksum byte fields received, described in Section 31.4.6.4, LIN RX frame generation.
1 Data, CRC, and Checksum byte fields transmitted, described in Section 31.4.6.3, LIN TX frame generation.

TO Timeout Value. The content of the field depends on the transfer direction.
RX frame: Defines the time available for a complete RX frame transfer, as described in Section 31.4.6.5.5,
Slave-not-responding-error detection
TX frame: Must be set to 0.

D Transmit Data. Data bits for transmission.

eSCI_BASE + 0x0014 Read Only

0 1 2 3 4 5 6 7

R D

W

Reset 0 0 0 0 0 0 0 0

Figure 31-12. LIN receive register (eSCI_LRR)

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1354 Freescale Semiconductor

31.3.2.11 LIN CRC polynomial register (eSCI_LPR)

31.3.2.12 Control register 3 (eSCI_CR3)

This register is used to control the frame formats and the generation of the ERR bit in the SCI data register
(eSCI_DR).

Table 31-15. eSCI_LRR field descriptions

Field Description

D Receive Data. This field provides the data bytes of received LIN RX frames.

eSCI_BASE + 0x0018 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
P

W

Reset 1 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1

Figure 31-13. LIN CRC polynomial register (eSCI_LPR)

This register provides the CRC polynom for generation and processing of CRC-enhanced LIN frames.

Table 31-16. eSCI_LPR field descriptions

Field Description

P Polynomial bit xP[n]. Used to define the LIN polynomial.
Reset value results in x15 + x14 + x10 + x8 + x7 + x4 + x3 + 1, which is the polynomial used for the CAN protocol.

eSCI_BASE + 0x001A Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
EROE ERFE ERPE M2

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 31-14. Control register 3 (eSCI_CR3)

Table 31-17. eSCI_CR3 field descriptions

Field Description

3
EROE

ERR flag overrun enable.
0 eSCI_DR[ERR] flag not affected by overrun detection.
1 eSCI_DR[ERR] flag is set on overrun detection during frame reception.

2
ERFE

ERR flag frame error enable.
0 eSCI_DR[ERR] flag not affected by frame error detection.
1 eSCI_DR[ERR] flag is set on frame error detection for the data provided in eSCI_DR.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1355

1
ERPE

ERR flag parity error enable.
0 eSCI_DR[ERR] flag not affected by parity error detection.
1 eSCI_DR[ERR] flag is set on parity error detection for the data provided in eSCI_DR.

0
M2

Frame Format Mode 2. This control bit together with the M bit of the Control register 1 (eSCI_CR1) controls the
frame format used. The supported frame formats and the related settings are defines in Section 31.4.2, Frame
formats.

Table 31-17. eSCI_CR3 field descriptions (continued)

Field Description

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1356 Freescale Semiconductor

31.4 Functional description

This section provides a complete functional description of the eSCI block, detailing the operation of the
design from the end user perspective in a number of subsections.

31.4.1 Module control

The operational mode of the module is controlled by the MDIS bit in the Control register 2 (eSCI_CR2).
The module can transmit and receives data when it is enabled, i.e MDIS=0.

31.4.2 Frame formats

The eSCI module uses the standard NRZ mark/space data format. The eSCI supports three basic frame
types, which are the data frames, break characters, and idle characters.

31.4.2.1 Data frame formats

Each data frame contains a character that is surrounded by a start bit, an optional parity or address bit, and
one or two stop bits. The supported data frame formats for transmission and reception are specified in
Table 31-18. The supported data frame formats for reception only are specified in Table 31-19.

Table 31-18. Supported Data Frame Formats for RX and TX

Control Frame Content

eSCI_CR3 eSCI_CR1

Start
Bits

Payload Bits

Stop
Bits

M2 M PE WAKE
Character

Bits
Address

Bits1

1 The address bit identifies the frame as an address character. See Section 31.4.5.5, Multiprocessor communication.”

Parity
Bits

LIN byte fields (Figure 31-15)

0 0 0 0 1 8 0 0 1

SCI Frames (8 payload bits)(Figure 31-16)

0 0 0 0 1 8 0 0 1

0 0 0 1 1 7 1 0 1

0 0 1 0 1 7 0 1 1

SCI Frames (9 payload bits) (Figure 31-17)

0 1 0 0 1 9 0 0 1

0 1 0 1 1 8 1 0 1

0 1 1 0 1 8 0 1 1

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1357

The structure of the LIN byte fields in normal polarity is shown in Figure 31-15.

Figure 31-15. LIN Byte Field Format

The structures of the supported SCI frame formats with 8 payload bits are shown in Figure 31-16.

Figure 31-16. SCI Frame Formats (8 payload bits)

The structures of the supported SCI frame formats with 9 payload bits are shown in Figure 31-17.

Figure 31-17. SCI Frame Formats (9 payload bits)

The structures of the supported SCI frame formats with 2 stop bits in normal polarity are shown in
Figure 31-18. This frame format is supported for reception only.

Figure 31-18. SCI Frame Formats (2 stop bits)

Table 31-19. Supported Data Frame Formats for RX only

Control Frame Content

eSCI_CR3 eSCI_CR1

Start
Bits

Payload Bits

Stop
Bits

M2 M PE WAKE
Character

Bits
Address

Bits
Parity
Bits

SCI Frames (2 stop bits) (see Figure 31-18)

1 0 1 0 1 8 0 1 2

1 1 1 0 1 12 0 1 2

BIT0
START

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7

BIT0
START

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6

BIT0
START

BIT
ADDR

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6

BIT7

BIT0
START

BIT
PARITY

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6

BIT0
START

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7

BIT0
START

BIT
ADDR

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7

BIT8

BIT0
START

BIT
PARITY

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7

BIT0
START

BIT
PARITY

BIT
STOP

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9 BIT10 BIT11

BIT0
START

BIT
PARITY

BIT
STOP

BIT
STOP

BITBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1358 Freescale Semiconductor

31.4.2.1.1 Inverted data frame formats

The structures of the supported data frame formats in inverted polarity are shown in Figure 31-19. These
frame types are supported for reception only. The polarity of the RXD pin is controlled by the RXPOL bit
in the Control register 2 (eSCI_CR2).

Figure 31-19. Inverted SCI Frame Formats

31.4.2.2 Break character formats

The supported break character formats are specified in Table 31-20.

The structure and content of the LIN break symbols is shown in Figure 31-20.

Figure 31-20. LIN Break Symbol Format

The structure and content of the SCI break characters is shown in Figure 31-21.

Table 31-20. Supported Break Character Formats

Control1

1 All codings which are not listed are reserved and must not be used.

Break Character Content

eSCI_CR3 eSCI_CR1 eSCI_CR2
Start
Bit

Character
Bits

Delemit
Bits

M2 M BRCL

LIN Break Symbol (see Figure 31-20)

0 0 0 1 9 1

0 0 1 1 12 1

SCI Break Character (see Figure 31-21)

0 0 0 1 9 0

0 0 1 1 12 0

0 1 0 1 10 0

0 1 1 1 13 0

START
BIT

STOP
BIT

START
BIT

STOP
BIT

STOP
BIT

BIT0
START

BIT
Break

DelemitBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8

BIT0
START

BIT
Break

DelemitBIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9 BIT10 BIT11

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1359

Figure 31-21. SCI Break Character Formats

31.4.2.3 Idle character formats

An idle character is a sequence of bits with the value 1. The supported idle character formats are specified
in Table 31-21. The preamble has the same structure and content as an idle character.

The structure and content of the idle characters is shown in Figure 31-22.

Figure 31-22. Idle Character Formats

31.4.3 Baud rate and clock generation

A 13-bit modulus counter in the baud rate generator derives the baud rate for both the receiver and the
transmitter. The value written to the SBR field in the Baud Rate Register (eSCI_BRR) determines the
module clock divisor. The baud rate clock is synchronized with the bus clock and drives the receiver. The
baud rate clock divided by 16 drives the transmitter. The receiver has an acquisition rate of 16 samples per
bit time.

Table 31-21. Supported Idle Character Formats

Control
Idle Character Length

eSCI_CR3[M2] eSCI_CR1[M]

Idle Characters (see Figure 31-22)

0 0 10

0 1 11

1 0 12

1 1 16

BIT0
START

BIT BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8

BIT0
START

BIT BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9 BIT10 BIT11

BIT0
START

BIT BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9

BIT0
START

BIT BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9 BIT10 BIT11 BIT12

BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT9

BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT10BIT9

BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT10BIT9 BIT11

BIT0 BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BIT8 BIT10BIT9 BIT11 BIT12 BIT13 BIT14BIT14

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1360 Freescale Semiconductor

The baud rate generator is enabled when the TE bit or RE bit in the Control register 1 (eSCI_CR1) is set
to 1 for the first time. The baud rate generator is disabled when SBR = 0.

Baud rate generation is subject to one source of error:

• Integer division of the module clock may not give the exact required target baud rate.

Figure 31-22 lists some examples of achieving target baud rates with a module clock frequency of
MCLK = 10.2 MHz.

31.4.3.1 Module clock

The module clock MCLK is derived from the system bus clock. It has the same phase and frequency.

31.4.3.2 Transmitter clock

The transmitter clock TCLK is used to drive the data to the serial bus via the TXD pin. It is derived from
the system bus clock by the baud rate generator. The baud rate generator is controlled by the value of the
SBR field in the Baud Rate Register (eSCI_BRR). The frequency of the transmitter clock is determined
by Equation 31-1 and defines the length of the transmitted bits, which is denoted as the bit time.

Eqn. 31-1

31.4.3.3 Receiver clock

The receiver clock RCLK is used to sample the data received on the RXD or TXD pin. It is derived from
the system bus clock by the baud rate generator. The baud rate generator is controlled by the value of the
SBR field in the Baud Rate Register (eSCI_BRR). The frequency of the receiver sample clock is
determined by Equation 31-2.

Eqn. 31-2

Table 31-22. Baud Rates Error Example (MCLK = 10.2 MHz)

eSCI_BRR[SBR] RCLK (Hz) TCLK (Hz) Target Baud Rate Error (%)

17 600,000.0 37,500.0 38,400 2.3

33 309,090.9 19,318.2 19,200 .62

66 154,545.5 9659.1 9600 .62

133 76,691.7 4793.2 4800 .14

266 38,345.9 2396.6 2400 .14

531 19,209.0 1200.6 1200 .11

1062 9604.5 600.3 600 .05

2125 4800.0 300.0 300 .00

4250 2400.0 150.0 150 .00

5795 1760.1 110.0 110 .00

fTCLK

fMCLK

16 SBR
----------------------=

fRT

fMCLK

SBR
---------------=

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1361

The frequency of the receiver clock is 16 times the frequency of the transmitter clock, this each bit is
sampled with 16 samples. Each of the 16 samples of a bit has a sample number assigned, which is defined
by the receiver sample counter RSC. The n-th sample is denoted by RSn. The receiver sample counter RSC
is updated with each rising edge of the receiver clock RCLK.

31.4.4 Baud rate tolerance

A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated
bit time misalignment can cause one of the three stop bit data samples RS8, RS9, and RS10 to fall outside
the actual stop bit. A noise error will occur if the stop bit sample RS8, RS9, and RS10 samples are not all
the same logical value 1. A framing error will occur if the receiver clock is misaligned in such a way that
the majority of the RS8, RS9, and RS10 stop bit samples are a logic zero.

31.4.4.1 Faster receiver tolerance

In this case the receiver has a higher baud rate than the transmitter, thus the stop bit sampling starts already
in the last transmitted payload bit. To ensure the correct, noise and framing error free reception of the stop
bit, the samples RS8, RS9, and RS10 must be located in the transmitted stop bit as shown in Figure 31-23.

Figure 31-23. Faster Receiver

The maximum tolerance that ensures error free reception can be calculated with the assumption, that RS7
is sampled during the last transmitted payload bit and RS8 is sampled in the stop bit.

For an frame with n payload bits the transmitter starts the transmission of the stop bit

Eqn. 31-3

after the start of the transmission of the start bit.

For an frame with n payload bits the receiver samples the RS8 sample of the stop bit

Eqn. 31-4

after the successful qualification of the start bit.

To ensure error free reception of the stop bit, the transmitter must start the transmission of the stop bit
before the receiver samples RSC8.

Eqn. 31-5

RCLK

START BIT

RXD

START BIT
QUALIFICATION

6 7 8 21 3RSC 8 9 10

DATA
VOTING

PAYLOAD STOP BIT

6 7

txSTOP n 1+ = 16 RTTR 

rxSTOP n 1+ = 16 RTRE 7 RTRE+ 

txSTOP rxSTOP

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1362 Freescale Semiconductor

The maximum percent difference between the receiver baud rate and the transmitter baud rate is:

Eqn. 31-6

The maximum percent differences for the supported frames is given in Table 31-23

31.4.4.2 Slower receiver tolerance

In this case the receiver has a slower baud rate than the transmitter, thus the stop bit sampling is still
running while the next start bit is already transmitted. To ensure the correct, noise and framing error free
reception of the stop bit, the samples RS8, RS9, and RS10 must be located in the transmitted stop bit as
shown in Figure 31-24.

Figure 31-24. Slower Receiver

The maximum tolerance that ensures error free reception can be calculated with the assumption, that RS11
is sampled in the transmitted start bit and RS10 is sampled in the last stop bit.

For an frame with n payload bits and s stop bits, the transmitter starts the transmission of the next start bit

Eqn. 31-7

after the start of the transmission of the previous start bit.

For an frame with n payload bits and s stop bits, the receiver samples the RS10 sample of the last stop bit

Eqn. 31-8

after the successful qualification of the start bit.

To ensure error free reception of the last stop bit, the transmitter must start the transmission of the start bit
after the receiver samples RS10.

Eqn. 31-9

Table 31-23. Faster Receiver Maximum Tolerance

payload bits max baudrate difference txSTOP rxSTOP

8 4.63% 144 151

9 4.19% 160 167

13 3.03% 224 231

baudrate
rxSTOP txSTOP–

rxSTOP
--------------------------------------- 
  100

RCLK

START BIT

RXD

START BIT
QUALIFICATION

6 7 8 21 3RSC 8 9 10

DATA
VOTING

LAST STOP BIT

11

txSTART n s 1+ + = 16 RTTR 

rxSTOP n s+ = 16 RTRE 9 RTRE+ 

rxSTOP txSTART

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1363

The maximum percent difference between the receiver baud rate and the transmitter baud rate is:

Eqn. 31-10

The maximum percent differences for the supported frames is given in Table 31-24

31.4.5 SCI mode

31.4.5.1 SCI mode configuration

The application must configure the following bits and fields in order to achieve correct SCI operation.

• enable SCI Mode

– LIN Control Register 1 (eSCI_LCR1)[LIN]:= 0

• select baud rate

– Baud Rate Register (eSCI_BRR)[SBR]

• select receiver input mode

– Control register 1 (eSCI_CR1)[LOOPS]

– Control register 1 (eSCI_CR1)[RSRC]

• select frame format

– Control register 1 (eSCI_CR1)[M]

– Control register 1 (eSCI_CR1)[PE]

– Control register 1 (eSCI_CR1)[WAKE]

– Control register 3 (eSCI_CR3)[M2]

• select parity type

– Control register 1 (eSCI_CR1)[PT]

31.4.5.2 Transmitter

The transmitter supports the transmission of all frame types defined in Table 31-18, of all break characters
defined in Table 31-20, and of all idle characters defined in Table 31-21.

31.4.5.2.1 Transmitter states and transitions

The transmitter has four basic states which are shown and described in Table 31-25. The state transitions
that can triggered by the application commands are shown in Table 31-26. The state transitions that can

Table 31-24. Slower Receiver Maximum Tolerance

payload bits stop bits max baudrate difference rxSTOP txSTART

8 1 4.37% 153 160

9 1 3.97% 169 176

9 2 3.57% 185 196

13 2 2.73% 249 256

baudrate
txSTART rxSTOP–

txSTART
-- 
  100

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1364 Freescale Semiconductor

triggered by the module are shown in Table 31-27. The state diagram of the transmitter is shown in
Figure 31-25.

Figure 31-25. Transmitter State Diagram

The current state of the transmitter can be determined by the TE control bit in the Control
register 1 (eSCI_CR1) and the TACT status bit in Interrupt Flag and Status Register 1 (eSCI_IFSR1).

The application triggers a transition described in Table 31-26 when it issues a command by writing to the
TE bit in the Control register 1 (eSCI_CR1). The transition is triggered only if the conditions are fulfilled.
As a result of the transition the state of the transmitter is changed as shown in Figure 31-25 and the action
given in Table 31-26 is executed.

The module transition shown in Table 31-27 are triggered when the described condition or event occurs.
The send break bit SBK in the Control register 1 (eSCI_CR1) is check for the start condition. The internal
commit bit iCMT, the transmitter active bit TACT in the Interrupt Flag and Status Register 1
(eSCI_IFSR1), the TDRE, and the TC flag in the Interrupt Flag and Status Register 1 (eSCI_IFSR1) are
changed as a action result of the transition.

Table 31-25. Transmitter States

State
Indication

Description
eSCI_CR1[TE] eSCI_IFSR1[TACT]

Idle 0 0 Transmitter is disabled and no transmission is running

Ready 1 0 Transmitter is enabled and no transmission is running

Run 1 1 Transmitter is enabled and transmission is running

Stop 0 1 Transmitter is disabled and transmission is running

Table 31-26. Transmitter Application Transitions

Transition Command Precondition Action Description

EN eSCI_CR1[TE]:=1 eSCI_CR1[TE]=0 iPRE:=1 Transmitter is enabled by application command.

DIS eSCI_CR1[TE]:=0 eSCI_CR1[TE]=1 Transmitter is disabled by application command

Ready

EN

start

Idle

RESET_STATE

Run

Stop

DIS

DIS
EN

halt

done

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1365

31.4.5.2.2 Frame and character transmission

The transmitter starts the transmission of a data frame or special character when the condition for the start
transition as described in Table 31-27 is fulfilled. There are three source for data or character transmission.
The priority among these source are specified in Table 31-28. All three sources can be available at one
point in time.

31.4.5.2.3 CPU controlled SCI data frame transmission

The transmission of a data frame is started when the transmitter is in its Ready state and only the commit
bit iCMT is set.

As the first step, the content of the SCI data register (eSCI_DR) is transferred into the internal transmitter
shift register. When this transfer is finished, the internal commit bit iCMT is cleared and the transmit data
register empty flag TDRE in the Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set. If the transmit
interrupt enable bit TIE in the Control register 1 (eSCI_CR1) is also set, the TDRE flag generates a
transmitter interrupt request.

The transmitter shift register then shifts a frame out through the TXD output signal, which is prefaced with
a start bit and appended with the parity bit, if configured, and the configured number of stop bits.

When the last stop bit has been transmitted and the application has not disabled the transmitter, the
transmitter returns to the Ready state via the done transition. If no frame or character transmit request is
pending, the transfer complete flag TC in the Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set.

Table 31-27. Transmitter Module Transitions

Transition Condition Action Description

start (State=Ready)
and

(SBK=1 or iPRE=1 or
iCMT=1)

TACT:=1 Start of transmission of data frame or special
character when data are available or character
transmission request is pending.

done State=Run
and

last stop bit transmitted

TACT:=0
TC:=

(SBK=0 & iPRE=0 &
iCMT=0)

Finished transmission of data frame or special
character and transmitter still enabled.
Transmission is complete if no transmit request is
pending.

halt State=Stop
and

last stop bit transmitted

TACT:=0
TC:=1

iCMT:=0

Finished transmission of data frame or special
character and transmitter was disabled.

Table 31-28. Transmit Source Priority

Priority Indication Transmission Source

(highest) 0 iPRE=1 Preamble.

1 eSCI_CR1[SBK]=1 Break character.

(lowest) 2 iCMT=1 SCI data register (eSCI_DR) frame.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1366 Freescale Semiconductor

If the application has disabled the transmitter while the frame is transmitted and stop bit has been
transmitted, the transmitter goes into the Idle state via the halt transition. The transfer complete flag TC in
the Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set and the internal commit bit iCMT is cleared.

31.4.5.2.4 DMA controlled SCI data frame transmission

In this mode, the eSCI module handles the generation of Data Frames internally.

When new data required for transmission, the module generates the transmit DMA request and the DMA
controller delivers the required data via write accesses to SCI data register (eSCI_DR). The write access
to the low byte of SCI data register (eSCI_DR) triggers the transmission of the data. The write access to
the high byte of SCI data register (eSCI_DR) triggers no internal operation.

The application request the eSCI module to enter this mode by setting the TXDMA bit in the Control
register 2 (eSCI_CR2). From this point in time, the module start the generation of DMA requests and frame
transmission. Before entering this mode, the application should perform the following actions:

1. Configure the module for SCI mode.

2. Enable the transmitter by setting TE in Control register 1 (eSCI_CR1) to 1.

3. Setup the DMA controller channel and provide frame data in system memory

A block diagram which presents an overview of the DMA Controlled Date Frame Transmission is shown
in Figure 31-26.

Figure 31-26. DMA Controlled SCI Data Frame generation

31.4.5.2.5 Parity generation

The eSCI module generates the parity bit in transmitted data frame when the parity enable bit PE in the
Control register 1 (eSCI_CR1) is set. The parity type bit PT in the Control register 1 (eSCI_CR1) defines
whether the odd or even parity is generated.

DMA
Controller

eSCI

TX DMA
channel

DATA 2

DATA N

System Memory

DATA 1 DATA N

SCI Data frame

DATA 1

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1367

31.4.5.2.6 Preamble transmission

The transmission of a preamble is started when the transmitter is in Ready state, the internal iPRE bit,
which is not visible to the application, is set, and the SBK in the Control register 1 (eSCI_CR1) is clear.

After the transmission of the stop bit and if the application has not disabled the transmitter, the transmitter
returns to the Ready state via the done transition. If no frame or character transmit request is pending, the
transfer complete flag TC in the Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set.

If the application has disabled the transmitter while the preamble is transmitted and if the stop bit has been
transmitted, the transmitter goes into the Idle state via the halt transition. The transfer complete flag TC in
the Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set and the internal commit bit iCMT is cleared.

31.4.5.2.7 Break character transmission

The transmission of a break character is started when the transmitter is in Ready state and the send break
character bit SBK in the Control register 1 (eSCI_CR1) is set. After the transmission of the break character
and if the application has not disabled the transmitter, the transmitter returns to the Ready state via the done
transition and restarts the transmission. As long as SBK bit remains set, the transmitter continues to send
break characters.

When the application has cleared the SBK bit or has disabled the transmitter, the transmitter continues to
transmit the current break character and after it has finished the transmission of this break character it
transmits a stop bit. The stop bit at the end of a break character sequence guarantees the recognition of the
start bit of the next data frame.

After the transmission of the stop bit and if the application has not disabled the transmitter, the transmitter
returns to the Ready state via the done transition. If no frame or character transmit request is pending, the
transfer complete flag TC in the Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set.

If the application has disabled the transmitter while the break character is transmitted and if the stop bit
has been transmitted, the transmitter goes into the Idle state via the halt transition. The transfer complete
flag TC in the Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set and the internal commit bit iCMT
is cleared.

31.4.5.3 Receiver

The receiver supports the reception of all data frame types defined in Table 31-18 and Table 31-19, of all
break character defined in Table 31-20, and of all idle characters defined in Table 31-21.

31.4.5.3.1 Receiver states and transitions

The receiver has four basic states which are shown and described in Table 31-26. The state transitions that
can triggered by the application commands are shown in Table 31-26. The state transitions that can
triggered by the module are shown in Table 31-27. The state diagram of the transmitter is shown in
Figure 31-25.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1368 Freescale Semiconductor

Figure 31-27. Receiver State Diagram

The current state of the receiver can be determined by the RE and RWU bit in the Control
register 1 (eSCI_CR1) and the RACT status bit in Interrupt Flag and Status Register 1 (eSCI_IFSR1).

The application triggers a transition described in Table 31-30 when it issues a command by writing to the
RE bit in the Control register 1 (eSCI_CR1). The transition is triggered only if the conditions are fulfilled.
As a result of the transition the state of the receiver is changed as shown in Figure 31-27 and the action
given in Table 31-30 is executed.

The module transitions shown in Table 31-31 are triggered when the described event occurs.

Table 31-29. Receiver States

State
Indication

Description
RE RACT RWU

Idle 0 0 0 Receiver is disabled and no reception is running

Ready 1 0 0 Receiver is enabled and no reception is running

Run 1 1 0 Receiver is enabled and reception is running

Wake-up 1 - 1 Receiver is in wake-up mode

Table 31-30. Receiver Application Transition

Transition Command Condition Action Description

EN RE:=1 RE=0 Receiver is enabled by application command.

DIS RE:=0 RE=1 Receiver is disabled by application command

SLP RWU:=1 RE=1 Receiver is set into wake-up mode

Ready

EN

start

Idle

RESET_STATE

DISDIS

doneRun

Wake-Up

SLP SLP
wake0wake1

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1369

31.4.5.3.2 Receiver input mode selection

This section describes the three receiver input modes supported by the eSCI module. The modes are
selected by the LOOPS and RSRC control bits in the Control register 1 (eSCI_CR1).

31.4.5.3.3 Dual wire mode

In Dual Wire Mode, the eSCI uses the TXD pin for transmitting and the RXD pin for data receiving.

Figure 31-28. Dual Wire Mode

31.4.5.3.4 Single wire mode

In Single Wire Mode, the RXD pin is disconnected from the eSCI module and the TXD pin is used for
both receiving and transmitting.

Figure 31-29. Single Wire Mode

Table 31-31. Receiver Module Transition

Transition Condition Action Description

start (State=Ready,Run)
and

(start bit qualified)

RACT:=1 Start of reception of data frame or break character.

done (State=Run)
and

(start bit not verified or
idle character received)

RACT:=0 Start Bit not Verified or Idle Character received.

wake0 (State=Wake-up)
and

(idle character received)

RWU:=0 Wake-up Idle Character received.

wake1 (State=Wake-up)
and

(address frame received)

RWU:=0 Wake-up address frame received.

RXD

TRANSMITTER

RECEIVER

TXD

TRANSMITTER

RECEIVER RXD

TXD

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1370 Freescale Semiconductor

31.4.5.3.5 Loop mode

In Loop Mode, the input of the receiver is driven by the output of the transmitter. The RXD pin is
disconnected from the eSCI module.

Figure 31-30. Loop Mode

31.4.5.3.6 Frame and character reception

The receiver is started when it is in Ready or Wake-up state and on the selected receiver input (see
Section 31.4.5.3.2, Receiver input mode selection”) an active signal is sampled. The receiver enters the
Run or Wake-up state. The received bits are recovered by the bit sampling described in
Section 31.4.5.3.13, Bit sampling”. During the reception, the received bits are shifted into the internal shift
register.

31.4.5.3.7 Break character detection

The receiver does not provide any means to detect the reception of a break character. Instead, break
characters are processed as data frames. Due to the received 0 at the stop bit location, the reception of a
break character causes at least a framing error. The error reporting is performed as described in
Section 31.4.5.4, Reception error reporting”.

31.4.5.3.8 Idle character detection

The Idle character detection starts after the reception of the last stop bit.

31.4.5.3.9 CPU controlled SCI data frame reception

This section describes the reception process when the receiver is in the Run state.

When the required number of frame bits have been received, the payload bits of the received frame are
transferred into SCI data register (eSCI_DR) if the RDRF flag is 0. The receive data register full flag
RDRF in Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set. If the receive interrupt enable bit RIE
in the Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set, the RDRF interrupt request is generated.

If an idle character has been detected, the IDLE flag in the Interrupt Flag and Status Register 1
(eSCI_IFSR1) is set. If the idle line interrupt enable bit ILIE in the Control register 1 (eSCI_CR1) is set,
the IDLE interrupt request is generated.

If any of the receiver errors described in Section 31.4.5.4, Reception error reporting” have been occurred,
that corresponding flags will be set.

TRANSMITTER

RECEIVER RXD

TXD

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1371

If the application disabled the receiver by clearing the receiver enable bit RE in the Interrupt Flag and
Status Register 1 (eSCI_IFSR1) the current frame is discarded and no flags will be updated.

31.4.5.3.10 DMA controlled SCI data frames reception

In this mode, the eSCI module controls the reception of SCI Data frames automatically and utilizes the
connected DMA channels. A block diagram which presents an overview of the DMA Controlled SCI Data
Frame reception is shown in Figure 31-31. The RX DMA channel is used to transfer the received frame
data into the memory.

When new data was received, the module generates the receive DMA request and the DMA controller
retrieves the provided data from the SCI data register (eSCI_DR). The read access from the low byte of
the SCI data register (eSCI_DR) signals the end of the DMA cycle for the current data and triggers the
reception of new data. The read access from the SCI data register (eSCI_DR) triggers no internal action.

The application request the eSCI module to enter this mode by setting the RXDMA bit in the Control
register 2 (eSCI_CR2). From this point in time, the module start the generation of DMA requests and frame
transmission and reception. Before entering this mode, the application should perform the following
actions:

1. Configure the module for SCI mode.

2. Enable the receiver by setting RE in Control register 1 (eSCI_CR1) to 1.

3. Setup the DMA controller channel.

Figure 31-31. DMA Controlled SCI Data Frame Reception

31.4.5.3.11 Receiver overrun

When the eSCI module has received a frame and attempts to transfer the payload data of the received frame
into the SCI data register (eSCI_DR) but neither the application nor the DMA controller has read the SCI
data register (eSCI_DR) since its last update, the overrun flag OR in the Interrupt Flag and Status Register
1 (eSCI_IFSR1) is set. The data contained in SCI data register (eSCI_DR) are not changed and the
received data are lost.

DMA
Controller

eSCI

System Memory

DATA 1 DATA N

SCI Data frame

RX DMA
channel

DATA 2

DATA N

DATA 1

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1372 Freescale Semiconductor

31.4.5.3.12 Wake-up frame reception

This section describes the reception process when the receiver is in the Wake-up state.

When the required number of frame bits have been received, the payload bits of the received frame are
transferred into SCI data register (eSCI_DR) if the RDRF flag is 0.

If the address-mark wake-up mode is selected and the received frame has the address bit set, the receive
data register full flag RDRF in Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set. If the receive
interrupt enable bit RIE in the Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set, the RDRF interrupt
request is generated. The RWU bit is cleared, and the receiver enters the Run state via the wake1 transition.

If the idle line wake-up mode is selected and the receiver has detected an idle character, The RWU bit is
cleared, and the receiver enters the Ready state via the wake0 transition.

If any of the receiver errors described in Section 31.4.5.4, Reception error reporting” have been occurred,
that corresponding flags will be set.

31.4.5.3.13 Bit sampling

The receiver samples the selected receiver input (see Section 31.4.5.3.2, Receiver input mode selection”)
with the receiver clock RCLK. The bit sampling for start bit detection is shown in Figure 31-32, the bit
sampling for data and stop bit reception is shown in Figure 31-33. The samples indicated by dashed arrows
are not used by the receiver. The received data bits are transferred into the internal shift register after the
data strobing. If noise or framing errors were detected, this is flagged as described in Section 31.4.5.4,
Reception error reporting”

31.4.5.3.14 Bit synchronization

To adjust for baud rate mismatch, a synchronization of the cyclic receive sample counter RSC is performed
during start bit reception as described in Section 31.4.5.3.15, Start Bit Sampling”.

31.4.5.3.15 Start Bit Sampling

Figure 31-32. Start Bit Sampling and Strobing

The sampling of the start bit consists of three phases, the start bit qualification, the start bit verification,
and the start bit noise detection.

Sampled Value

RCLK

START BITReceiver Input

START BIT
QUALIFICATION

1111 1 0 0 0 000 0

6 7 8 9 10 1 2

sample counter reset

3RSC 4 5 6 7

0

8 9 10 11 12 13 14 15 16 1

0 0

START BIT
VERIFICATION

START BIT NOISE
DETECTION

data strobing

0 100 10 0 0

2

sample counter wrap

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1373

Start bit qualification

To adjust for baud rate mismatch, the cyclic receive sample counter RSC is re-synchronized after a
successful start bit qualification.

A start bit is successfully qualified if

• the start qualification is active, and

• a low sample is read, and

• the low sample was preceded by three consecutive high samples.

The start bit qualification becomes active

• after module reset, or

• after receiver disable and subsequent enable, or

• after the 7-th sample if the start bit verification failed, or

• after the 10-th sample of last stop bit of the preceding frame (example shown in Figure 31-32).

The start bit qualification becomes inactive

• after successful start bit qualification.

Start bit verification

After the successful start bit qualification the receiver starts to verify the start bit by a two out of three
samples majority voting.

A start bit is verified if at least two out of the three sample RSC3, RSC5, and RSC7 are sampled low. Noise
is detected when exactly one out of the three samples is high. In this case, the noise flag eSCI_IFSR1[NF]
is set. The result of the start bit verification is summarized in Table 31-32.

If the start bit verification was not successful, the receiver activates the start bit qualification. If the start
bit verification was successful, the receiver continues sampling to perform data noise detection on the
samples at RSC8, RSC9, and RSC10. The result of the start bit data noise detection is summarized in
Table 31-33. If noise is detected, the noise flag eSCI_IFSR1[NF] is set.

Table 31-32. Start Bit Verification Result

[RSC3, RSC5, RSC7] Start Bit Verified Verification Noise Detected

000 Yes No

001 Yes Yes

010 Yes Yes

100 Yes Yes

011 No No

101 No No

110 No No

111 No No

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1374 Freescale Semiconductor

31.4.5.3.16 Data bit sampling

Figure 31-33. Data and Stop Bit Sampling and Strobing

To determine the value of a data bit and to detect noise, a two out of three majority voting is performed on
the samples RSC8, RSC9, and RSC10. Table 31-34 summarizes the results of the data bit sample. The
receiver detects the number of data bit according to the selected frame format. If noise is detected, the noise
flag eSCI_IFSR1[NF] is set.

Table 31-33. Start Bit Noise Detection

[RSC8, RSC9, RSC10] Noise Detected

000 No

001 Yes

010 Yes

100 Yes

011 Yes

101 Yes

110 Yes

111 Yes

Table 31-34. Data Bit Sampling

[RSC8, RSC9, RSC10] Data Bit Value Noise Detected

000 0 No

001 0 Yes

010 0 Yes

100 0 Yes

011 1 Yes

101 1 Yes

Sampled Value

RCLK

DATA / STOP BITReceiver Input

1111 1 0 0 0 000 0

2 3RSC 4 5 6 7

0

8 9 10 11 12 13 14 15 16 1

0 0

DATA
VOTING

data strobing

0 100 10 0 0

2

sample counter wrap

112 13 14 15 16

sample counter wrap

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1375

31.4.5.3.17 Stop bit verification

The reception of a valid stop bit is verified if at least two out of the sample RSC8, RSC9, and RSC10 are
sampled high. If this is not that case, a framing error is detected. Noise is detected if not all of the samples
are of the same value. In this case, the noise flag eSCI_IFSR1[NF] is set. The result of the stop bit
verification is summarized in Table 31-35.

31.4.5.3.18 Parity checking

The eSCI module calculates the parity of a received character and checks is versus the received parity bit
in the received data frame when the parity enable bit PE in the Control register 1 (eSCI_CR1) is set. The
parity type bit PT in the Control register 1 (eSCI_CR1) defines whether to check for odd or even parity is
generated. If an parity error is detected, this is reported as described in Section 31.4.5.4, Reception error
reporting”.

31.4.5.4 Reception error reporting

The receiver can detect four error types: parity errors, framing errors, noise errors, and the overrun error.

The receiver reports the errors detected during frame reception at the end of the reception of the last stop
bit of a frame. For error reporting the receiver utilizes the OR, NF, FE, and PF flags in the Interrupt Flag
and Status Register 1 (eSCI_IFSR1).

If the receiver has detected an overrun as described in Section 31.4.5.3.11, Receiver overrun”, only the OR
flag is set. All other error flags are not updated.

If the receiver has detected noise as described in Section 31.4.5.3.13, Bit sampling” the NF flag is set.

110 1 Yes

111 1 No

Table 31-35. Stop Bit Verification

[RSC8, RSC9, RSC10] Stop Bit Verified Framing Error Detected Noise Detected

000 No Yes No

001 No Yes Yes

010 No Yes Yes

100 No Yes Yes

011 Yes No Yes

101 Yes No Yes

110 Yes No Yes

111 Yes No No

Table 31-34. Data Bit Sampling (continued)

[RSC8, RSC9, RSC10] Data Bit Value Noise Detected

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1376 Freescale Semiconductor

If the receiver has not detected an overrun and has detected a framing error as described in
Section 31.4.5.3.13, Bit sampling” the FE flag is set.

If the receiver has not detected an overrun and has detected a parity error as described in
Section 31.4.5.3.18, Parity checking” the PF flag is set.

31.4.5.5 Multiprocessor communication

The multiprocessor communication allows one processor to send blocks of frames to other processors on
the same serial link. To avoid the received data interrupt for frames not intended for the processor, the eSCI
receiver can be put into the Wake-up state. If the receiver is in the Wake-up state, the eSCI will still load
the received data into the SCI data register (eSCI_DR), but will not set the RDRF flag and consequently
not request the RDRF interrupt.

The receiver leaves the Wake-up state and clears the RWU bit in the Control register 1 (eSCI_CR1) when
the wake-up pattern configured by WAKE bit in Control register 1 (eSCI_CR1) is received. The eSCI
module supports two types of wake-up patterns, the idle-line wakup pattern and the address-mark wake-up
pattern.

31.4.5.5.1 Idle-Line wake up

The idle-line wake-up mode is selected when the WAKE bit in Control register 1 (eSCI_CR1) is 0. In this
mode, the receiver leaves the wake-up state, when an idle character is detected as described in
Section 31.4.5.3.8, Idle character detection”. The next received frame is the address frame that contains
address information which can be evaluated by the application. If the application decides not to receive the
frame block, it can set the RWU bit in the Control register 1 (eSCI_CR1) and return the receiver to the
wake-up state.

Figure 31-34. Idle-Line Wake Up

31.4.5.5.2 Address-Mark wake up

The address-mark wake-up mode is selected when the WAKE bit in Control register 1 (eSCI_CR1) is 1.
If the WAKE bit is set, the address bit is added to the frame format. In this mode, the receiver leaves the
wake-up state, when a data frame with the address bit value of 1 was received. This frame is the address
frame and contains address information which can be evaluated by the application. If the application
decides not to receive the frame block, it can set the RWU bit in the Control register 1 (eSCI_CR1) and
return the receiver to the wake-up state. All data frames that belong to the frame block must have the
address bit cleared.

Figure 31-35. Address-Mark Wake Up

Frame Block Frame BlockIdle Character

Receiver Wake Up

Address Frame

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1377

31.4.6 LIN mode

The eSCI provides support for the LIN protocol. It can be used to automate most tasks of a LIN master. In
conjunction with the DMA interface it is possible to transmit entire LIN frames and sequences of LIN
frames as well as to receive data from LIN slaves without application intervention. There is no special
support for LIN slave mode.

31.4.6.1 LIN mode configuration

The application must configure the following bits and fields in order to achieve correct LIN operation. The
configuration of bits and fields not mentioned in this section depend on the connected LIN slaves and the
current application.

• enable LIN Mode

– LIN Control Register 1 (eSCI_LCR1)[LIN]:= 1

• select RXD pin as receiver input

– Control register 1 (eSCI_CR1)[LOOPS]:= 0

– Control register 1 (eSCI_CR1)[RSRC]:= 0

• select LIN byte fields as used frame format

– Control register 1 (eSCI_CR1)[M]:= 0

– Control register 1 (eSCI_CR1)[PE]:= 0

– Control register 1 (eSCI_CR1)[WAKE]:= 0

– Control register 3 (eSCI_CR3)[M2]:= 0

• select break character length of 13 bit as required by LIN 2.0

– Control register 2 (eSCI_CR2)[BRCL]:= 1

• select transmission stop on bit error detection

– Control register 2 (eSCI_CR2)[BESTP]:= 1

• select transmission DMA stop on bit error detection

– Control register 2 (eSCI_CR2)[BSTP]:= 1

• enable both transmitter and receiver

– Control register 1 (eSCI_CR1)[TE]:= 1

– Control register 1 (eSCI_CR1)[RE]:= 1

Frame Block Frame Block

Receiver Wake Up

Address Frame
(ADDR BIT = 1)

Address Frame
(ADDR BIT = 1)

Receiver Wake Up

ignored idle times

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1378 Freescale Semiconductor

31.4.6.2 LIN frame formats

The term LIN frame refers to a sequence of LIN byte fields preceded by a break character, both are
described in Section 31.4.2, Frame formats”. The eSCI module allows to generate LIN frames for LIN
slaves of LIN standards 1.3 and 2.0.

31.4.6.2.1 LIN byte field reception

The reception of a LIN byte field starts with the successful start bit qualification and is finished with the
reception of the 16-th sample of the stop bit when no start bit start bit qualification pattern has been
detected. If a start bit start bit qualification pattern has been detected at or after the 10-th sample of the stop
bit, the reception ends at this sample. An ongoing reception is indicated by the RACT status bit in Interrupt
Flag and Status Register 1 (eSCI_IFSR1).

The RACT flag is set if all of the following conditions are fulfilled,

1. the receiver is enabled (eSCI_CR1[RE] = 1), and

2. the LIN task is not in reset (eSCI_LCR1[LRES] = 0), and

3. the start bit start bit qualification pattern has been received (see Section 31.4.5.3.15, Start Bit
Sampling”).

The RACT flag is cleared if at least one of the following conditions is fulfilled,

1. the receiver is disabled (eSCI_CR1[RE] = 0), or

2. the LIN task is in reset (eSCI_LCR1[LRES] = 1), or

3. the start bit verification fails at sample 7 according to Table 31-32, or

4. the 16-th sample of the stop bit has been received and no start bit qualification pattern has been
detected at or after the 10-th sample.

31.4.6.2.2 Standard LIN frames

A standard LIN frame, shown in Figure 31-36 consists of a break character, a sync field, an ID field, zero
or more data fields, and a checksum field. The data fields and the checksum field are generated by the LIN
master for TX LIN frames and generated by the LIN slave for RX LIN frames. The header fields will
always be generated by the LIN master.

Figure 31-36. Standard LIN frame format

31.4.6.2.3 CRC Enhanced LIN frames

The CRC Enhanced LIN frames shown in Figure 31-37 contain two additional CRC byte fields. These
fields are located between the last data field and the Checksum field. The value of the CRC is calculated
on the same byte fields as the Checksum is calculated on. The polynom used for the CRC calculation is
defined by LIN CRC polynomial register (eSCI_LPR). The eSCI module generates the CRC fields for TX
frames and checks the CRC fields for RX frames if the CRC bit in the LIN transmit register (eSCI_LTR)
was written with a value of 1.

Break Synch Identifier Data 1 Data 2 Data N Checksum

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1379

Figure 31-37. CRC Enhanced LIN frame format

The CRC Enhanced LIN frames are not part of the LIN standard.

31.4.6.3 LIN TX frame generation

The eSCI module supports two modes of LIN TX Frame generation, the CPU controlled mode and the
DMA controlled mode. In the CPU controlled mode, the application provides the required frame
configuration and frame data by subsequent CPU write accesses to the LIN transmit register (eSCI_LTR).
In the DMA controlled mode, the DMA controller provides the required frame configuration and frame
data in response to DMA requests generated by the eSCI module.

31.4.6.3.1 CPU controlled LIN TX frame generation

In this mode, the application initiates the generation of an LIN TX Frame and provides the data to be
transmitted by a sequence of subsequent CPU write accesses to the LIN transmit register (eSCI_LTR).
When the eSCI module has processed the data written into LIN transmit register (eSCI_LTR), the TXRDY
interrupt flag in the Interrupt Flag and Status Register 2 (eSCI_IFSR2) will be set.

The application should clear the TXRDY interrupt flag before writing data into the LIN transmit register
(eSCI_LTR) because the eSCI module will set the TXRDY one clock cycle after the write access.

The first data written to the LIN transmit register (eSCI_LTR) provides the Identifier and Identifier Parity
fields. The second data written defines the number of data bytes to be transmitted. The third data written
defines the CRC and checksum generation. The TD bit has to set to 1 in order to invoke the LIN TX frame
generation. The value of the TO field is ignored by the eSCI module for LIN TX frames.

After the third data was written the generation of a LIN TX frame is started. Firstly, a break field is
transmitted, then the synch field and the protected identifier field.

All subsequent write accesses to the LIN transmit register (eSCI_LTR) provide data bytes to be transmitted
via the LIN bus. A data byte field will be transmitted as soon as data are available. After the last data byte,
defined by the value written to the LEN field, was send out, the configured CRC and checksum fields will
be send out.

After the transmission of the checksum field of the LIN TX frame, the write access counter for the LIN
transmit register (eSCI_LTR) is reset and the FRC interrupt flag in the Interrupt Flag and Status Register
2 (eSCI_IFSR2) is set.

31.4.6.3.2 DMA Controlled LIN TX frame generation

In this mode, the eSCI module controls the generation of an LIN TX Frame. When new data required for
transmission, the eSCI module generates the transmit DMA request and the DMA controller delivers the
required data. The application request the eSCI module to enter this mode by setting the TXDMA bit in
the Control register 2 (eSCI_CR2). From this point in time, the module start the generation of DMA

Break Synch Identifier Data 1 Data 2 Data N ChecksumCRC1 CRC2

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1380 Freescale Semiconductor

requests and initiates the frame transmission. Before entering this mode, the application should perform
the following actions:

1. Configure the module for LIN mode.

2. Enable the transmitter by setting TE in Control register 1 (eSCI_CR1) to 1.

3. Setup the DMA controller channel and provide frame data in system memory

A block diagram which presents an overview of the DMA Controlled LIN TX Frame is shown in
Figure 31-38. The content of the fields in the memory is the same as described in LIN transmit register
(eSCI_LTR) - LIN TX frame generation.

Figure 31-38. DMA Controlled LIN TX Frame generation

31.4.6.4 LIN RX frame generation

The eSCI module supports two modes of LIN RX Frame generation and reception, the CPU controlled
mode and the DMA controlled mode. In the CPU controlled mode, the application provides the required
data by subsequent CPU write accesses to the LIN transmit register (eSCI_LTR) and retrieves the received
data by subsequent CPU read accesses to the LIN receive register (eSCI_LRR). In the DMA controlled
mode, the DMA controller provides the required frame configuration data in response to DMA requests
generated by the eSCI module and transfers the received frame data to the memory in response to DMA
requests generated by the eSCI module.

31.4.6.4.1 CPU Controlled LIN RX frames generation

In this mode, the application initiates the generation of an LIN RX Frame by a sequence of subsequent
CPU write accesses to the LIN transmit register (eSCI_LTR). When the eSCI module has processed the
data written into LIN transmit register (eSCI_LTR), the TXRDY interrupt flag in the Interrupt Flag and
Status Register 2 (eSCI_IFSR2) will be set.

The application should clear the TXRDY interrupt flag before writing data into the LIN transmit register
(eSCI_LTR) because the eSCI module will set the TXRDY one clock cycle after the write access.

DMA
Controller

eSCI
CSM

TX DMA
channel

ID[5:0]P[1:0]

LEN1

CSE CRC TD2 0

DATA 1

DATA 2

DATA N

System Memory

1 LEN must be set to N
2 TD must be set to 1

Break Synch Identifier DATA 1 DATA N Checksum

LIN TX frame

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1381

The first data written to the LIN transmit register (eSCI_LTR) provides the Identifier and Identifier Parity
fields. The second data written defines the number of data bytes requested from the LIN slave. The third
data written defines the CRC and checksum generation. The TD bit has to set to 0 to invoke the RX frame
generation. The TO field defines the upper part of the timeout value. The fourth byte written defines the
lower part of the timeout value.

After the fourth byte was written the generation of a LIN RX frame is started. Firstly, a break field is
transmitted, then the synch field and the protected identifier field. After the transmission of the protected
identifier, the eSCI module starts to receive the frame data transmitted by the LIN slave. When the module
has received a complete byte field, the received data are transferred into the LIN receive register
(eSCI_LRR) and the receive data ready flag RXRDY in the Interrupt Flag and Status Register
2 (eSCI_IFSR2) is set.

The application can retrieve the received data by subsequent read access from LIN receive register
(eSCI_LRR) after checking the RXRDY flag. The application should clear the RXRDY flag immediately
after reading the LIN receive register (eSCI_LRR).

After the reception of the configured number of data from the slave, the module starts the reception of the
configured CRC and Checksum byte fields. These data are not transferred into the LIN receive register
(eSCI_LRR). The CRC and Checksum checking is performed internally. In case of errors, they will be
reported as described in Section 31.4.6.5, LIN error reporting”

After the reception of the checksum field of the LIN RX frame, the FRC interrupt flag in the Interrupt Flag
and Status Register 2 (eSCI_IFSR2) is set.

31.4.6.4.2 DMA Controlled LIN RX frames generation

In this mode, the eSCI module controls the generation of LIN RX frame header and the reception of the
frame data automatically and utilizes the two connected DMA channels. A block diagram which presents
an overview of the DMA Controlled LIN RX Frame generation and reception is shown in Figure 31-38.
The content of the header fields in the memory is the same as described in LIN transmit register
(eSCI_LTR) - LIN RX frame generation. The TX DMA channel is used the fetch the LIN RX frame header
and control information. The RX DMA channel is used to transfer the received frame data into the
memory.

When new data required for transmission, the module generates the transmit DMA request and the DMA
controller delivers the required data. When new data was received, the module generates the receive DMA
request and the DMA controller retrieves the provided data.

The application request the eSCI module to enter this mode by setting the RXDMA bit in the Control
register 2 (eSCI_CR2). From this point in time, the module start the generation of DMA requests and frame
transmission and reception. Before entering this mode, the application should perform the following
actions:

1. Configure the module for LIN mode.

2. Enable transmitter and receiver by setting TE and RE in Control register 1 (eSCI_CR1) to 1.

3. Setup the two DMA controller channels and provide frame header data in system memory.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1382 Freescale Semiconductor

Figure 31-39. DMA Controlled LIN RX Frame generation and reception

31.4.6.5 LIN error reporting

This section describes error checking and the signaling of detected errors in LIN mode.

31.4.6.5.1 Physical bus error detection

If the receiver input is sampled 0 for at least 31 sample clock cycles after the start of the transmission of a
LIN frame, the physical bus error flag PBERR in the Interrupt Flag and Status Register 2 (eSCI_IFSR2)
will be set.

31.4.6.5.2 Unrequested activity detection

If an unrequested byte is received (i.e. a byte which is not part of an RX frame) which is not recognized
as a wake-up or break character, the bit error flag BERR in the Interrupt Flag and Status Register
2 (eSCI_IFSR2) is set. In addition the RXRDY flag will also be set, the LINRX register must be read
before normal operations can proceed.

31.4.6.5.3 Standard bit error detection

The standard bit error detection is enabled when the fast bit error detection control bit FBR in the Control
register 2 (eSCI_CR2) is 0. The standard bit error detection is performed after each LIN byte field
transmission.

During the transmission of the LIN frame header and LIN frame data, the receiver is running and receives
the signal values on the serial bus. After the complete transmission and the related reception of a LIN byte
field, the eSCI compares the data that was transmitted and the data that has been received. If they do not
match, the bit error interrupt flag BERR in the Interrupt Flag and Status Register 2 (eSCI_IFSR2) is set.

DMA
Controller

eSCI
CSM

TX DMA
channel

ID[5:0]P[1:0]

LEN1

CSE CRC TD2 TO[11:8]

DATA 1

DATA 2

DATA N

System Memory

1 LEN must be set to N
2 TD must be set to 0

Break Synch Identifier DATA 1 DATA N Checksum

LIN RX frame

TO[7:0]

RX DMA
channel

from LIN Master from LIN Slave

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1383

31.4.6.5.4 Fast bit error detection

Fast Bit Error Detection has been designed to allow flagging of LIN bit errors while they occur, rather than
flagging them after a byte transmission has completed (see Figure 31-40).

Figure 31-40. Fast Bit Error Detection on a LIN Bus

If fast bit error detection bit FBR in the Control register 2 (eSCI_CR2) is set the eSCI will compare the
transmitted and the received data stream while the transmitter is active (not idle). Once a mismatch
between the transmitted data and the received data is detected the following actions are performed the bit
error flag BERR will be set.

To adjust to different bus loads the sample point at which the incoming bit is compared to the one which
was transmitted can be selected with the BESM bit in the Control register 2 (eSCI_CR2). If
eSCI_CR2[BESM] = 1, the comparison will be performed with sample RS13, otherwise with RS9 (see
Figure 31-41) (also see Section 31.4.5.3.13, Bit sampling).

Figure 31-41. Timing Diagram Fast Bit Error Detection

NOTE

To calculate the exact position of the sample point with regard to the RX pin,
the delays through the pads and the two Bus Clock cycle delay through the
input synchronizer also needs to be taken into account.

TXD Pin

RXD Pin

LIN Physical Interface

Synchronizer Stage

Bus Clock

Receive Shift
Register

Transmit Shift
Register

LIN Bus

Compare

Sample Point

Bit Error

Output Transmit
Shift Register

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input Receive
Shift Register

eSCI_CR2[BESM] = 0 eSCI_CR2[BESM] = 1

Compare Sample Points

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1384 Freescale Semiconductor

31.4.6.5.5 Slave-not-responding-error detection

The Slave-Not-Responding-Error is defined in LIN Specification Package Revision 1.3; December 12,
2002; 6 ERROR AND EXCEPTION HANDLING. The LIN specification requires that a
NO_RESPONSE_ERROR has to be detected if a message frame is not fully completed within the
maximum length TFRAME_MAX by any slave task upon transmission of the SYNCH and IDENTIFIER
fields. The maximum frame length TFRAME_MAX is defined in LIN Specification Package Revision
1.3; December 12, 2002; 3.3 LENGTH OF MESSAGE FRAME AND BUS SLEEP DETECT, as

Eqn. 31-11

where NDATA is the number of data byte fields of the message frame.

The STO interrupt flag in the Interrupt Flag and Status Register 2 (eSCI_IFSR2) will be set, if an LIN RX
frame was not fully received in the amount of time specified in the timeout value field TO in the LIN
transmit register (eSCI_LTR). The time period starts with the falling edge of the transmitted LIN break
character and is specified in units of transmit bits.

To achieve LIN compliant Slave-Not-Responding-Error detection, the timeout value TO in the LIN
transmit register (eSCI_LTR) field has to be set to TFRAME_MAX when a LIN RX frame is initiated.

31.4.6.5.6 Checksum error detection

If the checksum enable bit CSE in the LIN transmit register (eSCI_LTR) was set, the checksum checking
is performed based on the received checksum byte. The checksum mode is selected by the CSM bit in the
LIN transmit register (eSCI_LTR). If the value received in the checksum bytes did not match the calculated
checksum, the checksum error flag CKERR in the Interrupt Flag and Status Register 2 (eSCI_IFSR2) will
be set.

31.4.6.5.7 CRC error detection

The CRC checking is performed on the two received CRC bytes CRC1 and CRC2 if the CRC Enhanced
LIN frame format was selected by the CRC bit in the LIN transmit register (eSCI_LTR). If the value
received in the two CRC bytes did not match the calculated CRC pattern, the CRC error flag CERR in the
Interrupt Flag and Status Register 2 (eSCI_IFSR2) will be set.

31.4.6.5.8 Overflow detection

When the receiver has received the next byte field, which should be transferred into the LIN receive
register (eSCI_LRR), but neither the application nor the RX DMA channel have read data from this
register since the last update, the received data overflow flag OVFL in the Interrupt Flag and Status
Register 2 (eSCI_IFSR2) will be set. In this case the content of the LIN receive register (eSCI_LRR) is
not changed. The data received most recently are lost.

31.4.6.6 LIN wake up

The section describes the LIN Wake Up behavior of the eSCI module.

TFRAME_MAX 10 NDATA 45+  1.4=

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1385

31.4.6.6.1 LIN Wake-Up Request Generation

The eSCI module can cause the LIN bus to exit the sleep mode by sending a wake-up signal frame, which
consists of a wake-up signal 0x80 (consisting of 8 dominant bits followed by 1 recessive bit), followed by
the wake-up delimiter period as defined by the WUD field in the LIN Control Register 1 (eSCI_LCR1).

Figure 31-42. LIN Wake-Up Signal Frame

The application triggers the transmission of a wake-up signal frame by writing 1 to the LIN bus wake-up
trigger WU in the LIN Control Register 1 (eSCI_LCR1).

The LIN Specification 2.0 requires the generation of LIN wake-up signals as dominant pulses longer than
250 s and shorter than 5 ms. To achieve this, the eSCI module has to programmed to a baud rate between
32 kBaud and 1.6 kBaud. With each of these baud rate settings, the wake-up signal is transmitted as a
dominant pulse longer than 250 s and shorter than 5 ms.

31.4.6.6.2 LIN wake-up request detection

The eSCI module detects a LIN wake-up requests when

e) one of the characters 0x00, 0x80, or 0xC0 has been received,

f) followed by zero or more low bits,

g) followed by at least one high bit, and

h) no LIN frame transmission or reception is started or running during the reception above

If a LIN wake-up request has been detected, the LIN wake-up flag LWAKE in the Interrupt Flag and Status
Register 2 (eSCI_IFSR2) will be set after the reception of the first high bit.

The LIN Specification 2.0 requires the detection of LIN wake-up requests as dominant pulses longer than
150 s. To achieve this, the eSCI module has to programmed to the maximum baud rate that is not greater
than 43.77 kBaud. With this baud rate setting, any dominant pulse longer than 150 s is decoded as at least
7 dominant bits (one start and 6 data bits) and consequently as one of the characters 0xC0, 0x80, or 0x00.

31.4.6.7 LIN protocol engine stop and reset

The LIN protocol engine is stopped and reset when the application set the LRES control bit in the LIN
Control Register 1 (eSCI_LCR1) to 1. In this case, the LIN protocol engine will stop immediately. No new
transmissions or receptions are initiated, the LIN serial bus is driven with the recessive value 1.
Additionally to the stop and reset of the LIN protocol engine the receiver and transmitter modules are
stopped and reset as well, and the receive and transmit DMA requests are deasserted.

In order to start the LIN Protocol Engine with idle transmitter and receiver processes, the LRES bit should
be asserted until all of the status bits DACT, LACT, TACT, and RACT in the Interrupt Flag and Status

BIT0
START

BIT BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BREAK

Wake-Up Signal Wake-Up Delimiter

LIN FrameWake-Up Signal Frame

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1386 Freescale Semiconductor

Register 1 (eSCI_IFSR1) are cleared. Theses status bits are cleared within one bit time after assertion of
the LRES bit.

31.4.7 Interrupts

This section describes the interrupt sources and interrupt request generation.

31.4.7.1 Interrupt flags and enables

All interrupt sources, interrupt flags, and interrupt enable bits are listed in Table 31-36. This table indicates
the operational modes, where the interrupt flags can be set by the eSCI module.

31.4.7.2 Interrupt request generation

The eSCI module provides one hardware interrupt request signal to the systems interrupt controller. This
interrupt request signal is asserted if and only if at least one of the interrupt flags and the corresponding
interrupt enables are set to 1. Otherwise the interrupt line is deasserted.

Table 31-36. eSCI Interrupt Flags and Interrupt Enable Bits

Interrupt Source Operational Mode Interrupt Flag Interrupt Enable Bit

Transmitter SCI eSCI_IFSR1[TDRE] eSCI_CR1[TIE]

Transmitter SCI, LIN eSCI_IFSR1[TC] eSCI_CR1[TCIE]

Receiver SCI eSCI_IFSR1[RDRF] eSCI_CR1[RIE]

Receiver SCI eSCI_IFSR1[IDLE] eSCI_CR1[ILIE]

Receiver SCI eSCI_IFSR1[OR] eSCI_CR2[ORIE]

Receiver SCI, LIN eSCI_IFSR1[NF] eSCI_CR2[NFIE]

Receiver SCI, LIN eSCI_IFSR1[FE] eSCI_CR2[FEIE]

Receiver SCI eSCI_IFSR1[PF] eSCI_CR2[PFIE]

Receiver LIN eSCI_IFSR1[BERR] eSCI_CR2[BERRIE]

Receiver LIN eSCI_IFSR2[RXRDY] eSCI_LCR1[RXIE]

Transmitter LIN eSCI_IFSR2[TXRDY] eSCI_LCR1[TXIE]

Receiver LIN eSCI_IFSR2[LWAKE] eSCI_LCR1[WUIE]

Receiver LIN eSCI_IFSR2[STO] eSCI_LCR1[STIE]

Receiver LIN eSCI_IFSR2[PBERR] eSCI_LCR1[PBIE]

Receiver LIN eSCI_IFSR2[CERR] eSCI_LCR1[CIE]

Receiver LIN eSCI_IFSR2[CKERR] eSCI_LCR1[CKIE]

Receiver LIN eSCI_IFSR2[FRC] eSCI_LCR1[FCIE]

Receiver LIN eSCI_IFSR2[UREQ] eSCI_LCR2[URIE]

Transmitter, Receiver LIN eSCI_IFSR2[OVFL] eSCI_LCR2[OFIE]

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1387

31.5 Application Information

31.5.1 SCI data frames separated by preamble

To separate SCI data frame with preambles with minimum idle line time, use this sequence between
messages:

1. write to SCI data register (eSCI_DR)

— this sets the internal iCMT bit which requests the data transmission

2. wait until TDRE in Interrupt Flag and Status Register 1 (eSCI_IFSR1) is set

— this indicates the start of transmission; the iCMT bit was cleared

3. clear and subsequently set the TE bit in Control register 1 (eSCI_CR1)

— this set the internal iPRE bit which requests the preamble transmission

4. write to SCI data register (eSCI_DR)

— this sets the internal iCMT bit which requests the data transmission

The priority scheme of the transmitter which is described in Table 31-28 ensures, that the preamble is
transmitted before the data frame.

Enhanced Serial Communication Interface (ESCI)

MPC5644A Microcontroller Reference Manual, Rev. 6

1388 Freescale Semiconductor

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1389

Chapter 32
FlexCAN Module

32.1 Information specific to this device

This section presents device-specific parameterization and customization information not specifically
referenced in the remainder of this chapter.

32.1.1 Device-specific features

• 3 FlexCAN modules with 64 message buffers each

• The device has 3 Controller Area Network (FlexCAN) blocks referred as FlexCAN_A,
FlexCAN_B and FlexCAN_C.

— Each FlexCAN module contains an embedded memory capable of storing 64 Message Buffers
(MB).

— Although the FlexCAN module provides a differentiation between Supervisor and User access
types, all accesses will be always considered of the Supervisor type. As a consequence, the
SUPV bit in the Module Configuration Register (MCR) Register has no effect on the module
behavior.

— All 4 FlexCAN functional modes are supported: Normal, Freeze, Listen-Only and Loop-Back.

— Only two power modes are supported, the Disable and Stop Mode. Doze Mode is not
supported.

— Low-pass filter (glitch filter)

32.2 Introduction

The FlexCAN module is a communication controller implementing the CAN protocol according to the
CAN 2.0B protocol specification. The block diagram in Figure 32-1 shows the main sub-blocks
implemented in the FlexCAN module. Support for up to 64 Message Buffers is provided. The functions of
the submodules are described in subsequent sections.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1390 Freescale Semiconductor

Figure 32-1. FlexCAN block diagram

fOSC

S
ys

te
m

 C
on

fig
u

ra
tio

n
D

ev
ic

e
P

e
rip

he
ra

l B
us

In
te

rr
up

t C
on

tr
ol

le
r

CR[CLKSRC]
CR[PRESDIV]

Divider

MCR[MDIS]

CAN Engine

Tx Shifter

Protocol
Engine

Rx Shifter

Wake up
detection
Wake up

MCR[SLF_WAK]

CR[LPB]

1
0

VDDEHx

CR[LPB | LOM]

Message Buffers (MB)

MB 0

MB 8

MB N-1

Control and
Status Registers

TIMER 16 bit free running timer Reset
Timer

Synchronization

CR[TSYN]

MCR[FEN]

Tq

0 1

Bus Off

Error

Tx Warning

Rx Warning

Wake up

N

N1

1

1

1

1

1

CR[ERRMSK]

CR[BOFFMSK]

CR[TWRNMSK]

CR[RWRNMSK]

MCR[WAK_MSK]

N
IMRH | IMRL[BUFFxM]

Message Buffer

Interrupts

Notes:

1: Pins can be configurable. Check device system configuration

2: Check interrupt controller which interrupts have been used
and regrouped. Interrupts can be additionally enabled/disabled

3: Please check device system configuration for further clock divider,
muxing and low power configuration. See the section for the

N = No. of Message Buffers Implemented

FlexCAN A: N = 64

FlexCAN B: N = 64

fSYS

C
A

N
T

X
C

A
N

R
X

1
1

2
3

FlexCAN C: N = 64

in the interrupt controller

SIU_SYSDIV[CAN 2:1] for the additional system clock pre-
divider.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1391

32.2.1 Overview

The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting
the specific requirements of this field: real-time processing, reliable operation in the EMI environment of
a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module is a full implementation of the
CAN protocol specification, Version 2.0 B, which supports both standard and extended message frames.
A flexible number of Message Buffers (16, 32 or 64) is also supported. The Message Buffers are stored in
an embedded RAM dedicated to the FlexCAN module.

The CAN Protocol Interface (CPI) submodule manages the serial communication on the CAN bus,
requesting RAM access for receiving and transmitting message frames, validating received messages and
performing error handling. The Message Buffer Management (MBM) submodule handles Message Buffer
selection for reception and transmission, taking care of arbitration and ID matching algorithms. The Bus
Interface Unit (BIU) submodule controls the access to and from the internal interface bus, in order to
establish connection to the CPU and to other blocks. Clocks, address and data buses, interrupt outputs and
test signals are accessed through the Bus Interface Unit.

A typical CAN system is shown below in Figure 32-2. Each CAN station is connected physically to the
CAN bus through a transceiver. The transceiver provides the transmit drive, waveshaping, and
receive/compare functions required for communicating on the CAN bus. It can also provide protection
against damage to the FlexCAN caused by a defective CAN bus or defective stations.

Figure 32-2. Typical CAN system

32.2.2 FlexCAN module features

The FlexCAN module includes these distinctive features:

• Full Implementation of the CAN protocol specification, Version 2.0B

— Standard data and remote frames

— Extended data and remote frames

— Zero to eight bytes data length

CANTX CANRX

FlexCAN

Microcontroller

Tranceiver

CAN Station 1 CAN Station 2 CAN Station n

CAN Bus

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1392 Freescale Semiconductor

— Programmable bit rate up to 1 Mbit/s

— Content-related addressing

• Flexible Message Buffers (up to 64) of zero to eight bytes data length

• Each message buffer configurable as Rx or Tx, all supporting standard and extended messages

• Individual Rx Mask Registers per Message Buffer

• Includes either 1056 bytes (64 message buffers), 544 bytes (32 message buffers) or 288 bytes (16
message buffers) of RAM used for message buffer storage

• Includes either 256 bytes (64 message buffers), 128 bytes (32 message buffers) or 64 bytes (16
message buffers) of RAM used for individual Rx Mask Registers

• Full featured Rx FIFO with storage capacity for 6 frames and internal pointer handling

• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either 8 extended, 16
standard or 32 partial (8 bits) IDs, with individual masking capability

• Selectable backwards compatibility with previous FlexCAN version

• Programmable clock source to the CAN Protocol Interface, either bus clock or crystal oscillator

• Unused message buffer and Rx Mask Register space can be used as general purpose RAM space

• Listen only mode capability

• Programmable loop-back mode supporting self-test operation

• Programmable transmission priority scheme: lowest ID, lowest buffer number or highest priority

• Time Stamp based on 16-bit free-running timer

• Global network time, synchronized by a specific message

• Maskable interrupts

• Independent of the transmission medium (an external transceiver is assumed)

• Short latency time due to an arbitration scheme for high-priority messages

• Low power modes, with programmable wake up on bus activity

32.2.3 Modes of operation

The FlexCAN module has four functional modes: Normal Mode (User and Supervisor), Freeze Mode,
Listen-Only Mode and Loop-Back Mode. There are also two low power modes: Disable Mode and Stop
Mode.

• Normal Mode (User or Supervisor):

In Normal Mode, the module operates receiving and/or transmitting message frames, errors are
handled normally and all the CAN Protocol functions are enabled. User and Supervisor Modes
differ in the access to some restricted control registers.

• Freeze Mode:

It is enabled when MCR[FRZ] is asserted. If enabled, Freeze Mode is entered when MCR[HALT]
is set or when Debug Mode is requested at MCU level. In this mode, no transmission or reception
of frames is done and synchronicity to the CAN bus is lost. See Section 32.5.9.1, Freeze Mode for
more information.

• Listen-Only Mode:

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1393

The module enters this mode when CR[LOM] is asserted. In this mode, transmission is disabled,
all error counters are frozen and the module operates in a CAN Error Passive mode. Only messages
acknowledged by another CAN station will be received. If FlexCAN detects a message that has not
been acknowledged, it will flag a BIT0 error (without changing the REC), as if it was trying to
acknowledge the message.

• Loop-Back Mode:

The module enters this mode when CR[LPB] is asserted. In this mode, FlexCAN performs an
internal loop back that can be used for self test operation. The bit stream output of the transmitter
is internally fed back to the receiver input. The Rx CAN input pin is ignored and the Tx CAN
output goes to the recessive state (logic ‘1’). FlexCAN behaves as it normally does when
transmitting and treats its own transmitted message as a message received from a remote node. In
this mode, FlexCAN ignores the bit sent during the ACK slot in the CAN frame acknowledge field
to ensure proper reception of its own message. Both transmit and receive interrupts are generated.

• Module Disable Mode:

This low power mode is entered when the MDIS bit in the MCR Register is asserted by the CPU.
When disabled, the module sends a request to disable the clocks to the CAN Protocol Interface and
Message Buffer Management sub-modules. Exit from this mode is done by negating MCR[MDIS].
See Section 32.5.9.2, Module Disable Mode, for more information.

• Stop Mode:

This low power mode is entered when Stop Mode is requested at MCU level. When in Stop Mode,
the module puts itself in an inactive state and then informs the CPU that the clocks can be shut
down globally. Exit from this mode happens when the Stop Mode request is removed or when
activity is detected on the CAN bus and the Self Wake Up mechanism is enabled. See
Section 32.5.9.3, Stop Mode, for more information.

32.3 External signal description

32.3.1 Overview

The FlexCAN module has two I/O signals connected to the external MCU pins. These signals are
summarized in Table 32-1 and described in more detail in the next subsections.

Table 32-1. FlexCAN signals

Signal name1

1 The actual MCU pins may have different names.

Direction Description

CAN_x_RX Input CAN receive pin

CAN_x_TX Output CAN transmit pin

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1394 Freescale Semiconductor

32.3.2 Signal descriptions

32.3.2.1 CAN RX

This pin is the receive pin from the CAN bus transceiver. Dominant state is represented by logic level ‘0’.
Recessive state is represented by logic level ‘1’.

32.3.2.2 CAN TX

This pin is the transmit pin to the CAN bus transceiver. Dominant state is represented by logic level ‘0’.
Recessive state is represented by logic level ‘1’.

32.4 Memory map/Register definition

This section describes the registers and data structures in the FlexCAN module. The base address of the
module depends on the particular memory map of the MCU. The addresses presented here are relative to
the base address.

The address space occupied by FlexCAN has 96 bytes for registers starting at the module base address,
followed by message buffer storage space in embedded RAM starting at address 0x0060, and an extra ID
Mask storage space in a separate embedded RAM starting at address 0x0880.

32.4.1 FlexCAN memory mapping

The complete memory map for a FlexCAN module with 64 message buffers capability is shown in
Table 32-2. Each individual register is identified by its complete name and the corresponding mnemonic.
The access type can be Supervisor (S) or Unrestricted (U). Most of the registers can be configured to have
either Supervisor or Unrestricted access by programming MCR[SUPV]. These registers are identified as
S/U in the Access column of Table 32-2.

The IFRH and IMRH registers are considered reserved space when FlexCAN is configured with 16 or 32
message buffers. The Rx Global Mask (RXGMASK), Rx Buffer 14 Mask (RX14MASK) and the Rx
Buffer 15 Mask (RX15MASK) registers are provided for backwards compatibility, and are not used when
MCR[MBFEN] is asserted.

The address ranges 0x0060–0x047F and 0x0880–0x097F are occupied by two separate embedded
memories. These two ranges are completely occupied by RAM (1056 and 256 bytes, respectively) only
when FlexCAN is configured with 64 message buffers. When it is configured with 16 message buffers, the
memory sizes are 288 and 64 bytes, so the address ranges 0x0180–0x047F and 0x08C0–0x097F are
considered reserved space. When it is configured with 32 message buffers, the memory sizes are 544 and
128 bytes, so the address ranges 0x0280–0x047F and 0x0900–0x097F are considered reserved space.
Furthermore, if MCR[MBFEN] is negated, then the whole Rx Individual Mask Registers address range
(0x0880–0x097F) is considered reserved space.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1395

The FlexCAN module stores CAN messages for transmission and reception using a Message Buffer
structure. Each individual message buffer is formed by 16 bytes mapped on memory as described in
Table 32-3. Table 32-3 shows a Standard/Extended Message Buffer (MB0) memory map, using 16 bytes
total (0x80–0x8F space).

Table 32-2. Module memory map

Address Use
Access

Type

Affected
by Hard
Reset

Affected
by Soft
Reset

Base + 0x0000 Module Configuration (MCR) S Yes Yes

Base + 0x0004 Control Register (CR) S/U Yes No

Base + 0x0008 Free Running Timer (TIMER) S/U Yes Yes

Base + 0x000C Reserved

Base + 0x0010 Rx Global Mask (RXGMASK) S/U Yes No

Base + 0x0014 Rx Buffer 14 Mask (RX14MASK) S/U Yes No

Base + 0x0018 Rx Buffer 15 Mask (RX15MASK) S/U Yes No

Base + 0x001C Error Counter Register (ECR) S/U Yes Yes

Base + 0x0020 Error and Status Register (ESR) S/U Yes Yes

Base + 0x0024 Interrupt Masks 2 (IMRH) S/U Yes Yes

Base + 0x0028 Interrupt Masks 1 (IMRL) S/U Yes Yes

Base + 0x002C Interrupt Flags 2 (IFRH) S/U Yes Yes

Base + 0x0030 Interrupt Flags 1 (IFRL) S/U Yes Yes

Base + 0x0034–0x005F Reserved

Base + 0x0060–0x007F Reserved

Base + 0x0080–0x017F Message Buffers MB0–MB15 S/U No No

Base + 0x0180–0x027F Message Buffers MB16–MB31 S/U No No

Base + 0x0280–0x047F Message Buffers MB32–MB63 S/U No No

Base + 0x0480–087F Reserved

Base + 0x0880–0x08BF Rx Individual Mask Registers RXIMR0–RXIMR15 S/U No No

Base + 0x08C0–0x08FF Rx Individual Mask Registers RXIMR16–RXIMR31 S/U No No

Base + 0x0900–0x097F Rx Individual Mask Registers RXIMR32–RXIMR63 S/U No No

Table 32-3. Message buffer MB0 memory mapping

Address offset MB field

0x80 Control and Status (C/S)

0x84 Identifier Field

0x88–0x8F Data Field 0 – Data Field 7 (1 byte each)

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1396 Freescale Semiconductor

32.4.2 Message buffer architecture

The message buffer architecture is shown in Figure 32-3.

M
P

C
5

644A
 M

icro
co

n
tro

ller R
e

fe
ren

ce M
an

u
al, R

ev. 6

M
em

o
ry m

ap
/R

eg
ister d

efin
itio

n

F
re

escale
 S

em
ico

nductor
139

7

Figure 32-3. FlexCAN message buffer architecture

0

1

0

1

Lowest ID
Arbitration

Lowest ID+PRIO
Arbitration

Lowest Buffer
Number ArbitrationInternal Tx Message

Buffer Arbiter

Tx Serial Message
Buffer

Data
Data Length

ID

CR[LBUF]

MCR[LPRIO_EN] Internal Tx Arbitration

Data

Data Length
Time Stamp

ID

Buffer 0

Data

Data Length
Time Stamp

ID

Buffer 7

Data

Data Length
Time Stamp

ID

Buffer 8

Data

Data Length
Time Stamp

ID

Buffer 9

Data

Data Length
Time Stamp

ID

Buffer 14

Data

Data Length
Time Stamp

ID

Buffer 15

Data

Data Length
Time Stamp

ID

Buffer (N-1)

Buffers in use are defined by MCR[MAXMB]

6 Stage Rx
FIFO
Data

Data Length
Time Stamp

ID

ID Table 0–7

MCR[FEN] = 0 MCR[FEN] = 1

Same address
space

Message Buffer RAM

CPU Memory Map

Base: 0xC3F8_0000 – 0x344

S
ca

n
B

u
ffe

rs

M
ov

e
da

ta

u
se

d
al

g
o

ri
th

m

Device Peripheral Bus

Move data

Scan buffers

C
A

N
 E

ng
in

e

CANTX CANRX1 1

Protocol
Engine

Rx Serial Message
Buffer

Data
Data Length

ID

No queuing

Queuing

Rx ID Matching

Rx ID Matching

u
se

d
al

g
o

rit
h

m MCR[MBFEN]

Tx Shifter Rx Shifter

RXGMASK

RX14MASK

RX15MASK

RXIMR0

RXIMR7

RXIMR8

RXIMR14

RXIMR15

RXIMR(N-1)

MCR[MBFEN]

EN2

MCR[FEN]

MCR[MBFEN]1 0 0

1

0
1

0
1

0
1

0
1

used for

used for

used for

used for

used for

N
O

R
M

A
L

 M
O

D
E

LE
G

A
C

Y
 M

O
D

E

used for Buffer 8 ID matching

used for Buffer 14 ID matching

used for Buffer 15 ID matching

used for Buffer N-1 ID matching

Buffer 14 ID matching

Buffer 15 ID matching

Buffer 0 ID matching

Buffer 7 ID matching

Rx FIFO ID matching

Rx FIFO ID matching

Buffer 14 & FIFO ID table 6 ID matching

Buffer 15 & FIFO ID table 7 ID matching

all Buffer ex. Buffer 14 & 15 ID matching

all Buffer ex. Buffer 14 & 15 & FIFO ID
table 0–5 ID matching

0
1

Notes:
1: Pins can be configurable. Check device system configuration.
2: If disabled the RXIMRx registers are not memory mapped.

Con
tin

ue
d

ad
dr

es
s s

pa
ce

Any access in this case will cause data access error.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1398 Freescale Semiconductor

32.4.3 Message buffer structure

The Message Buffer structure used by the FlexCAN module is represented in Figure 32-4. Both Extended
and Standard Frames (29-bit Identifier and 11-bit Identifier, respectively) used in the CAN specification
(Version 2.0 Part B) are supported. The buffer is a 4-word (128-bit) structure summarized in Figure 32-4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0 CODE

S
R

R

ID
E

R
T

R

LENGTH TIME STAMP

0x4 PRIO ID (Standard/Extended) ID (Extended)

0x8 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0xC Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

= Unimplemented or Reserved

Figure 32-4. Message Buffer Structure

Table 32-4. Message Buffer Structure (Word 0—0x0)

Field Description

CODE This 4-bit field can be accessed (read or write) by the CPU and by the FlexCAN module itself, as part
of the message buffer matching and arbitration process. The encoding for Rx buffers is shown in
Table 32-5 and the encoding for Tx buffers is shown in Table 32-6.
See Section 32.5, Functional description for additional information.

SRR Substitute Remote Request
Fixed recessive bit, used only in extended format. It must be set to ‘1’ by the user for transmission (Tx
Buffers) and will be stored with the value received on the CAN bus for Rx receiving buffers. It can be
received as either recessive or dominant. If FlexCAN receives this bit as dominant, then it is interpreted
as arbitration loss.

1: Recessive value is compulsory for transmission in Extended Format frames
0: Dominant is not a valid value for transmission in Extended Format frames

IDE ID Extended Bit
This bit identifies whether the frame format is standard or extended.

1: Frame format is extended
0: Frame format is standard

RTR Remote Transmission Request
This bit is used for requesting transmissions of a data frame. If FlexCAN transmits this bit as ‘1’
(recessive) and receives it as ‘0’ (dominant), it is interpreted as arbitration loss. If this bit is transmitted
as ‘0’ (dominant), then if it is received as ‘1’ (recessive), the FlexCAN module treats it as bit error. If the
value received matches the value transmitted, it is considered as a successful bit transmission.

1: Indicates the current message buffer has a Remote Frame to be transmitted
0: Indicates the current message buffer has a Data Frame to be transmitted

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1399

LENGTH Length of Data in Bytes
This 4-bit field is the length (in bytes) of the Rx or Tx data, which is located in offset 0x8 through 0xF of
the message buffer space (see Figure 32-4). In reception, this field is written by the FlexCAN module,
copied from the DLC (Data Length Code) field of the received frame. In transmission, this field is written
by the CPU and corresponds to the DLC field value of the frame to be transmitted. When RTR=1, the
Frame to be transmitted is a Remote Frame and does not include the data field, regardless of the
Length field.

TIME
STAMP

Free-Running Counter Time Stamp
This 16-bit field is a copy of the Free-Running Timer, captured for Tx and Rx frames at the time when
the beginning of the Identifier field appears on the CAN bus.

PRIO Local priority
This 3-bit field is only used when MCR[LPRIO_EN] is set and it only makes sense for Tx buffers. These
bits are not transmitted. They are appended to the regular ID to define the transmission priority. See
Section 32.5.3, Arbitration process.

ID Frame Identifier
In Standard Frame format, only the 11 most significant bits (3 to 13) are used for frame identification in
both receive and transmit cases. The 18 least significant bits are ignored. In Extended Frame format,
all bits are used for frame identification in both receive and transmit cases.

DATA Data Field
Up to eight bytes can be used for a data frame. For Rx frames, the data is stored as it is received from
the CAN bus. For Tx frames, the CPU prepares the data field to be transmitted within the frame.

Table 32-5. Message Buffer Code for Rx buffers

Rx Code
BEFORE

Rx New Frame
Description

Rx Code
AFTER

Rx New Frame
Comment

0000 INACTIVE: buffer
is not active.

— MB does not participate in the matching process.

0100 EMPTY: buffer is
active and empty.

0010 MB participates in the matching process. When a frame
is received successfully, the code is automatically
updated to FULL.

0010 FULL: buffer is
full.

0010 The act of reading the C/S word followed by unlocking
the MB does not make the code return to EMPTY. It
remains FULL. If a new frame is written to the MB after
the C/S word was read and the MB was unlocked, the
code still remains FULL.

0110 If the MB is FULL and a new frame is overwritten to this
MB before the CPU had time to read it, the code is
automatically updated to OVERRUN. Refer to
Section 32.5.5, Matching process for details about
overrun behavior.

Table 32-4. Message Buffer Structure (Word 0—0x0)

Field Description

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1400 Freescale Semiconductor

0110 OVERRUN: a
frame was
overwritten into a
full buffer.

0010 If the code indicates OVERRUN but the CPU reads the
C/S word and then unlocks the MB, when a new frame is
written to the MB the code returns to FULL.

0110 If the code already indicates OVERRUN, and yet another
new frame must be written, the MB will be overwritten
again, and the code will remain OVERRUN. Refer to
Section 32.5.5, Matching process for details about
overrun behavior.

0XY11 BUSY: Flexcan is
updating the
contents of the
MB. The CPU
must not access
the MB.

0010 An EMPTY buffer was written with a new frame (XY was
01).

0110 A FULL/OVERRUN buffer was overwritten (XY was 11).

1 Note that for Tx MBs (see Table 32-6), the BUSY bit should be ignored upon read, except when MCR[AEN] is set.

Table 32-6. Message Buffer Code for Tx buffers

RT
R

Initial
Tx

code

Code after
successful
transmissio

n

Description

X 1000 — INACTIVE: MB does not participate in the arbitration process.

X 1001 — ABORT: MB was configured as Tx and CPU aborted the transmission. This code is
only valid when MCR[AEN] is asserted. MB does not participate in the arbitration
process.

0 1100 1000 Transmit data frame unconditionally once. After transmission, the MB automatically
returns to the INACTIVE state.

1 1100 0100 Transmit remote frame unconditionally once. After transmission, the MB
automatically becomes an Rx MB with the same ID.

0 1010 1010 Transmit a data frame whenever a remote request frame with the same ID is
received. This MB participates simultaneously in both the matching and arbitration
processes. The matching process compares the ID of the incoming remote request
frame with the ID of the MB. If a match occurs this MB is allowed to participate in the
current arbitration process and the Code field is automatically updated to ‘1110’ to
allow the MB to participate in future arbitration runs. When the frame is eventually
transmitted successfully, the Code automatically returns to ‘1010’ to restart the
process again.

0 1110 1010 This is an intermediate code that is automatically written to the MB by the MBM as a
result of match to a remote request frame. The data frame will be transmitted
unconditionally once and then the code will automatically return to ‘1010’. The CPU
can also write this code with the same effect.

Table 32-5. Message Buffer Code for Rx buffers

Rx Code
BEFORE

Rx New Frame
Description

Rx Code
AFTER

Rx New Frame
Comment

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1401

32.4.4 Rx FIFO structure

When MCR[FEN] is set, the memory area from 0x80 to 0xFC (which is normally occupied by MBs 0 to
7) is used by the reception FIFO engine. Figure 32-5 shows the Rx FIFO data structure. The region
0x80–0x8C contains a message buffer structure which is the port through which the CPU reads data from
the FIFO (the oldest frame received and not read yet). The region 0x90–0xDC is reserved for internal use
of the FIFO engine. The region 0xE0–0xFC contains an 8-entry ID table that specifies filtering criteria for
accepting frames into the FIFO. Figure 32-6 shows the three different formats that the elements of the ID
table can assume, depending on field MCR[IDAM]. Note that all elements of the table must have the same
format. See Section 32.5.7, Rx FIFO for more information.

0 3 7 8 9 10 11 12 13 14 15 16 23 24 31

0x80
S

R
R

ID
E

R
T

R

LENGTH TIME STAMP

0x84 ID (Standard/Extended) ID (Extended)

0x88 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0x8C Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

0x90

Reservedto

0xDC

0xE0 ID Table 0

0xE4 ID Table 1

0xE8 ID Table 2

0xEC ID Table 3

0xF0 ID Table 4

0xF4 ID Table 5

0xF8 ID Table 6

0xFC ID Table 7

= Unimplemented or Reserved

Figure 32-5. Rx FIFO Structure

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1402 Freescale Semiconductor

Format 0 3 4 7 9 10 11 12 15 16 23 24 31

A
R
E
M

E
X
T

RXIDA
(Standard = 29–19, Extended = 29–1)

B
R
E
M

E
X
T

RXIDB_0
(Standard = 29–19, Extended = 29–16)

R
E
M

E
X
T

RXIDB_1
(Standard = 13–3, Extended = 13–0)

C
RXIDC_0

(Std/Ext = 31–24)

RXIDC_1

(Std/Ext = 23–16)

RXIDC_2

(Std/Ext = 15–8)

RXIDC_3

(Std/Ext = 7–0)

= Unimplemented or Reserved

Figure 32-6. ID Table 0 – 7

Table 32-7. Rx FIFO Structure

Field Description

REM Remote Frame
This bit specifies if Remote Frames are accepted into the FIFO if they match the target ID.

1: Remote Frames can be accepted and data frames are rejected
0: Remote Frames are rejected and data frames can be accepted

EXT Extended Frame
Specifies whether extended or standard frames are accepted into the FIFO if they match the target
ID.

1: Extended frames can be accepted and standard frames are rejected
0: Extended frames are rejected and standard frames can be accepted

RXIDA Rx Frame Identifier (Format A)
Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame format, only
the 11 most significant bits (3 to 13) are used for frame identification. In the extended frame format,
all bits are used.

RXIDB_0,
RXIDB_1

Rx Frame Identifier (Format B)
Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame format, the
11 most significant bits (a full standard ID) (3 to 13)are used for frame identification. In the
extended frame format, all 14 bits of the field are compared to the 14 most significant bits of the
received ID.

RXIDC_0,
RXIDC_1,
RXIDC_2,
RXIDC_3

Rx Frame Identifier (Format C)
Specifies an ID to be used as acceptance criteria for the FIFO. In both standard and extended
frame formats, all 8 bits of the field are compared to the 8 most significant bits of the received ID.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1403

32.4.5 Register descriptions

The FlexCAN registers are described in this section in ascending address order.

32.4.5.1 Module Configuration Register (MCR)

This register defines global system configurations, such as the module operation mode (e.g., low power)
and maximum message buffer configuration. Most of the fields in this register can be accessed at any time,
except the MAXMB field, which should only be changed while the module is in Freeze Mode.

Figure 32-7. Module Configuration Register (MCR)

Base + 0x0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MDIS FRZ FEN HALT

N
O

T
R

D
Y

W
A

K
_M

S
K

S
O

F
T

R
S

T

F
R

Z
A

C
K

S
U

P
V

S
LF

_W
A

K

W
R

N
E

N

M
D

IS
A

C
K

W
A

K
_S

R
C

0

S
R

X
D

IS

M
B

F
E

N

W
RESET: 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0

LP
R

IO
_E

N

A
E

N

0 0

IDAM

0 0

MAXMB
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

= Unimplemented or Reserved

Table 32-8. Module Configuration Register (MCR) field descriptions

Field Description

MDIS Module Disable
This bit controls whether FlexCAN is enabled or not. When disabled, FlexCAN shuts down the
clocks to the CAN Protocol Interface and Message Buffer Management submodules. This is the
only bit in MCR not affected by soft reset. See Section 32.5.9.2, Module Disable Mode for more
information.

1: Disable the FlexCAN module
0: Enable the FlexCAN module

FRZ Freeze Enable
The FRZ bit specifies the FlexCAN behavior when MCR[HALT] is set or when Debug Mode is
requested at MCU level. When FRZ is asserted, FlexCAN is enabled to enter Freeze Mode.
Negation of this bit field causes FlexCAN to exit from Freeze Mode.

1: Enabled to enter Freeze Mode
0: Not enabled to enter Freeze Mode

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1404 Freescale Semiconductor

FEN FIFO Enable
This bit controls whether the FIFO feature is enabled or not. When FEN is set, MBs 0 to 7 cannot
be used for normal reception and transmission because the corresponding memory region
(0x80–0xFF) is used by the FIFO engine. See Section 32.4.4, Rx FIFO structure and
Section 32.5.7, Rx FIFO for more information.

1: FIFO enabled
0: FIFO not enabled

HALT Halt FlexCAN
Assertion of this bit puts the FlexCAN module into Freeze Mode. The CPU should clear it after
initializing the Message Buffers and Control Register. No reception or transmission is performed
by FlexCAN before this bit is cleared. While in Freeze Mode, the CPU has write access to the Error
Counter Register, that is otherwise read-only. Freeze Mode can not be entered while FlexCAN is
in any of the low power modes. See Section 32.5.9.1, Freeze Mode for more information.

1: Enters Freeze Mode if the FRZ bit is asserted.
0: No Freeze Mode request.

NOTRDY FlexCAN Not Ready
This read-only bit indicates that FlexCAN is either in Disable Mode, Stop Mode or Freeze Mode.
It is negated once FlexCAN has exited these modes.

1: FlexCAN module is either in Disable Mode, Stop Mode or Freeze Mode
0: FlexCAN module is either in Normal Mode, Listen-Only Mode or Loop-Back Mode

WAK_MSK Wake Up Interrupt Mask
This bit enables the Wake Up Interrupt generation.

1: Wake Up Interrupt is enabled
0: Wake Up Interrupt is disabled

SOFTRST Soft Reset
When this bit is asserted, FlexCAN resets its internal state machines and some of the memory
mapped registers. The following registers are reset: MCR (except the MDIS bit), TIMER, ECR,
ESR, IMRL, IMRH, IFRL, IFRH. Configuration registers that control the interface to the CAN bus
are not affected by soft reset. The following registers are unaffected:

 • CR
 • RXIMR0–RXIMR63
 • RXGMASK, RX14MASK, RX15MASK
 • all Message Buffers

The SOFTRST bit can be asserted directly by the CPU when it writes to the MCR, but it is also
asserted when global soft reset is requested at MCU level. Since soft reset is synchronous and
has to follow a request/acknowledge procedure across clock domains, it may take some time to
fully propagate its effect. The SOFTRST bit remains asserted while reset is pending, and is
automatically negated when reset completes. Therefore, software can poll this bit to know when
the soft reset has completed.
Soft reset cannot be applied while clocks are shut down in any of the low power modes. The
module should be first removed from low power mode, and then soft reset can be applied.

1: Resets the registers marked as “affected by soft reset” in Table 32-2
0: No reset request

Table 32-8. Module Configuration Register (MCR) field descriptions

Field Description

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1405

FRZACK Freeze Mode Acknowledge
This read-only bit indicates that FlexCAN is in Freeze Mode and its prescaler is stopped. The
Freeze Mode request cannot be granted until current transmission or reception processes have
finished. Therefore the software can poll the FRZACK bit to know when FlexCAN has actually
entered Freeze Mode. If Freeze Mode request is negated, then this bit is negated once the
FlexCAN prescaler is running again. If Freeze Mode is requested while FlexCAN is in any of the
low power modes, then the FRZACK bit will only be set when the low power mode is exited. See
Section 32.5.9.1, Freeze Mode for more information.

1: FlexCAN in Freeze Mode, prescaler stopped
0: FlexCAN not in Freeze Mode, prescaler running

SUPV Supervisor Mode
This bit configures some of the FlexCAN registers to be either in Supervisor or Unrestricted
memory space. The registers affected by this bit are marked as S/U in the Access Type column of
Table 32-2. Reset value of this bit is ‘1’, so the affected registers start with Supervisor access
restrictions.

1: Affected registers are in Supervisor memory space. Any access without supervisor permission
behaves as though the access was done to an unimplemented register location

0: Affected registers are in Unrestricted memory space

SLF_WAK Self Wake Up
This bit enables the Self Wake Up feature when FlexCAN is in Stop Mode. If this bit had been
asserted by the time FlexCAN entered Stop Mode, then FlexCAN will look for a recessive to
dominant transition on the bus during these modes. If a transition from recessive to dominant is
detected during Stop Mode, then FlexCAN generates, if enabled to do so, a Wake Up interrupt to
the CPU so that it can resume the clocks globally. This bit can not be written while the module is
in Stop Mode.

1: FlexCAN Self Wake Up feature is enabled
0: FlexCAN Self Wake Up feature is disabled

WRNEN Warning Interrupt Enable
When asserted, this bit enables the generation of the TWRNINT and RWRNINT flags in the Error
and Status Register. If WRNEN is negated, the TWRNINT and RWRNINT flags will always be
zero, independent of the values of the error counters, and no warning interrupt will ever be
generated.

1: TWRNINT and RWRNINT bits are set when the respective error counter transition from <96 to
 96.

0: TWRNINT and RWRNINT bits are zero, independent of the values in the error counters.

MDISACK Low Power Mode Acknowledge
This read-only bit indicates that FlexCAN is either in Disable Mode or Stop Mode. Either of these
low power modes can not be entered until all current transmission or reception processes have
finished, so the CPU can poll the MDISACK bit to know when FlexCAN has actually entered low
power mode. See Section 32.5.9.2, Module Disable Mode and Section 32.5.9.3, Stop Mode for
more information.
1: FlexCAN is either in Disable Mode or Stop mode
0: FlexCAN not in any of the low power modes

Table 32-8. Module Configuration Register (MCR) field descriptions

Field Description

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1406 Freescale Semiconductor

WAK_SRC Wake Up Source
This bit defines whether the integrated low-pass filter is applied to protect the Rx CAN input from
spurious wake up. See Section 32.5.9.3, Stop Mode for more information.

1: FlexCAN uses the filtered Rx input to detect recessive to dominant edges on the CAN bus
0: FlexCAN uses the unfiltered Rx input to detect recessive to dominant edges on the CAN bus.

SRX_DIS Self Reception Disable
This bit defines whether FlexCAN is allowed to receive frames transmitted by itself. If this bit is
asserted, frames transmitted by the module will not be stored in any message buffer, regardless
if the message buffer is programmed with an ID that matches the transmitted frame, and no
interrupt flag or interrupt signal will be generated due to the frame reception.

1: Self reception disabled
0: Self reception enabled

MBFEN Backwards Compatibility Configuration
This bit is provided to support Backwards Compatibility with previous FlexCAN versions. When
this bit is negated, the following configuration is applied:

 • For MCUs supporting individual Rx ID masking, this feature is disabled. Instead of individual ID
masking per message buffer, FlexCAN uses its previous masking scheme with RXGMASK,
RX14MASK and RX15MASK.

 • The reception queue feature is disabled. Upon receiving a message, if the first message buffer
with a matching ID that is found is still occupied by a previous unread message, FlexCAN will
not look for another matching message buffer. It will override this message buffer with the new
message and set the CODE field to ‘0110’ (overrun).

Upon reset this bit is negated, allowing legacy software to work without modification.
1: Individual Rx masking and queue feature are enabled.
0: Individual Rx masking and queue feature are disabled.

LPRIO_EN Local Priority Enable
This bit is provided for backwards compatibility reasons. It controls whether the local priority
feature is enabled or not. It is used to extend the ID used during the arbitration process. With this
extended ID concept, the arbitration process is done based on the full 32-bit word, but the actual
transmitted ID still has 11-bit for standard frames and 29-bit for extended frames.

1: Local Priority enabled
0: Local Priority disabled

AEN Abort Enable
This bit is supplied for backwards compatibility reasons. When asserted, it enables the Tx abort
feature. This feature guarantees a safe procedure for aborting a pending transmission, so that no
frame is sent in the CAN bus without notification.

1: Abort enabled
0: Abort disabled

Table 32-8. Module Configuration Register (MCR) field descriptions

Field Description

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1407

32.4.5.2 Control Register (CR)

This register is defined for specific FlexCAN control features related to the CAN bus, such as bit-rate,
programmable sampling point within an Rx bit, Loop Back Mode, Listen Only Mode, Bus Off recovery
behavior and interrupt enabling (Bus-Off, Error, Warning). It also determines the Division Factor for the
clock prescaler. Most of the fields in this register should only be changed while the module is in Disable
Mode or in Freeze Mode. Exceptions are the BOFFMSK, ERRMSK, TWRNMSK, RWRNMSK and
BOFFREC bits, that can be accessed at any time.

IDAM ID Acceptance Mode
This 2-bit field identifies the format of the elements of the Rx FIFO filter table, as shown in
Table 32-9. Note that all elements of the table are configured at the same time by this field (they
are all the same format). See Section 32.4.4, Rx FIFO structure.

MAXMB Maximum Number of Message Buffers
This 6-bit field defines the maximum number of message buffers that will take part in the matching
and arbitration processes. The reset value (0x0F) is equivalent to 16 message buffer
configuration. This field should be changed only while the module is in Freeze Mode.

Maximum message buffers in use = MAXMB + 1.

Note: MAXMB must be programmed with a value smaller or equal to the number of available
Message Buffers, otherwise FlexCAN can transmit and receive wrong messages.

Table 32-9. IDAM coding

IDAM Format Explanation

00 A One full ID (standard or extended) per filter element

01 B Two full standard IDs or two partial 14-bit extended IDs per filter element

10 C Four partial 8-bit IDs (standard or extended) per filter element

11 D All frames rejected

Table 32-8. Module Configuration Register (MCR) field descriptions

Field Description

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1408 Freescale Semiconductor

Figure 32-8. Control Register (CR)

Base + 0x0004

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R

PRESDIV RJW PSEG1 PSEG2
W

RE-
SET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

B
O

F
F

M
S

K

E
R

R
M

S
K

C
L

K
S

R
C

LP
B

T
W

R
N

M
S

K

R
W

R
N

M
S

K 0 0

S
M

P

B
O

F
F

R
E

C

T
S

Y
N

LB
U

F

LO
M PROPSEG

W

RE-
SET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 32-10. CR Register field descriptions

Field Description

RESDIV Prescaler Division Factor
This 8-bit field defines the ratio between the CPI clock frequency and the Serial Clock (Sclock)
frequency. The Sclock period defines the time quantum of the CAN protocol. For the reset value,
the Sclock frequency is equal to the CPI clock frequency. The maximum value of this register is
0xFF, that gives a minimum Sclock frequency equal to the CPI clock frequency divided by 256. For
more information refer to Section 32.5.8.4, Protocol timing.

Sclock frequency = CPI clock frequency / (PRESDIV + 1)

PRJW Resync Jump Width
This 2-bit field defines the maximum number of time quanta1 that a bit time can be changed by
one resynchronization.

The valid programmable values are 0–3.

Resync Jump Width = RJW + 1.

PSEG1 Phase Segment 1
This 3-bit field defines the length of Phase Buffer Segment 1 in the bit time.

The valid programmable values are 0–7.

Phase Buffer Segment 1 = (PSEG1 + 1) x Time-Quanta.

PSEG2 Phase Segment 2
This 3-bit field defines the length of Phase Buffer Segment 2 in the bit time. The valid
programmable values are 1–7.

Phase Buffer Segment 2 = (PSEG2 + 1) x Time-Quanta.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1409

BOFFMSK Bus Off Mask
This bit provides a mask for the Bus Off Interrupt.

1: Bus Off interrupt enabled
0: Bus Off interrupt disabled

ERRMSK Error Mask
This bit provides a mask for the Error Interrupt.

1: Error interrupt enabled
0: Error interrupt disabled

CLKSRC CAN Engine Clock Source
This bit selects the clock source to the CAN Protocol Interface (CPI) to be either the peripheral
clock (driven by the PLL) or the crystal oscillator clock. The selected clock is the one fed to the
prescaler to generate the Serial Clock (Sclock). In order to guarantee reliable operation, this bit
should only be changed while the module is in Disable Mode. See Section 32.5.8.4, Protocol
timing for more information.

1: The CAN engine clock source is the bus clock
0: The CAN engine clock source is the oscillator clock

TWRNMSK Tx Warning Interrupt Mask
This bit provides a mask for the Tx Warning Interrupt associated with the TWRNINT flag in the
Error and Status Register. This bit has no effect if MCR[WRNEN] is negated and it is read as zero
when MCR[WRNEN] is negated.

1: Tx Warning Interrupt enabled
0: Tx Warning Interrupt disabled

RWRNMSK Rx Warning Interrupt Mask
This bit provides a mask for the Rx Warning Interrupt associated with the RWRNINT flag in the
Error and Status Register. This bit has no effect if MCR[WRNEN] is negated and it is read as zero
when MCR[WRNEN] is negated.

1: Rx Warning Interrupt enabled
0: Rx Warning Interrupt disabled

LPB Loop Back
This bit configures FlexCAN to operate in Loop-Back Mode. In this mode, FlexCAN performs an
internal loop back that can be used for self test operation. The bit stream output of the transmitter
is fed back internally to the receiver input. The Rx CAN input pin is ignored and the Tx CAN output
goes to the recessive state (logic ‘1’). FlexCAN behaves as it normally does when transmitting,
and treats its own transmitted message as a message received from a remote node. In this mode,
FlexCAN ignores the bit sent during the ACK slot in the CAN frame acknowledge field, generating
an internal acknowledge bit to ensure proper reception of its own message. Both transmit and
receive interrupts are generated.

1: Loop Back enabled
0: Loop Back disabled

Table 32-10. CR Register field descriptions

Field Description

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1410 Freescale Semiconductor

SMP Sampling Mode
This bit defines the sampling mode of CAN bits at the Rx input.

1: Three samples are used to determine the value of the received bit: the regular one (sample
point) and 2 preceding samples, a majority rule is used
0: Just one sample is used to determine the bit value

BOFFREC Bus Off Recovery Mode
This bit defines how FlexCAN recovers from Bus Off state. If this bit is negated, automatic
recovering from Bus Off state occurs according to the CAN Specification 2.0B. If the bit is asserted,
automatic recovering from Bus Off is disabled and the module remains in Bus Off state until the
bit is negated by the user. If the negation occurs before 128 sequences of 11 recessive bits are
detected on the CAN bus, then Bus Off recovery happens as if the BOFFREC bit had never been
asserted. If the negation occurs after 128 sequences of 11 recessive bits occurred, then FlexCAN
will resynchronize to the bus by waiting for 11 recessive bits before joining the bus. After negation,
the BOFFREC bit can be re-asserted again during Bus Off, but it will only be effective the next time
the module enters Bus Off. If BOFFREC was negated when the module entered Bus Off, asserting
it during Bus Off will not be effective for the current Bus Off recovery.

1: Automatic recovering from Bus Off state disabled
0: Automatic recovering from Bus Off state enabled, according to CAN Spec 2.0 part B

TSYN Timer Sync Mode
This bit enables a mechanism that resets the free-running timer each time a message is received
in Message Buffer 0. This feature provides means to synchronize multiple FlexCAN stations with
a special “SYNC” message (i.e., global network time). If the FEN bit in MCR is set (FIFO enabled),
MB8 is used for timer synchronization instead of MB0.

1: Timer Sync feature enabled
0: Timer Sync feature disabled

LBUF Lowest Buffer Transmitted First
This bit defines the ordering mechanism for Message Buffer transmission. When asserted,
MCR[LPRIO_EN] does not affect the priority arbitration.

1: Lowest number buffer is transmitted first
0: Buffer with highest priority is transmitted first

LOM Listen-Only Mode
This bit configures FlexCAN to operate in Listen Only Mode. In this mode, transmission is
disabled, all error counters are frozen and the module operates in a CAN Error Passive mode.
Only messages acknowledged by another CAN station will be received. If FlexCAN detects a
message that has not been acknowledged, it will flag a BIT0 error (without changing the REC), as
if it was trying to acknowledge the message.

1: FlexCAN module operates in Listen Only Mode
0: Listen Only Mode is deactivated

PROPSEG Propagation Segment
This 3-bit field defines the length of the Propagation Segment in the bit time. The valid
programmable values are 0–7.

Propagation Segment Time = (PROPSEG + 1) * Time-Quanta.

Time-Quantum = one Sclock period.

Table 32-10. CR Register field descriptions

Field Description

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1411

32.4.5.3 Free running timer (TIMER)

This register represents a 16-bit free running counter that can be read and written by the CPU. The timer
starts from 0x0000 after Reset, counts linearly to 0xFFFF, and wraps around.

The timer is clocked by the FlexCAN bit-clock (which defines the baud rate on the CAN bus). During a
message transmission/reception, it increments by one for each bit that is received or transmitted. When
there is no message on the bus, it counts using the previously programmed baud rate. During Freeze Mode,
the timer is not incremented.

The timer value is captured at the beginning of the identifier field of any frame on the CAN bus. This
captured value is written into the Time Stamp entry in a message buffer after a successful reception or
transmission of a message.

Writing to the timer is an indirect operation. The data is first written to an auxiliary register and then an
internal request/acknowledge procedure across clock domains is executed. All this is transparent to the
user, except for the fact that the data will take some time to be actually written to the register. If desired,
software can poll the register to discover when the data was actually written.

Figure 32-9. Free Running Timer (TIMER)

32.4.5.4 Rx Global Mask (RXGMASK)

This register is provided for legacy support and for MCUs that do not have the individual masking per
Message Buffer feature. For MCUs supporting individual masks per message buffer, setting
MCR[MBFEN] causes the RXGMASK Register to have no effect on the module operation. For MCUs not
supporting individual masks per message buffer, this register is always effective.

RXGMASK is used as acceptance mask for all Rx message buffers, excluding message buffers 14–15,
which have individual mask registers. When MCR[FEN] is set (FIFO enabled), the RXGMASK also
applies to all elements of the ID filter table, except elements 6–7, which have individual masks.

The contents of this register must be programmed while the module is in Freeze Mode, and must not be
modified when the module is transmitting or receiving frames.

1 One time quantum is equal to the Sclock period.

Base + 0x0008

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

TIMER
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1412 Freescale Semiconductor

Figure 32-10. Rx Global Mask Register (RXGMASK)

32.4.5.5 Rx 14 Mask (RX14MASK)

This register is provided for legacy support and for low cost MCUs that do not have the individual masking
per Message Buffer feature. For MCUs supporting individual masks per message buffer, setting
MCR[MBFEN] causes the RX14MASK Register to have no effect on the module operation.

RX14MASK is used as acceptance mask for the Identifier in Message Buffer 14. When MCR[FEN] is set
(FIFO enabled), the RXG14MASK also applies to element 6 of the ID filter table. This register has the
same structure as the Rx Global Mask Register. It must be programmed while the module is in Freeze
Mode, and must not be modified when the module is transmitting or receiving frames.

• Address Offset: 0x14

• Reset Value: 0xFFFF_FFFF

32.4.5.6 Rx 15 Mask (RX15MASK)

This register is provided for legacy support and for low cost MCUs that do not have the individual masking
per Message Buffer feature. For MCUs supporting individual masks per message buffer, setting
MCR[MBFEN] causes the RX15MASK Register to have no effect on the module operation.

When MCR[MBFEN] is negated, RX15MASK is used as acceptance mask for the Identifier in Message
Buffer 15. When MCR[FEN] is set (FIFO enabled), the RXG14MASK also applies to element 7 of the ID
filter table. This register has the same structure as the Rx Global Mask Register. It must be programmed
while the module is in Freeze Mode, and must not be modified when the module is transmitting or
receiving frames.

Base + 0x0010

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R

MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16
W

RESET: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0
W

RESET: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

= Unimplemented or Reserved

Table 32-11. RXGMASK Register field descriptions

Field Description

MI31–MI0 Mask Bits
For normal Rx message buffers, the mask bits affect the ID filter programmed on the message
buffer. For the Rx FIFO, the mask bits affect all bits programmed in the filter table (ID, IDE, RTR).

1: The corresponding bit in the filter is checked against the one received
0: The corresponding bit in the filter is “don’t care”

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1413

• Address Offset: 0x18

• Reset Value: 0xFFFF_FFFF

32.4.5.7 Error Counter Register (ECR)

This register has two 8-bit fields reflecting the value of two FlexCAN error counters: Transmit Error
Counter (TXECNT) and Receive Error Counter (RXECNT). The rules for increasing and decreasing these
counters are described in the CAN protocol and are completely implemented in the FlexCAN module.
Both counters are read only except in Freeze Mode, where they can be written by the CPU.

Writing to the Error Counter Register while in Freeze Mode is an indirect operation. The data is first
written to an auxiliary register and then an internal request/acknowledge procedure across clock domains
is executed. All this is transparent to the user, except for the fact that the data will take some time to be
actually written to the register. If desired, software can poll the register to discover when the data was
actually written.

FlexCAN responds to any bus state as described in the protocol, e.g. transmit ‘Error Active’ or ‘Error
Passive’ flag, delay its transmission start time (‘Error Passive’) and avoid any influence on the bus when
in ‘Bus Off’ state. The following are the basic rules for FlexCAN bus state transitions.

• If the value of TXECNT or RXECNT increases to be greater than or equal to 128, ESR[FLTCONF]
is updated to reflect ‘Error Passive’ state.

• If the FlexCAN state is ‘Error Passive’, and either TXECNT or RXECNT decrements to a value
less than or equal to 127 while the other already satisfies this condition, ESR[FLTCONF] is
updated to reflect ‘Error Active’ state.

• If the value of TXECNT increases to be greater than 255, ESR[FLTCONF] is updated to reflect
‘Bus Off’ state, and an interrupt may be issued. The value of TXECNT is then reset to zero.

• If FlexCAN is in ‘Bus Off’ state, then TXECNT is cascaded together with another internal counter
to count the 128th occurrences of 11 consecutive recessive bits on the bus. Hence, TXECNT is
reset to zero and counts in a manner where the internal counter counts 11 such bits and then wraps
around while incrementing the TXECNT. When TXECNT reaches the value of 128,
ESR[FLTCONF] is updated to be ‘Error Active’ and both error counters are reset to zero. At any
instance of dominant bit following a stream of less than 11 consecutive recessive bits, the internal
counter resets itself to zero without affecting the TXECNT value.

• If during system start-up, only one node is operating, then its TXECNT increases in each message
it is trying to transmit, as a result of acknowledge errors (indicated by ESR[ACKERR]). After the
transition to ‘Error Passive’ state, the TXECNT does not increment anymore by acknowledge
errors. Therefore the device never goes to the ‘Bus Off’ state.

• If the RXECNT increases to a value greater than 127, it is not incremented further, even if more
errors are detected while being a receiver. At the next successful message reception, the counter is
set to a value between 119 and 127 to resume to ‘Error Active’ state.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1414 Freescale Semiconductor

Figure 32-11. Error Counter Register (ECR)

32.4.5.8 Error and Status Register (ESR)

This register reflects various error conditions, some general status of the device and it is the source of four
interrupts to the CPU. The reported error conditions (bits 16–21) are those that occurred since the last time
the CPU read this register. The CPU read action clears bits16–21. Bits 22–28 are status bits.

Most bits in this register are read only, except TWRNINT, RWRNINT, BOFFINT, WAKINT and ERRINT,
that are interrupt flags that can be cleared by writing ‘1’ to them (writing ‘0’ has no effect). See
Section 32.5.10, Interrupts for more details.

Figure 32-12. Error and Status Register (ESR)

Base + 0x001C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R

RXECNT TXECNT
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Base + 0x0020

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T
W

R
N

IN
T

R
W

R
N

IN
T

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
IT

1E
R

R

B
IT

0E
R

R

A
C

K
E

R
R

C
R

C
E

R
R

F
R

M
E

R
R

S
T

F
E

R
R

T
X

W
R

N

R
X

W
R

N

ID
LE

T
X

R
X

FLTCONF 0

B
O

F
F

IN
T

E
R

R
IN

T

W
A

K
IN

T

W
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1415

Table 32-12. ESR Register field descriptions

Field Description

TWRNINT Tx Warning Interrupt Flag
If the WRNEN bit in MCR is asserted, the TWRNINT bit is set when the TXWRN flag transition
from ‘0’ to ‘1’, meaning that the Tx error counter reached 96. If the corresponding mask bit
(CR[TWRNMSK]) is set, an interrupt is generated to the CPU. This bit is cleared by writing it to ‘1’.
Writing ‘0’ has no effect.

1: The Tx error counter transition from < 96 to  96
0: No such occurrence

RWRNINT Rx Warning Interrupt Flag
If the WRNEN bit in MCR is asserted, the RWRNINT bit is set when the RXWRN flag transition
from ‘0’ to ‘1’, meaning that the Rx error counters reached 96. If the corresponding mask bit
(CR[RWRNMSK]) is set, an interrupt is generated to the CPU. This bit is cleared by writing it to ‘1’.
Writing ‘0’ has no effect.

1: The Rx error counter transition from < 96 to  96
0: No such occurrence

BIT1ERR Bit1 Error
This bit indicates when an inconsistency occurs between the transmitted and the received bit in a
message.

1: At least one bit sent as recessive is received as dominant
0: No such occurrence

Note: This bit is not set by a transmitter in case of arbitration field or ACK slot, or in case of a node
sending a passive error flag that detects dominant bits.

BIT0ERR Bit0 Error
This bit indicates when an inconsistency occurs between the transmitted and the received bit in a
message.

1: At least one bit sent as dominant is received as recessive
0: No such occurrence

ACKERR Acknowledge Error
This bit indicates that an Acknowledge Error has been detected by the transmitter node, i.e., a
dominant bit has not been detected during the ACK SLOT.

1: An ACK error occurred since last read of this register
0: No such occurrence

CRCERR Cyclic Redundancy Check Error
This bit indicates that a CRC Error has been detected by the receiver node, i.e., the calculated
CRC is different from the received.

1: A CRC error occurred since last read of this register.
0: No such occurrence

FRMERR Form Error
This bit indicates that a Form Error has been detected by the receiver node, i.e., a fixed-form bit
field contains at least one illegal bit.

1: A Form Error occurred since last read of this register
0: No such occurrence

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1416 Freescale Semiconductor

STFERR Stuffing Error
This bit indicates that a Stuffing Error has been detected.

1: A Stuffing Error occurred since last read of this register.
0: No such occurrence.

TXWRN TX Error Warning
This bit indicates when repetitive errors are occurring during message transmission.

1: TX_Err_Counter  96
0: No such occurrence

RXWRN Rx Warning
This bit indicates when repetitive errors are occurring during message reception.

1: Rx_Err_Counter 96
0: No such occurrence

IDLE CAN bus IDLE state
This bit indicates when CAN bus is in IDLE state.

1: CAN bus is now IDLE
0: No such occurrence

TXRX Current FlexCAN status (transmitting/receiving)
This bit indicates if FlexCAN is transmitting or receiving a message when the CAN bus is not in
IDLE state. This bit has no meaning when IDLE is asserted.

1: FlexCAN is transmitting a message (IDLE=0)
0: FlexCAN is receiving a message (IDLE=0)

FLTCONF Fault Confinement State
This 2-bit field indicates the Confinement State of the FlexCAN module.

00: Error Active
01: Error Passive
1x: Bus Off

If the LOM bit in the Control Register is asserted, the FLTCONF field will indicate “Error Passive”.
Since the Control Register is not affected by soft reset, the FLTCONF field will not be affected by
soft reset if the LOM bit is asserted.

BOFFINT Bus Off’ Interrupt
This bit is set when FlexCAN enters ‘Bus Off’ state. If the corresponding mask bit (CR[BOFFMSK])
is set, an interrupt is generated to the CPU. This bit is cleared by writing it to ‘1’. Writing ‘0’ has no
effect.

1: FlexCAN module entered ‘Bus Off’ state
0: No such occurrence

Table 32-12. ESR Register field descriptions

Field Description

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1417

32.4.5.9 Interrupt Masks 2 Register (IMRH)

This register allows any number of a range of 32 Message Buffer Interrupts to be enabled or disabled. It
contains one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an
interrupt after a successful transmission or reception (i.e. when the corresponding bit in the IFRH register
is set).

Figure 32-13. Interrupt Masks 2 Register (IMRH)

ERRINT Error Interrupt
This bit indicates that at least one of the Error Bits (bits 16–21) is set. If the corresponding mask
bit (CR[ERRMSK]) is set, an interrupt is generated to the CPU. This bit is cleared by writing it to
‘1’.Writing ‘0’ has no effect.

1: Indicates setting of any Error Bit in the Error and Status Register
0: No such occurrence

WAKINT Wake-Up Interrupt
When FlexCAN is in Stop Mode and a recessive to dominant transition is detected on the CAN bus
and if MCR[WAK_MSK] is set, an interrupt is generated to the CPU. This bit is cleared by writing
it to ‘1’. Writing ‘0’ has no effect.

1: Indicates a recessive to dominant transition received on the CAN bus when the FlexCAN
module is in Stop Mode
0: No such occurrence

Base + 0x0024

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R BUF

63M
BUF
62M

BUF
61M

BUF
60M

BUF
59M

BUF
58M

BUF
57M

BUF
56M

BUF
55M

BUF
54M

BUF
53M

BUF
52M

BUF
51M

BUF
50M

BUF
49M

BUF
48MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R BUF

47M
BUF
46M

BUF
45M

BUF
44M

BUF
43M

BUF
42M

BUF
41M

BUF
40M

BUF
39M

BUF
38M

BUF
37M

BUF
36M

BUF
35M

BUF
34M

BUF
33M

BUF
32MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 32-13. IMRH Register field descriptions

Field Description

BUF63M–
BUF32M

Buffer MBi Mask
Each bit enables or disables the respective FlexCAN Message Buffer (MB32 to MB63) Interrupt.

1: The corresponding buffer Interrupt is enabled
0: The corresponding buffer Interrupt is disabled

Note: Setting or clearing a bit in the IMRH register can assert or negate an interrupt request, if the
corresponding bit in the IFRH register is set.

Table 32-12. ESR Register field descriptions

Field Description

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1418 Freescale Semiconductor

32.4.5.10 Interrupt Masks 1 Register (IMRL)

This register allows to enable or disable any number of a range of 32 Message Buffer Interrupts. It contains
one interrupt mask bit per buffer, enabling the CPU to determine which buffer generates an interrupt after
a successful transmission or reception (i.e., when the corresponding bit in the IFRL register is set).

Figure 32-14. Interrupt Masks 1 Register (IMRL)

32.4.5.11 Interrupt Flags 2 Register (IFRH)

This register defines the flags for 32 Message Buffer interrupts. It contains one interrupt flag bit per buffer.
Each successful transmission or reception sets the corresponding bit in IFRH. If the corresponding bit in
IMRH is set, an interrupt will be generated. The interrupt flag must be cleared by writing it to ‘1’. Writing
‘0’ has no effect.

When MCR[AEN] is set (Abort enabled), while the IFRH bit is set for a message buffer configured as Tx,
the writing access done by CPU into the corresponding message buffer will be blocked.

Base + 0x0028

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R BUF

31M
BUF
30M

BUF
29M

BUF
28M

BUF
27M

BUF
26M

BUF
25M

BUF
24M

BUF
23M

BUF
22M

BUF
21M

BUF
20M

BUF
19M

BUF
18M

BUF
17M

BUF
16MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R BUF

15M
BUF
14M

BUF
13M

BUF
12M

BUF
11M

BUF
10M

BUF
9M

BUF
8M

BUF
7M

BUF
6M

BUF
5M

BUF
4M

BUF
3M

BUF
2M

BUF
1M

BUF
0MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 32-14. IMRL Register field descriptions

Field Description

BUF31M–
BUF0M

Buffer MBi Mask
Each bit enables or disables the respective FlexCAN Message Buffer (MB0 to MB31) Interrupt.

1: The corresponding buffer Interrupt is enabled
0: The corresponding buffer Interrupt is disabled

Note: Setting or clearing a bit in the IMRL Register can assert or negate an interrupt request, if
the corresponding bit in the IFRL register is set.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1419

Figure 32-15. Interrupt Flags 2 Register (IFRH)

32.4.5.12 Interrupt Flags 1 Register (IFRL)

This register defines the flags for 32 Message Buffer interrupts and FIFO interrupts. It contains one
interrupt flag bit per buffer. Each successful transmission or reception sets the corresponding bit in the
IFRL register. If the corresponding bit in the IMRL register is set, an interrupt will be generated. The
Interrupt flag must be cleared by writing it to ‘1’. Writing ‘0’ has no effect.

When MCR[AEN] is set (Abort enabled), while the bit in the IFRL is set for a message buffer configured
as Tx, the writing access done by CPU into the corresponding message buffer will be blocked.

When MCR[FEN] is set (FIFO enabled), the function of the 8 least significant interrupt flags (BUF7I–
BUF0I) is changed to support the FIFO operation. BUF7I, BUF6I and BUF5I indicate operating
conditions of the FIFO, while BUF4I to BUF0I are not used.

Figure 32-16. Interrupt Flags 1 Register (IFRL)

Base + 0x002C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R BUF

63I
BUF
62I

BUF
61I

BUF
60I

BUF
59I

BUF
58I

BUF
57I

BUF
56I

BUF
55I

BUF
54I

BUF
53I

BUF
52I

BUF
51I

BUF
50I

BUF
49I

BUF
48IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R BUF

47I
BUF
46I

BUF
45I

BUF
44I

BUF
43I

BUF
42I

BUF
41I

BUF
40I

BUF
39I

BUF
38I

BUF
37I

BUF
36I

BUF
35I

BUF
34I

BUF
33I

BUF
32IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 32-15. IFRH Register field descriptions

Field Description

BUF32I–
BUF63I

Buffer MBi Interrupt
Each bit flags the respective FlexCAN Message Buffer (MB32 to MB63) interrupt.

1: The corresponding buffer has successfully completed transmission or reception
0: No such occurrence

Base + 0x0030

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R BUF

31I
BUF
30I

BUF
29I

BUF
28I

BUF
27I

BUF
26I

BUF
25I

BUF
24I

BUF
23I

BUF
22I

BUF
21I

BUF
20I

BUF
19I

BUF
18I

BUF
17I

BUF
16IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R BUF

15I
BUF
14I

BUF
13I

BUF
12I

BUF
11I

BUF
10I

BUF
9I

BUF
8I

BUF
7I

BUF
6I

BUF
5I

BUF
4I

BUF
3I

BUF
2I

BUF
1I

BUF
0IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1420 Freescale Semiconductor

32.4.5.13 Rx Individual Mask Registers (RXIMR0–RXIMR63)

These registers are used as acceptance masks for ID filtering in Rx message buffers and the FIFO. If the
FIFO is not enabled, one mask register is provided for each available Message Buffer, providing ID
masking capability on a per Message Buffer basis. When the FIFO is enabled (MCR[FEN] is set), the first
eight Mask Registers apply to the eight elements of the FIFO filter table (on a one-to-one correspondence),
while the rest of the registers apply to the regular message buffers, starting from MB8.

The Individual Rx Mask Registers are implemented in RAM, so they are not affected by reset and must be
explicitly initialized prior to any reception. Furthermore, they can only be accessed by the CPU while the
module is in Freeze Mode. Out of Freeze Mode, write accesses are blocked and read accesses will return
“all zeros”. Furthermore, if MCR[MBFEN] is negated, any read or write operation to these registers results
in access error.

Table 32-16. IFRL Register field descriptions

Field Description

BUF31I–
BUF8I

Buffer MBi Interrupt
Each bit flags the respective FlexCAN Message Buffer (MB8 to MB31) interrupt.

1: The corresponding message buffer has successfully completed transmission or reception
0: No such occurrence

BUF7I Buffer MB7 Interrupt or “FIFO Overflow”
If the FIFO is not enabled, this bit flags the interrupt for MB7. If the FIFO is enabled, this flag
indicates an overflow condition in the FIFO (frame lost because FIFO is full).

1: MB7 completed transmission/reception or FIFO overflow
0: No such occurrence

BUF6I Buffer MB6 Interrupt or “FIFO Warning”
If the FIFO is not enabled, this bit flags the interrupt for MB6. If the FIFO is enabled, this flag
indicates that 5 out of 6 buffers of the FIFO are already occupied (FIFO almost full).

1: MB6 completed transmission/reception or FIFO almost full
0: No such occurrence

BUF5I Buffer MB5 Interrupt or “Frames available in FIFO”
If the FIFO is not enabled, this bit flags the interrupt for MB5. If the FIFO is enabled, this flag
indicates that at least one frame is available to be read from the FIFO.

1: MB5 completed transmission/reception or frames available in the FIFO
0: No such occurrence

BUF4I–
BUF0I

Buffer MBi Interrupt or “reserved”
If the FIFO is not enabled, these bits flag the interrupts for MB0 to MB4. If the FIFO is enabled,
these flags are not used and must be considered as reserved locations.

1: Corresponding message buffer completed transmission/reception
0: No such occurrence

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1421

Figure 32-17. Rx Individual Mask Registers (RXIMR0 – RXIMR63)

32.5 Functional description

32.5.1 Overview

The FlexCAN module is a CAN protocol engine with a very flexible mailbox system for transmitting and
receiving CAN frames. The mailbox system is composed by a set of up to 64 Message Buffers (MB) that
store configuration and control data, time stamp, message ID and data (see Section 32.4.3, Message buffer
structure). The memory corresponding to the first eight message buffers can be configured to support a
FIFO reception scheme with a powerful ID filtering mechanism, capable of checking incoming frames
against a table of IDs (up to eight extended IDs or sixteen standard IDs or thirty-two 8-bit ID slices), each
one with its own individual mask register. Simultaneous reception through FIFO and mailbox is supported.
For mailbox reception, a matching algorithm makes it possible to store received frames only into message
buffers that have the same ID programmed on its ID field. A masking scheme makes it possible to match
the ID programmed on the message buffer with a range of IDs on received CAN frames. For transmission,
an arbitration algorithm decides the prioritization of message buffers to be transmitted based on the
message ID (optionally augmented by three local priority bits) or the message buffer ordering.

Before proceeding with the functional description, an important concept must be explained. A Message
Buffer is said to be “active” at a given time if it can participate in the matching and arbitration algorithms
that are happening at that time. An Rx message buffer with a ‘0000’ code is inactive (refer to Table 32-5).
Similarly, a Tx message buffer with a ‘1000’ or ‘1001’ code is also inactive (refer to Table 32-6). A
message buffer not programmed with ‘0000’, ‘1000’ or ‘1001’ will be temporarily deactivated (will not
participate in the current arbitration or matching run) when the CPU writes to the C/S field of that message
buffer (see Section 32.5.6.2, Message buffer deactivation).

Base + 0x0880–0x097F

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

Table 32-17. RXIMR0 – RXIMR63 Register field descriptions

Field Description

MI31–MI0 Mask Bits
For normal Rx message buffers, the mask bits affect the ID filter programmed on the message
buffer. For the Rx FIFO, the mask bits affect all bits programmed in the filter table (ID, IDE, RTR).

1: The corresponding bit in the filter is checked against the one received
0: the corresponding bit in the filter is “don’t care”

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1422 Freescale Semiconductor

32.5.2 Transmit process

In order to transmit a CAN frame, the CPU must prepare a Message Buffer for transmission by executing
the following procedure:

• If the message buffer is active (transmission pending), write ‘1000’ to the Code field to inactivate
the message buffer.The deactivated message buffer can transmit without setting IFLAG and
without updating the CODE field (see Section 32.5.6.2, Message buffer deactivation).

• Write the ID word.

• Write the data bytes.

• Write the Length, Control and Code fields of the Control and Status word to activate the message
buffer.

Once the message buffer is activated in the fourth step, it will participate into the arbitration process and
eventually be transmitted according to its priority. At the end of the successful transmission, the value of
the Free Running Timer is written into the Time Stamp field, the Code field in the Control and Status word
is updated, a status flag is set in the Interrupt Flag Register and an interrupt is generated if allowed by the
corresponding Interrupt Mask Register bit. The new Code field after transmission depends on the code that
was used to activate the message buffer in step four (see Table 32-5 and Table 32-6 in Section 32.4.3,
Message buffer structure). When the Abort feature is enabled (MCR[AEN] is asserted), after the Interrupt
Flag is asserted for a message buffer configured as transmit buffer, the message buffer is blocked, therefore
the CPU is not able to update it until the Interrupt Flag be negated by CPU. It means that the CPU must
clear the corresponding IFRL or IFRH register before starting to prepare this message buffer for a new
transmission or reception.

32.5.3 Arbitration process

The arbitration process is an algorithm executed by the MBM that scans the whole message buffer memory
looking for the highest priority message to be transmitted. All message buffers programmed as transmit
buffers will be scanned to find the lowest ID1 or the lowest MB number or the highest priority, depending
on bits CR[LBUF] and MCR[LPRIO_EN]. The arbitration process is triggered in the following events:

• During the CRC field of the CAN frame

• During the error delimiter field of the CAN frame

• During Intermission, if the winner message buffer defined in a previous arbitration was
deactivated, or if there was no message buffer to transmit, but the CPU wrote to the C/S word of
any message buffer after the previous arbitration finished

• When MBM is in Idle or Bus Off state and the CPU writes to the C/S word of any message buffer

• Upon leaving Freeze Mode

When CR[LBUF] is asserted, MCR[LPRIO_EN] has no effect and the lowest number buffer is transmitted
first. When CR[LBUF] and MCR[LPRIO_EN] are both negated, the message buffer with the lowest ID is
transmitted first but if CR[LBUF] is negated and MCR[LPRIO_EN] is asserted, the PRIO bits augment
the ID used during the arbitration process. With this extended ID concept, arbitration is done based on the
full 32-bit ID and the PRIO bits define which message buffer should be transmitted first, therefore message
1. Actually, if CR[LBUF] is negated, the arbitration considers not only the ID, but also the RTR and IDE bits placed inside the

ID at the same positions they are transmitted in the CAN frame.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1423

buffers with PRIO = 000 have higher priority. If two or more message buffers have the same priority, the
regular ID will determine the priority of transmission. If two or more message buffers have the same
priority (three extra bits) and the same regular ID, the lowest message buffer will be transmitted first.

Once the highest priority message buffer is selected, it is transferred to a temporary storage space called
Serial Message Buffer (SMB), which has the same structure as a normal message buffer but is not user
accessible. This operation is called “move-out” and after it is done, write access to the corresponding
message buffer is blocked (if MCR[AEN] is asserted). The write access is released in the following events:

• After the message buffer is transmitted

• FlexCAN enters in HALT or BUS OFF

• FlexCAN loses the bus arbitration or there is an error during the transmission

At the first opportunity window on the CAN bus, the message on the SMB is transmitted according to the
CAN protocol rules. FlexCAN transmits up to eight data bytes, even if the DLC (Data Length Code) value
is bigger.

32.5.4 Receive process

To be able to receive CAN frames into the mailbox message buffers, the CPU must prepare one or more
Message Buffers for reception by executing the following steps:

1. If the message buffer has a pending transmission, write an ABORT code (‘1001’) to the Code field
of the Control and Status word to request an abortion of the transmission, then read back the Code
field and the IFRL or IFRH register to check if the transmission was aborted (see Section 32.5.6.1,
Transmission abort mechanism). If backwards compatibility is desired (AEN in MCR negated),
just write ‘1000’ to the Code field to inactivate the message buffer, but then the pending frame may
be transmitted without notification (see Section 32.5.6.2, Message buffer deactivation). If the
message buffer already programmed as a receiver, just write ‘0000’ to the Code field of the Control
and Status word to keep the message buffer inactive.

2. Write the ID word

3. Write ‘0100’ to the Code field of the Control and Status word to activate the message buffer

Once the message buffer is activated in the third step, it will be able to receive frames that match the
programmed ID. At the end of a successful reception, the message buffer is updated by the MBM as
follows:

1. The value of the Free Running Timer is written into the Time Stamp field

2. The received ID, Data (8 bytes at most) and Length fields are stored

3. The Code field in the Control and Status word is updated (see Table 32-5 and Table 32-6 in
Section 32.4.3, Message buffer structure)

4. A status flag is set in the Interrupt Flag Register and an interrupt is generated if allowed by the
corresponding Interrupt Mask Register bit

Upon receiving the MB interrupt, the CPU should service the received frame using the following
procedure:

1. Read the Control and Status word (mandatory – activates an internal lock for this buffer)

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1424 Freescale Semiconductor

2. Read the ID field (optional – needed only if a mask was used)

3. Read the Data field

4. Read the Free Running Timer (optional – releases the internal lock)

Upon reading the Control and Status word, if the BUSY bit is set in the Code field, then the CPU should
defer the access to the message buffer until this bit is negated. Reading the Free Running Timer is not
mandatory. If not executed the message buffer remains locked, unless the CPU reads the C/S word of
another message buffer. Note that only a single message buffer is locked at a time. The only mandatory
CPU read operation is the one on the Control and Status word to assure data coherency (see Section 32.5.6,
Data coherence).

The CPU should synchronize to frame reception by the status flag bit for the specific message buffer in the
corresponding IFRL or IFRH register and not by the Code field of that message buffer. Polling the Code
field does not work because once a frame was received and the CPU services the message buffer (by
reading the C/S word followed by unlocking the message buffer), the Code field will not return to EMPTY.
It will remain FULL, as explained in Table 32-5. If the CPU tries to workaround this behavior by writing
to the C/S word to force an EMPTY code after reading the message buffer, the message buffer is actually
deactivated from any currently ongoing matching process. As a result, a newly received frame matching
the ID of that message buffer may be lost. In summary: never do polling by reading directly the C/S
word of the message buffers. Instead, read the corresponding IFRL or IFRH register.

Note that the received ID field is always stored in the matching message buffer, thus the contents of the ID
field in a message buffer may change if the match was due to masking. Note also that FlexCAN does
receive frames transmitted by itself if there exists an Rx matching message buffer, provided
MCR[SRX_DIS] is not asserted. If MCR[SRX_DIS] is asserted, FlexCAN will not store frames
transmitted by itself in any message buffer, even if it contains a matching message buffer, and no interrupt
flag or interrupt signal will be generated due to the frame reception.

To be able to receive CAN frames through the FIFO, the CPU must enable and configure the FIFO during
Freeze Mode (see Section 32.5.7, Rx FIFO). Upon receiving the frames available interrupt from FIFO, the
CPU should service the received frame using the following procedure:

1. Read the Control and Status word (optional – needed only if a mask was used for IDE and RTR
bits)

2. Read the ID field (optional – needed only if a mask was used)

3. Read the Data field

4. Clear the frames available interrupt (mandatory – release the buffer and allow the CPU to read the
next FIFO entry)

32.5.5 Matching process

The matching process is an algorithm executed by the MBM that scans the message buffer memory
looking for Rx message buffers programmed with the same ID as the one received from the CAN bus. If
the FIFO is enabled, the 8-entry ID table from FIFO is scanned first and then, if a match is not found within
the FIFO table, the other message buffers are scanned. In the event that the FIFO is full, the matching
algorithm will always look for a matching message buffer outside the FIFO region.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1425

When the frame is received, it is temporarily stored in a hidden auxiliary message buffer called Serial
Message Buffer (SMB). The matching process takes place during the CRC field of the received frame. If
a matching ID is found in the FIFO table or in one of the regular message buffers, the contents of the SMB
will be transferred to the FIFO or to the matched message buffer during the 6th bit of the End-Of-Frame
field of the CAN protocol. This operation is called “move-in”. If any protocol error (CRC, ACK, etc.) is
detected, than the move-in operation does not happen.

For the regular mailbox message buffers, a message buffer is said to be “free to receive” a new frame if
the following conditions are satisfied:

• The message buffer is not locked (see Section 32.5.6.3, Message buffer lock mechanism)

• The Code field is either EMPTY or else it is FULL or OVERRUN but the CPU has already serviced
the message buffer (read the C/S word and then unlocked the message buffer)

If the first message buffer with a matching ID is not “free to receive” the new frame, then the matching
algorithm keeps looking for another free message buffer until it finds one. If it can not find one that is free,
then it will overwrite the last matching message buffer (unless it is locked) and set the Code field to
OVERRUN (refer to Table 32-5 and Table 32-6). If the last matching message buffer is locked, then the
new message remains in the SMB, waiting for the message buffer to be unlocked (see Section 32.5.6.3,
Message buffer lock mechanism).

Suppose, for example, that the FIFO is disabled and there are two message buffers with the same ID, and
FlexCAN starts receiving messages with that ID. Let us say that these message buffers are the second and
the fifth in the array. When the first message arrives, the matching algorithm will find the first match in
MB number 2. The code of this message buffer is EMPTY, so the message is stored there. When the second
message arrives, the matching algorithm will find MB number 2 again, but it is not “free to receive”, so it
will keep looking and find MB number 5 and store the message there. If yet another message with the same
ID arrives, the matching algorithm finds out that there are no matching message buffers that are “free to
receive”, so it decides to overwrite the last matched message buffer, which is number 5. In doing so, it sets
the Code field of the message buffer to indicate OVERRUN.

The ability to match the same ID in more than one message buffer can be exploited to implement a
reception queue (in addition to the full featured FIFO) to allow more time for the CPU to service the
message buffers. By programming more than one message buffer with the same ID, received messages will
be queued into the message buffers. The CPU can examine the Time Stamp field of the message buffers
to determine the order in which the messages arrived.

The matching algorithm described above can be changed to be the same one used in previous versions of
the FlexCAN module. When the MBFEN bit in MCR is negated, the matching algorithm stops at the first
message buffer with a matching ID that it founds, whether this message buffer is free or not. As a result,
the message queueing feature does not work if the MBFEN bit is negated.

Matching to a range of IDs is possible by using ID Acceptance Masks. FlexCAN supports individual
masking per message buffer. Please refer to Section 32.4.5.13, Rx Individual Mask Registers
(RXIMR0–RXIMR63). During the matching algorithm, if a mask bit is asserted, then the corresponding
ID bit is compared. If the mask bit is negated, the corresponding ID bit is “don’t care”. Please note that the
Individual Mask Registers are implemented in RAM, so they are not initialized out of reset. Also, they can
only be programmed if the MBFEN bit is asserted and while the module is in Freeze Mode.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1426 Freescale Semiconductor

FlexCAN also supports an alternate masking scheme with only three mask registers (RGXMASK,
RX14MASK and RX15MASK) for backwards compatibility. This alternate masking scheme is enabled
when MCR[MBFEN] is negated.

32.5.6 Data coherence

In order to maintain data coherency and FlexCAN proper operation, the CPU must obey the rules described
in Section 32.5.2, Transmit process and Section 32.5.4, Receive process. Any form of CPU accessing a
message buffer structure within FlexCAN other than those specified may cause FlexCAN to behave in an
unpredictable way.

32.5.6.1 Transmission abort mechanism

The abort mechanism provides a safe way to request the abortion of a pending transmission. A feedback
mechanism is provided to inform the CPU if the transmission was aborted or if the frame could not be
aborted and was transmitted instead. In order to maintain backwards compatibility, the abort mechanism
must be explicitly enabled by asserting MCR[AEN].

In order to abort a transmission, the CPU must write a specific abort code (1001) to the Code field of the
Control and Status word. When the abort mechanism is enabled, the active message buffers configured as
transmission must be aborted first and then they may be updated. If the abort code is written to a message
buffer that is currently being transmitted, or to a message buffer that was already loaded into the SMB for
transmission, the write operation is blocked and the message buffer is not deactivated, but the abort request
is captured and kept pending until one of the following conditions are satisfied:

• The module loses the bus arbitration

• There is an error during the transmission

• The module is put into Freeze Mode

If none of conditions above are reached, the message buffer is transmitted correctly, the interrupt flag is
set in the corresponding IFRL or IFRH register and an interrupt to the CPU is generated (if enabled). The
abort request is automatically cleared when the interrupt flag is set. In the other hand, if one of the above
conditions is reached, the frame is not transmitted, therefore the abort code is written into the Code field,
the interrupt flag is set in the corresponding IFRL or IFRH register and an interrupt is (optionally)
generated to the CPU.

If the CPU writes the abort code before the transmission begins internally, then the write operation is not
blocked, therefore the message buffer is updated and no interrupt flag is set. In this way the CPU just needs
to read the abort code to make sure the active message buffer was deactivated. Although the AEN bit is
asserted and the CPU wrote the abort code, in this case the message buffer is deactivated and not aborted,
because the transmission did not start yet. One message buffer is only aborted when the abort request is
captured and kept pending until one of the previous conditions are satisfied.

The abort procedure can be summarized as follows:

• CPU writes 1001 into the code field of the C/S word

• CPU reads the CODE field and compares it to the value that was written

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1427

• If the CODE field that was read is different from the value that was written, the CPU must read the
corresponding IFRL or IFRH register to check if the frame was transmitted or it is being currently
transmitted. If the corresponding IFRL or IFRH is set, the frame was transmitted. If the
corresponding IFRL or IFRH is reset, the CPU must wait for it to be set, and then the CPU must
read the CODE field to check if the message buffer was aborted (CODE = 1001) or it was
transmitted (CODE = 1000).

NOTE

An Abort request to a TxMB can block any write operation into its CODE
field. As a consequence, the TxMB cannot be aborted or deactivated
anymore until it completes the transmission by winning the CAN bus
arbitration.

32.5.6.2 Message buffer deactivation

Deactivation is mechanism provided to maintain data coherence when the CPU writes to the Control and
Status word of active message buffers out of Freeze Mode. Any CPU write access to the Control and Status
word of a message buffer causes that message buffer to be excluded from the transmit or receive processes
during the current matching or arbitration round. The deactivation is temporary, affecting only for the
current match/arbitration round.

The purpose of deactivation is data coherency. The match/arbitration process scans the message buffers to
decide which message buffer to transmit or receive. If the CPU updates the message buffer in the middle
of a match or arbitration process, the data of that message buffer may no longer be coherent, therefore
deactivation of that message buffer is done.

Even with the coherence mechanism described above, writing to the Control and Status word of active
message buffers when not in Freeze Mode may produce undesirable results. Examples are:

• Matching and arbitration are one-pass processes. If message buffers are deactivated after they are
scanned, no re-evaluation is done to determine a new match/winner. If an Rx message buffer with
a matching ID is deactivated during the matching process after it was scanned, then this message
buffer is marked as invalid to receive the frame, and FlexCAN will keep looking for another
matching message buffer within the ones it has not scanned yet. If it can not find one, then the
message will be lost. Suppose, for example, that two message buffers have a matching ID to a
received frame, and the user deactivated the first matching message buffer after FlexCAN has
scanned the second. The received frame will be lost even if the second matching message buffer
was “free to receive”.

• If a Tx message buffer containing the lowest ID is deactivated after FlexCAN has scanned it, then
FlexCAN will look for another winner within the message buffers that it has not scanned yet.
Therefore, it may transmit a message buffer with ID that may not be the lowest at the time because
a lower ID might be present in one of the message buffers that it had already scanned before the
deactivation.

• There is a point in time until which the deactivation of a Tx message buffer causes it not to be
transmitted (end of move-out). After this point, it is transmitted but no interrupt is issued and the
Code field is not updated. In order to avoid this situation, the abort procedures described in
Section 32.5.6.1, Transmission abort mechanism should be used.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1428 Freescale Semiconductor

32.5.6.3 Message buffer lock mechanism

Besides message buffer deactivation, FlexCAN has another data coherence mechanism for the receive
process. When the CPU reads the Control and Status word of an “active not empty” Rx message buffer,
FlexCAN assumes that the CPU wants to read the whole message buffer in an atomic operation, and thus
it sets an internal lock flag for that message buffer. The lock is released when the CPU reads the Free
Running Timer (global unlock operation), or when it reads the Control and Status word of another message
buffer. The message buffer locking is done to prevent a new frame to be written into the message buffer
while the CPU is reading it.

NOTE

The locking mechanism only applies to Rx message buffers which have a
code different than INACTIVE (‘0000’) or EMPTY1 (‘0100’). Also, Tx
message buffers can not be locked.

Suppose, for example, that the FIFO is disabled and the second and the fifth message buffers of the array
are programmed with the same ID, and FlexCAN has already received and stored messages into these two
message buffers. Suppose now that the CPU decides to read MB number 5 and at the same time another
message with the same ID is arriving. When the CPU reads the Control and Status word of MB number 5,
this MB is locked. The new message arrives and the matching algorithm finds out that there are no “free
to receive” message buffers, so it decides to override MB number 5. However, this message buffer is
locked, so the new message can not be written there. It will remain in the SMB waiting for the message
buffer to be unlocked, and only then will be written to the message buffer. If the message buffer is not
unlocked in time and yet another new message with the same ID arrives, then the new message overwrites
the one on the SMB and there will be no indication of lost messages either in the Code field of the message
buffer or in the Error and Status Register.

While the message is being moved-in from the SMB to the message buffer, the BUSY bit on the Code field
is asserted. If the CPU reads the Control and Status word and finds out that the BUSY bit is set, it should
defer accessing the message buffer until the BUSY bit is negated.

NOTE

If the BUSY bit is asserted or if the message buffer is empty, then reading
the Control and Status word does not lock the message buffer.

Deactivation takes precedence over locking. If the CPU deactivates a locked Rx message buffer, then its
lock status is negated and the message buffer is marked as invalid for the current matching round. Any
pending message on the SMB will not be transferred anymore to the message buffer.

32.5.7 Rx FIFO

The receive-only FIFO is enabled by asserting MCR[FEN]. The reset value of this bit is zero to maintain
software backwards compatibility with previous versions of the module that did not have the FIFO feature.
When the FIFO is enabled, the memory region normally occupied by the first eight message buffers
(0x80–0xFF) is now reserved for use of the FIFO engine (see Section 32.4.4, Rx FIFO structure).
Management of read and write pointers is done internally by the FIFO engine. The CPU can read the

1. In previous FlexCAN versions, reading the C/S word locked the message buffer even if it was EMPTY. In current FlexCAN
versions, this behavior is maintained when the MBFEN bit is negated.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1429

received frames sequentially, in the order they were received, by repeatedly accessing a Message Buffer
structure at the beginning of the memory.

The FIFO can store up to 6 frames pending service by the CPU. An interrupt is sent to the CPU when new
frames are available in the FIFO. Upon receiving the interrupt, the CPU must read the frame (accessing a
message buffer in the 0x80 address) and then clear the interrupt. The act of clearing the interrupt triggers
the FIFO engine to replace the message buffer in 0x80 with the next frame in the queue, and then issue
another interrupt to the CPU. If the FIFO is full and more frames continue to be received, an OVERFLOW
interrupt is issued to the CPU and subsequent frames are not accepted until the CPU creates space in the
FIFO by reading one or more frames. A warning interrupt is also generated when 5 frames are accumulated
in the FIFO.

A powerful filtering scheme is provided to accept only frames intended for the target application, thus
reducing the interrupt servicing work load. The filtering criteria is specified by programming a table of 8
32-bit registers that can be configured to one of the following formats (see also Section 32.4.4, Rx FIFO
structure):

• Format A: 8 extended or standard IDs (including IDE and RTR)

• Format B: 16 standard IDs or 16 extended 14-bit ID slices (including IDE and RTR)

• Format C: 32 standard or extended 8-bit ID slices

NOTE

A chosen format is applied to all 8 registers of the filter table. It is not
possible to mix formats within the table.

The eight elements of the filter table are individually affected by the first eight Individual Mask Registers
(RXIMR0 – RXIMR7), allowing very powerful filtering criteria to be defined. The rest of the RXIMR,
starting from RXIM8, continue to affect the regular message buffers, starting from MB8. If the MBFEN
bit is negated (or if the RXIMR are not available for the particular MCU), then the FIFO filter table is
affected by the legacy mask registers as follows: element 6 is affected by RX14MASK, element 7 is
affected by RX15MASK and the other elements (0 to 5) are affected by RXGMASK.

32.5.7.1 Precautions when using Global Mask and Individual Mask registers

Table 32-18. Recommended FEN and BCC settings

Case
MCR[FEN]

RxFIFO
MCR[BCC]

Rx Individual Mask
Notes

Case 1 FEN = 0 BCC = 0 RXGMASK, RX14MASK, and RX15MASK can safely be used.
This allows backwards compatibility to older devices (e.g.,
devices without the individual masks feature). In this case,
individual masks are not used.

Case 2 FEN = 1 BCC = 0 1st alternative:
Do not use RXGMASK, RX14MASK, and RX15MASK in this
case, leave the masks in their reset state.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1430 Freescale Semiconductor

32.5.8 CAN protocol related features

32.5.8.1 Remote frames

Remote frame is a special kind of frame. The user can program a message buffer to be a Request Remote
Frame by writing the message buffer as Transmit with the RTR bit set to ‘1’. After the Remote Request
frame is transmitted successfully, the message buffer becomes a Receive Message Buffer, with the same
ID as before.

When a Remote Request frame is received by FlexCAN, its ID is compared to the IDs of the transmit
message buffers with the Code field ‘1010’. If there is a matching ID, then this message buffer frame will
be transmitted. Note that if the matching message buffer has the RTR bit set, then FlexCAN will transmit
a Remote Frame as a response.

A received Remote Request Frame is not stored in a receive buffer. It is only used to trigger a transmission
of a frame in response. The mask registers are not used in remote frame matching, and all ID bits (except
RTR) of the incoming received frame should match.

In the case that a Remote Request Frame was received and matched a message buffer, this message buffer
immediately enters the internal arbitration process, but is considered as normal Tx message buffer, with
no higher priority. The data length of this frame is independent of the DLC field in the remote frame that
initiated its transmission.

If the Rx FIFO is enabled (bit FEN set in MCR), FlexCAN will not generate an automatic response for
Remote Request Frames that match the FIFO filtering criteria. If the remote frame matches one of the
target IDs, it will be stored in the FIFO and presented to the CPU. Note that for filtering formats A and B,
it is possible to select whether remote frames are accepted or not. For format C, remote frames are always
accepted (if they match the ID).

32.5.8.2 Overload frames

FlexCAN does transmit overload frames due to detection of following conditions on CAN bus:

• Detection of a dominant bit in the first/second bit of Intermission

Case 3 FEN = 1 BCC = 0 2nd alternative:
Do not configure any MB as Rx (i.e., let all MBs as either Tx or
inactive).
In this case, RXGMASK, RX14MASK, and RX15MASK can be
used to affect ID Tables without affecting the filtering process
for Rx MBs.

Case 4 Don’t care BCC = 1 If MCR[BCC] = 1, then the RXIMRs are enabled. Thus,
RXGMASK, RX14MASK, and RX15MASK are not used.
Particularly, when MCR[FEN] = 0, RxFIFO is disabled;
RXGMASK, RX14MASK, and RX15MASK do not affect
filtering. Individual masks are used.

Table 32-18. Recommended FEN and BCC settings

Case
MCR[FEN]

RxFIFO
MCR[BCC]

Rx Individual Mask
Notes

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1431

• Detection of a dominant bit at the 7th bit (last) of End of Frame field (Rx frames)

• Detection of a dominant bit at the 8th bit (last) of Error Frame Delimiter or Overload Frame
Delimiter

32.5.8.3 Time stamp

The value of the Free Running Timer is sampled at the beginning of the Identifier field on the CAN bus,
and is stored at the end of “move-in” in the TIME STAMP field, providing network behavior with respect
to time.

Note that the Free Running Timer can be reset upon a specific frame reception, enabling network time
synchronization. Refer to TSYN description in Section 32.4.5.2, Control Register (CR).

32.5.8.4 Protocol timing

Figure 32-18 shows the structure of the clock generation circuitry that feeds the CAN Protocol Interface
(CPI) submodule. The clock source bit (CLKSRC) in the CR Register defines whether the internal clock
is connected to the output of a crystal oscillator (Oscillator Clock) or to the Peripheral Clock (generally
from a PLL). In order to guarantee reliable operation, the clock source should be selected while the module
is in Disable Mode (bit MDIS set in the Module Configuration Register).

Figure 32-18. CAN engine clocking scheme

The crystal oscillator clock should be selected whenever a tight tolerance (up to 0.1%) is required in the
CAN bus timing. The crystal oscillator clock has better jitter performance than PLL generated clocks.

The FlexCAN module supports a variety of means to setup bit timing parameters that are required by the
CAN protocol. The Control Register has various fields used to control bit timing parameters: PRESDIV,
PROPSEG, PSEG1, PSEG2 and RJW. See Section 32.4.5.2, Control Register (CR).

The PRESDIV field controls a prescaler that generates the Serial Clock (Sclock), whose period defines the
‘time quantum’ used to compose the CAN waveform. A time quantum is the atomic unit of time handled
by the CAN engine.

A bit time is subdivided into three segments1 (reference Figure 32-19 and Table 32-19):
1. For further explanation of the underlying concepts please refer to ISO/DIS 11519–1, Section 10.3. Reference also the

Bosch CAN 2.0A/B protocol specification dated September 1991 for bit timing.

Peripheral Clock (PLL)

Oscillator Clock (Xtal)
CLKSRC

Prescaler
(1 .. 256)

SclockCPI Clock

fTq

fCANCLK

Prescaler ValueÞ 
--=

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1432 Freescale Semiconductor

• SYNC_SEG: This segment has a fixed length of one time quantum. Signal edges are expected to
happen within this section

• Time Segment 1: This segment includes the Propagation Segment and the Phase Segment 1 of the
CAN standard. It can be programmed by setting the PROPSEG and the PSEG1 fields of the CR
Register so that their sum (plus 2) is in the range of 4 to 16 time quanta

• Time Segment 2: This segment represents the Phase Segment 2 of the CAN standard. It can be
programmed by setting the PSEG2 field of the CR Register (plus 1) to be 2 to 8 time quanta long

Figure 32-19. Segments within the Bit Time

Table 32-20 gives an overview of the CAN compliant segment settings and the related parameter values.

Table 32-19. Time Segment Syntax

Syntax Description

SYNC_SEG System expects transitions to occur on the bus during this period.

Transmit Point A node in transmit mode transfers a new value to the CAN bus at this point.

Sample Point A node samples the bus at this point. If the three samples per bit option is
selected, then this point marks the position of the third sample.

Bit Rate
fTq

number of Time QuantaÞ Þ Þ 
---=Þ

SYNC_SEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8

8 ... 25 Time Quanta
= 1 Bit Time

NRZ Signal

Sample Point
(single or triple sampling)

 (PROP_SEG + PSEG1 + 2) (PSEG2 + 1)

Transmit Point

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1433

NOTE

It is the user’s responsibility to ensure the bit time settings are in compliance
with the CAN standard. For bit time calculations, use an IPT (Information
Processing Time) of 2, which is the value implemented in the FlexCAN
module.

32.5.8.5 Arbitration and matching timing

During normal transmission or reception of frames, the arbitration, matching, move-in and move-out
processes are executed during certain time windows inside the CAN frame, as shown in Figure 32-20.

Figure 32-20. Arbitration, match and move time windows

When doing matching and arbitration, FlexCAN needs to scan the whole Message Buffer memory during
the available time slot. In order to have sufficient time to do that, the following requirements must be
observed:

• A valid CAN bit timing must be programmed, as indicated in Table 32-20

• The peripheral clock frequency can not be smaller than the oscillator clock frequency, i.e. the PLL
can not be programmed to divide down the oscillator clock

• There must be a minimum ratio between the peripheral clock frequency and the CAN bit rate, as
specified in Table 32-21

Table 32-20. CAN standard compliant bit time segment settings

Time segment 1 Time segment 2
 Resynchronization jump

width

5 .. 10 2 1 .. 2

4 .. 11 3 1 .. 3

5 .. 12 4 1 .. 4

6 .. 13 5 1 .. 4

7 .. 14 6 1 .. 4

8 .. 15 7 1 .. 4

9 .. 16 8 1 .. 4

CRC (15) EOF (7) Interm

Start Move

Matching/Arbitration Window (24 bits)
Move

(bit 6)

Window

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1434 Freescale Semiconductor

A direct consequence of the first requirement is that the minimum number of time quanta per CAN bit must
be 8, so the oscillator clock frequency should be at least 8 times the CAN bit rate. The minimum frequency
ratio specified in Table 32-21 can be achieved by choosing a high enough peripheral clock frequency when
compared to the oscillator clock frequency, or by adjusting one or more of the bit timing parameters
(PRESDIV, PROPSEG, PSEG1, PSEG2). As an example, taking the case of 64 message buffers, if the
oscillator and peripheral clock frequencies are equal and the CAN bit timing is programmed to have 8 time
quanta per bit, then the prescaler factor (PRESDIV + 1) should be at least 2. For prescaler factor equal to
one and CAN bit timing with 8 time quanta per bit, the ratio between peripheral and oscillator clock
frequencies should be at least 2.

32.5.9 Modes of operation details

32.5.9.1 Freeze Mode

This mode is entered by asserting MCR[HALT] or when the MCU is put into Debug Mode. In both cases
it is also necessary that MCR[FRZ] is asserted and the module is not in either of the low power modes
(Disable or Stop). When Freeze Mode is requested during transmission or reception, FlexCAN does the
following:

• Waits to be in either Intermission, Passive Error, Bus Off or Idle state

• Waits for all internal activities like arbitration, matching, move-in and move-out to finish

• Ignores the Rx input pin and drives the Tx pin as recessive

• Stops the prescaler, thus halting all CAN protocol activities

• Grants write access to the Error Counters Register, which is read-only in other modes

• Sets the NOTRDY and FRZACK bits in MCR

After requesting Freeze Mode, the user must wait for MCR[FRZACK] to be asserted before executing any
other action, otherwise FlexCAN may operate in an unpredictable way. In Freeze mode, all memory
mapped registers are accessible.

Exiting Freeze Mode is done in one of the following ways:

• CPU negates MCR[FRZ]

• The MCU is removed from Debug Mode and/or the HALT bit is negated

Once out of Freeze Mode, FlexCAN tries to resynchronize to the CAN bus by waiting for 11 consecutive
recessive bits.

Table 32-21. Minimum Ratio Between Peripheral Clock Frequency and CAN Bit Rate

Number of Message Buffers Minimum Ratio

16 8

32 8

64 16

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1435

32.5.9.2 Module Disable Mode

This low power mode is entered when the MDIS bit in the MCR Register is asserted. If the module is
disabled during Freeze Mode, the module sends a request to disable the clocks to the CAN Protocol
Interface (CPI) and Message Buffer Management (MBM) sub-modules, sets the LPM_ACK bit and
negates the FRZ_ACK bit. If the module is disabled during transmission or reception, FlexCAN does the
following:

• Waits to be in either Idle or Bus Off state, or else waits for the third bit of Intermission and then
checks it to be recessive

• Waits for all internal activities like arbitration, matching, move-in and move-out to finish

• Ignores its Rx input pin and drives its Tx pin as recessive

• Shuts down the clocks to the CPI and MBM submodules

• Sets the NOTRDY and MDISACK bits in MCR

The Bus Interface Unit continues to operate, enabling the CPU to access memory mapped registers, except
the Free Running Timer, the Error Counter Register and the Message Buffers, which cannot be accessed
when the module is in Disable Mode. Exiting from this mode is done by negating MCR[MDIS], which
will resume the clocks and negate MCR[MDISACK].

32.5.9.3 Stop Mode

This is a system low power mode in which all MCU clocks are stopped for maximum power savings. If
FlexCAN receives the global Stop Mode request during Freeze Mode, it sets MCR[MDISACK], negates
MCR[FRZACK] and then sends a Stop Acknowledge signal to the CPU, in order to shut down the clocks
globally. If Stop Mode is requested during transmission or reception, FlexCAN does the following:

• Waits to be in either Idle or Bus Off state, or else waits for the third bit of Intermission and checks
it to be recessive

• Waits for all internal activities like arbitration, matching, move-in and move-out to finish

• Ignores its Rx input pin and drives its Tx pin as recessive

• Sets the NOTRDY and MDISACK bits in MCR

• Sends a Stop Acknowledge signal to the CPU, so that it can shut down the clocks globally

Exiting Stop Mode is done in one of the following ways:

• CPU resuming the clocks and removing the Stop Mode request

• CPU resuming the clocks and Stop Mode request as a result of the Self Wake mechanism

In the Self Wake mechanism, if MCR[SLF_WAK] was set at the time FlexCAN entered Stop Mode, then
upon detection of a recessive to dominant transition on the CAN bus, FlexCAN sets ESR[WAKINT] and,
if enabled by MCR[WAK_MSK], generates a Wake Up interrupt to the CPU. Upon receiving the interrupt,
the CPU should resume the clocks and remove the Stop Mode request. FlexCAN will then wait for 11
consecutive recessive bits to synchronize to the CAN bus. As a consequence, it will not receive the frame
that woke it up. Table 32-22 details the effect of MCR[SLF_WAK] and MCR[WAK_MSK] upon wake-up
from Stop Mode. Note that wake-up from Stop Mode only works when both bits are asserted.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1436 Freescale Semiconductor

The sensitivity to CAN bus activity can be modified by applying a low-pass filter function to the Rx CAN
input line while in Stop Mode. See the WAK_SRC bit in Section 32.4.5.1, Module Configuration Register
(MCR). This feature can be used to protect FlexCAN from waking up due to short glitches on the CAN
bus lines. Such glitches can result from electromagnetic interference within noisy environments.

32.5.10 Interrupts

The module can generate up to 70 interrupt sources (64 interrupts due to message buffers and 6 interrupts
due to Ored interrupts from message buffers, Bus Off, Error, Tx Warning, Rx Warning and Wake Up). The
number of actual sources depends on the configured number of Message Buffers.

Each one of the message buffers can be an interrupt source, if its corresponding bit in the IMRL or IMRH
register is set. There is no distinction between Tx and Rx interrupts for a particular buffer, under the
assumption that the buffer is initialized for either transmission or reception. Each of the buffers has
assigned a flag bit in the IFRL or IFRH register. The bit is set when the corresponding buffer completes a
successful transmission/reception and is cleared when the CPU writes it to ‘1’ (unless another interrupt is
generated at the same time).

NOTE

It must be guaranteed that the CPU only clears the bit causing the current
interrupt. For this reason, bit manipulation instructions (BSET) must not be
used to clear interrupt flags. These instructions may cause accidental
clearing of interrupt flags which are set after entering the current interrupt
service routine.

If the Rx FIFO is enabled (MCR[FEN] set), the interrupts corresponding to MBs 0 to 7 have a different
behavior. Bit 7 of the IFRL becomes the “FIFO Overflow” flag; bit 6 becomes the FIFO Warning flag, bit
5 becomes the “Frames Available in FIFO flag” and bits 4–0 are unused. See Section 32.4.5.12, Interrupt
Flags 1 Register (IFRL) for more information.

A combined interrupt for all message buffers is also generated by an Or of all the interrupt sources from
message buffers. This interrupt gets generated when any of the message buffers generates an interrupt. In
this case the CPU must read the IFRL or IFRH register to determine which message buffer caused the
interrupt.

The other five interrupt sources (Bus Off, Error, Tx Warning, Rx Warning and Wake Up) generate
interrupts like the message buffer ones, and can be read from the Error and Status Register. The Bus Off,

Table 32-22. Wake-up from Stop Mode

SLF_WAK WAK_MSK MCU clocks enabled
Wake-up interrupt

generated

0 0 No No

0 1 No No

1 0 No No

1 1 Yes Yes

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1437

Error, Tx Warning and Rx Warning interrupt mask bits are located in the Control Register, and the
Wake-Up interrupt mask bit is located in the MCR.

32.5.11 Bus interface

The CPU access to FlexCAN registers are subject to the following rules:

• Read and write access to supervisor registers in User Mode results in access error.

• Read and write access to unimplemented or reserved address space also results in access error. Any
access to unimplemented message buffer or Rx Individual Mask Register locations results in
access error. Any access to the Rx Individual Mask Register space when MCR[MBFEN] is negated
results in access error.

• If MCR[MAXMB] is programmed with a value smaller than the available number of message
buffers, then the unused memory space can be used as general purpose RAM space. Note that the
Rx Individual Mask Registers can only be accessed in Freeze Mode, and this is still true for unused
space within this memory. Note also that reserved words within RAM cannot be used. As an
example, suppose FlexCAN is configured with 64 message buffers and MCR[MAXMB] is
programmed with zero. The maximum number of message buffers in this case becomes one. The
message buffer memory starts at 0x0060, but the space from 0x0060 to 0x007F is reserved (for
SMB usage), and the space from 0x0080 to 0x008F is used by the one message buffer. This leaves
us with the available space from 0x0090 to 0x047F. The available memory in the Mask Registers
space would be from 0x0884 to 0x097F.

NOTE

Unused message buffer space must not be used as general purpose RAM
while FlexCAN is transmitting and receiving CAN frames.

32.6 Initialization/Application information

This section provide instructions for initializing the FlexCAN module.

32.6.1 FlexCAN initialization sequence

The FlexCAN module may be reset in three ways:

• MCU level hard reset, which resets all memory mapped registers asynchronously

• MCU level soft reset, which resets some of the memory mapped registers synchronously (refer to
Table 32-2 to see what registers are affected by soft reset)

• SOFTRST bit in MCR, which has the same effect as the MCU level soft reset

Soft reset is synchronous and has to follow an internal request/acknowledge procedure across clock
domains. Therefore, it may take some time to fully propagate its effects. The SOFTRST bit remains
asserted while soft reset is pending, so software can poll this bit to know when the reset has completed.
Also, soft reset can not be applied while clocks are shut down in any of the low power modes. The low
power mode should be exited and the clocks resumed before applying soft reset.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1438 Freescale Semiconductor

The clock source (CLKSRC bit) should be selected while the module is in Disable Mode. After the clock
source is selected and the module is enabled (MDIS bit negated), FlexCAN automatically goes to Freeze
Mode. In Freeze Mode, FlexCAN is unsynchronized to the CAN bus, the HALT and FRZ bits in the MCR
are set, the internal state machines are disabled and the FRZACK and NOTRDY bits in the MCR are set.
The Tx pin is in recessive state and FlexCAN does not initiate any transmission or reception of CAN
frames. Note that the Message Buffers and the Rx Individual Mask Registers are not affected by reset, so
they are not automatically initialized.

For any configuration change/initialization it is required that FlexCAN is put into Freeze Mode (see
Section 32.5.9.1, Freeze Mode). The following is a generic initialization sequence applicable to the
FlexCAN module:

• Initialize the Module Configuration Register (MCR)

— Enable the individual filtering per message buffer and reception queue features by setting the
MBFEN bit

— Enable the warning interrupts by setting the WRNEN bit

— If required, disable frame self reception by setting the SRX_DIS bit

— Enable the FIFO by setting the FEN bit

— Enable the abort mechanism by setting the AEN bit

— Enable the local priority feature by setting the LPRIO_EN bit

• Initialize the Control Register (CR)

— Determine the bit timing parameters: PROPSEG, PSEG1, PSEG2, RJW

— Determine the bit rate by programming the PRESDIV field

— Determine the internal arbitration mode (bit CR[LBUF])

• Initialize the Message Buffers

— The Control and Status word of all Message Buffers must be initialized

— If FIFO was enabled, the 8-entry ID table must be initialized

— Other entries in each Message Buffer should be initialized as required

• Initialize the Rx Individual Mask Registers

• Set required interrupt mask bits in the corresponding IMRL or IMRH register (for all message
buffer interrupts), in the CR (for Bus Off and Error interrupts) and in the MCR for Wake-Up
interrupt

• Negate the HALT bit in MCR

Starting with the last event, FlexCAN attempts to synchronize to the CAN bus.

32.6.2 FlexCAN addressing and RAM size configurations

There are three RAM configurations that can be implemented within the FlexCAN module. The possible
configurations are:

• For 16 message buffers: 288 bytes for message buffer memory and 64 bytes for Individual Mask
Registers

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1439

• For 32 message buffers: 544 bytes for message buffer memory and 128 bytes for Individual Mask
Registers

• For 64 message buffers: 1056 bytes for message buffer memory and 256 bytes for Individual Mask
Registers

In each configuration the user can program the maximum number of message buffers that will take part in
the matching and arbitration processes using field MCR[MAXMB]:

• For 16 message buffer configuration, MCR[MAXMB] can be any number between 0–15.

• For 32 message buffer configuration, MCR[MAXMB] can be any number between 0–31.

• For 64 message buffer configuration, MCR[MAXMB] can be any number between 0–63.

FlexCAN Module

MPC5644A Microcontroller Reference Manual, Rev. 6

1440 Freescale Semiconductor

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1441

Chapter 33
FlexRay Communication Controller (FlexRay)

33.1 Introduction

33.1.1 Reference

The following documents are referenced.

• FlexRay Communications System Protocol Specification, Version 2.1 Rev A1

• FlexRay Communications System Electrical Physical Layer Specification, Version 2.1 Rev A

33.1.2 Glossary

This section provides a list of terms used in this chapter.

1. The FlexRay Specifications have been developed for automotive applications.The FlexRay Specifications have been neither
developed nor tested for non-automotive applications.

Table 33-1. List of terms

Term Definition

BCU Buffer Control Unit—Handles message buffer access

BMIF Bus Master Interface—Provides master access to FlexRay memory area

CC FlexRay Communication Controller—Module described in this chapter

CDC Clock Domain Crosser

CHI Controller Host Interface

Cycle length in µT The actual length of a cycle in µT for the ideal CC (+/- 0 ppm)

EBI External Bus Interface

FlexRay memory area Memory area to store the physical message buffer payload data, frame header, frame
andslot status, and synchronization frame related tables

System memory Memory that contains the FlexRay memory area

System Bus Bus that connects the CC and system memory

FSS Frame Start Sequence

HIF Host Interface—Provides host access to the CC

Host The FlexRay CC host CPU

LUT Look Up Table—Stores message buffer header index value

MB Message Buffer

MBIDX Message Buffer Index—The position of a header field entry within the header area. If the
header area is accessed as an array, this is the same as the array index of the entry.

MBNum Message Buffer Number—Position of message buffer configuration registers within the
register map. For example, Message Buffer Number 5 corresponds to the MBCCS5
register.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1442 Freescale Semiconductor

33.1.3 Color coding

Throughout this chapter types of items are highlighted through the use of an italicized color font.

FlexRay protocol parameters, constants and variables are highlighted with blue italics. An example is the
parameter gdActionPointOffset.

FlexRay protocol states are highlighted in green italics. An example is the state POC:normal active.

33.1.4 Overview

The CC is a FlexRay communication controller that implements the FlexRay Communications System
Protocol Specification, Version 2.1 Rev A.

The CC has three main components:

• Controller host interface (CHI)

• Protocol engine (PE)

• Clock domain crossing unit (CDC)

A block diagram of the CC with its surrounding modules is given in Figure 33-1.

MCU Microcontroller Unit

µT Microtick

MT Macrotick

MTS Media Access Test Symbol

NIT Network Idle Time

PE Protocol Engine

POC Protocol Operation Control—Each state of the POC is denoted by POC:state

Rx Reception

SEQ Sequencer Engine

TCU Time Control Unit

Tx Transmission

sync frame Null frame or message frame with Sync Frame Indicator set to 1

startup frame Null frame or message frame with both Sync Frame Indicator and Startup Frame Indicator
set to 1

normal frame Null frame or message frame with both Sync Frame Indicator and Startup Frame Indicator
set to 0

null frame Frame with Null Frame Indicator set to 0

message frame Frame with Null Frame Indicator set to 1

Table 33-1. List of terms (continued)

Term Definition

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1443

Figure 33-1. FlexRay block diagram

The protocol engine has two transmitter units TxA and TxB and two receiver units RxA and RxB for
sending and receiving frames through the two FlexRay channels. The time control unit (TCU) is
responsible for maintaining global clock synchronization to the FlexRay network. The overall activity of
the PE is controlled by the sequencer engine (SEQ).

The CC host interface provides host access to the module’s configuration, control, and status registers, as
well as to the message buffer configuration, control, and status registers. The message buffers themselves,
which contain the frame header and payload data received or to be transmitted, and the slot status
information, are stored in the FlexRay memory area.

The clock domain crossing unit implements signal crossing from the CHI clock domain to the PE clock
domain and vice versa, to allow for asynchronous PE and CHI clock domains.

The CC stores the frame header and payload data of frames received or of frames to be transmitted in the
FlexRay memory area. The application accesses the FlexRay memory area to retrieve and provide the
frames to be processed by the CC. In addition to the frame header and payload data, the CC stores the
synchronization frame related tables in the FlexRay memory area for application processing.

The FlexRay memory area is located in the system memory of the MCU. The CC has access to the FlexRay
memory area via its bus master interface (BMIF). The host provides the start address of the FlexRay
memory area within the system memory by programming the System Memory Base Address Register
(FR_SYMBADR). All FlexRay memory area related offsets are stored in offset registers. The physical
address pointer into the flexray memory area of the MCU system memory is calculated using the offset
values the FlexRay memory area base address.

C
lo

ck
 D

om
ai

n
C

ro
ss

in
g

PE

TxA

RxA

TCU

config
SEQ

CHI

HIF

SEARCH

LUT

BCU

FR_A_RX

FR_B_RX

FR_DBG[0]

FR_A_TX

FR_A_TX_EN

FR_B_TX

FR_B_TX_EN

FR_DBG[1]

FR_DBG[2]

FR_DBG[3]

FlexRay

Peripheral
Bridge B

System
Memory

BMIF
System Bus

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1444 Freescale Semiconductor

NOTE

The CC does not provide a memory protection scheme for the FlexRay
memory area.

33.1.5 Features

The CC provides the following features:

• FlexRay Communications System Protocol Specification, Version 2.1 Rev A compliant protocol
implementation

• FlexRay Communications System Electrical Physical Layer Specification, Version 2.1 Rev A
compliant bus driver interface

• Single channel support

— FlexRay Port A can be configured to be connected either to physical FlexRay channel A or
physical FlexRay channel B.

• FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported

• 128 configurable message buffers with

— Individual frame ID filtering

— Individual channel ID filtering

— Individual cycle counter filtering

• Message buffer header, status and payload data stored in dedicated FlexRay memory area

— Allows for flexible and efficient message buffer implementation

— Consistent data access ensured by means of buffer locking scheme

— Application can lock multiple buffers at the same time

• Size of message buffer payload data section configurable from 0 up to 254 bytes

• 2 independent message buffer segments with configurable size of payload data section

— Each segment can contain message buffers assigned to the static segment and message buffers
assigned to the dynamic segment at the same time

• Zero padding for transmit message buffers in static segment

— Applied when the frame payload length exceeds the size of the message buffer data section

• Transmit message buffers configurable with state/event semantics

• Message buffers can be configured as

— Receive message buffer

— Single buffered transmit message buffer

— Double buffered transmit message buffer (combines two single buffered message buffer)

• Individual message buffer reconfiguration supported

— Means provided to safely disable individual message buffers

— Disabled message buffers can be reconfigured

• 2 independent receive FIFOs

— 1 receive FIFO per channel

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1445

— Up to 255 entries for each FIFO

— Global frame ID filtering, based on both value/mask filters and range filters

— Global channel ID filtering

— Global message ID filtering for the dynamic segment

• 4 configurable slot error counters

• 4 dedicated slot status indicators

— Used to observe slots without using receive message buffers

• Measured value indicators for the clock synchronization

— internal synchronization frame ID and synchronization frame measurement tables can be
copied into the FlexRay memory area

• Fractional macroticks are supported for clock correction

• Maskable interrupt sources provided via individual and combined interrupt lines

• 1 absolute timer

• 1 timer that can be configured to absolute or relative

• SECDED for protocol engine data RAM

• SEDDED for CHI lookup table RAM

33.1.6 Modes of operation

This section describes the basic operational power modes of the CC.

33.1.6.1 Disabled mode

The CC enters the Disabled Mode during hard reset. The CC indicates that it is in the Disabled Mode by
negating the module enable bit MEN in the Module Configuration Register (FR_MCR).

In the Disabled Mode no communication is performed on the FlexRay bus.

All registers with the write access conditions Any Time and Disabled Mode can be accessed for writing as
stated in Section 33.5.2, Register descriptions”.

The application configures the CC by accessing the configuration bits and fields in the Module
Configuration Register (FR_MCR).

33.1.6.1.1 Leave Disabled mode

The CC leaves the Disabled Mode and enters the Normal Mode, when the application writes 1 to the
module enable bit MEN in the Module Configuration Register (FR_MCR)

NOTE

Once the CC is enabled it can only be disabled via a device reset.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1446 Freescale Semiconductor

33.1.6.2 Normal mode

In this mode the CC is fully functional. The CC indicates that it is in Normal Mode by asserting the module
enable bit MEN in the Module Configuration Register (FR_MCR).

33.1.6.2.1 Enter Normal mode

This mode is entered when the application requests the CC to leave the Disabled Mode. If the Normal
Mode was entered by leaving the Disabled Mode, the application has to perform the protocol initialization
described in Section 33.7.2.2, Protocol Initialization” to achieve full FlexRay functionality.

Depending on the values of the SCM, CHA, and CHB bits in the Module Configuration Register
(FR_MCR), the corresponding FlexRay bus driver ports are enabled and driven.

33.2 External signal description

This section lists and describes the CC signals, connected to external pins. These signals are summarized
in Table 33-2 and described in detail in Section 33.2.1, Detailed signal descriptions”.

NOTE

The off-chip signals FR_A_RX, FR_A_TX, and FR_A_TX_EN are
available on each package option. The availability of the other off-chip
signals depends on the package option.

33.2.1 Detailed signal descriptions

This section provides a detailed description of the CC signals, connected to external pins.

33.2.1.1 FR_A_RX — Receive Data Channel A

The FR_A_RX signal carries the receive data for channel A from the corresponding FlexRay bus driver.

Table 33-2. External signal properties

Name Direction Active Reset Function

FR_A_RX Input — — Receive Data Channel A

FR_A_TX Output — 1 Transmit Data Channel A

FR_A_TX_EN Output Low 1 Transmit Enable Channel A

FR_B_RX Input — — Receive Data Channel B

FR_B_TX Output — 1 Transmit Data Channel B

FR_B_TX_EN Output Low 1 Transmit Enable Channel B

FR_DBG[0] Output — 0 Debug Strobe Signal 0

FR_DBG[1] Output — 0 Debug Strobe Signal 1

FR_DBG[2] Output — 0 Debug Strobe Signal 2

FR_DBG[3] Output — 0 Debug Strobe Signal 3

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1447

33.2.1.2 FR_A_TX — Transmit Data Channel A

The FR_A_TX signal carries the transmit data for channel A to the corresponding FlexRay bus driver.

33.2.1.3 FR_A_TX_EN — Transmit Enable Channel A

The FR_A_TX_EN signal indicates to the FlexRay bus driver that the CC is attempting to transmit data
on channel A.

33.2.1.4 FR_B_RX — Receive Data Channel B

The FR_B_RX signal carries the receive data for channel B from the corresponding FlexRay bus driver.

33.2.1.5 FR_B_TX — Transmit Data Channel B

The FR_B_TX signal carries the transmit data for channel B to the corresponding FlexRay bus driver

33.2.1.6 FR_B_TX_EN — Transmit Enable Channel B

The FR_B_TX_EN signal indicates to the FlexRay bus driver that the CC is attempting to transmit data
on channel B.

33.2.1.7 FR_DBG[3], FR_DBG[2], FR_DBG[1], FR_DBG[0] — Strobe Signals

These signals provide the selected debug strobe signals. For details on the debug strobe signal selection
refer to Section 33.6.16, Strobe signal support”.

33.3 Controller host interface clocking

The clock for the CHI is derived from the system bus clock and has the same phase and frequency as the
system bus clock. There are two constraints for the minimum CHI clock frequency:

• The first constraint corresponds to the number of utilized message buffers and is specified in
Section 33.7.6, Number of usable message buffers”.

• The second constraint corresponds to the value of the TIMEOUT field in the System Memory
Access Time-Out Register (FR_SYMATOR) and is specified in Section 33.7.1.1, Configure
System Memory Access Time-Out Register (FR_SYMATOR)”.

33.4 Protocol engine clocking

The clock for the protocol engine can be generated by two sources. The first source is the internal crystal
oscillator and the second source is an internal PLL. The clock source to be used is selected by the clock
source select bit CLKSEL in the Module Configuration Register (FR_MCR).

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1448 Freescale Semiconductor

33.4.1 Oscillator clocking

If the protocol engine is clocked by the internal crystal oscillator, an 40 MHz crystal or CMOS compatible
clock must be connected to the oscillator pins. The crystal or clock must fulfill the requirements given by
the FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

33.4.2 PLL clocking

If the protocol engine is clocked by the internal PLL, the frequency of the PE clock source is
system clock / 3. The system clock frequency has to be 120 MHz.

33.5 Memory map and register description

The CC occupies 1280 bytes of address space starting at the base address of the CC is defined by the
memory map of the MCU.

33.5.1 Memory map

The complete memory map of the CC is shown in Table 33-3. The addresses presented here are the offsets
relative to the CC base address which is defined by the MCU address map.

Table 33-3. FlexRay memory map

Offset Register Access Location

Module Configuration and Control

0x0000 Module Version Register (FR_MVR) R on page
33-1456

0x0002 Module Configuration Register (FR_MCR) R/W on page
33-1457

0x0004 System Memory Base Address High Register (FR_SYMBADHR) R/W on page
33-1459

0x0006 System Memory Base Address Low Register (FR_SYMBADLR) R/W on page
33-1459

0x0008 Strobe Signal Control Register (FR_STBSCR) R/W on page
33-1460

0x000A Reserved R —

0x000C Message Buffer Data Size Register (FR_MBDSR) R/W on page
33-1461

0x000E Message Buffer Segment Size and Utilization Register (FR_MBSSUTR) R/W on page
33-1462

PE Access Registers

0x0010 PE DRAM Access Register (FR_PEDRAR) R/W on page
33-1462

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1449

0x0012 PE DRAM Data Register (FR_PEDRDR) R/W on page
33-1463

Interrupt and Error Handling

0x0014 Protocol Operation Control Register (FR_POCR) R/W on page
33-1464

0x0016 Global Interrupt Flag and Enable Register (FR_GIFER) R/W on page
33-1465

0x0018 Protocol Interrupt Flag Register 0 (FR_PIFR0) R/W on page
33-1468

0x001A Protocol Interrupt Flag Register 1 (FR_PIFR1) R/W on page
33-1470

0x001C Protocol Interrupt Enable Register 0 (FR_PIER0) R/W on page
33-1471

0x001E Protocol Interrupt Enable Register 1 (FR_PIER1) R/W on page
33-1473

0x0020 CHI Error Flag Register (FR_CHIERFR) R/W on page
33-1474

0x0022 Message Buffer Interrupt Vector Register (FR_MBIVEC) R on page
33-1476

0x0024 Channel A Status Error Counter Register (FR_CASERCR) R on page
33-1477

0x0026 Channel B Status Error Counter Register (FR_CBSERCR) R on page
33-1477

Protocol Status

0x0028 Protocol Status Register 0 (FR_PSR0) R on page
33-1478

0x002A Protocol Status Register 1 (FR_PSR1) R on page
33-1479

0x002C Protocol Status Register 2 (FR_PSR2) R on page
33-1480

0x002E Protocol Status Register 3 (FR_PSR3) R/W on page
33-1482

0x0030 Macrotick Counter Register (FR_MTCTR) R on page
33-1484

0x0032 Cycle Counter Register (FR_CYCTR) R on page
33-1484

0x0034 Slot Counter Channel A Register (FR_SLTCTAR) R on page
33-1485

0x0036 Slot Counter Channel B Register (FR_SLTCTBR) R on page
33-1485

Table 33-3. FlexRay memory map (continued)

Offset Register Access Location

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1450 Freescale Semiconductor

0x0038 Rate Correction Value Register (FR_RTCORVR) R on page
33-1485

0x003A Offset Correction Value Register (FR_OFCORVR) R on page
33-1486

0x003C Combined Interrupt Flag Register (FR_CIFR) R on page
33-1487

0x003E System Memory Access Time-Out Register (FR_SYMATOR) R/W on page
33-1488

Sync Frame Counter and Tables

0x0040 Sync Frame Counter Register (FR_SFCNTR) R on page
33-1488

0x0042 Sync Frame Table Offset Register (FR_SFTOR) R/W on page
33-1489

0x0044 Sync Frame Table Configuration, Control, Status Register (FR_SFTCCSR) R/W on page
33-1490

Sync Frame Filter

0x0046 Sync Frame ID Rejection Filter Register (FR_SFIDRFR) R/W on page
33-1491

0x0048 Sync Frame ID Acceptance Filter Value Register (FR_SFIDAFVR) R/W on page
33-1492

0x004A Sync Frame ID Acceptance Filter Mask Register (FR_SFIDAFMR) R/W on page
33-1492

Network Management Vector

0x004C Network Management Vector Register 0 (FR_NMVR0) R on page
33-1492

0x004E Network Management Vector Register 1 (FR_NMVR1) R on page
33-1492

0x0050 Network Management Vector Register 2 (FR_NMVR2) R on page
33-1492

0x0052 Network Management Vector Register 3 (FR_NMVR3) R on page
33-1492

0x0054 Network Management Vector Register 4 (FR_NMVR4) R on page
33-1492

0x0056 Network Management Vector Register 5 (FR_NMVR5) R on page
33-1492

0x0058 Network Management Vector Length Register (FR_NMVLR) R/W on page
33-1493

Timer Configuration

Table 33-3. FlexRay memory map (continued)

Offset Register Access Location

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1451

0x005A Timer Configuration and Control Register (FR_TICCR) R/W on page
33-1494

0x005C Timer 1 Cycle Set Register (FR_TI1CYSR) R/W on page
33-1495

0x005E Timer 1 Macrotick Offset Register (FR_TI1MTOR) R/W on page
33-1495

0x0060 Timer 2 Configuration Register 0 (FR_TI2CR0) R/W on page
33-1496

0x0062 Timer 2 Configuration Register 1 (FR_TI2CR1) R/W on page
33-1497

Slot Status Configuration

0x0064 Slot Status Selection Register (FR_SSSR) R/W on page
33-1497

0x0066 Slot Status Counter Condition Register (FR_SSCCR) R/W on page
33-1498

Slot Status

0x0068 Slot Status Register 0 (FR_SSR0) R on page
33-1500

0x006A Slot Status Register 1 (FR_SSR1) R on page
33-1500

0x006C Slot Status Register 2 (FR_SSR2) R on page
33-1500

0x006E Slot Status Register 3 (FR_SSR3) R on page
33-1500

0x0070 Slot Status Register 4 (FR_SSR4) R on page
33-1500

0x0072 Slot Status Register 5 (FR_SSR5) R on page
33-1500

0x0074 Slot Status Register 6 (FR_SSR6) R on page
33-1500

0x0076 Slot Status Register 7 (FR_SSR7) R on page
33-1500

0x0078 Slot Status Counter Register 0 (FR_SSCR0) R on page
33-1502

0x007A Slot Status Counter Register 1 (FR_SSCR1) R on page
33-1502

0x007C Slot Status Counter Register 2 (FR_SSCR2) R on page
33-1502

0x007E Slot Status Counter Register 3 (FR_SSCR3) R on page
33-1502

Table 33-3. FlexRay memory map (continued)

Offset Register Access Location

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1452 Freescale Semiconductor

MTS Generation

0x0080 MTS A Configuration Register (FR_MTSACFR) R/W on page
33-1502

0x0082 MTS B Configuration Register (MTSBCFR) R/W on page
33-1503

Shadow Buffer Configuration

0x0084 Receive Shadow Buffer Index Register (FR_RSBIR) R/W on page
33-1503

Receive FIFO – Configuration

0x0086 Receive FIFO Watermark and Selection Register (FR_RFWMSR) R/W on page
33-1505

0x0088 Receive FIFO Start Index Register (FR_RFSIR) R/W on page
33-1506

0x008A Receive FIFO Depth and Size Register (RFDSR) R/W on page
33-1506

Receive FIFO – Control

0x008C Receive FIFO A Read Index Register (FR_RFARIR) R on page
33-1507

0x008E Receive FIFO B Read Index Register (FR_RFBRIR) R on page
33-1507

Receive FIFO – Filter

0x0090 Receive FIFO Message ID Acceptance Filter Value Register (FR_RFMIDAFVR) R/W on page
33-1508

0x0092 Receive FIFO Message ID Acceptance Filter Mask Register (FR_RFMIDAFMR) R/W on page
33-1509

0x0094 Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR) R/W on page
33-1509

0x0096 Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR) R/W on page
33-1510

0x0098 Receive FIFO Range Filter Configuration Register (FR_RFRFCFR) R/W on page
33-1510

0x009A Receive FIFO Range Filter Control Register (FR_RFRFCTR) R/W on page
33-1511

Dynamic Segment Status

0x009C Last Dynamic Transmit Slot Channel A Register (FR_LDTXSLAR) R on page
33-1511

0x009E Last Dynamic Transmit Slot Channel B Register (FR_LDTXSLBR) R on page
33-1512

Table 33-3. FlexRay memory map (continued)

Offset Register Access Location

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1453

Protocol Configuration

0x00A0
...

0x00DC

Protocol Configuration Register 0 (FR_PCR0)
...

Protocol Configuration Register 30 (FR_PCR30)

R/W
–

R/W

on page
33-1515

...

on page
33-1521

0x00DE
...

0x00E6

Reserved R —

Receive FIFO – Configuration (cont.)

0x00E8 Receive FIFO System Memory Base Address High Register
(FR_RFSYMBADHR)

R/W on page
33-1504

0x00EA Receive FIFO System Memory Base Address Low Register (FR_RFSYMBADLR) R/W on page
33-1504

0x00EC Receive FIFO Periodic Timer Register (FR_RFPTR) R/W on page
33-1505

Receive FIFO – Control (cont.)

0x00EE Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR) R/W on page
33-1508

ECC Registers

0x00F0 ECC Error Interrupt Flag and Enable Register (FR_EEIFER) R/W on page
33-1521

0x00F2 ECC Error Report and Injection Control Register (FR_EERICR) R/W on page
33-1523

0x00F4 ECC Error Report Address Register (FR_EERAR) R on page
33-1524

0x00F6 ECC Error Report Data Register (FR_EERDR) R on page
33-1525

0x00F8 ECC Error Report Code Register (FR_EERCR) R on page
33-1525

0x00FA ECC Error Injection Address Register (FR_EEIAR) R/W on page
33-1526

0x00FC ECC Error Injection Data Register (FR_EEIDR) R/W on page
33-1526

0x00FE ECC Error Injection Code Register (FR_EEICR) R/W on page
33-1527

Table 33-3. FlexRay memory map (continued)

Offset Register Access Location

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1454 Freescale Semiconductor

33.5.2 Register descriptions

This section provides detailed descriptions of all registers in ascending address order, presented as 16-bit
wide entities

Table 33-4 provides a key for the register figures and register tables.

Message Buffers Configuration, Control, Status

0x0100 Message Buffer Configuration, Control, Status Register 0 (FR_MBCCSR0) R/W on page
33-1527

0x0102 Message Buffer Cycle Counter Filter Register 0 (FR_MBCCFR0) R/W on page
33-1529

0x0104 Message Buffer Frame ID Register 0 (FR_MBFIDR0) R/W on page
33-1530

0x0106 Message Buffer Index Register 0 (FR_MBIDXR0) R/W on page
33-1531

...

0x04F8 Message Buffer Configuration, Control, Status Register 127 (FR_MBCCSR127) R/W on page
33-1527

0x04FA Message Buffer Cycle Counter Filter Register 127 (FR_MBCCFR127) R/W on page
33-1529

0x04FC Message Buffer Frame ID Register 127 (FR_MBFIDR127) R/W on page
33-1530

0x04FE Message Buffer Index Register 127 (FR_MBIDXR127) R/W on page
33-1531

Table 33-4. Register access conventions

Convention Description

Depending on its placement in the read or write row, indicates that the bit is not readable or not
writeable

R* Reserved bit or field; will not be changed—Application must not write any value different from the
reset value

FIELDNAME Identifies the field—Its presence in the read or write row indicates that it can be read or written.

Register field types

rwm A read/write bit that may be modified by a hardware in some fashion other than by a reset

w1c Write one to clear—A flag bit that can be read, is cleared by writing a one; writing 0 has no effect

Reset value

0 Resets to zero

Table 33-3. FlexRay memory map (continued)

Offset Register Access Location

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1455

33.5.2.1 Register reset

All registers except the Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn), Message Buffer
Frame ID Registers (FR_MBFIDRn), and Message Buffer Index Registers (FR_MBIDXRn) are reset to
their reset value on system reset. The registers mentioned above are located in physical memory blocks
and, thus, they are not affected by reset. For some register fields, additional reset conditions exist. These
additional reset conditions are mentioned in the detailed description of the register. The additional reset
conditions are explained in Table 33-5.

33.5.2.2 Register write access

This section describes the write access restriction terms that apply to all registers.

33.5.2.2.1 Register write access restriction

For each register bit and register field, the write access conditions are specified in the detailed register
description. A description of the write access conditions is given in Table 33-6. If, for a specific register
bit or field, none of the given write access conditions is fulfilled, any write attempt to this register bit or
field is ignored without any notification. The values of the bits or fields are not changed. The condition
term [A or B] indicates that the register or field can be written to if at least one of the conditions is
fulfilled.The condition term [A and B] indicates that the register or field can be written to if both conditions
are fulfilled.

1 Resets to one

— Not defined after reset and not affected by reset

Table 33-5. Additional register reset conditions

Condition Description

Protocol RUN Command The register field is reset when the application writes to RUN command “0101”
to the POCCMD field in the Protocol Operation Control Register (FR_POCR).

Message Buffer Disable The register field is reset when the application has disabled the message buffer.
This happens when the application writes 1 to the message buffer disable trigger
bit FR_MBCCSRn[EDT] while the message buffer is enabled
(FR_MBCCSRn[EDS] = 1) and the CC grants the disable to the application by
clearing the FR_MBCCSRn[EDS] bit.

Table 33-6. Register write access restrictions

Condition Indication Description

Any Time — No write access restriction

Disabled Mode FR_MCR[MEN] = 0 Write access only when CC is in Disabled Mode

Normal Mode FR_MCR[MEN] = 1 Write access only when CC is in Normal Mode

Table 33-4. Register access conventions (continued)

Convention Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1456 Freescale Semiconductor

33.5.2.2.2 Register write access requirements

All registers can be accessed with 8-bit, 16-bit and 32-bit wide operations. For some of the registers, at
least a 16-bit wide write access is required to ensure correct operation. This write access requirement is
stated in the detailed register description for each register affected

33.5.2.2.3 Internal register access

The following memory mapped registers are used to access multiple internal registers.

• Strobe Signal Control Register (FR_STBSCR)

• Slot Status Selection Register (FR_SSSR)

• Slot Status Counter Condition Register (FR_SSCCR)

• Receive Shadow Buffer Index Register (FR_RSBIR)

Each of these memory mapped registers provides a SEL field and a WMD bit. The SEL field is used to
select the internal register. The WMD bit controls the write mode. If the WMD bit is set to 0 during the
write access, all fields of the internal register are updated. If the WMD bit set to 1, only the SEL field is
changed. All other fields of the internal register remain unchanged. This allows for reading back the values
of the selected internal register in a subsequent read access.

33.5.2.3 Module Version Register (FR_MVR)

This register provides the CC version number. The module version number is derived from the CHI version
number and the PE version number.

POC:config FR_PSR0[PROTSTATE] = POC:config Write access only when Protocol is in the POC:config
state

MB_DIS FR_MBCCSR[EDS] = 0 Write access only when related Message Buffer is
disabled

MB_LCK FR_MBCCSRn[LCKS] = 1 Write access only when related Message Buffer is locked

IDL FR_EEIRICR[BSY] = 0 Write access only when ECC configuration is idle

Base + 0x0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CHIVER PEVER

W

Reset 1 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0

Figure 33-2. Module Version Register (FR_MVR)

Table 33-6. Register write access restrictions (continued)

Condition Indication Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1457

33.5.2.4 Module Configuration Register (FR_MCR)

This register defines the global configuration of the CC.

Table 33-7. FR_MVR field description

Field Description

CHIVER CHI Version Number — This field provides the version number of the CC host interface.

PEVER PE Version Number — This field provides the version number of the protocol engine.

Base + 0x0002 Write: MEN, SBFF, SCM, CHB, CHA, ECCE, FUM, FAM, CLKSEL, BITRATE: Disabled
Mode

SFFE: Disabled Mode or POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
E

N

S
B

F
F

S
C

M

C
H

B

C
H

A

S
F

F
E

E
C

C
E 0

F
U

M

F
A

M

0

C
LK

S
E

L

BITRATE
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-3. Module Configuration Register (FR_MCR)

Table 33-8. FR_MCR field description

Field Description

MEN Module Enable — This bit indicates whether or not the CC is in the Disabled Mode. The application
requests the CC to leave the Disabled Mode by writing 1 to this bit Before leaving the Disabled Mode,
the application must configure the SCM, SBFF, CHB, CHA, TMODE, BITRATE values. For details see
Section 33.1.6, Modes of operation”.
0 Write: ignored, CC disable not possible

Read: CC disabled
1 Write: enable CC

Read: CC enabled
Note: If the CC is enabled it can not be disabled.

SBFF System Bus Failure Freeze — This bit controls the behavior of the CC in case of a system bus
failure.
0 Continue normal operation
1 Transition to freeze mode

SCM Single Channel Device Mode — This control bit defines the channel device mode of the CC as
described in Section 33.6.10, Channel device modes”.
0 CC works in dual channel device mode
1 CC works in single channel device mode

CHB
CHA

Channel Enable — protocol related parameter: pChannels
The semantic of these control bits depends on the channel device mode controlled by the SCM bit
and is given Table 33-9.

SFFE Synchronization Frame Filter Enable — This bit controls the filtering for received synchronization
frames. For details see Section 33.6.15, Sync frame filtering”.
0 Synchronization frame filtering disabled
1 Synchronization frame filtering enabled

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1458 Freescale Semiconductor

ECCE ECC Functionality Enable — This bit controls the ECC memory error detection functionality. For
details see Section 33.6.24, Memory content error detection”.
0 ECC functionality (injection, detection, reporting, response) disabled
1 ECC functionality enabled

FUM FIFO Update Mode — This bit controls the FIFO update behavior when the interrupt flags
FR_GIFER[FAFAIF] and FR_GIFER[FAFBIF] are written by the application (see Section 33.6.9.8,
FIFO update”)
0 FIFOA/FIFOB is updated on writing 1 to FR_GIFER[FAFAIF] /FR_GIFER[FAFBIF]
1 FIFOA/FIFOB) is not updated on writing 1 to FR_GIFER[FAFAIF]/FR_GIFER[FAFBIF]

FAM FIFO Address Mode — This bit controls the location of the system memory base address for the
FIFOs. (see Section 33.6.9.2, FIFO configuration”)
0 FIFO Base Address located in System Memory Base Address Register (FR_SYMBADR)
1 FIFO Base Address located in Receive FIFO System Memory Base Address Register

(FR_RFSYMBADR)

CLKSEL Protocol Engine Clock Source Select — This bit is used to select the clock source for the protocol
engine.
0 PE clock source is generated by on-chip crystal oscillator
1 PE clock source is generated by on-chip PLL

BITRATE FlexRay Bus Bit Rate — This bit field defines the FlexRay bus bit rate.
000 10.0 Mbit/s
001 5.0 Mbit/s
010 2.5 Mbit/s
011 8.0 Mbit/s
100 Reserved
101 Reserved
110 Reserved
111 Reserved

Table 33-9. FlexRay channel selection

SCM CHB CHA Description

Dual Channel Device Modes

0

0 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by CC
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by CC

0 1
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel A
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by CC

1 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by CC
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel B

1 1
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel A
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel B

Single Channel Device Mode

Table 33-8. FR_MCR field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1459

33.5.2.5 System Memory Base Address Register (FR_SYMBADR)

NOTE

The system memory base address must be set before the CC is enabled.

The system memory base address registers define the base address of the FlexRay memory area within the
system memory. The base address is used by the BMIF to calculate the physical memory address for
system memory accesses.

1

0 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN not driven by CC
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by CC

0 1
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel A
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by CC

1 0
ports FR_A_RX, FR_A_TX, and FR_A_TX_EN driven by CC - connected to FlexRay channel B
ports FR_B_RX, FR_B_TX, and FR_A_TX_EN not driven by CC

1 1 Reserved

Base + 0x0004 Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-4. System Memory Base Address High Register (FR_SYMBADHR)

Base + 0x0006 Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[15:4]

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-5. System Memory Base Address Low Register (FR_SYMBADLR)

Table 33-10. FR_SYMBADR field description

Field Description

SMBA System Memory Base Address — This is the value of the system memory base address for the
individual message buffers and sync frame table. This is the value of the system memory base address
for the receive FIFO if the FIFO address mode bit FR_MCR[FAM] is set to 1. It is defines as a byte
address.

Table 33-9. FlexRay channel selection (continued)

SCM CHB CHA Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1460 Freescale Semiconductor

33.5.2.6 Strobe Signal Control Register (FR_STBSCR)

This register is used to assign the individual protocol timing related strobe signals given in Table 33-12 to
the external strobe ports. Each strobe signal can be assigned to at most one strobe port. Each write access
to registers overwrites the previously written ENB and STBPSEL values for the signal indicated by SEL.
If more than one strobe signal is assigned to one strobe port, the current values of the strobe signals are
combined with a binary OR and presented at the strobe port. If no strobe signal is assigned to a strobe port,
the strobe port carries logic 0. For more detailed and timing information refer to Section 33.6.16, Strobe
signal support”.

NOTE

In single channel device mode, channel B related strobe signals are
undefined and should not be assigned to the strobe ports.

.;

Base + 0x0008 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
SEL

0 0 0
ENB

0 0
STBPSEL

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-6. Strobe Signal Control Register (FR_STBSCR)

Table 33-11. FR_STBSCR field description

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

SEL Strobe Signal Select — This control field selects one of the strobe signals given in Table 33-12 to be
enabled or disabled and assigned to one of the four strobe ports given in Table 33-12.

ENB Strobe Signal Enable — The control bit is used to enable and to disable the strobe signal selected by
STBSSEL.
0 Strobe signal is disabled and not assigned to any strobe port.
1 Strobe signal is enabled and assigned to the strobe port selected by STBPSEL.

STBPSEL Strobe Port Select — This field selects the strobe port that the strobe signal selected by the SEL is
assigned to. All strobe signals that are enabled and assigned to the same strobe port are combined
with a binary OR operation.
00 assign selected signal to FR_DBG[0]
01 assign selected signal to FR_DBG[1]
10 assign selected signal to FR_DBG[2]
11 assign selected signal to FR_DBG[3]

Table 33-12. Strobe signal mapping

SEL
Description Channel Type Offset1 Reference

dec hex

0 0x0 arm — value +1 MT start

1 0x1 mt — value +1 MT start

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1461

33.5.2.7 Message Buffer Data Size Register (FR_MBDSR)

This register defines the size of the message buffer data section for the two message buffer segments in a
number of two-byte entities.

The CC provides two independent segments for the individual message buffers. All individual message
buffers within one segment have to have the same size for the message buffer data section. This size can
be different for the two message buffer segments.

2 0x2 cycle start — pulse 0 MT start

3 0x3 minislot start — pulse 0 MT start

4 0x4 slot start A
pulse 0 MT start

5 0x5 B

6 0x6 receive data after glitch filtering A
value +4

FR_A_RX

7 0x7 B FR_B_RX

8 0x8 channel idle indicator A
level +5

FR_A_RX

9 0x9 B FR_B_RX

10 0xA syntax error detected A
pulse +4

FR_A_RX

11 0xB B FR_B_RX

12 0xC content error detected A
level +4

FR_A_RX

13 0xD B FR_B_RX

14 0xE receive FIFO almost-full interrupt signals
A

value n.a.

RX FIFO A
Almost Full

Interrupt

15 0xF
B

RX FIFO B
Almost Full

Interrupt

1 Given in PE clock cycles

Base + 0x000C Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MBSEG2DS

0
MBSEG1DS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-7. Message Buffer Data Size Register (FR_MBDSR)

Table 33-12. Strobe signal mapping

SEL
Description Channel Type Offset1 Reference

dec hex

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1462 Freescale Semiconductor

33.5.2.8 Message Buffer Segment Size and Utilization Register (FR_MBSSUTR)

This register is used to define the last individual message buffer that belongs to the first message buffer
segment and the number of the last used individual message buffer.

33.5.2.9 PE DRAM Access Register (FR_PEDRAR)

Table 33-13. FR_MBDSR field description

Field Description

MBSEG2DS Message Buffer Segment 2 Data Size — The field defines the size of the message buffer data
section in two-byte entities for message buffers within the second message buffer segment.

MBSEG1DS Message Buffer Segment 1 Data Size — The field defines the size of the message buffer data
section in two-byte entities for message buffers within the first message buffer segment.

Base + 0x000E Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
LAST_MB_SEG1

0
LAST_MB_UTIL

W

Reset 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

Figure 33-8. Message Buffer Segment Size and Utilization Register (FR_MBSSUTR)

Table 33-14. FR_MBSSUTR field description

Field Description

LAST_MB_SEG1 Last Message Buffer In Segment 1 — This field defines the message buffer number of the last
individual message buffer that is assigned to the first message buffer segment. The individual
message buffers in the first segment correspond to the message buffer control registers
FR_MBCCSRn, FR_MBCCFRn, FR_MBFIDRn, FR_MBIDXRn with n < LAST_MB_SEG1. The
first message buffer segment contains LAST_MB_SEG1 + 1 individual message buffers.
Note: The first message buffer segment contains at least one individual message buffer.

The individual message buffers in the second message buffer segment correspond to the
message buffer control registers FR_MBCCSRn, FR_MBCCFRn, FR_MBFIDRn, FR_MBIDXRn
with LAST_MB_SEG1 < n < 128.
Note: If LAST_MB_SEG1 = 127 all individual message buffers belong to the first message buffer

segment and the second message buffer segment is empty.

LAST_MB_UTIL Last Message Buffer Utilized — This field defines the message buffer number of last utilized
individual message buffer. The message buffer search engine examines all individual message
buffer with a message buffer number n < LAST_MB_UTIL.
Note: If LAST_MB_UTIL=LAST_MB_SEG1 all individual message buffers belong to the first

message buffer segment and the second message buffer segment is empty.

Base + 0x0010 16-bit write access required Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
INST ADDR

DAD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-9. PE DRAM Access Register (FR_PEDRAR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1463

This register is used to trigger write and read operations on the PE data memory (PE DRAM). These
operations are used for memory error injection and memory error observation.

Each write access to this registers initiates a read or write operation on the PE DRAM. The access done
status bit DAD is cleared after the write access and is set if the PE DRAM access has been finished.

In case of an PE DRAM write access, the data provided in PE DRAM Data Register (FR_PEDRDR) are
written into the PE DRAM, read back from the PE DRAM and are stored into the PE DRAM Data Register
(FR_PEDRDR).

In case of an PE DRAM read access, the requested data are read from PE DRAM and stored into the PE
DRAM Data Register (FR_PEDRDR).

For a detailed description refer to Section 33.6.24, Memory content error detection”

33.5.2.10 PE DRAM Data Register (FR_PEDRDR)

This register provides the data to be written to or read from the PE DRAM by the access initiated by write
access to the PE DRAM Access Register (FR_PEDRAR).

Table 33-15. FR_PEDRAR field description

Field Description

INST PE DRAM Access Instruction — This field defines the operation to be executed on the PE DRAM.
0011 PE DRAM write: Write FR_PEDRDR[DATA] to PE DRAM address ADDR (16 bit)
0101 PE DRAM read: Read Data from PE DRAM address ADDR (16 bit) into FR_PEDRDR[DATA]

other Reserved

ADDR PE DRAM Access Address — This field defines the address in the PE DRAM to be written to or
read from.

DAD PE DRAM Access Done — This status bit is cleared when the application has written to this
register and is set when the PE DRAM access has finished.
0 PE DRAM access running
1 PE DRAM access done

Base + 0x0012 16-bit write access required Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-10. PE DRAM Data Register (FR_PEDRDR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1464 Freescale Semiconductor

33.5.2.11 Protocol Operation Control Register (FR_POCR)

The application uses this register to issue

• protocol control commands

• external clock correction commands

Protocol control commands are issued by writing to the POCCMD field. For more information on protocol
control commands, see Section 33.7.7, Protocol control command execution”.

External clock correction commands are issued by writing to the EOC_AP and ERC_AP fields. For more
information on external clock correction, refer to Section 33.6.11, External clock synchronization”.

Base + 0x0014 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
EOC_AP ERC_AP

BSY 0 0 0
POCCMD

W WME WMC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-11. Protocol Operation Control Register (FR_POCR)

Table 33-16. FR_POCR field description

Field Description

WME Write Mode External Correction — This bit controls the write mode of the EOC_AP and ERC_AP
fields.
0 Write to EOC_AP and ERC_AP fields on register write.
1 No write to EOC_AP and ERC_AP fields on register write.

EOC_AP External Offset Correction Application — This field is used to trigger the application of the external
offset correction value defined in the Protocol Configuration Register 29 (FR_PCR29).
00 do not apply external offset correction value
01 Reserved
10 subtract external offset correction value
11 add external offset correction value

ERC_AP External Rate Correction Application — This field is used to trigger application of the external rate
correction value defined in the Protocol Configuration Register 21 (FR_PCR21)
00 do not apply external rate correction value
01 Reserved
10 subtract external rate correction value
11 add external rate correction value

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1465

33.5.2.12 Global Interrupt Flag and Enable Register (FR_GIFER)

This register provides the means to control some of the interrupt request lines and provides the
corresponding interrupt flags. The interrupt flags MIF, PRIF, CHIF, RBIF, and TBIF are the outcome of a
binary OR of the related individual interrupt flags and interrupt enables. The generation scheme for these
flags is depicted in Figure 33-160. For more details on interrupt generation, see Section 33.6.20, Interrupt

BSY

WMC

Protocol Control Command Write Busy — This status bit indicates the acceptance of the protocol
control command issued by the application via the POCCMD field. The CC sets this status bit when
the application has issued a protocol control command via the POCCMD field. The CC clears this
status bit when protocol control command was accepted by the PE.When the application issues a
protocol control command while the BSY bit is asserted, the CC ignores this command, sets the
protocol command ignored error flag PCMI_EF in the CHI Error Flag Register (FR_CHIERFR), and will
not change the value of the POCCMD field.
0 Command write idle, command accepted and ready to receive new protocol command.
1 Command write busy, command not yet accepted, not ready to receive new protocol command.
Write Mode Command — This bit controls the write mode of the POCCMD field.
0 Write to POCCMD field on register write.
1 Do not write to POCCMD field on register write.

POCCMD Protocol Control Command — The application writes to this field to issue a protocol control
command to the PE. The CC sends the protocol command to the PE immediately. While the transfer
is running, the BSY bit is set.
0000 ALLOW_COLDSTART — Immediately activate capability of node to cold start cluster.
0001 ALL_SLOTS — Delayed1 transition to the all slots transmission mode.
0010 CONFIG — Immediately transition to the POC:config state.
0011 FREEZE — Immediately transition to the POC:halt state.
0100 READY, CONFIG_COMPLETE — Immediately transition to the POC:ready state.
0101 RUN — Immediately transition to the POC:startup start state.
0110 DEFAULT_CONFIG — Immediately transition to the POC:default config state.
0111 HALT — Delayed transition to the POC:halt state
1000 WAKEUP — Immediately initiate the wakeup procedure.
1001 Reserved
1010 Reserved
1011 Reserved
1100 Reserved
1101 Reserved
1110 Reserved
1111 Reserved

1 Delayed means on completion of current communication cycle.

Base + 0x0016 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
IF

P
R

IF

C
H

IF

W
U

P
IF

FA
F

B
IF

FA
FA

IF

R
B

IF

T
B

IF

M
IE

P
R

IE

C
H

IE

W
U

P
IE

FA
F

B
IE

FA
FA IE

R
B

IE

T
B

IE

W w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-12. Global Interrupt Flag and Enable Register (FR_GIFER)

Table 33-16. FR_POCR field description

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1466 Freescale Semiconductor

support. These flags are cleared automatically when all of the corresponding interrupt flags or interrupt
enables in the related interrupt flag and enable registers are cleared by the application.

Table 33-17. FR_GIFER field description

Field Description

MIF Module Interrupt Flag — This flag is asserted if at least one of the other interrupt flags in this register
and its related interrupt enable is asserted.
0 No interrupt flag is asserted or no interrupt enable is set
1 At least one of the other interrupt flags in this register is asserted and the related interrupt bit is

asserted, too

PRIF Protocol Interrupt Flag — This flag is set if at least one of the individual protocol interrupt flags in the
Protocol Interrupt Flag Register 0 (FR_PIFR0) and Protocol Interrupt Flag Register 1 (FR_PIFR1) is
asserted and the related interrupt enable flag is asserted.
0 All individual protocol interrupt flags are equal to 0 or no interrupt enable bit is set.
1 At least one of the individual protocol interrupt flags and the related interrupt enable is equal to 1.

CHIF CHI Interrupt Flag — This flag is set if at least one of the individual CHI error flags in the CHI Error
Flag Register (FR_CHIERFR) is asserted and the CHI error interrupt enable FR_GIFER[CHIE] is
asserted.
0 All CHI error flags are equal to 0 or the CHI error interrupt is disabled
1 At least one CHI error flag is asserted and CHI error interrupt is enabled

WUPIF Wakeup Interrupt Flag — This flag is set when the CC has received a wakeup symbol on the FlexRay
bus. The application can determine on which channel the wakeup symbol was received by reading the
related wakeup flags WUB and WUA in the Protocol Status Register 3 (FR_PSR3).
0 No wakeup condition or interrupt disabled
1 Wakeup symbol received on FlexRay bus and interrupt enabled

FAFBIF Receive FIFO Channel B Almost Full Interrupt Flag — This flag is set when one of the following
events occurs
a) the current number of FIFO B entries is equal to or greater than the watermark defined by the WM
field in the Receive FIFO Watermark and Selection Register (FR_RFWMSR), and the CC writes a
received message into the FIFO B, or
b) the current number of FIFO B entries is at least 1 and the periodic timer as defined by Receive FIFO
Periodic Timer Register (FR_RFPTR) expires.
0 no such event
1 FIFO B almost full event has occurred

FAFAIF Receive FIFO Channel A Almost Full Interrupt Flag — This flag is set when one of the following
events occurs
a) the current number of FIFO A entries is equal to or greater than the watermark defined by the WM
field in the Receive FIFO Watermark and Selection Register (FR_RFWMSR), and the CC writes a
received message into the FIFO A, or
b) the current number of FIFO B entries is at least 1 and the periodic timer as defined by Receive FIFO
Periodic Timer Register (FR_RFPTR) expires.
0 no such event
1 FIFO A almost full event has occurred

RBIF Receive Message Buffer Interrupt Flag — This flag is set if for at least one of the individual receive
message buffers (FR_MBCCSRn[MTD] = 0) both the interrupt flag MBIF and the interrupt enable bit
MBIE in the corresponding Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn)
are asserted. The application can not clear this RBIF flag directly. This flag is cleared by the CC when
all of the interrupt flags MBIF of the individual receive message buffers are cleared by the application
or if the application has cleared the interrupt enables bit MBIE.
0 None of the individual receive message buffers has the MBIF and MBIE flag asserted.
1 At least one individual receive message buffer has the MBIF and MBIE flag asserted.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1467

TBIF Transmit Message Buffer Interrupt Flag — This flag is set if for at least one of the individual single
or double transmit message buffers (FR_MBCCSRn[MTD] = 1) both the interrupt flag MBIF and the
interrupt enable bit MBIE in the corresponding Message Buffer Configuration, Control, Status
Registers (FR_MBCCSRn) are equal to 1. The application can not clear this TBIF flag directly. This
flag is cleared by the CC when either all of the individual interrupt flags MBIF of the individual transmit
message buffers are cleared by the application or the host has cleared the interrupt enables bit MBIE.
0 None of the individual transmit message buffers has the MBIF and MBIE flag asserted.
1 At least one individual transmit message buffer has the MBIF and MBIE flag asserted.

MIE Module Interrupt Enable — This flag controls if the Module Interrupt line is asserted when the MIF
flag is set.
0 Disable interrupt line
1 Enable interrupt line

PRIE Protocol Interrupt Enable — This flag controls if the Protocol Interrupt line is asserted when the PRIF
flag is set.
0 Disable interrupt line
1 Enable interrupt line

CHIE CHI Interrupt Enable — This flag controls if the CHI Interrupt line is asserted when the CHIF flag is
set.
0 Disable interrupt line
1 Enable interrupt line

WUPIE Wakeup Interrupt Enable — This flag controls if the Wakeup Interrupt line is asserted when the
WUPIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

FAFBIE Receive FIFO Channel B Almost Full Interrupt Enable — This flag controls if the RX FIFO B Almost
Full Interrupt line is asserted when the FAFBIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

FAFAIE Receive FIFO Channel A Almost Full Interrupt Enable — This flag controls if the RX FIFO A Almost
Full Interrupt line is asserted when the FAFAIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

RBIE Receive Message Buffer Interrupt Enable — This flag controls if the Receive Message Buffer
Interrupt line is asserted when the RBIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

TBIE Transmit Message Buffer Interrupt Enable — This flag controls if the Transmit Message Buffer
Interrupt line is asserted when the TBIF flag is set.
0 Disable interrupt line
1 Enable interrupt line

Table 33-17. FR_GIFER field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1468 Freescale Semiconductor

33.5.2.13 Protocol Interrupt Flag Register 0 (FR_PIFR0)

The register holds one set of the protocol-related individual interrupt flags.

Base + 0x0018 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
FA

T
L

_I
F

IN
T

L
_I

F

IL
C

F
_I

F

C
S

A
_I

F

M
R

C
_I

F

M
O

C
_I

F

C
C

L_
IF

M
X

S
_I

F

M
T

X
_I

F

LT
X

B
_I

F

LT
X

A
_I

F

T
B

V
B

_I
F

T
B

V
A

_
IF

T
I2

_I
F

T
I1

_I
F

C
Y

S
_I

F

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-13. Protocol Interrupt Flag Register 0 (FR_PIFR0)

Table 33-18. FR_PIFR0 field description

Field Description

FATL_IF Fatal Protocol Error Interrupt Flag — This flag is set when the protocol engine has detected a fatal
protocol error. In this case, the protocol engine goes into the POC:halt state immediately. The fatal
protocol errors are:
1) pLatestTx violation, as described in the MAC process of the FlexRay protocol
2) transmission across slot boundary violation, as described in the FSP process of the FlexRay
protocol
0 No such event.
1 Fatal protocol error detected.

INTL_IF Internal Protocol Error Interrupt Flag — This flag is set when the protocol engine has detected an
internal protocol error. In this case, the protocol engine goes into the POC:halt state immediately. An
internal protocol error occurs when the protocol engine has not finished a calculation and a new
calculation is requested. This can be caused by a hardware error.
0 No such event.
1 Internal protocol error detected.

ILCF_IF Illegal Protocol Configuration Interrupt Flag — This flag is set when the protocol engine has
detected an illegal protocol configuration parameter setting. In this case, the protocol engine goes into
the POC:halt state immediately.
The protocol engine checks the listen_timeout value programmed into the Protocol Configuration
Register 14 (FR_PCR14) and Protocol Configuration Register 15 (FR_PCR15) when the
CONFIG_COMPLETE command was sent by the application via the Protocol Operation Control
Register (FR_POCR). If the value of listen_timeout is equal to zero, the protocol configuration setting
is considered as illegal.
0 No such event.
1 Illegal protocol configuration detected.

CSA_IF Cold Start Abort Interrupt Flag — This flag is set when the configured number of allowed cold start
attempts is reached and none of these attempts was successful. The number of allowed cold start
attempts is configured by the coldstart_attempts field in the Protocol Configuration Register 3
(FR_PCR3).
0 No such event.
1 Cold start aborted and no more coldstart attempts allowed.

MRC_IF Missing Rate Correction Interrupt Flag — This flag is set when an insufficient number of
measurements is available for rate correction at the end of the communication cycle.
0 No such event
1 Insufficient number of measurements for rate correction detected

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1469

MOC_IF Missing Offset Correction Interrupt Flag — This flag is set when an insufficient number of
measurements is available for offset correction. This is related to the MISSING_TERM event in the
CSP process for offset correction in the FlexRay protocol.
0 No such event.
1 Insufficient number of measurements for offset correction detected.

CCL_IF Clock Correction Limit Reached Interrupt Flag — This flag is set when the internal calculated offset
or rate calculation values have reached or exceeded its configured thresholds as given by the
offset_coorection_out field in the Protocol Configuration Register 9 (FR_PCR9) and the
rate_correction_out field in the Protocol Configuration Register 14 (FR_PCR14).
0 No such event.
1 Offset or rate correction limit reached.

MXS_IF Max Sync Frames Detected Interrupt Flag — This flag is set when the number of synchronization
frames detected in the current communication cycle exceeds the value of the node_sync_max field in
the Protocol Configuration Register 30 (FR_PCR30).
0 No such event.
1 More than node_sync_max sync frames detected.
Note: Only synchronization frames that have passed the synchronization frame acceptance and

rejection filters are taken into account.

MTX_IF Media Access Test Symbol Received Interrupt Flag — This flag is set when the MTS symbol was
received on channel A or channel B.
0 No such event.
1 MTS symbol received.

LTXB_IF pLatestTx Violation on Channel B Interrupt Flag — This flag is set when the frame transmission on
channel B in the dynamic segment exceeds the dynamic segment boundary. This is related to the
pLatestTx violation, as described in the MAC process of the FlexRay protocol.
0 No such event.
1 pLatestTx violation occurred on channel B.

LTXA_IF pLatestTx Violation on Channel A Interrupt Flag — This flag is set when the frame transmission on
channel A in the dynamic segment exceeds the dynamic segment boundary. This is related to the
pLatestTx violation as described in the MAC process of the FlexRay protocol.
0 No such event.
1 pLatestTx violation occurred on channel A.

TBVB_IF Transmission across boundary on channel B Interrupt Flag — This flag is set when the frame
transmission on channel B crosses the slot boundary. This is related to the transmission across slot
boundary violation as described in the FSP process of the FlexRay protocol.
0 No such event.
1 Transmission across boundary violation occurred on channel B.

TBVA_IF Transmission across boundary on channel A Interrupt Flag — This flag is set when the frame
transmission on channel A crosses the slot boundary. This is related to the transmission across slot
boundary violation as described in the FSP process of the FlexRay protocol.
0 No such event.
1 Transmission across boundary violation occurred on channel A.

TI2_IF Timer 2 Expired Interrupt Flag — This flag is set whenever timer 2 expires.
0 No such event.
1 Timer 2 has reached its time limit.

Table 33-18. FR_PIFR0 field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1470 Freescale Semiconductor

33.5.2.14 Protocol Interrupt Flag Register 1 (FR_PIFR1)

The register holds one set of the protocol-related individual interrupt flags.

TI1_IF Timer 1 Expired Interrupt Flag — This flag is set whenever timer 1 expires.
0 No such event
1 Timer 1 has reached its time limit

CYS_IF Cycle Start Interrupt Flag — This flag is set when a communication cycle starts.
0 No such event
1 Communication cycle started.

Base + 0x001A Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
M

C
_I

F

IP
C

_
IF

P
E

C
F

_I
F

P
S

C
_I

F

S
S

I3
_I

F

S
S

I2
_I

F

S
S

I1
_I

F

S
S

I0
_I

F

0 0

E
V

T
_I

F

O
D

T
_I

F

0 0 0 0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-14. Protocol Interrupt Flag Register 1 (FR_PIFR1)

Table 33-19. FR_PIFR1 field description

Field Description

EMC_IF Error Mode Changed Interrupt Flag — This flag is set when the value of the ERRMODE bit field in
the Protocol Status Register 0 (FR_PSR0) is changed by the CC.
0 No such event.
1 ERRMODE field changed.

IPC_IF Illegal Protocol Control Command Interrupt Flag — This flag is set when the PE tries to execute a
protocol control command, which was issued via the POCCMD field of the Protocol Operation Control
Register (FR_POCR), and detects that this protocol control command is not allowed in the current
protocol state. In this case the command is not executed. For more details, see Section 33.7.7,
Protocol control command execution”.
0 No such event.
1 Illegal protocol control command detected.

PECF_IF Protocol Engine Communication Failure Interrupt Flag — This flag is set if the CC has detected a
communication failure between the protocol engine and the CC host interface
0 No such event.
1 Protocol Engine Communication Failure detected.

PSC_IF Protocol State Changed Interrupt Flag — This flag is set when the protocol state in the PROTSTATE
field in the Protocol Status Register 0 (FR_PSR0) has changed.
0 No such event.
1 Protocol state changed.

SSI3_IF
SSI2_IF
SSI1_IF
SSI0_IF

Slot Status Counter Incremented Interrupt Flag — Each of these flags is set when the
SLOTSTATUSCNT field in the corresponding Slot Status Counter Registers
(FR_SSCR0–FR_SSCR3) is incremented.
0 No such event.
1 The corresponding slot status counter has incremented.

Table 33-18. FR_PIFR0 field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1471

33.5.2.15 Protocol Interrupt Enable Register 0 (FR_PIER0)

This register defines whether or not the individual interrupt flags defined in the Protocol Interrupt Flag
Register 0 (FR_PIFR0) can generate a protocol interrupt request.

EVT_IF Even Cycle Table Written Interrupt Flag — This flag is set if the CC has written the sync frame
measurement / ID tables into the FlexRay memory area for the even cycle.
0 No such event.
1 Sync frame measurement table written

ODT_IF Odd Cycle Table Written Interrupt Flag — This flag is set if the CC has written the sync frame
measurement / ID tables into the FlexRay memory area for the odd cycle.
0 No such event.
1 Sync frame measurement table written

Base + 0x001C Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

FA
T

L_
IE

IN
T

L_
IE

IL
C

F
_I

E

C
S

A
_I

E

M
R

C
_I

E

M
O

C
_I

E

C
C

L_
IE

M
X

S
_I

E

M
T

X
_I

E

LT
X

B
_

IE

LT
X

A
_

IE

T
B

V
B

_I
E

T
B

V
A

_I
E

T
I2

_I
E

T
I1

_I
E

C
Y

S
_I

E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-15. Protocol Interrupt Enable Register 0 (FR_PIER0)

Table 33-20. FR_PIER0 field description

Field Description

FATL_IE Fatal Protocol Error Interrupt Enable — This bit controls FATL_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

INTL_IE Internal Protocol Error Interrupt Enable — This bit controls INTL_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

ILCF_IE Illegal Protocol Configuration Interrupt Enable — This bit controls ILCF_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

CSA_IE Cold Start Abort Interrupt Enable — This bit controls CSA_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MRC_IE Missing Rate Correction Interrupt Enable — This bit controls MRC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MOC_IE Missing Offset Correction Interrupt Enable — This bit controls MOC_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

Table 33-19. FR_PIFR1 field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1472 Freescale Semiconductor

CCL_IE Clock Correction Limit Reached Interrupt Enable — This bit controls CCL_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MXS_IE Max Sync Frames Detected Interrupt Enable — This bit controls MXS_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

MTX_IE Media Access Test Symbol Received Interrupt Enable — This bit controls MTX_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

LTXB_IE pLatestTx Violation on Channel B Interrupt Enable — This bit controls LTXB_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

LTXA_IE pLatestTx Violation on Channel A Interrupt Enable — This bit controls LTXA_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

TBVB_IE Transmission across boundary on channel B Interrupt Enable — This bit controls TBVB_IF
interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

TBVA_IE Transmission across boundary on channel A Interrupt Enable — This bit controls TBVA_IF
interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

TI2_IE Timer 2 Expired Interrupt Enable — This bit controls TI1_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

TI1_IE Timer 1 Expired Interrupt Enable — This bit controls TI1_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

CYS_IE Cycle Start Interrupt Enable — This bit controls CYC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

Table 33-20. FR_PIER0 field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1473

33.5.2.16 Protocol Interrupt Enable Register 1 (FR_PIER1)

This register defines whether or not the individual interrupt flags defined in Protocol Interrupt Flag
Register 1 (FR_PIFR1) can generate a protocol interrupt request.

Base + 0x001E Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
E

M
C

_I
E

IP
C

_I
E

P
E

C
F

_I
E

P
S

C
_I

E

S
S

I3
_I

E

S
S

I2
_I

E

S
S

I1
_I

E

S
S

I0
_I

E 0 0

E
V

T
_I

E

O
D

T
_I

E 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-16. Protocol Interrupt Enable Register 1 (FR_PIER1)

Table 33-21. FR_PIER1 field description

Field Description

EMC_IE Error Mode Changed Interrupt Enable — This bit controls EMC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

IPC_IE Illegal Protocol Control Command Interrupt Enable — This bit controls IPC_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

PECF_IE Protocol Engine Communication Failure Interrupt Enable — This bit controls PECF_IF interrupt
request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

PSC_IE Protocol State Changed Interrupt Enable — This bit controls PSC_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

SSI3_IE
SSI2_IE
SSI1_IE
SSI0_IE

Slot Status Counter Incremented Interrupt Enable — This bit controls SSI[3:0]_IF interrupt request
generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

EVT_IE Even Cycle Table Written Interrupt Enable — This bit controls EVT_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

ODT_IE Odd Cycle Table Written Interrupt Enable — This bit controls ODT_IF interrupt request generation.
0 interrupt request generation disabled
1 interrupt request generation enabled

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1474 Freescale Semiconductor

33.5.2.17 CHI Error Flag Register (FR_CHIERFR)

This register holds the CHI related error flags. The interrupt generation for each of these error flags is
controlled by the CHI interrupt enable bit CHIE in the Global Interrupt Flag and Enable Register
(FR_GIFER).

Base + 0x0020 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
F

R
LB

_E
F

F
R

LA
_E

F

P
C

M
I_

E
F

F
O

V
B

_
E

F

F
O

V
A

_E
F

M
B

S
_E

F

M
B

U
_E

F

LC
K

_E
F

D
B

L_
E

F

S
B

C
F

_E
F

1

1 The FlexRay controller should be stopped via a FREEZE or HALT command and subsequently restarted when any
of the error flags CHIERFR[SBCF_EF] or CHIERFR[ILSA_EF] is set.

F
ID

_E
F

D
P

L_
E

F

S
P

L_
E

F

N
M

L
_E

F

N
M

F
_E

F

IL
S

A
_E

F
1

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-17. CHI Error Flag Register (FR_CHIERFR)

Table 33-22. FR_CHIERFR field description

Field Description

FRLB_EF Frame Lost Channel B Error Flag — This flag is set if a complete frame was received on channel B
but could not be stored in the selected individual message buffer because this message buffer is
currently locked by the application. In this case, the frame and the related slot status information are
lost.
0 No such event
1 Frame lost on channel B detected

FRLA_EF Frame Lost Channel A Error Flag — This flag is set if a complete frame was received on channel A
but could not be stored in the selected individual message buffer because this message buffer is
currently locked by the application. In this case, the frame and the related slot status information are
lost.
0 No such error
1 Frame lost on channel A detected

PCMI_EF Protocol Command Ignored Error Flag — This flag is set if the application has issued a POC
command by writing to the POCCMD field in the Protocol Operation Control Register (FR_POCR)
while the BSY flag is equal to 1. In this case the command is ignored by the CC and is lost.
0 No such error
1 POC command ignored

FOVB_EF Receive FIFO Overrun Channel B Error Flag — This flag is set when an overrun of the FIFO for
channel B occurred. This error occurs if a semantically valid frame was received on channel B and
matches the all criteria to be appended to the FIFO for channel B but the FIFO is full. In this case, the
received frame and its related slot status information is lost.
0 No such error
1 FIFO overrun on channel B has been detected

FOVA_EF Receive FIFO Overrun Channel A Error Flag — This flag is set when an overrun of the FIFO for
channel A occurred. This error occurs if a semantically valid frame was received on channel A and
matches the all criteria to be appended to the FIFO for channel A but the FIFO is full. In this case, the
received frame and its related slot status information is lost.
0 No such error
1 FIFO overrun on channel B has been detected

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1475

MSB_EF Message Buffer Search Error Flag — This flag is set if the message buffer search engine is still
running while the next search cycle must be started due to the FlexRay protocol timing. In this case,
not all message buffers are considered while searching.
0 No such event
1 Search engine active while search start appears

MBU_EF Message Buffer Utilization Error Flag — This flag is asserted if the application writes to a message
buffer control field that is beyond the number of utilized message buffers programmed in the Message
Buffer Segment Size and Utilization Register (FR_MBSSUTR).
If the application writes to a FR_MBCCSRn register with n > LAST_MB_UTIL, the CC ignores the write
attempt and asserts the message buffer utilization error flag MBU_EF in the CHI Error Flag Register
(FR_CHIERFR).

0 No such event
1 Non-utilized message buffer enabled

LCK_EF Lock Error Flag — This flag is set if the application tries to lock a message buffer that is already locked
by the CC due to internal operations. In that case, the CC does not grant the lock to the application.
The application must issue the lock request again.
0 No such error
1 Lock error detected

DBL_EF Double Transmit Message Buffer Lock Error Flag — This flag is set if the application tries to lock
the transmit side of a double transmit message buffer. In this case, the CC does not grant the lock to
the transmit side of a double transmit message buffer.
0 No such event
1 Double transmit buffer lock error occurred

SBCF_EF System Bus Communication Failure Error Flag — This flag is set if a system bus access was not
finished within the required amount of time (see Section 33.6.19.1.2, System bus access timeout”).
0 No such event
1 System bus access not finished in time

FID_EF Frame ID Error Flag — This flag is set if the frame ID stored in the message buffer header area differs
from the frame ID stored in the message buffer control register.
0 No such error occurred
1 Frame ID error occurred

DPL_EF Dynamic Payload Length Error Flag — This flag is set if the payload length written into the message
buffer header field of a single or double transmit message buffer assigned to the dynamic segment is
greater than the maximum payload length for the dynamic segment as it is configured in the
corresponding protocol configuration register field max_payload_length_dynamic in the Protocol
Configuration Register 24 (FR_PCR24).
0 No such error occurred
1 Dynamic payload length error occurred

SPL_EF Static Payload Length Error Flag — This flag is set if the payload length written into the message
buffer header field of a single or double transmit message buffer assigned to the static segment is
different from the payload length for the static segment as it is configured in the corresponding protocol
configuration register field payload_length_static in the Protocol Configuration Register 19
(FR_PCR19).
0 No such error occurred
1 Static payload length error occurred

Table 33-22. FR_CHIERFR field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1476 Freescale Semiconductor

33.5.2.18 Message Buffer Interrupt Vector Register (FR_MBIVEC)

This register indicates the lowest numbered receive message buffer and the lowest numbered transmit
message buffer that have their interrupt status flag MBIF and interrupt enable MBIE bits asserted. This
means that message buffers with lower message buffer numbers have higher priority.

NML_EF Network Management Length Error Flag — This flag is set if the payload length written into the
header structure of a receive message buffer assigned to the static segment is less than the configured
length of the Network Management Vector as configured in the Network Management Vector Length
Register (FR_NMVLR). In this case the received part of the Network Management Vector will be used
to update the Network Management Vector.
0 No such error occurred
1 Network management length error occurred

NMF_EF Network Management Frame Error Flag — This flag is set if a received message in the static
segment with a Preamble Indicator flag PP asserted has its Null Frame indicator flag NF asserted as
well. In this case, the Global Network Management Registers (see Network Management Vector
Registers (FR_NMVR0–FR_NMVR5)) are not updated.
0 No such error occurred
1 Network management frame error occurred

ILSA_EF Illegal System Bus Address Error Flag — This flag is set if the external system bus subsystem has
detected an access to an illegal system bus address from the CC (see Section 33.6.19.1.1, System
bus illegal address access”).
0 No such event
1 Illegal system bus address accessed

Base + 0x0022

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 TBIVEC 0 RBIVEC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-18. Message Buffer Interrupt Vector Register (FR_MBIVEC)

Table 33-23. FR_MBIVEC field description

Field Description

TBIVEC Transmit Buffer Interrupt Vector — This field provides the number of the lowest numbered enabled
transmit message buffer that has its interrupt status flag MBIF and its interrupt enable bit MBIE set. If
there is no transmit message buffer with the interrupt status flag MBIF and the interrupt enable MBIE
bits asserted, the value in this field is set to 0.

RBIVEC Receive Buffer Interrupt Vector — This field provides the message buffer number of the lowest
numbered receive message buffer which has its interrupt flag MBIF and its interrupt enable bit MBIE
asserted. If there is no receive message buffer with the interrupt status flag MBIF and the interrupt
enable MBIE bits asserted, the value in this field is set to 0.

Table 33-22. FR_CHIERFR field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1477

33.5.2.19 Channel A Status Error Counter Register (FR_CASERCR)

This register provides the channel status error counter for channel A. The protocol engine generates a slot
status vector for each static slot, each dynamic slot, the symbol window, and the NIT. The slot status vector
contains the four protocol related error indicator bits vSS!SyntaxError, vSS!ContentError, vSS!BViolation,
and vSS!TxConflict. The CC increments the status error counter by 1 if, for a slot or segment, at least one
error indicator bit is set to 1. The counter wraps around after it has reached the maximum value. For more
information on slot status monitoring, see Section 33.6.18, Slot status monitoring”.

33.5.2.20 Channel B Status Error Counter Register (FR_CBSERCR)

This register provides the channel status error counter for channel B. The protocol engine generates a slot
status vector for each static slot, each dynamic slot, the symbol window, and the NIT. The slot status vector
contains the four protocol related error indicator bits vSS!SyntaxError, vSS!ContentError, vSS!BViolation,
and vSS!TxConflict. The CC increments the status error counter by 1 if, for a slot or segment, at least one
error indicator bit is set to 1. The counter wraps around after it has reached the maximum value. For more
information on slot status monitoring see Section 33.6.18, Slot status monitoring”.

Base + 0x0024 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R STATUS_ERR_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-19. Channel A Status Error Counter Register (FR_CASERCR)

Table 33-24. FR_CASERCR field description

Field Description

STATUS_ERR_CNT Channel Status Error Counter — This field provides the current value channel status error
counter. The counter value is updated within the first macrotick of the following slot or
segment.

Base + 0x0026 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R STATUS_ERR_CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-20. Channel B Status Error Counter Register (FR_CBSERCR)

Table 33-25. FR_CBSERCR field description

Field Description

STATUS_ERR_CNT Channel Status Error Counter — This field provides the current channel status error count.
The counter value is updated within the first macrotick of the following slot or segment.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1478 Freescale Semiconductor

33.5.2.21 Protocol Status Register 0 (FR_PSR0)

This register provides information about the current protocol status.

Base + 0x0028

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R ERRMODE SLOTMODE 0 PROTSTATE STARTUPSTATE 0 WAKEUPSTATUS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-21. Protocol Status Register 0 (FR_PSR0)

Table 33-26. FR_PSR0 field description

Field Description

ERRMODE Error Mode — protocol related variable: vPOC!ErrorMode. This field indicates the error mode of the
protocol.
00 ACTIVE
01 PASSIVE
10 COMM_HALT
11 Reserved

SLOTMODE Slot Mode — protocol related variable: vPOC!SlotMode. This field indicates the slot mode of the
protocol.
00 SINGLE
01 ALL_PENDING
10 ALL
11 Reserved

PROTSTATE Protocol State — protocol related variable: vPOC!State. This field indicates the state of the protocol.
000 POC:default config
001 POC:config
010 POC:wakeup
011 POC:ready
100 POC:normal passive
101 POC:normal active
110 POC:halt
111 POC:startup

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1479

33.5.2.22 Protocol Status Register 1 (FR_PSR1)

STARTUP
STATE

Startup State — protocol related variable: vPOC!StartupState. This field indicates the current
substate of the startup procedure.
0000 Reserved
0001 Reserved
0010 POC:coldstart collision resolution
0011 POC:coldstart listen
0100 POC:integration consistency check
0101 POC:integrationi listen
0110 Reserved
0111 POC:initialize schedule
1000 Reserved
1001 Reserved
1010 POC:coldstart consistency check
1011 Reserved
1100 Reserved
1101 POC:integration coldstart check
1110 POC:coldstart gap
1111 POC:coldstart join

WAKEUP
STATUS

Wakeup Status — protocol related variable: vPOC!WakeupStatus. This field provides the outcome
of the execution of the wakeup mechanism.
000 UNDEFINED
001 RECEIVED_HEADER
010 RECEIVED_WUP
011 COLLISION_HEADER
100 COLLISION_WUP
101 COLLISION_UNKNOWN
110 TRANSMITTED
111 Reserved

Base + 0x002A Additional Reset: CSAA, CSP, CPN: RUN Command Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
S

A
A

C
S

P

0 REMCSAT

C
P

N

H
H

R

F
R

Z

APTAC

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-22. Protocol Status Register 1 (FR_PSR1)

Table 33-26. FR_PSR0 field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1480 Freescale Semiconductor

33.5.2.23 Protocol Status Register 2 (FR_PSR2)

This register provides a snapshot of status information about the Network Idle Time NIT, the Symbol
Window and the clock synchronization. The NIT related status bits NBVB, NSEB, NBVA, and NSEA are

Table 33-27. FR_PSR1 field description

Field Description

CSAA Cold Start Attempt Aborted Flag — protocol related event: ‘set coldstart abort indicator in CHI’
This flag is set when the CC has aborted a cold start attempt.
0 No such event
1 Cold start attempt aborted

CSP Leading Cold Start Path — This status bit is set when the CC has reached the POC:normal active
state via the leading cold start path. This indicates that this node has started the network
0 No such event
1 POC:normal active reached from POC:startup state via leading cold start path

REMCSAT Remaining Coldstart Attempts — protocol related variable: vRemainingColdstartAttempts
This field provides the number of remaining cold start attempts that the CC will execute.

CPN Leading Cold Start Path Noise — protocol related variable: vPOC!ColdstartNoise
This status bit is set if the CC has reached the POC:normal active state via the leading cold start path
under noise conditions. This indicates there was some activity on the FlexRay bus while the CC was
starting up the cluster.
0 No such event
1 POC:normal active state was reached from POC:startup state via noisy leading cold start path

HHR Host Halt Request Pending — protocol related variable: vPOC!CHIHaltRequest
This status bit is set when CC receives the HALT command from the application via the Protocol
Operation Control Register (FR_POCR). The CC clears this status bit after a hard reset condition or
when the protocol is in the POC:default config state.
0 No such event
1 HALT command received

FRZ Freeze Occurred — protocol related variable: vPOC!Freeze
This status bit is set when the CC has reached the POC:halt state due to the host FREEZE command
or due to an internal error condition requiring immediate halt. The CC clears this status bit after a hard
reset condition or when the protocol is in the POC:default config state.
0 No such event
1 Immediate halt due to FREEZE or internal error condition

APTAC Allow Passive to Active Counter — protocol related variable: vPOC!vAllowPassivetoActive
This field provides the number of consecutive even/odd communication cycle pairs that have passed
with valid rate and offset correction terms, but the protocol is still in the POC:normal passive state due
to an application configured delay to enter POC:normal active state. This delay is defined by the
allow_passive_to_active field in the Protocol Configuration Register 12 (FR_PCR12).

Base + 0x002C Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

N
B

V
B

N
S

E
B

S
T

C
B

S
B

V
B

S
S

E
B

M
T

B

N
B

V
A

N
S

E
A

S
T

C
A

S
B

V
A

S
S

E
A

M
TA CLKCORRFAILCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-23. Protocol Status Register 2 (FR_PSR2)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1481

updated by the CC after the end of the NIT and before the end of the first slot of the next communication
cycle. The Symbol Window related status bits STCB, SBVB, SSEB, MTB, STCA, SBVA, SSEB, and
MTA are updated by the CC after the end of the symbol window and before the end of the current
communication cycle. If no symbol window is configured, the symbol window related status bits remain
in their reset state. The clock synchronization related CLKCORRFAILCNT is updated by the CC after the
end of the static segment and before the end of the current communication cycle.

Table 33-28. FR_PSR2 field description

Field Description

NBVB NIT Boundary Violation on Channel B — protocol related variable: vSS!BViolation for NIT on
channel B
This status bit is set when there was some media activity on the FlexRay bus channel B at the end of
the NIT.
0 No such event
1 Media activity at boundaries detected

NSEB NIT Syntax Error on Channel B — protocol related variable: vSS!SyntaxError for NIT on channel B
This status bit is set when a syntax error was detected during NIT on channel B.
0 No such event
1 Syntax error detected

STCB Symbol Window Transmit Conflict on Channel B — protocol related variable: vSS!TxConflict for
symbol window on channel B
This status bit is set if there was a transmission conflict during the symbol window on channel B.
0 No such event
1 Transmission conflict detected

SBVB Symbol Window Boundary Violation on Channel B — protocol related variable: vSS!BViolation for
symbol window on channel B
This status bit is set if there was some media activity on the FlexRay bus channel B at the start or at
the end of the symbol window.
0 No such event
1 Media activity at boundaries detected

SSEB Symbol Window Syntax Error on Channel B — protocol related variable: vSS!SyntaxError for
symbol window on channel B
This status bit is set when a syntax error was detected during the symbol window on channel B.
0 No such event
1 Syntax error detected

MTB Media Access Test Symbol MTS Received on Channel B — protocol related variable:
vSS!ValidMTS for Symbol Window on channel B
This status bit is set if the Media Access Test Symbol MTS was received in the symbol window on
channel B.
0 No such event
1 MTS symbol received

NBVA NIT Boundary Violation on Channel A — protocol related variable: vSS!BViolation for NIT on
channel A
This status bit is set when there was some media activity on the FlexRay bus channel A at the end of
the NIT.
0 No such event
1 Media activity at boundaries detected

NSEA NIT Syntax Error on Channel A — protocol related variable: vSS!SyntaxError for NIT on channel A
This status bit is set when a syntax error was detected during NIT on channel A.
0 No such event
1 Syntax error detected

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1482 Freescale Semiconductor

33.5.2.24 Protocol Status Register 3 (FR_PSR3)

This register provides aggregated channel status information as an accrued status of channel activity for
all communication slots, regardless of whether they are assigned for transmission or subscribed for
reception. It provides accrued information for the symbol window, the NIT, and the wakeup status.

STCA Symbol Window Transmit Conflict on Channel A — protocol related variable: vSS!TxConflict for
symbol window on channel A
This status bit is set if there was a transmission conflicts during the symbol window on channel A.
0 No such event
1 Transmission conflict detected

SBVA Symbol Window Boundary Violation on Channel A — protocol related variable: vSS!BViolation for
symbol window on channel A
This status bit is set if there was some media activity on the FlexRay bus channel A at the start or at
the end of the symbol window.
0 No such event
1 Media activity at boundaries detected

SSEA Symbol Window Syntax Error on Channel A — protocol related variable: vSS!SyntaxError for
symbol window on channel A
This status bit is set when a syntax error was detected during the symbol window on channel A.
0 No such event
1 Syntax error detected

MTA Media Access Test Symbol MTS Received on Channel A — protocol related variable:
vSS!ValidMTS for symbol window on channel A
This status bit is set if the Media Access Test Symbol MTS was received in the symbol window on
channel A.
1 MTS symbol received
0 No such event

CLKCORR-
FAILCNT

Clock Correction Failed Counter — protocol related variable: vClockCorrectionFailed
This field provides the number of consecutive even/odd communication cycle pairs that have passed
without clock synchronization having performed an offset or a rate correction due to lack of
synchronization frames. It is not incremented when it has reached the configured value of either
max_without_clock_correction_fatal or max_without_clock_correction_passive as defined in the
Protocol Configuration Register 8 (FR_PCR8). The CC resets this counter on a hard reset condition,
when the protocol enters the POC:normal active state, or when both the rate and offset correction
terms have been calculated successfully.

Base + 0x002E Additional Reset: RUN Command Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0

W
U

B

A
B

V
B

A
A

C
B

A
C

E
B

A
S

E
B

A
V

F
B

0 0

W
U

A

A
B

V
A

A
A

C
A

A
C

E
A

A
S

E
A

A
V

F
A

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-24. Protocol Status Register 3 (FR_PSR3)

Table 33-28. FR_PSR2 field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1483

Table 33-29. FR_PSR3 field description

Field Description

WUB Wakeup Symbol Received on Channel B — This flag is set when a wakeup symbol was received on
channel B.
0 No wakeup symbol received
1 Wakeup symbol received

ABVB Aggregated Boundary Violation on Channel B — This flag is set when a boundary violation has
been detected on channel B. Boundary violations are detected in the communication slots, the symbol
window, and the NIT.
0 No boundary violation detected
1 Boundary violation detected

AACB Aggregated Additional Communication on Channel B — This flag is set when at least one valid
frame was received on channel B in a slot that also contained an additional communication with either
syntax error, content error, or boundary violations.
0 No additional communication detected
1 Additional communication detected

ACEB Aggregated Content Error on Channel B — This flag is set when a content error has been detected
on channel B. Content errors are detected in the communication slots, the symbol window, and the
NIT.
0 No content error detected
1 Content error detected

ASEB Aggregated Syntax Error on Channel B — This flag is set when a syntax error has been detected
on channel B. Syntax errors are detected in the communication slots, the symbol window and the NIT.
0 No syntax error detected
1 Syntax errors detected

AVFB Aggregated Valid Frame on Channel B — This flag is set when a syntactically correct valid frame
has been received in any static or dynamic slot through channel B.
1 At least one syntactically valid frame received
0 No syntactically valid frames received

WUA Wakeup Symbol Received on Channel A — This flag is set when a wakeup symbol was received on
channel A.
0 No wakeup symbol received
1 Wakeup symbol received

ABVA Aggregated Boundary Violation on Channel A — This flag is set when a boundary violation has
been detected on channel A. Boundary violations are detected in the communication slots, the symbol
window, and the NIT.
0 No boundary violation detected
1 Boundary violation detected

AACA Aggregated Additional Communication on Channel A — This flag is set when a valid frame was
received in a slot on channel A that also contained an additional communication with either syntax
error, content error, or boundary violations.
0 No additional communication detected
1 Additional communication detected

ACEA Aggregated Content Error on Channel A — This flag is set when a content error has been detected
on channel A. Content errors are detected in the communication slots, the symbol window, and the
NIT.
0 No content error detected
1 Content error detected

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1484 Freescale Semiconductor

33.5.2.25 Macrotick Counter Register (FR_MTCTR)

This register provides the macrotick count of the current communication cycle.

33.5.2.26 Cycle Counter Register (FR_CYCTR)

This register provides the number of the current communication cycle.

ASEA Aggregated Syntax Error on Channel A — This flag is set when a syntax error has been detected
on channel A. Syntax errors are detected in the communication slots, the symbol window, and the NIT.
0 No syntax error detected
1 Syntax errors detected

AVFA Aggregated Valid Frame on Channel A — This flag is set when a syntactically correct valid frame
has been received in any static or dynamic slot through channel A.
0 No syntactically valid frames received
1 At least one syntactically valid frame received

Base + 0x0030

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 MTCT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-25. Macrotick Counter Register (FR_MTCTR)

Table 33-30. FR_MTCTR field description

Field Description

MTCT Macrotick Counter — protocol related variable: vMacrotick
This field provides the macrotick count of the current communication cycle.

Base + 0x0032

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 CYCCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-26. Cycle Counter Register (FR_CYCTR)

Table 33-31. FR_CYCTR field description

Field Description

CYCCNT Cycle Counter — protocol related variable: vCycleCounter
This field provides the number of the current communication cycle. If the counter reaches the
maximum value of 63, the counter wraps and starts from zero again.

Table 33-29. FR_PSR3 field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1485

33.5.2.27 Slot Counter Channel A Register (FR_SLTCTAR)

This register provides the number of the current slot in the current communication cycle for channel A.

33.5.2.28 Slot Counter Channel B Register (FR_SLTCTBR)

This register provides the number of the current slot in the current communication cycle for channel B.

33.5.2.29 Rate Correction Value Register (FR_RTCORVR)

This register provides the sign extended rate correction value in microticks as it was calculated by the clock
synchronization algorithm. The CC updates this register during the NIT of each odd numbered
communication cycle.

Base + 0x0034

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 SLOTCNTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-27. Slot Counter Channel A Register (FR_SLTCTAR)

Table 33-32. FR_SLTCTAR field description

Field Description

SLOTCNTA Slot Counter Value for Channel A — protocol related variable: vSlotCounter for channel A
This field provides the number of the current slot in the current communication cycle.

Base + 0x0036

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 SLOTCNTB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-28. Slot Counter Channel B Register (FR_SLTCTBR)

Table 33-33. FR_SLTCTBR field description

Field Description

SLOTCNTA Slot Counter Value for Channel B — protocol related variable: vSlotCounter for channel B
This field provides the number of the current slot in the current communication cycle.

Base + 0x0038 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R RATECORR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-29. Rate Correction Value Register (FR_RTCORVR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1486 Freescale Semiconductor

33.5.2.30 Offset Correction Value Register (FR_OFCORVR)

This register provides the sign extended offset correction value in microticks as it was calculated by the
clock synchronization algorithm. The CC updates this register during the NIT.

Table 33-34. FR_RTCORVR field description

Field Description

RATECORR Rate Correction Value — protocol related variable: vRateCorrection (before value limitation and
external rate correction)
This field provides the sign extended rate correction value in microticks as it was calculated by the
clock synchronization algorithm. The value is represented in 2’s complement format. This value does
not include the value limitation and the application of the external rate correction. If the magnitude of
the internally calculated rate correction value exceeds the limit given by rate_correction_out in the
Protocol Configuration Register 13 (FR_PCR13), the clock correction reached limit interrupt flag
CCL_IF is set in the Protocol Interrupt Flag Register 0 (FR_PIFR0).
Note: If the CC was not able to calculate a new rate correction term due to a lack of synchronization

frames, the RATECORR value is not updated.

Base + 0x003A Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OFFSETCORR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-30. Offset Correction Value Register (FR_OFCORVR)

Table 33-35. FR_OFCORVR field description

Field Description

OFFSETCORR Offset Correction Value — protocol related variable: vOffsetCorrection (before value limitation
and external offset correction)
This field provides the sign extended offset correction value in microticks as it was calculated by
the clock synchronization algorithm. The value is represented in 2’s complement format. This
value does not include the value limitation and the application of the external offset correction. If
the magnitude of the internally calculated rate correction value exceeds the limit given by
offset_correction_out field in the Protocol Configuration Register 29 (FR_PCR29), the clock
correction reached limit interrupt flag CCL_IF is set in the Protocol Interrupt Flag Register 0
(FR_PIFR0).
Note: If the CC was not able to calculate an new offset correction term due to a lack of

synchronization frames, the OFFSETCORR value is not updated.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1487

33.5.2.31 Combined Interrupt Flag Register (FR_CIFR)

This register provides five combined interrupt flags and a copy of three individual interrupt flags. The
combined interrupt flags are the result of a binary OR of the values of other interrupt flags regardless of
the state of the interrupt enable bits. The generation scheme for the combined interrupt flags is depicted in
Figure 33-162. The individual interrupt flags WUPIF, FAFBIF, and FAFAIF are copies of corresponding
flags in the Global Interrupt Flag and Enable Register (FR_GIFER) and are provided here to simplify the
application interrupt flag check. To clear the individual interrupt flags, the application must use the Global
Interrupt Flag and Enable Register (FR_GIFER).

NOTE

The meanings of the combined status bits MIF, PRIF, CHIF, RBIF, and
TBIF are different from those mentioned in the Global Interrupt Flag and
Enable Register (FR_GIFER).

Base + 0x003C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 0 0 0 0 0 0

M
IF

P
R

IF

C
H

IF

W
U

P
IF

FA
F

B
IF

FA
FA

IF

R
B

IF

T
B

IF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-31. Combined Interrupt Flag Register (FR_CIFR)

Table 33-36. FR_CIFR field description

Field Description

MIF Module Interrupt Flag — This flag is set if there is at least one interrupt source that has its interrupt
flag asserted.
0 No interrupt source has its interrupt flag asserted
1 At least one interrupt source has its interrupt flag asserted

PRIF Protocol Interrupt Flag — This flag is set if at least one of the individual protocol interrupt flags in the
Protocol Interrupt Flag Register 0 (FR_PIFR0) or Protocol Interrupt Flag Register 1 (FR_PIFR1) is
equal to 1.
0 All individual protocol interrupt flags are equal to 0
1 At least one of the individual protocol interrupt flags is equal to 1

CHIF CHI Interrupt Flag — This flag is set if at least one of the individual CHI error flags in the CHI Error
Flag Register (FR_CHIERFR) is equal to 1.
0 All CHI error flags are equal to 0
1 At least one CHI error flag is equal to 1

WUPIF Wakeup Interrupt Flag — Provides the same value as FR_GIFER[WUPIF]

FAFBIF Receive FIFO Channel B Almost Full Interrupt Flag — Provides the same value as
FR_GIFER[FAFBIF]

FAFAIF Receive FIFO Channel A Almost Full Interrupt Flag — Provides the same value as
FR_GIFER[FAFAIF]

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1488 Freescale Semiconductor

33.5.2.32 System Memory Access Time-Out Register (FR_SYMATOR)

33.5.2.33 Sync Frame Counter Register (FR_SFCNTR)

This register provides the number of synchronization frames that are used for clock synchronization in the
last even and in the last odd numbered communication cycle. This register is updated after the start of the
NIT and before 10 MT after offset correction start.

NOTE

If the application has locked the even synchronization table at the end of the
static segment of an even communication cycle, the CC will not update the
fields SFEVB and SFEVA.

RBIF Receive Message Buffer Interrupt Flag — This flag is set if for at least one of the individual receive
message buffers (FR_MBCCSRn[MTD] = 0) the interrupt flag MBIF in the corresponding Message
Buffer Configuration, Control, Status Registers (FR_MBCCSRn) is equal to 1.
0 None of the individual receive message buffers has the MBIF flag asserted.
1 At least one individual receive message buffers has the MBIF flag asserted.

TBIF Transmit Message Buffer Interrupt Flag — This flag is set if for at least one of the individual single
or double transmit message buffers (FR_MBCCSRn[MTD] = 1) the interrupt flag MBIF in the
corresponding Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn) is equal to 1.
0 None of the individual transmit message buffers has the MBIF flag asserted.
1 At least one individual transmit message buffers has the MBIF flag asserted.

Base + 0x003E Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
TIMEOUT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Figure 33-32. System Memory Access Time-Out Register (FR_SYMATOR)

Table 33-37. FR_SYMATOR field description

Field Description

TIMEOUT System Memory Access Time-Out — This value defines when a system bus access timeout is
detected. For a detailed description see Section 33.7.1.1, Configure System Memory Access
Time-Out Register (FR_SYMATOR)” and Section 33.6.19.1.2, System bus access timeout”.

Base + 0x0040 Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SFEVB SFEVA SFODB SFODA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-33. Sync Frame Counter Register (FR_SFCNTR)

Table 33-36. FR_CIFR field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1489

If the application has locked the odd synchronization table at the end of the
static segment of an odd communication cycle, the CC will not update the
values SFODB and SFODA.

33.5.2.34 Sync Frame Table Offset Register (FR_SFTOR)

This register defines the FlexRay memory area related offset for sync frame tables. For more details, see
Section 33.6.12, Sync frame ID and sync frame deviation tables”.

Table 33-38. FR_SFCNTR field description

Field Description

SFEVB Sync Frames Channel B, even cycle — protocol related variable: size of (vsSyncIdListB for even cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for
clock synchronization.

SFEVB Sync Frames Channel A, even cycle — protocol related variable: size of (vsSyncIdListA for even cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for
clock synchronization.

SFODB Sync Frames Channel B, odd cycle — protocol related variable: size of (vsSyncIdListB for odd cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for
clock synchronization.

SFODA Sync Frames Channel A, odd cycle — protocol related variable: size of (vsSyncIdListA for odd cycle)
This field provides the size of the internal list of frame IDs of received synchronization frames used for
clock synchronization.

Base + 0x0042 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SFT_OFFSET[15:1]

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-34. Sync Frame Table Offset Register (FR_SFTOR)

Table 33-39. FR_SFTOR Field Description

Field Description

SFT_OFFSET Sync Frame Table Offset — The offset of the Sync Frame Tables in the FlexRay memory area. This
offset is required to be 16-bit aligned. Thus STF_OFFSET[0] is always 0.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1490 Freescale Semiconductor

33.5.2.35 Sync Frame Table Configuration, Control, Status Register
(FR_SFTCCSR)

This register provides configuration, control, and status information related to the generation and access
of the clock sync ID tables and clock sync measurement tables. For a detailed description, see
Section 33.6.12, Sync frame ID and sync frame deviation tables”.

Base + 0x0044 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0 CYCNUM

E
LK

S

O
LK

S

E
V

A
L

O
V

A
L

0 0

S
D

V
E

N

S
ID

E
N

W

E
LK

T

O
LK

T

OPT

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-35. Sync Frame Table Configuration, Control, Status Register (FR_SFTCCSR)

Table 33-40. FR_SFTCCSR field description

Field Description

ELKT Even Cycle Tables Lock/Unlock Trigger — This trigger bit is used to lock and unlock the even
cycle tables.
0 No effect
1 Triggers lock/unlock of the even cycle tables.

OLKT Odd Cycle Tables Lock/Unlock Trigger — This trigger bit is used to lock and unlock the odd cycle
tables.
0 No effect
1 Triggers lock/unlock of the odd cycle tables.

CYCNUM Cycle Number — This field provides the number of the cycle in which the currently locked table
was recorded. If none or both tables are locked, this value is related to the even cycle table.

ELKS Even Cycle Tables Lock Status — This status bit indicates whether the application has locked the
even cycle tables.
0 Application has not locked the even cycle tables.
1 Application has locked the even cycle tables.

OLKS Odd Cycle Tables Lock Status — This status bit indicates whether the application has locked the
odd cycle tables.
0 Application has not locked the odd cycle tables.
1 Application has locked the odd cycle tables.

EVAL Even Cycle Tables Valid — This status bit indicates whether the Sync Frame ID and Sync Frame
Deviation Tables for the even cycle are valid. The CC clears this status bit when it starts updating
the tables, and sets this bit when it has finished the table update.
0 Tables are not valid (update is ongoing)
1 Tables are valid (consistent).

OVAL Odd Cycle Tables Valid — This status bit indicates whether the Sync Frame ID and Sync Frame
Deviation Tables for the odd cycle are valid. The CC clears this status bit when it starts updating the
tables, and sets this bit when it has finished the table update.
0 Tables are not valid (update is ongoing)
1 Tables are valid (consistent).

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1491

33.5.2.36 Sync Frame ID Rejection Filter Register (FR_SFIDRFR)

This register defines the Sync Frame Rejection Filter ID. The application must update this register outside
of the static segment. If the application updates this register in the static segment, it can appear that the CC
accepts the sync frame in the current cycle.

OPT One Pair Trigger — This trigger bit controls whether the CC writes continuously or only one pair of
Sync Frame Tables into the FlexRay memory area.
If this trigger is set to 1 while SDVEN or SIDEN is set to 1, the CC writes only one pair of the enabled
Sync Frame Tables corresponding to the next even-odd-cycle pair into the FlexRay memory area.
In this case, the CC clears the SDVEN or SIDEN bits immediately.
If this trigger is set to 0 while SDVEN or SIDEN is set to 1, the CC writes continuously the enabled
Sync Frame Tables into the FlexRay memory area.
0 Write continuously pairs of enabled Sync Frame Tables into FlexRay memory area.
1 Write only one pair of enabled Sync Frame Tables into FlexRay memory area.

SDVEN Sync Frame Deviation Table Enable — This bit controls the generation of the Sync Frame
Deviation Tables. The application must set this bit to request the CC to write the Sync Frame
Deviation Tables into the FlexRay memory area.
0 Do not write Sync Frame Deviation Tables
1 Write Sync Frame Deviation Tables into FlexRay memory area
Note: If SDVEN is set to 1, then SIDEN must also be set to 1.

SIDEN Sync Frame ID Table Enable — This bit controls the generation of the Sync Frame ID Tables. The
application must set this bit to 1 to request the CC to write the Sync Frame ID Tables into the
FlexRay memory area.
0 Do not write Sync Frame ID Tables
1 Write Sync Frame ID Tables into FlexRay memory area

Base + 0x0046 16-bit write access required Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
SYNFRID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-36. Sync Frame ID Rejection Filter Register (FR_SFIDRFR)

Table 33-41. FR_SFIDRFR field description

Field Description

SYNFRID Sync Frame Rejection ID — This field defines the frame ID of a frame that must not be used for clock
synchronization. For details see Section 33.6.15.2, Sync frame rejection filtering”.

Table 33-40. FR_SFTCCSR field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1492 Freescale Semiconductor

33.5.2.37 Sync Frame ID Acceptance Filter Value Register (FR_SFIDAFVR)

This register defines the sync frame acceptance filter value. For details on filtering, see Section 33.6.15,
Sync frame filtering”.

33.5.2.38 Sync Frame ID Acceptance Filter Mask Register (FR_SFIDAFMR)

This register defines the sync frame acceptance filter mask. For details on filtering see Section 33.6.15.1,
Sync frame acceptance filtering”.

33.5.2.39 Network Management Vector Registers (FR_NMVR0–FR_NMVR5)

Base + 0x0048 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
FVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-37. Sync Frame ID Acceptance Filter Value Register (FR_SFIDAFVR)

Table 33-42. FR_SFIDAFVR field description

Field Description

FVAL Filter Value — This field defines the value for the sync frame acceptance filtering.

Base + 0x004A Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
FMSK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-38. Sync Frame ID Acceptance Filter Mask Register (FR_SFIDAFMR)

Table 33-43. FR_SFIDAFMR field description

Field Description

FMSK Filter Mask — This field defines the mask for the sync frame acceptance filtering.

Base + 0x004C (FR_NMVR0)
Base + 0x004E (FR_NMVR1)
Base + 0x0050 (FR_NMVR2)
Base + 0x0052 (FR_NMVR3)
Base + 0x0054 (FR_NMVR4)
Base + 0x0056 (FR_NMVR5)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NMVP[15:8] NMVP[7:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-39. Network Management Vector Registers (FR_NMVR0–FR_NMVR5)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1493

Each of these six registers holds one part of the Network Management Vector. The length of the Network
Management Vector is configured in the Network Management Vector Length Register (FR_NMVLR). If
FR_NMVLR is programmed with a value that is less than 12 bytes, the remaining bytes of the Network
Management Vector Registers (FR_NMVR0–FR_NMVR5), which are not used for the Network
Management Vector accumulating, will remain 0.

The NMVR provides accrued information over all received NMVs in the last communication cycle. All
NMVs received in one cycle are ORed into the NMVR. The NMVR is updated at the end of the
communication cycle.

33.5.2.40 Network Management Vector Length Register (FR_NMVLR)

This register defines the length of the network management vector in bytes.

Table 33-44. NMVR[0:5] field description

Field Description

NMVP Network Management Vector Part — The mapping between the Network Management Vector
Registers (FR_NMVR0–FR_NMVR5) and the receive message buffer payload bytes in NMV[0:11] is
depicted in Table 33-45.

Table 33-45. Mapping of NMVRn to the received payload bytes NMVn

NMVRn register NMVn received payload

FR_NMVR0[NMVP[15:8]] NMV0

FR_NMVR0[NMVP[7:0]] NMV1

FR_NMVR1[NMVP[15:8]] NMV2

FR_NMVR1[NMVP[7:0]] NMV3

...

FR_NMVR5[NMVP[15:8]] NMV10

FR_NMVR5[NMVP[7:0]] NMV11

Base + 0x0058 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
NMVL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-40. Network Management Vector Length Register (FR_NMVLR)

Table 33-46. FR_NMVLR field description

Field Description

NMVL Network Management Vector Length — protocol related variable:
gNetworkManagementVectorLength
This field defines the length of the Network Management Vector in bytes. Legal values are between 0
and 12.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1494 Freescale Semiconductor

33.5.2.41 Timer Configuration and Control Register (FR_TICCR)

This register is used to configure and control the two timers T1 and T2. For timer details, see
Section 33.6.17, Timer support”. The Timer T1 is an absolute timer. The Timer T2 can be configured as
an absolute or relative timer.

Base + 0x005A Write: T2_CFG: POC:config
T2_REP, T1_REP, T1SP, T2SP, T1TR, T2TR: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0 0

T
2_

C
F

G

T
2_

R
E

P 0 0 0

T
2S

T

0 0 0

T
1_

R
E

P 0 0 0

T
1S

T

W

T
2S

P

T
2T

R

T
1S

P

T
1T

R

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-41. Timer Configuration and Control Register (FR_TICCR)

Table 33-47. FR_TICCR field description

Field Description

T2_CFG Timer T2 Configuration — This bit configures the timebase mode of Timer T2.
0 T2 is absolute timer.
1 T2 is relative timer.

T2_REP Timer T2 Repetitive Mode — This bit configures the repetition mode of Timer T2.
0 T2 is non repetitive
1 T2 is repetitive

T2SP Timer T2 Stop — This trigger bit is used to stop timer T2.
0 no effect
1 stop timer T2

T2TR Timer T2 Trigger — This trigger bit is used to start timer T2.
0 no effect
1 start timer T2

T2ST Timer T2 State — This status bit provides the current state of timer T2.
0 timer T2 is idle
1 timer T2 is running

T1_REP Timer T1 Repetitive Mode — This bit configures the repetition mode of timer T1.
0 T1 is non repetitive
1 T1 is repetitive

T1SP Timer T1 Stop — This trigger bit is used to stop timer T1.
0 no effect
1 stop timer T1

T1TR Timer T1 Trigger — This trigger bit is used to start timer T1.
0 no effect
1 start timer T1

T1ST Timer T1 State — This status bit provides the current state of timer T1.
0 timer T1 is idle
1 timer T1 is running

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1495

NOTE

Both timers are deactivated immediately when the protocol enters a state
different from POC:normal active or POC:normal passive.

33.5.2.42 Timer 1 Cycle Set Register (FR_TI1CYSR)

This register defines the cycle filter value and the cycle filter mask for timer T1. For a detailed description
of timer T1, refer to Section 33.6.17.1, Absolute timer T1”.

NOTE

If the application modifies the value in this register while the timer is
running, the change becomes effective immediately and timer T1 will expire
according to the changed value.

33.5.2.43 Timer 1 Macrotick Offset Register (FR_TI1MTOR)

This register holds the macrotick offset value for timer T1. For a detailed description of timer T1, refer to
Section 33.6.17.1, Absolute timer T1”.

Base + 0x005C Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
T1_CYC_VAL

0 0
T1_CYC_MSK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-42. Timer 1 Cycle Set Register (FR_TI1CYSR)

Table 33-48. FR_TI1CYSR field description

Field Description

T1_CYC_VAL Timer T1 Cycle Filter Value — This field defines the cycle filter value for timer T1.

T1_CYC_MSK Timer T1 Cycle Filter Mask — This field defines the cycle filter mask for timer T1.

Base + 0x005E Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
T1_MTOFFSET

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-43. Timer 1 Macrotick Offset Register (FR_TI1MTOR)

Table 33-49. FR_TI1MTOR field description

Field Description

T1_MTOFFSET Timer 1 Macrotick Offset — This field defines the macrotick offset value for timer 1.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1496 Freescale Semiconductor

NOTE

If the application modifies the value in this register while the timer is
running, the change becomes effective immediately and timer T1 will expire
according to the changed value.

33.5.2.44 Timer 2 Configuration Register 0 (FR_TI2CR0)

The content of this register depends on the value of the T2_CFG bit in the Timer Configuration and Control
Register (FR_TICCR). For a detailed description of timer T2, refer to Section 33.6.17.2, Absolute /
Relative timer T2”.

NOTE

If timer T2 is configured as an absolute timer and the application modifies
the values in this register while the timer is running, the change becomes
effective immediately and timer T2 will expire according to the changed
values.

If timer T2 is configured as a relative timer and the application changes the
values in this register while the timer is running, the change becomes
effective when the timer has expired according to the old values.

Base + 0x0060 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R* T2_CYC_VAL R* T2_CYC_MSK

W

R
T2_MTCNT[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-44. Timer 2 Configuration Register 0 (FR_TI2CR0)

Table 33-50. FR_TI2CR0 field description

Field Description

Fields for absolute timer T2 (FR_TICCR[T2_CFG] = 0)

T2_CYC_VAL Timer T2 Cycle Filter Value — This field defines the cycle filter value for timer T2.

T2_CYC_MSK Timer T2 Cycle Filter Mask — This field defines the cycle filter mask for timer T2.

Fields for relative timer T2 (FR_TICCR[T2_CFG = 1)

T2_MTCNT[31:16] Timer T2 Macrotick High Word — This field defines the high word of the macrotick count for
timer T2.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1497

33.5.2.45 Timer 2 Configuration Register 1 (FR_TI2CR1)

The content of this register depends on the value of the T2_CFG bit in the Timer Configuration and Control
Register (FR_TICCR). For a detailed description of timer T2, refer to Section 33.6.17.2, Absolute /
Relative timer T2”.

NOTE

If timer T2 is configured as an absolute timer and the application modifies
the values in this register while the timer is running, the change becomes
effective immediately and the timer T2 will expire according to the changed
values.

If timer T2 is configured as a relative timer and the application changes the
values in this register while the timer is running, the change becomes
effective when the timer has expired according to the old values.

33.5.2.46 Slot Status Selection Register (FR_SSSR)

This register is used to access the four internal non memory-mapped slot status selection registers
FR_SSSR0 to FR_SSSR3. Each internal registers selects a slot, or symbol window/NIT, whose status
vector will be saved in the corresponding Slot Status Registers (FR_SSR0–FR_SSR7) according to

Base + 0x0062 Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R* T2_MTOFFSET

W

R
T2_MTCNT[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-45. Timer 2 Configuration Register 1 (FR_TI2CR1)

Table 33-51. FR_TI2CR1 field description

Field Description

Fields for absolute timer T2 (FR_TICCR[T2_CFG] = 0)

T2_MTOFFSET Timer T2 Macrotick Offset — This field holds the macrotick offset value for timer T2.

Fields for relative timer T2 (FR_TICCR[T2_CFG] = 1)

T2_MTCNT[15:0] Timer T2 Macrotick Low Word — This field defines the low word of the macrotick value for timer
T2.

Base + 0x0064 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0
SLOTNUMBER

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-46. Slot Status Selection Register (FR_SSSR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1498 Freescale Semiconductor

Table 33-53. For a detailed description of slot status monitoring, refer to Section 33.6.18, Slot status
monitoring”.

NOTE

Slot status information of the message buffers should not be used when any
one of the the error flags FR_CHIERFR[SBCF_EF] or
FR_CHIERFR[ILSA_EF] is set.

33.5.2.47 Slot Status Counter Condition Register (FR_SSCCR)

This register is used to access and program the four internal non-memory mapped Slot Status Counter
Condition Registers FR_SSCCR0 to FR_SSCCR3. Each of these four internal slot status counter condition

Table 33-52. FR_SSSR field description

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

SEL Selector — This field selects one of the four internal slot status selection registers for access.
00 select FR_SSSR0.
01 select FR_SSSR1.
10 select FR_SSSR2.
11 select FR_SSSR3.

SLOTNUMBER Slot Number — This field specifies the number of the slot whose status will be saved in the
corresponding slot status registers.
Note: If this value is set to 0, the related slot status register provides the status of the symbol

window after the NIT start, and provides the status of the NIT after the cycle start.

Table 33-53. Mapping between FR_SSSRn and FR_SSRn

Internal Slot
Status Selection

Register

Write the slot status of the slot selected by FR_SSSRn for each

Even communication cycle Odd communication cycle

For Channel B
to

For Channel A
to

For Channel B
to

For Channel A
to

FR_SSSR0 FR_SSR0[15:8] FR_SSR0[7:0] FR_SSR1[15:8] FR_SSR1[7:0]

FR_SSSR1 FR_SSR2[15:8] FR_SSR2[7:0] FR_SSR3[15:8] FR_SSR3[7:0]

FR_SSSR2 FR_SSR4[15:8] FR_SSR4[7:0] FR_SSR5[15:8] FR_SSR5[7:0]

FR_SSSR3 FR_SSR6[15:8] FR_SSR6[7:0] FR_SSR7[15:8] FR_SSR7[7:0]

Base + 0x0066 16-bit write access required Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0
CNTCFG MCY VFR SYF NUF SUF STATUSMASK[3:0]

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-47. Slot Status Counter Condition Register (FR_SSCCR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1499

registers defines the mode and the conditions for incrementing the counter in the corresponding Slot Status
Counter Registers (FR_SSCR0–FR_SSCR3). The correspondence is given in Table 33-55. For a detailed
description of slot status counters, refer to Section 33.6.18.4, Slot status counter registers”.

Table 33-54. FR_SSCCR field description

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL field only on write access.

SEL Selector — This field selects one of the four internal slot counter condition registers for access.
00 select FR_SSCCR0.
01 select FR_SSCCR1.
10 select FR_SSCCR2.
11 select FR_SSCCR3.

CNTCFG Counter Configuration — These bit field controls the channel related incrementing of the slot status
counter.
00 increment by 1 if condition is fulfilled on channel A.
01 increment by 1 if condition is fulfilled on channel B.
10 increment by 1 if condition is fulfilled on at least one channel.
11 increment by 2 if condition is fulfilled on both channels channel.

increment by 1 if condition is fulfilled on only one channel.

MCY Multi Cycle Selection — This bit defines whether the slot status counter accumulates over multiple
communication cycles or provides information for the previous communication cycle only.
0 The Slot Status Counter provides information for the previous communication cycle only.
1 The Slot Status Counter accumulates over multiple communication cycles.

VFR Valid Frame Restriction — This bit is used to restrict the counter to received valid frames.
0 The counter is not restricted to valid frames only.
1 The counter is restricted to valid frames only.

SYF Sync Frame Restriction — This bit is used to restrict the counter to received frames with the sync
frame indicator bit set to 1.
0 The counter is not restricted with respect to the sync frame indicator bit.
1 The counter is restricted to frames with the sync frame indicator bit set to 1.

NUF Null Frame Restriction — This bit is used to restrict the counter to received frames with the null
frame indicator bit set to 0.
0 The counter is not restricted with respect to the null frame indicator bit.
1 The counter is restricted to frames with the null frame indicator bit set to 0.

SUF Startup Frame Restriction — This bit is used to restrict the counter to received frames with the
startup frame indicator bit set to 1.
0 The counter is not restricted with respect to the startup frame indicator bit.
1 The counter is restricted to received frames with the startup frame indicator bit set to 1.

STATUS
MASK[3:0]

Slot Status Mask — This bit field is used to enable the counter with respect to the four slot status
error indicator bits.
STATUSMASK[3] – This bit enables the counting for slots with the syntax error indicator bit set to 1.
STATUSMASK[2] – This bit enables the counting for slots with the content error indicator bit set to 1.
STATUSMASK[1] – This bit enables the counting for slots with the boundary violation indicator bit
set to 1.
STATUSMASK[0] – This bit enables the counting for slots with the transmission conflict indicator bit
set to 1.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1500 Freescale Semiconductor

33.5.2.48 Slot Status Registers (FR_SSR0–FR_SSR7)

Each of these eight registers holds the status vector of the slot specified in the corresponding internal slot
status selection register, which can be programmed using the Slot Status Selection Register (FR_SSSR).
Each register is updated after the end of the corresponding slot as shown in Figure 33-158. The register
bits are directly related to the protocol variables and described in more detail in Section 33.6.18, Slot status
monitoring”.

Table 33-55. Mapping between internal FR_SSCCRn and FR_SSCRn

Condition register Condition defined for register

FR_SSCCR0 FR_SSCR0

FR_SSCCR1 FR_SSCR1

FR_SSCCR2 FR_SSCR2

FR_SSCCR3 FR_SSCR3

Base + 0x0068 (FR_SSR0)
Base + 0x006A (FR_SSR1)
Base + 0x006C (FR_SSR2)
Base + 0x006E (FR_SSR3)
Base + 0x0070 (FR_SSR4)
Base + 0x0072 (FR_SSR5)
Base + 0x0074 (FR_SSR6)
Base + 0x0076 (FR_SSR7)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB VFA SYA NFA SUA SEA CEA BVA TCA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-48. Slot Status Registers (FR_SSR0–FR_SSR7)

Table 33-56. FR_SSR0–FR_SSR7 field description

Field Description

VFB Valid Frame on Channel B — protocol related variable: vSS!ValidFrame channel B
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYB Sync Frame Indicator Channel B — protocol related variable: vRF!Header!SyFIndicator channel B
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFB Null Frame Indicator Channel B — protocol related variable: vRF!Header!NFIndicator channel B
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUB Startup Frame Indicator Channel B — protocol related variable: vRF!Header!SuFIndicator channel
B
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1501

SEB Syntax Error on Channel B — protocol related variable: vSS!SyntaxError channel B
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEB Content Error on Channel B — protocol related variable: vSS!ContentError channel B
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVB Boundary Violation on Channel B — protocol related variable: vSS!BViolation channel B
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCB Transmission Conflict on Channel B — protocol related variable: vSS!TxConflict channel B
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

VFA Valid Frame on Channel A — protocol related variable: vSS!ValidFrame channel A
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYA Sync Frame Indicator Channel A — protocol related variable: vRF!Header!SyFIndicator channel A
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFA Null Frame Indicator Channel A — protocol related variable: vRF!Header!NFIndicator channel A
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUA Startup Frame Indicator Channel A — protocol related variable: vRF!Header!SuFIndicator channel
A
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEA Syntax Error on Channel A — protocol related variable: vSS!SyntaxError channel A
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEA Content Error on Channel A — protocol related variable: vSS!ContentError channel A
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVA Boundary Violation on Channel A — protocol related variable: vSS!BViolation channel A
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCA Transmission Conflict on Channel A — protocol related variable: vSS!TxConflict channel A
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

Table 33-56. FR_SSR0–FR_SSR7 field description

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1502 Freescale Semiconductor

33.5.2.49 Slot Status Counter Registers (FR_SSCR0–FR_SSCR3)

Each of these four registers provides the slot status counter value for the previous communication cycle(s)
and is updated at the cycle start. The provided value depends on the control bits and fields in the related
internal slot status counter condition register FR_SSCCRn, which can be programmed by using the Slot
Status Counter Condition Register (FR_SSCCR). For more details, see Section 33.6.18.4, Slot status
counter registers”.

NOTE

If the counter has reached its maximum value 0xFFFF and is in the
multicycle mode, that is, FR_SSCCRn[MCY] = 1, the counter is not reset
to 0x0000. The application can reset the counter by clearing the
FR_SSCCRn[MCY] bit and waiting for the next cycle start, when the CC
clears the counter. Subsequently, the counter can be set into the multicycle
mode again.

33.5.2.50 MTS A Configuration Register (FR_MTSACFR)

This register controls the transmission of the Media Access Test Symbol MTS on channel A. For more
details, see Section 33.6.13, MTS generation”.

Base + 0x0078 (FR_SSCR0)
Base + 0x007A (FR_SSCR1)
Base + 0x007C (FR_SSCR2)
Base + 0x007E (FR_SSCR3)

Additional Reset: RUN Command

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLOTSTATUSCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-49. Slot Status Counter Registers (FR_SSCR0–FR_SSCR3)

Table 33-57. FR_SSCR0–FR_SSCR3 field description

Field Description

SLOTSTATUSCNT Slot Status Counter — This field provides the current value of the Slot Status Counter.

Base + 0x0080 Write: MTE: Anytime
CYCCNTMSK,CYCCNTVAL:POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTE

0
CYCCNTMSK

0 0
CYCCNTVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-50. MTS A Configuration Register (FR_MTSACFR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1503

33.5.2.51 MTS B Configuration Register (MTSBCFR)

This register controls the transmission of the Media Access Test Symbol MTS on channel B. For more
details, see Section 33.6.13, MTS generation”.

33.5.2.52 Receive Shadow Buffer Index Register (FR_RSBIR)

This register is used to provide and retrieve the indices of the message buffer header fields currently
associated with the receive shadow buffers. For more details on the receive shadow buffer concept, refer
to Section 33.6.6.3.5, Receive shadow buffers concept”.

Table 33-58. FR_MTSACFR field description

Field Description

MTE Media Access Test Symbol Transmission Enable — This control bit is used to enable and disable
the transmission of the Media Access Test Symbol in the selected set of cycles.
0 MTS transmission disabled
1 MTS transmission enabled

CYCCNTMSK Cycle Counter Mask — This field provides the filter mask for the MTS cycle count filter.

CYCCNTVAL Cycle Counter Value — This field provides the filter value for the MTS cycle count filter.

Base + 0x0082 Write: MTE: Anytime
CYCCNTMSK,CYCCNTVAL:POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTE

0
CYCCNTMSK

0 0
CYCCNTVAL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-51. MTS B Configuration Register (MTSBCFR)

Table 33-59. MTSBCFR field description

Field Description

MTE Media Access Test Symbol Transmission Enable — This control bit is used to enable and
disable the transmission of the Media Access Test Symbol in the selected set of cycles.
0 MTS transmission disabled
1 MTS transmission enabled

CYCCNTMSK Cycle Counter Mask — This field provides the filter mask for the MTS cycle count filter.

CYCCNTVAL Cycle Counter Value — This field provides the filter value for the MTS cycle count filter.

Base + 0x0084 16-bit write access required Write: WMD, SEL: Any
Time

RSBIDX: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SEL

0 0 0 0
RSBIDX

W WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-52. Receive Shadow Buffer Index Register (FR_RSBIR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1504 Freescale Semiconductor

33.5.2.53 Receive FIFO System Memory Base Address Register
(FR_RFSYMBADR)

These registers define the system memory base address for the receive FIFO if the FIFO address mode bit
FR_MCR[FAM] is set to 1. The system memory base address is used by the BMIF to calculate the physical
memory address for system memory accesses for the FIFOs.

Table 33-60. FR_RSBIR field description

Field Description

WMD Write Mode — This bit controls the write mode for this register.
0 update SEL and RSBIDX field on register write
1 update only SEL field on register write

SEL Selector — This field is used to select the internal receive shadow buffer index register for access.
00 FR_RSBIR_A1 — receive shadow buffer index register for channel A, segment 1
01 FR_RSBIR_A2 — receive shadow buffer index register for channel A, segment 2
10 FR_RSBIR_B1 — receive shadow buffer index register for channel B, segment 1
11 FR_RSBIR_B2 — receive shadow buffer index register for channel B, segment 2

RSBIDX Receive Shadow Buffer Index — This field contains the current index of the message buffer header
field of the receive shadow message buffer selected by the SEL field. The CC uses this index to
determine the physical location of the shadow buffer header field in the FlexRay memory area. The
CC will update this field during receive operation.The application provides initial message buffer
header index value in the configuration phase.
CC: Updates the message buffer header index after successful reception.
Application: Provides initial message buffer header index.

Base + 0x00E8 Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-53. Receive FIFO System Memory Base Address High Register (FR_RFSYMBADHR)

Base + 0x00EA Write: Disabled Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SMBA[15:4]

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-54. Receive FIFO System Memory Base Address Low Register (FR_RFSYMBADLR)

Table 33-61. FR_RFSYMBADR field description

Field Description

SMBA System Memory Base Address — This is the value of the system memory base address for the
receive FIFO if the FIFO address mode bit FR_MCR[FAM] is set to 1. It is defines as a byte address.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1505

33.5.2.54 Receive FIFO Periodic Timer Register (FR_RFPTR)

This register holds periodic timer duration for the periodic FIFO timer. The periodic timer applies to both
FIFOs (see Section 33.6.9.3, FIFO periodic timer”).

33.5.2.55 Receive FIFO Watermark and Selection Register (FR_RFWMSR)

This register is used to

• select a receiver FIFO for subsequent programming access through the receiver FIFO
configuration registers summarized in Table 33-63.

• to define the watermark for the selected FIFO.

Base + 0x00EC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
PTD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-55. Receive FIFO Periodic Timer Register (FR_RFPTR)

Table 33-62. FR_RFPTR field description

Field Description

PTD Periodic Timer Duration — This value defines the periodic timer duration in terms of macroticks.
0000 timer stays expired
3FFF timer never expires
other timer expires after specified number of macroticks, expires and is restarted at each cycle start

Base + 0x0086 Write: WMA/WMB: POC:config, SEL: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
WMA//WMB

0 0 0 0 0 0 0
SEL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-56. Receive FIFO Watermark and Selection Register (FR_RFWMSR)

Table 33-63. SEL Controlled Receiver FIFO Registers

Register

Receive FIFO Start Index Register (FR_RFSIR)

Receive FIFO Depth and Size Register (RFDSR)

Receive FIFO Message ID Acceptance Filter Value Register (FR_RFMIDAFVR)

Receive FIFO Message ID Acceptance Filter Mask Register (FR_RFMIDAFMR)

Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR)

Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR)

Receive FIFO Range Filter Configuration Register (FR_RFRFCFR)

Receive FIFO Range Filter Control Register (FR_RFRFCTR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1506 Freescale Semiconductor

33.5.2.56 Receive FIFO Start Index Register (FR_RFSIR)

This register defines the message buffer header index of the first message buffer of the selected FIFO.

33.5.2.57 Receive FIFO Depth and Size Register (RFDSR)

This register defines the structure of the selected FIFO, that is, the number of entries and the size of each
entry.

Table 33-64. FR_RFWMSR field description

Field Description

WMA
WMB

Watermark — This field defines the watermark value for the selected FIFO. This value is used to
control the generation of the almost full interrupt flags.

SEL Select — This control bit selects the receiver FIFO for subsequent programming.
0 Receiver FIFO for channel A selected
1 Receiver FIFO for channel B selected

Base + 0x0088 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0
SIDXA/SIDXBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-57. Receive FIFO Start Index Register (FR_RFSIR)

Table 33-65. FR_RFSIR field description

Field Description

SIDXA
SIDXB

Start Index — This field defines the number of the message buffer header field of the first message
buffer of the selected FIFO. The CC uses the value of the SIDX field to determine the physical location
of the receiver FIFO’s first message buffer header field.

Base + 0x008A Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
FIFO_DEPTHA/FIFO_DEPTHB

0
ENTRY_SIZEA/ENTRY_SIZEBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-58. Receive FIFO Depth and Size Register (RFDSR)

Table 33-66. RFDSR field description

Field Description

FIFO_DEPTHA
FIFO_DEPTHB

FIFO Depth — This field defines the depth of the selected FIFO, that is, the number of entries.
Note: If the FIFO_DEPTH is configured to 0, FR_RFFIDRFMR[FIDRFMSK] must be configured
to 0 too, to ensure that no frames are received into the FIFO.

ENTRY_SIZEA
ENTRY_SIZEB

Entry Size — This field defines the size of the frame data sections for the selected FIFO in 2 byte
entities.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1507

33.5.2.58 Receive FIFO A Read Index Register (FR_RFARIR)

This register provides the message buffer header index of the next available FIFO A entry that the
application can read.

NOTE

If the FIFO is empty, the RDIDX field points to an physical message buffer
with invalid content.

33.5.2.59 Receive FIFO B Read Index Register (FR_RFBRIR)

This register provides the message buffer header index of the next available FIFO B entry that the
application can read.

Base + 0x008C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 RDIDX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-59. Receive FIFO A Read Index Register (FR_RFARIR)

Table 33-67. FR_RFARIR field description

Field Description

RDIDX Read Index — This field provides the message buffer header index of the next available FIFO
message buffer that the application can read.
If the old style FIFO mode is configured (FR_MCR[FIMD] = 0), the CC updates this index by 1 entry,
when the application writes to the FAFAIF flag in the Global Interrupt Flag and Enable Register
(FR_GIFER).
If the new style FIFO mode is configured (FR_MCR[FIMD] = 1), the CC updates this index by PCA
entries, when the application writes to the Receive FIFO Fill Level and POP Count Register
(FR_RFFLPCR).

Base + 0x008E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 RDIDX

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-60. Receive FIFO B Read Index Register (FR_RFBRIR)

Table 33-68. FR_RFBRIR field description

Field Description

RDIDX Read Index — This field provides the message buffer header index of the next available FIFO
message buffer that the application can read.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1508 Freescale Semiconductor

NOTE

If the FIFO is empty, the RDIDX field points to an physical message buffer
with invalid content.

33.5.2.60 Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR)

This register provides the current fill level of the two receiver FIFOs and is used to pop a number of entries
from the FIFOs.

NOTE

If the pop count value PCA/PCB is greater than the current FIFO fill level
FLB/FLA, than the FIFO is empty after the update. No notification is given
that not the required number of entries was removed.

33.5.2.61 Receive FIFO Message ID Acceptance Filter Value Register
(FR_RFMIDAFVR)

This register defines the filter value for the message ID acceptance filter of the selected FIFO. For details
on message ID filtering see Section 33.6.9.9, FIFO filtering”.

Base + 0x00EE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FLB FLA

W PCB PCA

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-61. Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR)

Table 33-69. FR_RFFLPCR field description

Field Description

FLB Fill Level FIFO B — This field provides the current number of entries in the FIFO B.

FLA Fill Level FIFO A — This field provides the current number of entries in the FIFO A.

PCB Pop Count FIFO B — This field defines the number of entries to be removed from FIFO B.

PCA Pop Count FIFO A— This field defines the number of entries to be removed from FIFO A.

Base + 0x0090 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MIDAFVALA/MIDAFVALBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-62. Receive FIFO Message ID Acceptance Filter Value Register (FR_RFMIDAFVR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1509

33.5.2.62 Receive FIFO Message ID Acceptance Filter Mask Register
(FR_RFMIDAFMR)

This register defines the filter mask for the message ID acceptance filter of the selected FIFO. For details
on message ID filtering see Section 33.6.9.9, FIFO filtering”.

33.5.2.63 Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR)

This register defines the filter value for the frame ID rejection filter of the selected FIFO. For details on
frame ID filtering see Section 33.6.9.9, FIFO filtering”.

Table 33-70. FR_RFMIDAFVR field description

Field Description

MIDAFVALA
MIDAFVALB

Message ID Acceptance Filter Value — Filter value for the message ID acceptance filter.

Base + 0x0092 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MIDAFMSKA/MIDAFMSKBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-63. Receive FIFO Message ID Acceptance Filter Mask Register (FR_RFMIDAFMR)

Table 33-71. FR_RFMIDAFMR field description

Field Description

MIDAFMSKA
MIDAFMSKB

Message ID Acceptance Filter Mask — Filter mask for the message ID acceptance filter.

Base + 0x0094 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FIDRFVALA/FIDRFVALBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-64. Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR)

Table 33-72. FR_RFFIDRFVR field description

Field Description

FIDRFVALA
FIDRFVALB

Frame ID Rejection Filter Value — Filter value for the frame ID rejection filter.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1510 Freescale Semiconductor

33.5.2.64 Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR)

This register defines the filter mask for the frame ID rejection filter of the selected FIFO. For details on
frame ID filtering see Section 33.6.9.9, FIFO filtering”.

33.5.2.65 Receive FIFO Range Filter Configuration Register (FR_RFRFCFR)

This register provides access to the four internal frame ID range filter boundary registers of the selected
FIFO. For details on frame ID range filter see Section 33.6.9.9, FIFO filtering”.

Base + 0x0096 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FIDRFMSKA/FIDRFMSKBW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-65. Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR)

Table 33-73. FR_RFFIDRFMR field description

Field Description

FIDRFMSK Frame ID Rejection Filter Mask — Filter mask for the frame ID rejection filter.

Base + 0x0098 16-bit write access required Write: WMD, IBD, SEL: Any Time
SID: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
IBD SEL

0
SIDA/SIDBW WMD

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-66. Receive FIFO Range Filter Configuration Register (FR_RFRFCFR)

Table 33-74. FR_RFRFCFR field description

Field Description

WMD Write Mode — This control bit defines the write mode of this register.
0 Write to all fields in this register on write access.
1 Write to SEL and IBD field only on write access.

IBD Interval Boundary — This control bit selects the interval boundary to be programmed with the SID
value.
0 program lower interval boundary
1 program upper interval boundary

SEL Filter Selector — This control field selects the frame ID range filter to be accessed.
00 select frame ID range filter 0.
01 select frame ID range filter 1.
10 select frame ID range filter 2.
11 select frame ID range filter 3.

SIDA
SIDB

Slot ID — Defines the IBD-selected frame ID boundary value for the SEL-selected range filter.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1511

33.5.2.66 Receive FIFO Range Filter Control Register (FR_RFRFCTR)

This register is used to enable and disable each frame ID range filter and to define whether it is running as
acceptance or rejection filter.

33.5.2.67 Last Dynamic Transmit Slot Channel A Register (FR_LDTXSLAR)

Base + 0x009A Write: Anytime

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0

F
3M

D

F
2M

D

F
1M

D

F
0M

D 0 0 0 0

F
3E

N

F
2E

N

F
1E

N

F
0E

N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-67. Receive FIFO Range Filter Control Register (FR_RFRFCTR)

Table 33-75. FR_RFRFCTR field description

Field Description

F3MD Range Filter 3 Mode — This control bit defines the filter mode of the frame ID range filter 3.
0 range filter 3 runs as acceptance filter
1 range filter 3 runs as rejection filter

F2MD Range Filter 2 Mode — This control bit defines the filter mode of the frame ID range filter 2.
0 range filter 2 runs as acceptance filter
1 range filter 2 runs as rejection filter

F1MD Range Filter 1 Mode — This control bit defines the filter mode of the frame ID range filter 1.
0 range filter 1 runs as acceptance filter
1 range filter 1 runs as rejection filter

F0MD Range Filter 0 Mode — This control bit defines the filter mode of the frame ID range filter 0.
0 range filter 0 runs as acceptance filter
1 range filter 0 runs as rejection filter

F3EN Range Filter 3 Enable — This control bit is used to enable and disable the frame ID range filter 3.
0 range filter 3 disabled
1 range filter 3 enabled

F2EN Range Filter 2 Enable — This control bit is used to enable and disable the frame ID range filter 2.
0 range filter 2 disabled
1 range filter 2 enabled

F1EN Range Filter 1 Enable — This control bit is used to enable and disable the frame ID range filter 1.
0 range filter 1 disabled
1 range filter 1 enabled

F0EN Range Filter 0 Enable — This control bit is used to enable and disable the frame ID range filter 0.
0 range filter 0 disabled
1 range filter 0 enabled

Base + 0x009C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 LASTDYNTXSLOTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-68. Last Dynamic Transmit Slot Channel A Register (FR_LDTXSLAR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1512 Freescale Semiconductor

This register provides the number of the last transmission slot in the dynamic segment for channel A. This
register is updated after the end of the dynamic segment and before the start of the next communication
cycle.

33.5.2.68 Last Dynamic Transmit Slot Channel B Register (FR_LDTXSLBR)

This register provides the number of the last transmission slot in the dynamic segment for channel B. This
register is updated after the end of the dynamic segment and before the start of the next communication
cycle.

33.5.2.69 Protocol configuration registers

The following configuration registers provide the necessary configuration information to the protocol
engine. The individual values in the registers are described in Table 33-78. For more details about the
FlexRay related configuration parameters and the allowed parameter ranges, see FlexRay
Communications System Protocol Specification, Version 2.1 Rev A.

Table 33-76. FR_LDTXSLAR field description

Field Description

LASTDYNTX
SLOTA

Last Dynamic Transmission Slot Channel A — protocol related variable: zLastDynTxSlot channel
A
Number of the last transmission slot in the dynamic segment for channel A. If no frame was
transmitted during the dynamic segment on channel A, the value of this field is set to 0.

Base + 0x009E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 LASTDYNTXSLOTB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-69. Last Dynamic Transmit Slot Channel B Register (FR_LDTXSLBR)

Table 33-77. FR_LDTXSLBR field description

Field Description

LASTDYNTX
SLOTB

Last Dynamic Transmission Slot Channel B — protocol related variable: zLastDynTxSlot
channel B
Number of the last transmission slot in the dynamic segment for channel B. If no frame was
transmitted during the dynamic segment on channel B the value of this field is set to 0.

Table 33-78. Protocol configuration register fields (Sheet 1 of 2)

Name Description1 Min Max Unit FR_PCR

coldstart_attempts gColdstartAttempts number 3

action_point_offset gdActionPointOffset - 1 MT 0

cas_rx_low_max gdCASRxLowMax - 1 gdBit 4

dynamic_slot_idle_phase gdDynamicSlotIdlePhase minislot 28

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1513

minislot_action_point_offset gdMinislotActionPointOffset - 1 MT 3

minislot_after_action_point gdMinislot - gdMinislotActionPointOffset - 1 MT 2

static_slot_length gdStaticSlot MT 0

static_slot_after_action_point gdStaticSlot - gdActionPointOffset - 1 MT 13

symbol_window_exists gdSymbolWindow != 0 0 1 bool 9

symbol_window_after_action_point gdSymbolWindow - gdActionPointOffset - 1 MT 6

tss_transmitter gdTSSTransmitter gdBit 5

wakeup_symbol_rx_idle gdWakeupSymbolRxIdle gdBit 5

wakeup_symbol_rx_low gdWakeupSymbolRxLow gdBit 3

wakeup_symbol_rx_window gdWakeupSymbolRxWindow gdBit 4

wakeup_symbol_tx_idle gdWakeupSymbolTxIdle gdBit 8

wakeup_symbol_tx_low gdWakeupSymbolTxLow gdBit 5

noise_listen_timeout (gListenNoise * pdListenTimeout) - 1 T 16/17

macro_initial_offset_a pMacroInitialOffset[A] MT 6

macro_initial_offset_b pMacroInitialOffset[B] MT 16

macro_per_cycle gMacroPerCycle MT 10

macro_after_first_static_slot gMacroPerCycle - gdStaticSlot MT 1

macro_after_offset_correction gMacroPerCycle - gOffsetCorrectionStart MT 28

max_without_clock_correction_fatal gMaxWithoutClockCorrectionFatal cyclepairs 8

max_without_clock_correction_passive gMaxWithoutClockCorrectionPassive cyclepairs 8

minislot_exists gNumberOfMinislots != 0 0 1 bool 9

minislots_max gNumberOfMinislots - 1 minislot 29

number_of_static_slots gNumberOfStaticSlots static slot 2

offset_correction_start gOffsetCorrectionStart MT 11

payload_length_static gPayloadLengthStatic 2-bytes 19

max_payload_length_dynamic pPayloadLengthDynMax 2-bytes 24

first_minislot_action_point_offset max(gdActionPointOffset,
gdMinislotActionPointOffset) - 1

MT 13

allow_halt_due_to_clock pAllowHaltDueToClock bool 26

allow_passive_to_active pAllowPassiveToActive cyclepairs 12

cluster_drift_damping pClusterDriftDamping T 24

comp_accepted_startup_range_a pdAcceptedStartupRange -
pDelayCompensation[A]

T 22

Table 33-78. Protocol configuration register fields (Sheet 1 of 2)

Name Description1 Min Max Unit FR_PCR

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1514 Freescale Semiconductor

comp_accepted_startup_range_b pdAcceptedStartupRange -
pDelayCompensation[B]

T 26

listen_timeout pdListenTimeout - 1 T 14/15

key_slot_id pKeySlotId number 18

key_slot_used_for_startup pKeySlotUsedForStartup bool 11

key_slot_used_for_sync pKeySlotUsedForSync bool 11

latest_tx gNumberOfMinislots - pLatestTx minislot 21

sync_node_max gSyncNodeMax number 30

micro_initial_offset_a pMicroInitialOffset[A] T 20

micro_initial_offset_b pMicroInitialOffset[B] T 20

micro_per_cycle pMicroPerCycle T 22/23

micro_per_cycle_min pMicroPerCycle - pdMaxDrift T 24/25

micro_per_cycle_max pMicroPerCycle + pdMaxDrift T 26/27

micro_per_macro_nom_half round(pMicroPerMacroNom / 2) T 7

offset_correction_out pOffsetCorrectionOut T 9

rate_correction_out pRateCorrectionOut T 14

single_slot_enabled pSingleSlotEnabled bool 10

wakeup_channel pWakeupChannel see Table 33-79 10

wakeup_pattern pWakeupPattern number 18

decoding_correction_a pDecodingCorrection +
pDelayCompensation[A] + 2

T 19

decoding_correction_b pDecodingCorrection +
pDelayCompensation[B] + 2

T 7

key_slot_header_crc header CRC for key slot 0x000 0x7FF number 12

extern_offset_correction pExternOffsetCorrection T 29

extern_rate_correction pExternRateCorrection T 21

1 See FlexRay Communications System Protocol Specification, Version 2.1 Rev A for detailed protocol parameter definitions

Table 33-79. Wakeup channel selection

wakeup_channel Wakeup channel

0 A

1 B

Table 33-78. Protocol configuration register fields (Sheet 1 of 2)

Name Description1 Min Max Unit FR_PCR

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1515

33.5.2.69.1 Protocol Configuration Register 0 (FR_PCR0)

33.5.2.69.2 Protocol Configuration Register 1 (FR_PCR1)

33.5.2.69.3 Protocol Configuration Register 2 (FR_PCR2)

33.5.2.69.4 Protocol Configuration Register 3 (FR_PCR3)

33.5.2.69.5 Protocol Configuration Register 4 (FR_PCR4)

Base + 0x00A0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
action_point_offset static_slot_length

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-70. Protocol Configuration Register 0 (FR_PCR0)

Base + 0x00A2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
macro_after_first_static_slot

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-71. Protocol Configuration Register 1 (FR_PCR1)

Base + 0x00A4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
minislot_after_action_point number_of_static_slots

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-72. Protocol Configuration Register 2 (FR_PCR2)

Base + 0x00A6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
wakeup_symbol_rx_low minislot_action_point_offset[4:0] coldstart_attempts

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-73. Protocol Configuration Register 3 (FR_PCR3)

Base + 0x00A8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
cas_rx_low_max wakeup_symbol_rx_window

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-74. Protocol Configuration Register 4 (FR_PCR4)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1516 Freescale Semiconductor

33.5.2.69.6 Protocol Configuration Register 5 (FR_PCR5)

33.5.2.69.7 Protocol Configuration Register 6 (FR_PCR6)

33.5.2.69.8 Protocol Configuration Register 7 (FR_PCR7)

33.5.2.69.9 Protocol Configuration Register 8 (FR_PCR8)

33.5.2.69.10 Protocol Configuration Register 9 (FR_PCR9)

Base + 0x00AA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
tss_transmitter wakeup_symbol_tx_low wakeup_symbol_rx_idle

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-75. Protocol Configuration Register 5 (FR_PCR5)

Base + 0x00AC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
symbol_window_after_action_point macro_initial_offset_a

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-76. Protocol Configuration Register 6 (FR_PCR6)

Base + 0x00AE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
decoding_correction_b micro_per_macro_nom_half

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-77. Protocol Configuration Register 7 (FR_PCR7)

Base + 0x00B0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R max_without_clock_
correction_fatal

max_without_clock_
correction_passive

wakeup_symbol_tx_idle
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-78. Protocol Configuration Register 8 (FR_PCR8)

Base + 0x00B2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
mini
slot_
exists

sym
bol_
win

dow_
exists

offset_correction_out

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-79. Protocol Configuration Register 9 (FR_PCR9)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1517

33.5.2.69.11 Protocol Configuration Register 10 (FR_PCR10)

33.5.2.69.12 Protocol Configuration Register 11 (FR_PCR11)

33.5.2.69.13 Protocol Configuration Register 12 (FR_PCR12)

33.5.2.69.14 Protocol Configuration Register 13 (FR_PCR13)

Base + 0x00B4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R single
_slot
_en

abled

wake
up_
chan
nel

macro_per_cycle
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-80. Protocol Configuration Register 10 (FR_PCR10)

Base + 0x00B6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R key_
slot_

used_
for_
start
up

key_
slot_

used_
for_
sync

offset_correction_start
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-81. Protocol Configuration Register 11 (FR_PCR11)

Base + 0x00B8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
allow_passive_to_active key_slot_header_crc

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-82. Protocol Configuration Register 12 (FR_PCR12)

Base + 0x00BA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
first_minislot_action_point_offset static_slot_after_action_point

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-83. Protocol Configuration Register 13 (FR_PCR13)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1518 Freescale Semiconductor

33.5.2.69.15 Protocol Configuration Register 14 (FR_PCR14)

33.5.2.69.16 Protocol Configuration Register 15 (FR_PCR15)

33.5.2.69.17 Protocol Configuration Register 16 (FR_PCR16)

33.5.2.69.18 Protocol Configuration Register 17 (FR_PCR17)

33.5.2.69.19 Protocol Configuration Register 18 (FR_PCR18)

Base + 0x00BC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
rate_correction_out listen_timeout[20:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-84. Protocol Configuration Register 14 (FR_PCR14)

Base + 0x00BE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
listen_timeout[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-85. Protocol Configuration Register 15 (FR_PCR15)

Base + 0x00C0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
macro_initial_offset_b noise_listen_timeout[24:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-86. Protocol Configuration Register 16 (FR_PCR16)

Base + 0x00C2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
noise_listen_timeout[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-87. Protocol Configuration Register 17 (FR_PCR17)

Base + 0x00C4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
wakeup_pattern key_slot_id

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-88. Protocol Configuration Register 18 (FR_PCR18)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1519

33.5.2.69.20 Protocol Configuration Register 19 (FR_PCR19)

33.5.2.69.21 Protocol Configuration Register 20 (FR_PCR20)

33.5.2.69.22 Protocol Configuration Register 21 (FR_PCR21)

33.5.2.69.23 Protocol Configuration Register 22 (FR_PCR22)

33.5.2.69.24 Protocol Configuration Register 23 (FR_PCR23)

Base + 0x00C6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
decoding_correction_a payload_length_static

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-89. Protocol Configuration Register 19 (FR_PCR19)

Base + 0x00C8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_initial_offset_b micro_initial_offset_a

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-90. Protocol Configuration Register 20 (FR_PCR20)

Base + 0x00CA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R extern_rate_
correction

latest_tx
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-91. Protocol Configuration Register 21 (FR_PCR21)

Base + 0x00CC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
R* comp_accepted_startup_range_a micro_per_cycle[19:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-92. Protocol Configuration Register 22 (FR_PCR22)

Base + 0x00CE Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-93. Protocol Configuration Register 23 (FR_PCR23)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1520 Freescale Semiconductor

33.5.2.69.25 Protocol Configuration Register 24 (FR_PCR24)

33.5.2.69.26 Protocol Configuration Register 25 (FR_PCR25)

33.5.2.69.27 Protocol Configuration Register 26 (FR_PCR26)

33.5.2.69.28 Protocol Configuration Register 27 (FR_PCR27)

33.5.2.69.29 Protocol Configuration Register 28 (FR_PCR28)

Base + 0x00D0 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
cluster_drift_damping max_payload_length_dynamic

micro_per_cycle_min
[19:16]W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-94. Protocol Configuration Register 24 (FR_PCR24)

Base + 0x00D2 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle_min[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-95. Protocol Configuration Register 25 (FR_PCR25)

Base + 0x00D4 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R allow
halt
due
to
clock

comp_accepted_startup_range_b
micro_per_cycle_max

[19:16]W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-96. Protocol Configuration Register 26 (FR_PCR26)

Base + 0x00D6 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
micro_per_cycle_max[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-97. Protocol Configuration Register 27 (FR_PCR27)

Base + 0x00D8 Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R dynamic_slot
_idle_phase

macro_after_offset_correction
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-98. Protocol Configuration Register 28 (FR_PCR28)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1521

33.5.2.69.30 Protocol Configuration Register 29 (FR_PCR29)

33.5.2.69.31 Protocol Configuration Register 30 (FR_PCR30)

33.5.2.70 ECC Error Interrupt Flag and Enable Register (FR_EEIFER)

This register provides the means to control the ECC related interrupt request lines and provides the
corresponding interrupt flags. The interrupt flags are cleared by writing 1, which resets the corresponding
report registers. For a detailed description see Section 33.6.24.2, Memory error reporting”.

Base + 0x00DA Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R extern_offset_
correction

minislots_max
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-99. Protocol Configuration Register 29 (FR_PCR29)

Base + 0x00DC Write: POC:config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
sync_node_max

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-100. Protocol Configuration Register 30 (FR_PCR30)

Base + 0x00F0 Write: Normal Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

L
R

N
E

_O
F

L
R

C
E

_O
F

D
R

N
E

_O
F

D
R

C
E

_O
F

LR
N

E
_I

F

LR
C

E
_I

F

D
R

N
E

_I
F

D
R

C
E

_I
F

0 0 0 0

LR
N

E
_

IE

LR
C

E
_

IE

D
R

N
E

_I
E

D
R

C
E

_I
E

W w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-101. ECC Error Interrupt Flag and Enable Register (FR_EEIFER)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1522 Freescale Semiconductor

Table 33-80. FR_EEIFER field description

Field Description

Error Overflow Flags

LRNE_OF LRAM Non-Corrected Error Overflow Flag — This flag is set to 1 when at least one of the following
events appears:
a) memory errors are detected but not corrected on CHI LRAM and interrupt flag LRNE_IF is already
1.
b) memory errors are detected but not corrected on at least two banks of CHI LRAM
0 no such event
1 Non-Corrected Error overflow detected on CHI LRAM

LRCE_OF LRAM Corrected Error Overflow Flag — This flag is set to 1 when at least one of the following events
appears:
a) memory errors are detected and corrected on CHI LRAM and interrupt flag LRCE_IF is already 1.
b) memory errors are detected and corrected on at least two banks of CHI LRAM
0 no such event
1 Corrected Error overflow detected on CHI LRAM
Note: Error Correction not implemented on CHI LRAM, flag will never be asserted.

DRNE_OF DRAM Non-Corrected Error Overflow Flag — This flag is set to 1 when at least one of the following
events appears:
a) memory errors are detected but not corrected on PE DRAM and interrupt flag DRNE_IF is already
1.
b) memory errors are detected but not corrected on at least two banks of the PE DRAM
0 no such event
1 Non-Corrected Error overflow detected on PE DRAM

DRCE_OF DRAM Corrected Error Overflow Flag — This flag is set to 1 when at least one of the following events
appears:
a) memory errors are detected and corrected on PE DRAM and interrupt flag DRCE_IF is already 1.
b) memory errors are detected and corrected on at least two banks of PE DRAM
0 no such event
1 Corrected Error overflow detected on PE DRAM

Error Interrupt Flags

LRNE_IF LRAM Non-Corrected Error Interrupt Flag — This interrupt flag is set to 1 when a memory error is
detected but not corrected on the CHI LRAM.
0 no such event
1 Non-Corrected Error detected on CHI LRAM

LRCE_IF LRAM Corrected Error Interrupt Flag — This interrupt flag is set to 1 when a memory error is
detected and corrected on the CHI LRAM.
0 no such event
1 Corrected Error detected on CHI LRAM
Note: Error Correction not implemented on CHI LRAM, flag will never be asserted.

DRNE_IF DRAM Non-Corrected Error Interrupt Flag — This interrupt flag is set to 1 when a memory error is
detected but not corrected on PE DRAM.
0 no such event
1 Non-Corrected Error detected on PE DRAM

DRCE_IF DRAM Corrected Error Interrupt Flag — This interrupt flag is set to 1 when a memory error is
detected and corrected on PE DRAM.
0 no such event
1 Corrected Error detected on PE DRAM

Error Interrupt Enables

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1523

33.5.2.71 ECC Error Report and Injection Control Register (FR_EERICR)

This register configures the error injection and error reporting and provides the selector for the content of
the report registers.

LRNE_IE LRAM Non-Corrected Error Interrupt Enable — This flag controls if the LRAM Non-Corrected Error
Interrupt line is asserted when the LRNE_IF flag is set.
0 Disable interrupt line
1 Enable interrupt line

LRCE_IE LRAM Corrected Error Interrupt Enable — This flag controls if the LRAM Corrected Error Interrupt
line is asserted when the LRCE_IF flag is set.
0 Disable interrupt line
1 Enable interrupt line

DRNE_IE DRAM Non-Corrected Error Interrupt Enable — This flag controls if the DRAM Non-Corrected Error
Interrupt line is asserted when the DRNE_IF flag is set.
0 Disable interrupt line
1 Enable interrupt line

DRCE_IE DRAM Corrected Error Interrupt Enable — This flag controls if the DRAM Corrected Error Interrupt
line is asserted when the DRCE_IF flag is set.
0 Disable interrupt line
1 Enable interrupt line

Base + 0x00F2 Write: ERS: Anytime
ERM, EIM, EIE: IDL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BSY 0 0 0 0 0
ERS

0 0 0
ERM

0 0
EIM EIE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-102. ECC Error Report and Injection Control Register (FR_EERICR)

Table 33-81. FR_EERICR field description

Field Description

BSY Register Update Busy— This field indicates the current state of the ECC configuration update and
controls the register write access condition IDL specified in “Section 33.5.2.2, Register write access”
0 ECC configuration is idle
1 ECC configuration is running

ERS Error Report Select — This field selects the content of the ECC Error reporting registers.
00 show PE DRAM non-corrected error information
01 show PE DRAM corrected error information
10 show CHI LRAM non-corrected error information
11 show CHI LRAM corrected error information

ERM Error Report Mode — This bit configures the type of data written into the internal error report registers
on the detection of a memory error.
0 store data and code as delivered by ECC decoding logic.
1 store data and code as read from the memory.

Table 33-80. FR_EEIFER field description

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1524 Freescale Semiconductor

33.5.2.72 ECC Error Report Address Register (FR_EERAR)

This register provides the memory identifier, bank, and address for which the memory error is reported.

EIM Error Injection Mode — This bit configures the ECC error injection mode.
0 use FR_EEIDR[DATA] and FR_EEICR[CODE] as XOR distortion pattern for error injection.
1 use FR_EEIDR[DATA] and FR_EEICR[CODE] as write value for error injection.

EIE Error Injection Enable — This bit configures the ECC error injection on the memories.
0 Error injection disabled
1 Error injection enabled
Note: When the ECC functionality is required to be disabled (i.e.value of the FR_MCR[ECCE] is 0),

Error Injection Enable bit FR_EERICR[EIE] should not be set to 1.

Base + 0x00F4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MID BANK ADDR

W

Reset 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-103. ECC Error Report Address Register (FR_EERAR)

Table 33-82. FR_EERAR field description

Field Description

MID Memory Identifier — This flag provides the memory instance for which the memory error is reported.
0 PE DRAM
1 CHI LRAM

BANK Memory Bank — This field provides the BANK for which the memory error is reported.
111 reset value, indicates no error found after reset.
For MID = 0:
000 BANK0: PE DRAM [7:0]
001 BANK1: PE DRAM [15:8]
Others – not used
For MID = 1:
000 BANK0: FR_MBCCFR(2n)
001 BANK1: FR_MBFIDR(2n)
010 BANK2: FR_MBIDXR(2n)
011 BANK3: FR_MBCCFR(2n+1)
100 BANK4: FR_MBFIDR(2n+1)
101 BANK5: FR_MBIDXR(2n+1)
Others – not used

ADDR Memory Address — This field provides the address of the failing memory location.

Table 33-81. FR_EERICR field description

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1525

33.5.2.73 ECC Error Report Data Register (FR_EERDR)

This register provides the data related information of the reported memory read access. The assignment of
the bits depends on the selected memory and memory bank as shown in Table 33-84.

33.5.2.74 ECC Error Report Code Register (FR_EERCR)

This register provides the ECC related information of the reported memory read access.

Base + 0x00F6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-104. ECC Error Report Data Register (FR_EERDR)

Table 33-83. FR_EERDR field description

Field Description

DATA Data — The content of this field depends on the report mode selected by FR_EERICR[ERM]
ERM = 0: ECC Data, shows data as generated by the ECC decoding logic
ERM = 1: Memory Data, shows data as read from the memory

Table 33-84. Valid Bits in FR_EERDR[DATA] / FR_EEIDR[DATA] field

MEM BANK 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PE DRAM 0 PE DRAM[7:0]

PE DRAM 1 PE DRAM[15:8]

CHI LRAM 0 FR_MBCCFR(2n)

CHI LRAM 1 FR_MBFIDR(2n)

CHI LRAM 2 FR_MBIDXR(2n)

CHI LRAM 3 FR_MBCCFR(2n+1)

CHI LRAM 4 FR_MBFIDR(2n+1)

CHI LRAM 5 FR_MBIDXR(2n+1)

Base + 0x00F8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 CODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-105. ECC Error Report Code Register (FR_EERCR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1526 Freescale Semiconductor

33.5.2.75 ECC Error Injection Address Register (FR_EEIAR)

This register defines the memory module, bank, and address where the ECC error has to be injected.

33.5.2.76 ECC Error Injection Data Register (FR_EEIDR)

Table 33-85. FR_EERSR field description

Field Description

CODE Code — The content of this field depends on the report mode selected by FR_EERICR[ERM]
ERM = 0: Syndrome. Shows the ECC syndrome generated by the ECC decoding logic.
The coding of the PE DRAM syndrome is shown in Section 33.6.24.2.2, PE DRAM syndrome”
The coding of the CHI LRAM syndrome is shown in Section 33.6.24.2.4, CHI LRAM syndrome”.
ERM = 1: Checkbits. Shows the ECC checkbits read from the memory.

Base + 0x00FA Write: IDL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MID BANK ADDR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-106. ECC Error Injection Address Register (FR_EEIAR)

Table 33-86. FR_EEIAR field description

Field Description

MID Memory Identifier — This flag defines the memory instance for ECC error injection.
0 PE DRAM
1 CHI LRAM

BANK Memory Bank — This field defines the memory bank for ECC error injection.
For MID = 0:
000 BANK0: PE DRAM [7:0]
001 BANK1: PE DRAM [15:8]
Others – Reserved
For MID = 1:
000 BANK0: FR_MBCCFR(2n)
001 BANK1: FR_MBFIDR(2n)
010 BANK2: FR_MBIDXR(2n)
011 BANK3: FR_MBCCFR(2n+1)
100 BANK4: FR_MBFIDR(2n+1)
101 BANK5: FR_MBIDXR(2n+1)
Others – Reserved

ADDR Memory Address — This flag defines the memory address for ECC error injection.

Base + 0x00FC Write: IDL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-107. ECC Error Injection Data Register (FR_EEIDR)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1527

This register defines the data distortion pattern for the error injection write. The number of valid bits
depends on the selected memory and memory bank as shown in Table 33-84.

33.5.2.77 ECC Error Injection Code Register (FR_EEICR)

This register defines the ECC code distortion pattern for the error injection write.

33.5.2.78 Message Buffer Configuration, Control, Status Registers
(FR_MBCCSRn)

The content of these registers comprises message buffer configuration data, message buffer control data,
message buffer status information, and message buffer interrupt flags. A detailed description of all flags
can be found in Section 33.6.6, Individual message buffer functional description”

Table 33-87. FR_EEIDR field description

Field Description

DATA Data — The content of this field depends on the error injection mode selected by FR_EERICR[EIM].
EIM = 0: This field defines the XOR distortion pattern for the data written into the memory.
EIM = 1: This field defines the data to be written into the memory.

Base + 0x00FE Write: IDL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0
CODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-108. ECC Error Injection Code Register (FR_EEICR)

Table 33-88. FR_EEICR field description

Field Description

CODE Code — The content of this field depends on the error injection mode selected by FR_EERICR[EIM].
EIM = 0: This field defines the XOR distortion pattern for the ECC checkbits written into the memory.
EIM = 1: This field defines the ECC checkbits written into the memory.

Base + 0x0100 (FR_MBCCSR0)
Base + 0x0108 (FR_MBCCSR1)
...
Base + 0x04F8 (FR_MBCCSR127)

Write: MCM, MBT, MTD: POC:config or
MB_DIS

CMT: MB_LCK or MB_DIS
EDT, LCKT, MBIE, MBIF: Normal Mode

Additional Reset: CMT, DUP, DVAL, MBIF: Message Buffer
Disable

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
0

M
C

M

M
B

T

M
T

D C
M

T

0 0

M
B

IE

0 0 0

D
U

P

D
V

A
L

E
D

S

LC
K

S

M
B

IF

W
rwm

E
D

T

LC
K

T

w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 33-109. Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1528 Freescale Semiconductor

If the application writes 1 to the EDT bit, no write access to the other register bits is performed.

If the application writes 0 to the EDT bit and 1 to the LCKT bit, no write access to the other bits is
performed.

Table 33-89. FR_MBCCSRn field description

Field Description

Message Buffer Configuration

MCM Message Buffer Commit Mode — This bit configures the commit mode of a double buffered message
buffer.
0 Streaming commit mode
1 Immediate commit mode

MBT Message Buffer Type — This bit configures the buffering type of a transmit message buffer.
0 Single buffered message buffer
1 Double buffered message buffer

MTD Message Buffer Transfer Direction — This bit configures the transfer direction of a message buffer.
0 Receive message buffer
1 Transmit message buffer

Message Buffer Control

CMT Commit for Transmission — This bit indicates if the transmit message buffer data are ready for
transmission.
0 Message buffer data not ready for transmission
1 Message buffer data ready for transmission

EDT Enable/Disable Trigger — If the application writes 1 to this bit, a message buffer enable or disable is
triggered, depending on the current value EDS status bit is 0.
0 No effect
1 Message buffer enable or disable is triggered

LCKT Lock/Unlock Trigger — If the application writes 1 to this bit, a message buffer lock or unlock is
triggered, depending on the current value of the LCKS status bit.
0 No effect
1 Message buffer lock or unlock is triggered

MBIE Message Buffer Interrupt Enable — This control bit defines whether the message buffer will generate
an interrupt request when its MBIF flag is set.
0 Interrupt request generation disabled
1 Interrupt request generation enabled

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1529

33.5.2.79 Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn)

This register contains message buffer configuration data for the transmission mode, the channel
assignment, and for the cycle counter filtering. For detailed information on cycle counter filtering, refer to
Section 33.6.7.1, Message buffer cycle counter filtering”.

Message Buffer Status

DUP Data Updated — This status bit indicates whether the frame header in the message buffer header field
and the data in the message buffer data field were updated after a frame reception.
0 Frame Header and Message buffer data field not updated
1 Frame Header and Message buffer data field updated

DVAL Data Valid — For receive message buffers this status bit indicates whether the message buffer data
field contains valid frame data. For transmit message buffers the status bit indicates if a message is
transferred again due to the state transmission mode of the message buffer.
0 receive message buffer contains no valid frame data / message is transmitted for the first time
1 receive message buffer contains valid frame data / message will be transferred again

EDS Enable/Disable Status — This status bit indicates whether the message buffer is enabled or disabled.
0 Message buffer is disabled.
1 Message buffer is enabled.

LCKS Lock Status — This status bit indicates the current lock status of the message buffer.
0 Message buffer is not locked by the application.
1 Message buffer is locked by the application.

MBIF Message Buffer Interrupt Flag — This flag is set when the slot status field of the message buffer was
updated after frame transmission or reception, or when a transmit message buffer was just enabled by
the application.
0 No such event
1 Slot status field updated or transmit message buffer just enabled

Base + 0x0102 (FR_MBCCFR0)
Base + 0x010A (FR_MBCCFR1)
...
Base + 0x04FA (FR_MBCCFR127)

16-bit write access required Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MTM CHA CHB

C
C

F
E

CCFMSK CCFVAL
W

Reset – – – – – – – – – – – – – – – –

Figure 33-110. Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn)

Table 33-89. FR_MBCCSRn field description (continued)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1530 Freescale Semiconductor

.

NOTE

If at least one message buffer assigned to a certain slot is assigned to both
channels, then all message buffers assigned to this slot have to be assigned
to both channels. Otherwise, the message buffer configuration is illegal and
the result of the message buffer search is not defined.

33.5.2.80 Message Buffer Frame ID Registers (FR_MBFIDRn)

Table 33-90. FR_MBCCFRn field description

Field Description

MTM Message Buffer Transmission Mode — This control bit applies only to transmit message buffers and
defines the transmission mode.
0 Event transmission mode
1 State transmission mode

CHA
CHB

Channel Assignment — These control bits define the channel assignment and control the receive and
transmit behavior of the message buffer according to Table 33-91.

CCFE Cycle Counter Filtering Enable — This control bit is used to enable and disable the cycle counter
filtering.
0 Cycle counter filtering disabled
1 Cycle counter filtering enabled

CCFMSK Cycle Counter Filtering Mask — This field defines the filter mask for the cycle counter filtering.

CCFVAL Cycle Counter Filtering Value — This field defines the filter value for the cycle counter filtering.

Table 33-91. Channel assignment description

CHA CHB
Transmit message buffer Receive message buffer

Static segment Dynamic segment Static segment Dynamic segment

1 1 transmit on both
channel A and
channel B

Reserved (function not
available)

store first valid frame
received on either
channel A or channel B

Reserved (function not
available)

0 1 transmit on channel B transmit on channel B store first valid frame
received on channel B

store first valid frame
received on channel B

1 0 transmit on channel A transmit on channel A store first valid frame
received on channel A

store first valid frame
received on channel A

0 0 no frame transmission no frame transmission no frame stored no frame stored

Base + 0x0104 (FR_MBFIDR0)
Base + 0x010C (FR_MBFIDR1)
...
Base + 0x04FC (FR_MBFIDR127)

16-bit write access required Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0
FID

W

Reset 0 0 0 0 0 – – – – – – – – – – –

Figure 33-111. Message Buffer Frame ID Registers (FR_MBFIDRn)

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1531

33.5.2.81 Message Buffer Index Registers (FR_MBIDXRn)

33.6 Functional description

This section provides a detailed description of the functionality implemented in the CC.

33.6.1 Message buffer concept

The CC uses a data structure called message buffer to store frame data, configuration, control, and status
data. Each message buffer consists of two parts, the message buffer control data and the physical message
buffer. The message buffer control data are located in dedicated registers. The structure of the message
buffer control data depends on the message buffer type and is described in Section 33.6.3, Message buffer
types”. The physical message buffer is located in the FlexRay memory area and is described in
Section 33.6.2, Physical message buffer”.

33.6.2 Physical message buffer

All FlexRay messages and related frame and slot status information of received frames and of frames to
be transmitted to the FlexRay bus are stored in data structures called physical message buffers. The

Table 33-92. FR_MBFIDRn field description

Field Description

FID Frame ID — The semantic of this field depends on the message buffer transfer type.
 • Receive Message Buffer: This field is used as a filter value to determine if the message buffer is

used for reception of a message received in a slot with the slot ID equal to FID.
 • Transmit Message Buffer: This field is used to determine the slot in which the message in this

message buffer should be transmitted.

Base + 0x0106 (FR_MBIDXR0)
Base + 0x010E (FR_MBIDXR1)
...
Base + 0x04FE (FR_MBIDXR127)

16-bit write access required Write: POC:config or MB_DIS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
MBIDX

W

Reset 0 0 0 0 0 0 0 0 – – – – – – – –

Figure 33-112. Message Buffer Index Registers (FR_MBIDXRn)

Table 33-93. FR_MBIDXRn field description

Field Description

MBIDX Message Buffer Index — This field provides the index of the message buffer header field of the
physical message buffer that is currently associated with this message buffer.
The application writes the index of the initially associated message buffer header field into this register.
The CC updates this register after frame reception or transmission.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1532 Freescale Semiconductor

physical message buffers are located in the FlexRay memory area.The structure of a physical message
buffer is depicted in Figure 33-113.

A physical message buffer consists of two fields, the message buffer header field and the message buffer
data field. The message buffer header field contains the frame header, the data field offset, and the slot
status.The message buffer data field contains the frame data.

The connection between the two fields is established by the data field offset.

Figure 33-113. Physical message buffer structure

33.6.2.1 Message buffer header field

The message buffer header field is a contiguous region in the FlexRay memory area and occupies ten bytes.
It contains the frame header, the data field offset, and the slot status. Its structure is shown in
Figure 33-113. The physical start address SADR_MBHF of the message buffer header field must be 16-bit
aligned.

33.6.2.1.1 Frame header

The frame header occupies the first six bytes in the message buffer header field. It contains all FlexRay
frame header related information according to the FlexRay Communications System Protocol
Specification, Version 2.1 Rev A. A detailed description of the usage and the content of the frame header
is provided in Section 33.6.5.2.1, Frame header description”.

33.6.2.1.2 Data field offset

The data field offset follows the frame header in the message buffer data field and occupies two bytes. It
contains the offset of the corresponding message buffer data field with respect to the CC FlexRay memory
area base address as provided by SMBA field in the System Memory Base Address Register
(FR_SYMBADR)”. The data field offset is used to determine the start address SADR_MBDF of the
corresponding message buffer data field in the FlexRay memory area according to Equation 33-1.

SADR_MBDF = [Data Field Offset] + SMBA Eqn. 33-1

33.6.2.1.3 Slot status

The slot status occupies the last two bytes of the message buffer header field. It provides the slot and frame
status related information according to the FlexRay Communications System Protocol Specification,

Data Field Offset

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

F
le

xR
ay

 M
em

or
y

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1533

Version 2.1 Rev A. A detailed description of the content and usage of the slot status is provided in
Section 33.6.5.2.3, Slot status description”.

33.6.2.2 Message buffer data field

The message buffer data field is a contiguous area of 2-byte entities. This field contains the frame payload
data, or a part of it, of the frame to be transmitted to or received from the FlexRay bus. The minimum
length of this field depends on the specific message buffer configuration and is specified in the message
buffer descriptions given in Section 33.6.3, Message buffer types”.

33.6.3 Message buffer types

The CC provides three different types of message buffers.

• Individual Message Buffers

• Receive Shadow Buffers

• Receive FIFO Buffers

For each message buffer type the structure of the physical message buffer is identical. The message buffer
types differ only in the structure and content of message buffer control data, which control the related
physical message buffer. The message buffer control data are described in the following sections.

33.6.3.1 Individual message buffers

The individual message buffers are used for all types of frame transmission and for dedicated frame
reception based on individual filter settings for each message buffer. The CC supports three types of
individual message buffers, which are described in Section 33.6.6, Individual message buffer functional
description”.

Each individual message buffer consists of two parts, the physical message buffer, which is located in the
FlexRay memory area, and the message buffer control data, which are located in dedicated registers. The
structure of an individual message buffer is given in Figure 33-114.

Each individual message buffer has a message buffer number n assigned, which determines the set of
message buffer control registers associated to this individual message buffer. The individual message
buffer with message buffer number n is controlled by the registers FR_MBCCSRn, FR_MBCCFRn,
FR_MBFIDRn, and FR_MBIDXRn.

The connection between the message buffer control registers and the physical message buffer is
established by the message buffer index field MBIDX in the Message Buffer Index Registers
(FR_MBIDXRn). The start address SADR_MBHF of the related message buffer header field in the
FlexRay memory area is determined according to Equation 33-2.

SADR_MBHF = (FR_MBIDXRn[MBIDX] * 10) + SMBA Eqn. 33-2

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1534 Freescale Semiconductor

Figure 33-114. Individual message buffer structure

33.6.3.1.1 Individual message buffer segments

The set of the individual message buffers can be split up into two message buffer segments using the
Message Buffer Segment Size and Utilization Register (FR_MBSSUTR). All individual message buffers
with a message buffer number n < FR_MBSSUTR[LAST_MB_SEG1] belong to the first message buffer
segment. All individual message buffers with a message buffer number
n > FR_MBSSUTR[LAST_MB_SEG1] belong to the second message buffer segment. The following
rules apply to the length of the message buffer data field:

• all physical message buffers associated to individual message buffers that belong to the same
message buffer segment must have message buffer data fields of the same length

• the minimum length of the message buffer data field for individual message buffers in the first
message buffer segment is 2 * FR_MBDSR[MBSEG1DS] bytes

• the minimum length of the message buffer data field for individual message buffers assigned to the
second segment is 2 * FR_MBDSR[MBSEG2DS] bytes.

33.6.3.2 Receive shadow buffers

The receive shadow buffers are required for the frame reception process for individual message buffers.
The CC provides four receive shadow buffers, one receive shadow buffer per channel and per message
buffer segment.

Each receive shadow buffer consists of two parts, the physical message buffer located in the FlexRay
memory area and the receive shadow buffer control registers located in dedicated registers. The structure
of a receive shadow buffer is shown in Figure 33-115. The four internal shadow buffer control registers
can be accessed by the Receive Shadow Buffer Index Register (FR_RSBIR).

The connection between the receive shadow buffer control register and the physical message buffer for the
selected receive shadow buffer is established by the receive shadow buffer index field RSBIDX in the
Receive Shadow Buffer Index Register (FR_RSBIR). The start address SADR_MBHF of the related
message buffer header field in the FlexRay memory area is determined according to Equation 33-3.

FR_MBFIDRn

Message Buffer Control Registers

FR_MBCCSRn FR_MBCCFRn FR_MBIDXRn

(min) FR_MBDSR[MBSEG1DS] * 2 bytes / FR_MBDSR[MBSEG2DS] * 2 bytes

Data Field Offset

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

F
le

xR
ay

 M
em

or
y

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1535

SADR_MBHF = (FR_RSBIR[RSBIDX] * 10) + SMBA Eqn. 33-3

The length required for the message buffer data field depends on the message buffer segment that the
receive shadow buffer is assigned to. For the receive shadow buffers assigned to the first message buffer
segment, the length must be the same as for the individual message buffers assigned to the first message
buffer segment. For the receive shadow buffers assigned to the second message buffer segment, the length
must be the same as for the individual message buffers assigned to the second message buffer segment.
The receive shadow buffer assignment is described in Receive Shadow Buffer Index Register
(FR_RSBIR).

Figure 33-115. Receive shadow buffer structure

33.6.3.3 Receive FIFO

The receive FIFO implements a frame reception system based on the FIFO concept. The CC provides two
independent receive FIFOs, one per channel.

A receive FIFO consists of a set of physical message buffers in the FlexRay memory area and a set of
receive FIFO control registers located in dedicated registers. The structure of a receive FIFO is given in
Figure 33-116.

The connection between the receive FIFO control registers and the set of physical message buffers is
established by the Receive FIFO Start Index Register (FR_RFSIR), the Receive FIFO Depth and Size
Register (RFDSR), and the Receive FIFO A Read Index Register (FR_RFARIR) / Receive FIFO B Read
Index Register (FR_RFBRIR). The system memory base address SMBA is defined by the system memory
base address register selected by the FIFO address mode bit FR_MCR[FAM].

The start byte address SADR_MBHF[1] of the first message buffer header field that belongs to the receive
FIFO in the FlexRay memory area is determined according to Equation 33-4.

SADR_MBHF[1] = (10 * FR_RFSIR[SIDX]) + SMBA Eqn. 33-4

FR_RSBIDX[3]

FR_RSBIDX[2]

FR_RSBIDX[1]

FR_RSBIDX[0]

Receive Shadow Buffer Control Registers

(min) FR_MBDSR[MBSEG1DS] * 2 bytes / FR_MBDSR[MBSEG2DS] * 2 bytes

Data Field Offset

Frame Data

Message Buffer Header Field

Message Buffer Data Field

Slot StatusFrame Header

SADR_MBDF

SADR_MBHF

F
le

xR
a

y
M

e
m

o
ry

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1536 Freescale Semiconductor

The start byte address SADR_MBHF[n] of the last message buffer header field that belongs to the receive
FIFO in the FlexRay memory area is determined according to Equation 33-5.

SADR_MBHF[n] = (10 * (FR_RFSIR[SIDX] + RFDSR[FIFO_DEPTH])) + SMBA Eqn. 33-5

NOTE

All message buffer header fields assigned to a receive FIFO must be a
contiguous region.

Figure 33-116. Receive FIFO structure

33.6.3.4 Message buffer configuration and control data

This section describes the configuration and control data for each message buffer type.

33.6.3.4.1 Individual message buffer configuration data

Before an individual message buffer can be used for transmission or reception, it must be configured.
There is a set of common configuration parameters that applies to all individual message buffers and a set
of configuration parameters that applies to each message buffer individually.

FR_RFBRIRFR_RFDSR[B] FR_RFSIR[B]

FR_RFARIRFR_RFDSR[A] FR_RFSIR[A]

Frame Header[1] Slot Status[1]Data Field Offset[1]

Receive FIFO Control Register

Message Buffer Header Fields

Message Buffer Data Fields

Frame Header[n] Slot Status[n]Data Field Offset[n]

(min) RFDSR[ENTRY_SIZE] * 2 bytes

R
F

D
S

R
[F

IF
O

_D
E

P
T

H
]

+

Frame Header[i] Slot Status[i]Data Field Offset[i]

Frame Data[n]

SADR_MBDF[n]

Frame Data[i]

SADR_MBDF[i]

Frame Data[1]

SADR_MBDF[1]

R
F

D
S

R
[F

IF
O

_D
E

P
T

H
]

SADR_MBHF[n]

SADR_MBHF[i]

SADR_MBHF[1]

F
le

xR
ay

 M
em

or
y

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1537

Common configuration data

The set of common configuration data for individual message buffers is located in the following registers.

• Message Buffer Data Size Register (FR_MBDSR)
The MBSEG2DS and MBSEG1DS fields define the minimum length of the message buffer data
field with respect to the message buffer segment.

• Message Buffer Segment Size and Utilization Register (FR_MBSSUTR)
The LAST_MB_SEG1 and LAST_MB_UTIL fields define the segmentation of the individual
message buffers and the number of individual message buffers that are used. For more details, see
Section 33.6.3.1.1, Individual message buffer segments”

Specific configuration data

The set of message buffer specific configuration data for individual message buffers is located in the
following registers.

• Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn)
The MCM, MBT, MTD bits configure the message buffer type.

• Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn)
The MTM, CHA, CHB bits configure the transmission mode and the channel assignment. The
CCFE, CCFMSK, and CCFVAL bits and fields configure the cycle counter filter.

• Message Buffer Frame ID Registers (FR_MBFIDRn)
For a transmit message buffer, the FID field is used to determine the slot in which the message in
this message buffer will be transmitted.

• Message Buffer Index Registers (FR_MBIDXRn)
This MBIDX field provides the index of the message buffer header field of the physical message
buffer that is currently associated with this message buffer.

33.6.3.5 Individual message buffer control data

During normal operation, each individual message buffer can be controlled by the control and trigger bits
CMT, LCKT, EDT, and MBIE in the Message Buffer Configuration, Control, Status Registers
(FR_MBCCSRn).

33.6.3.6 Receive shadow buffer configuration data

Before frame reception into the individual message buffers can be performed, the receive shadow buffers
must be configured. The configuration data are provided by the Receive Shadow Buffer Index Register
(FR_RSBIR). For each receive shadow buffer, the application provides the message buffer header index.
When the protocol is in the POC:normal active or POC:normal passive state, the receive shadow buffers
are under full CC control.

33.6.3.7 Receive FIFO control and configuration data

This section describes the configuration and control data for the two receive FIFOs.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1538 Freescale Semiconductor

33.6.3.7.1 Receive FIFO configuration data

The CC provides two functional independent receive FIFOs, one per channel. The FIFOs have a common
subset of configuration data:

• Receive FIFO System Memory Base Address Register (FR_RFSYMBADR)

• Receive FIFO Periodic Timer Register (FR_RFPTR)

Each FIFO has its own set of configuration data. The configuration data are located in the following
registers:

• Receive FIFO Watermark and Selection Register (FR_RFWMSR)

• Receive FIFO Start Index Register (FR_RFSIR)

• Receive FIFO Depth and Size Register (RFDSR)

• Receive FIFO Message ID Acceptance Filter Value Register (FR_RFMIDAFVR)

• Receive FIFO Message ID Acceptance Filter Mask Register (FR_RFMIDAFMR)

• Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR)

• Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR)

• Receive FIFO Range Filter Configuration Register (FR_RFRFCFR)

33.6.3.7.2 Receive FIFO control data

The application can access the FIFOs at any time using the control bits in the following registers:

• Global Interrupt Flag and Enable Register (FR_GIFER)

• Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR)

33.6.3.7.3 Receive FIFO status data

The current status of the receive FIFO is provided in the following register:

• Global Interrupt Flag and Enable Register (FR_GIFER)

• Receive FIFO A Read Index Register (FR_RFARIR)

• Receive FIFO B Read Index Register (FR_RFBRIR)

• Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR)

33.6.4 FlexRay memory area layout

The CC supports a wide range of possible layouts for the FlexRay memory area. Two basic layout modes
can be selected by the FIFO address mode bit FR_MCR[FAM].

33.6.4.1 FlexRay memory area layout (FR_MCR[FAM] = 0)

Figure 33-117 shows an example layout for the FIFO address mode FR_MCR[FAM] = 0. In this mode, the
following set of rules applies to the layout of the FlexRay memory area:

• The FlexRay memory area is one contiguous region.

• The FlexRay memory area size is maximum 64 Kbytes.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1539

• The FlexRay memory area starts at a 16 byte boundary

The FlexRay memory area contains three areas: the message buffer header area, the message buffer data
area, and the sync frame table area.

Figure 33-117. Example of FlexRay memory area layout (FR_MCR[FAM] = 0)

33.6.4.2 FlexRay memory area layout (FR_MCR[FAM] = 1)

Figure 33-118 shows an example layout for the FIFO address mode FR_MCR[FAM] = 1. The following
set of rules applies to the layout of the FlexRay memory area:

• The FlexRay memory area consists of two contiguous regions.

• The size of each region is maximum 64 Kbytes.

• Each region start at a 16 byte boundary.

M
es

sa
g

e
B

uf
fe

r
H

ea
de

r
A

re
a

F
le

xR
a

y
M

e
m

o
ry

 A
re

a

Message Buffer Data Area

Sync Frame Table Area

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status
Message Buffer Header Fields

Individual Message Buffers
Receive Shadow Buffers

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status

Message Buffer Header Fields
Receive FIFO A

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status

Message Buffer Header Fields
Receive FIFO B

Data Field OffsetFrame Header Slot Status

10 bytesFR_SYMBADR[SMBA]

System Memory

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1540 Freescale Semiconductor

Figure 33-118. Example of FlexRay memory area layout (FR_MCR[FAM] = 1)

33.6.4.3 Message buffer header area (FR_MCR[FAM] = 0)

The message buffer header area contains all message buffer header fields of the physical message buffers
for all message buffer types. The following rules apply to the message buffer header fields for the three
type of message buffers.

1. The start byte address SADR_MBHF of each message buffer header field for individual message
buffers and receive shadow buffers must fulfill Equation 33-6.

SADR_MBHF = (i * 10) + FR_SYMBADR[SMBA]; (0 < i < 256) Eqn. 33-6

2. The start byte address SADR_MBHF of each message buffer header field for the FIFO must fulfill
Equation 33-7.

SADR_MBHF = (i * 10) + FR_SYMBADR[SMBA]; (0 < i < 1024) Eqn. 33-7

F
IF

O
 H

ea
de

r
A

re
a

F
IF

O
 F

le
xR

ay
 M

em
or

y

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status

Message Buffer Header Fields
Receive FIFO A

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status

Message Buffer Header Fields
Receive FIFO B

FR_RFSYMBADR[SMBA]

System Memory

M
es

sa
g

e
B

uf
fe

r
H

ea
de

r
A

re
a

F
le

xR
ay

 M
em

or
y

Message Buffer Data Area

Sync Frame Table Area

Data Field OffsetFrame Header Slot Status

Data Field OffsetFrame Header Slot Status
Message Buffer Header Fields

Individual Message Buffers
Receive Shadow Buffers

Data Field OffsetFrame Header Slot Status

10 bytesFR_SYMBADR[SMBA]

FIFO Message Buffer Data Area

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1541

SADR_MBHF = (i * 10) + FR_SYMBADR[SMBA]; (0 < i < 1024) Eqn. 33-8

3. The message buffer header fields for each FIFO have to be a contiguous area.

33.6.4.4 Message buffer header area (FR_MCR[FAM] = 1)

The message buffer header area contains all message buffer header fields of the physical message buffers
for the individual message buffers and receiver shadow buffers. The following rules apply to the message
buffer header fields for the two type of message buffers.

1. The start address SADR_MBHF of each message buffer header field for individual message
buffers and receive shadow buffers must fulfill Equation 33-9.

SADR_MBHF = (i * 10) + FR_SYMBADR[SMBA]; (0 < i < 256) Eqn. 33-9

33.6.4.5 FIFO message buffer header area (FR_MCR[FAM] = 1)

The FIFO message buffer header area contains all message buffer header fields of the physical message
buffers for the FIFO. The following rules apply to the FIFO message buffer header fields.

1. The start byte address SADR_MBHF of each message buffer header field for the FIFO must fulfill
Equation 33-10.

SADR_MBHF = (i * 10) + FR_RFSYMBADR[SMBA]; (0 < i < 1024) Eqn. 33-10

2. The message buffer header fields for each FIFO have to be a contiguous area.

33.6.4.6 Message buffer data area

The message buffer data area contains all the message buffer data fields of the physical message buffers.
Each message buffer data field must start at a 16-bit boundary.

33.6.4.7 Sync frame table area

The sync frame table area is used to provide a copy of the internal sync frame tables for application access.
Refer to Section 33.6.12, Sync frame ID and sync frame deviation tables” for the description of the sync
frame table area.

33.6.5 Physical message buffer description

This section provides a detailed description of the usage and the content of the two parts of a physical
message buffer, the message buffer header field and the message buffer data field.

33.6.5.1 Message buffer protection and data consistency

The physical message buffers are located in the FlexRay memory area. The CC provides no means to
protect the FlexRay memory area from uncontrolled or illegal host or other client write access. To ensure
data consistency of the physical message buffers, the application must follow the write access scheme that
is given in the description of each of the physical message buffer fields.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1542 Freescale Semiconductor

33.6.5.2 Message buffer header field description

This section provides a detailed description of the usage and content of the message buffer header field. A
description of the structure of the message buffer header fields is given in Section 33.6.2.1, Message buffer
header field”. Each message buffer header field consists of three sections: the frame header section, the
data field offset, and the slot status section. For a detailed description of the Data Field Offset, see
Section 33.6.2.1.2, Data field offset”.

33.6.5.2.1 Frame header description

Frame header content

The semantic and content of the frame header section depends on the message buffer type.

For individual receive message buffers and receive FIFOs, the frame header receives the frame header data
of the first valid frame received on the assigned channels.

For receive shadow buffers, the frame header receives the frame header data of the current frame received
regardless of whether the frame is valid or not.

For transmit message buffers, the application writes the frame header of the frame to be transmitted into
this location. The frame header will be read out when the frame is transferred to the FlexRay bus.

The structure of the frame header in the message buffer header field for receive message buffers and the
receive FIFO is given in Figure 33-119. A detailed description is given in Table 33-95.

Figure 33-119. Frame header structure (receive message buffer and receive FIFO)

The structure of the frame header in the message buffer header field for transmit message buffers is given
in Figure 33-120. A detailed description is given in Table 33-96. The checks that will be performed are
described in Frame header checks.

Figure 33-120. Frame header structure (transmit message buffer)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x0 R PPI NUF SYF SUF FID

0x2 0 0 CYCCNT 0 PLDLEN

0x4 0 0 0 0 0 HDCRC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x0 R PPI NUF SYF SUF FID

0x2 CYCCNT PLDLEN

0x4 HDCRC

= not used = checked = checked if static slot

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1543

The structure of the frame header in the message buffer header field for transmit message buffers assigned
to key slot is given in Figure 33-121.

Figure 33-121. Frame header structure (transmit message buffer for key slot)

Frame header access

The frame header is located in the FlexRay memory area. To ensure data consistency, the application must
follow the write access scheme described below.

For receive message buffers, receive shadow buffers, and receive FIFOs, the application must not write to
the frame header field.

For transmit message buffers, the application must follow the write access restrictions given in
Table 33-94. This table shows the condition under which the application can write to the frame header
entries without corrupting the FlexRay message transmission.

Frame header checks

As shown in Figure 33-120 and Figure 33-121 not all fields in the message buffer frame header are used
for transmission. Some fields in the message buffer frame header are ignored, some are used for
transmission, and some of them are checked for correct values. All checks that will be performed are
described below.

For message buffers assigned to the key slot, no checks will be performed.

The value of the FID field must be equal to the value of the corresponding Message Buffer Frame ID
Registers (FR_MBFIDRn). If the CC detects a mismatch while transmitting the frame header, it will set
the frame ID error flag FID_EF in the CHI Error Flag Register (FR_CHIERFR). The value of the FID field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x0 R PPI NUF SYF SUF FID

0x2 CYCCNT PLDLEN

0x4 HDCRC

= not used

Table 33-94. Frame header write access constraints (transmit message buffer)

Field

Single buffered segments Double buffered segments

Static Dynamic
Static Dynamic

Commit side Transmit side Commit side Transmit side

FID POC:config or MB_DIS

PPI,
PLDLEN

,
HDCRC

POC:config or MB_DIS or

MB_LCK MB_LCK

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1544 Freescale Semiconductor

will be ignored and replaced by the value provided in the Message Buffer Frame ID Registers
(FR_MBFIDRn).

For transmit message buffers assigned to the static segment, the PLDLEN value must be equal to the value
of the payload_length_static field in the Protocol Configuration Register 19 (FR_PCR19). If this is not
fulfilled, the static payload length error flag SPL_EF in the CHI Error Flag Register (FR_CHIERFR) is set
when the message buffer is under transmission. A syntactically and semantically correct frame is generated
with payload_length_static payload words and the payload length field in the transmitted frame header set
to payload_length_static.

For transmit message buffers assigned to the dynamic segment, the PLDLEN value must be less than or
equal to the value of the max_payload_length_dynamic field in the Protocol Configuration Register 24
(FR_PCR24). If this is not fulfilled, the dynamic payload length error flag DPL_EF in the CHI Error Flag
Register (FR_CHIERFR) is set when the message buffer is under transmission. A syntactically and
semantically correct dynamic frame is generated with PLDLEN payload words and the payload length
field in the frame header set to PLDLEN.

Table 33-95. Frame header field description (receive message buffer and receive FFO)

Field Description

R Reserved Bit — This is the value of the Reserved bit of the received frame stored in the message
buffer

PPI Payload Preamble Indicator — This is the value of the Payload Preamble Indicator of the received
frame stored in the message buffer.

NUF Null Frame Indicator — This is the value of the Null Frame Indicator of the received frame stored in
the message buffer.

SYF Sync Frame Indicator — This is the value of the Sync Frame Indicator of the received frame stored
in the message buffer.

SUF Startup Frame Indicator — This is the value of the Startup Frame Indicator of the received frame
stored in the message buffer.

FID Frame ID — This is the value of the Frame ID field of the received frame stored in the message buffer.

CYCCNT Cycle Count — This is the number of the communication cycle in which the frame stored in the
message buffer was received.

PLDLEN Payload Length — This is the value of the Payload Length field of the received frame stored in the
message buffer.

HDCRC Header CRC — This is the value of the Header CRC field of the received frame stored in the message
buffer.

Table 33-96. Frame header field description (transmit message buffer)

Field Description

R Reserved Bit — This bit is not used, the value of the Reserved bit is generated internally according to
FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

PPI Payload Preamble Indicator — This bit provides the value of the Payload Preamble Indicator for the
frame transmitted from the message buffer.

NUF Null Frame Indicator — This bit is not used, the value of the Null Frame Indicator is generated
internally according to FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1545

33.6.5.2.2 Data field offset description

Data field offset content

For a detailed description of the Data Field Offset, see Section 33.6.2.1.2, Data field offset”.

Data field offset access

The application shall program the Data Field Offset when configuring the message buffers either in the
POC:config state or when the message buffer is disabled.

33.6.5.2.3 Slot status description

The slot status is a read-only structure for the application and a write-only structure for the CC. The
meaning and content of the slot status in the message buffer header field depends on the message buffer
type.

Receive message buffer and receive FIFO slot status description

This section describes the slot status structure for the individual receive message buffers and receive
FIFOs. The content of the slot status structure for receive message buffers depends on the message buffer
type and on the channel assignment for individual receive message buffers as given by Table 33-97.

SYF Sync Frame Indicator — This bit is not used, the value of the Sync Frame Indicator is generated
internally according to FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

SUF Startup Frame Indicator — This bit is not used, the value of the Startup Frame Indicator is generated
internally according to FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

FID Frame ID — This field is checked as described in Frame header checks.

CYCCNT Cycle Count — This field is not used, the value of the transmitted Cycle Count field is taken from the
internal communication cycle counter.

PLDLEN Payload Length — This field is checked and used as described in Frame header checks.

HDCRC Header CRC — This field provides the value of the Header CRC field for the frame transmitted from
the message buffer.

Table 33-97. Receive message buffer slot status content

Receive message buffer type Slot status content

Individual Receive Message Buffer assigned to both channels
FR_MBCCFRn[CHA] = 1 and FR_MBCCFRn[CHB] = 1

see Figure 33-122

Individual Receive Message Buffer assigned to channel A
FR_MBCCFRn[CHA] = 1 and FR_MBCCFRn[CHB] = 0

see Figure 33-123

Individual Receive Message Buffer assigned to channel B
FR_MBCCFRn[CHA] = 0 and FR_MBCCFRn[CHB] = 1

see Figure 33-124

Table 33-96. Frame header field description (transmit message buffer)

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1546 Freescale Semiconductor

The meaning of the bits in the slot status structure is explained in Table 33-98.

Figure 33-122. Receive message buffer slot status structure (ChAB)

Figure 33-123. Receive message buffer slot status structure (ChA)

Figure 33-124. Receive message buffer slot status structure (ChB)

Receive FIFO Channel A Message Buffer see Figure 33-123

Receive FIFO Channel B Message Buffer see Figure 33-124

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB CH VFA SYA NFA SUA SEA CEA BVA 0

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 VFA SYA NFA SUA SEA CEA BVA 0

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB 1 0 0 0 0 0 0 0 0

Reset – – – – – – – – – – – – – – – –

Table 33-98. Receive Message Buffer Slot Status field description)

Field Description

Common Message Buffer Status Bits

VFB Valid Frame on Channel B — protocol related variable: vSS!ValidFrame channel B
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYB Sync Frame Indicator Channel B — protocol related variable: vRF!Header!SyFIndicator channel B
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFB Null Frame Indicator Channel B — protocol related variable: vRF!Header!NFIndicator channel B
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUB Startup Frame Indicator Channel B — protocol related variable: vRF!Header!SuFIndicator channel B
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEB Syntax Error on Channel B — protocol related variable: vSS!SyntaxError channel B
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

Table 33-97. Receive message buffer slot status content

Receive message buffer type Slot status content

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1547

Transmit message buffer slot status description

This section describes the slot status structure for transmit message buffers. Only the TCA and TCB status
bits are directly related to the transmission process. All other status bits in this structure are related to a
receive process that may have occurred. The content of the slot status structure for transmit message
buffers depends on the channel assignment as given by Table 33-99.

CEB Content Error on Channel B — protocol related variable: vSS!ContentError channel B
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVB Boundary Violation on Channel B — protocol related variable: vSS!BViolation channel B
0 vSS!BViolation = 0
1 vSS!BViolation = 1

CH Channel First Valid Received — This status bit applies only to receive message buffers assigned to
the static segment and to both channels. It indicates the channel that has received the first valid frame
in the slot. This flag is set to 0 if no valid frame was received at all in the subscribed slot.
0 first valid frame received on channel A, or no valid frame received at all
0 first valid frame received on channel B

VFA Valid Frame on Channel A — protocol related variable: vSS!ValidFrame channel A
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYA Sync Frame Indicator Channel A — protocol related variable: vRF!Header!SyFIndicator channel A
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFA Null Frame Indicator Channel A — protocol related variable: vRF!Header!NFIndicator channel A
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUA Startup Frame Indicator Channel A — protocol related variable: vRF!Header!SuFIndicator channel A
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEA Syntax Error on Channel A — protocol related variable: vSS!SyntaxError channel A
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEA Content Error on Channel A — protocol related variable: vSS!ContentError channel A
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVA Boundary Violation on Channel A — protocol related variable: vSS!BViolation channel A
0 vSS!BViolation = 0
1 vSS!BViolation = 1

Table 33-98. Receive Message Buffer Slot Status field description (continued))

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1548 Freescale Semiconductor

The meaning of the bits in the slot status structure is described in Table 33-98.

Figure 33-125. Transmit message buffer slot status structure (ChAB)

Figure 33-126. Transmit message buffer slot status structure (ChA)

Figure 33-127. Transmit message buffer slot status structure (ChB)

Table 33-99. Transmit message buffer slot status content

Transmit message buffer type Slot status content

Individual Transmit Message Buffer assigned to both channels
FR_MBCCFRn[CHA] = 1 and FR_MBCCFRn[CHB] = 1

see Figure 33-125

Individual Transmit Message Buffer assigned to channel A
FR_MBCCFRn[CHA] = 1 and FR_MBCCFRn[CHB] = 0

see Figure 33-126

Individual Transmit Message Buffer assigned to channel B
FR_MBCCFRn[CHA] = 0 and FR_MBCCFRn[CHB] = 1

see Figure 33-127

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB VFA SYA NFA SUA SEA CEA BVA TCA

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 VFA SYA NFA SUA SEA CEA BVA TCA

Reset – – – – – – – – – – – – – – – –

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VFB SYB NFB SUB SEB CEB BVB TCB 0 0 0 0 0 0 0 0

Reset – – – – – – – – – – – – – – – –

Table 33-100. Transmit Message Buffer Slot Status Structure field description

Field Description

VFB Valid Frame on Channel B — protocol related variable: vSS!ValidFrame channel B
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYB Sync Frame Indicator Channel B — protocol related variable: vRF!Header!SyFIndicator channel B
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFB Null Frame Indicator Channel B — protocol related variable: vRF!Header!NFIndicator channel B
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUB Startup Frame Indicator Channel B — protocol related variable: vRF!Header!SuFIndicator channel
B
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1549

33.6.5.3 Message buffer data field description

The message buffer data field is used to store the frame payload data, or a part of it, of the frame to be
transmitted to or received from the FlexRay bus. The minimum required length of this field depends on
the message buffer type that the physical message buffer is assigned to and is given in Table 33-101. The
structure of the message buffer data field is given in Figure 33-128.

SEB Syntax Error on Channel B — protocol related variable: vSS!SyntaxError channel B
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEB Content Error on Channel B — protocol related variable: vSS!ContentError channel B
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVB Boundary Violation on Channel B — protocol related variable: vSS!BViolation channel B
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCB Transmission Conflict on Channel B — protocol related variable: vSS!TxConflict channel B
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

VFA Valid Frame on Channel A — protocol related variable: vSS!ValidFrame channel A
0 vSS!ValidFrame = 0
1 vSS!ValidFrame = 1

SYA Sync Frame Indicator Channel A — protocol related variable: vRF!Header!SyFIndicator channel A
0 vRF!Header!SyFIndicator = 0
1 vRF!Header!SyFIndicator = 1

NFA Null Frame Indicator Channel A — protocol related variable: vRF!Header!NFIndicator channel A
0 vRF!Header!NFIndicator = 0
1 vRF!Header!NFIndicator = 1

SUA Startup Frame Indicator Channel A — protocol related variable: vRF!Header!SuFIndicator channel
A
0 vRF!Header!SuFIndicator = 0
1 vRF!Header!SuFIndicator = 1

SEA Syntax Error on Channel A — protocol related variable: vSS!SyntaxError channel A
0 vSS!SyntaxError = 0
1 vSS!SyntaxError = 1

CEA Content Error on Channel A — protocol related variable: vSS!ContentError channel A
0 vSS!ContentError = 0
1 vSS!ContentError = 1

BVA Boundary Violation on Channel A — protocol related variable: vSS!BViolation channel A
0 vSS!BViolation = 0
1 vSS!BViolation = 1

TCA Transmission Conflict on Channel A — protocol related variable: vSS!TxConflict channel A
0 vSS!TxConflict = 0
1 vSS!TxConflict = 1

Table 33-100. Transmit Message Buffer Slot Status Structure field description

Field Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1550 Freescale Semiconductor

NOTE

The CC will not access any locations outside the message buffer data field
boundaries given by Table 33-101.

Figure 33-128. Message buffer data field structure

The message buffer data field is located in the FlexRay memory area; thus, the CC has no means to control
application write access to the field. To ensure data consistency, the application must follow a write and
read access scheme.

33.6.5.3.1 Message buffer data field read access

For transmit message buffers, the CC will not modify the content of the Message Buffer Data Field. Thus
the application can read back the data at any time without any impact on data consistency.

For receive message buffers the application must lock the related receive message buffer and retrieve the
message buffer header index from the Message Buffer Index Registers (FR_MBIDXRn). While the
message buffer is locked, the CC will not update the Message Buffer Data Field.

For receive FIFOs, the application can read the message buffer indicated by the Receive FIFO A Read
Index Register (FR_RFARIR) or the Receive FIFO B Read Index Register (FR_RFBRIR) when the related
fill levels in the Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR) indicate an non-empty
FIFO.

33.6.5.3.2 Message buffer data field write access

For receive message buffers, receive shadow buffers, and receive FIFOs, the application must not write to
the message buffer data field.

Table 33-101. Message buffer data field minimum length

Physical message buffer assigned to Minimum length defined by

Individual Message Buffer in Segment 1 FR_MBDSR[MBSEG1DS]

Receive Shadow Buffer in Segment 1 FR_MBDSR[MBSEG1DS]

Individual Message Buffer in Segment 2 FR_MBDSR[MBSEG2DS]

Receive Shadow Buffer in Segment 2 FR_MBDSR[MBSEG2DS]

Receive FIFO for channel A FR_RFDSR[ENTRY_SIZE] (FR_RFWMSR[SEL] = 0)

Receive FIFO for channel B FR_RFDSR[ENTRY_SIZE] (FR_RFWMSR[SEL] = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x0 DATA0 / MID0 / NMV0 DATA1 / MID1 / NMV1

0x2 DATA2 / NMV2 DATA3 / NMV3

...

0xN-2 DATA N-2 DATA N-1

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1551

For transmit message buffers, the application must follow the write access restrictions given in
Table 33-102.

33.6.6 Individual message buffer functional description

The CC provides three basic types of individual message buffers:

1. Single transmit message buffers

2. Double transmit message buffers

3. Receive message buffers

Before an individual message buffer can be used, it must be configured by the application. After the initial
configuration, the message buffer can be reconfigured later. The set of the configuration data for individual
message buffers is given in Section 33.6.3.4.1, Individual message buffer configuration data”.

33.6.6.1 Individual message buffer configuration

The individual message buffer configuration consists of two steps.

1. The first step is the allocation of the required amount of memory for the FlexRay memory area.

2. The second step is the programming of the message buffer configuration registers, which is
described in this section.

33.6.6.1.1 Common configuration data

One part of the message buffer configuration data is common to all individual message buffers and the
receive shadow buffers. These data can only be set when the protocol is in the POC:config state.

Table 33-102. Frame data write access constraints

Field Single buffered
Double buffered

Commit side Transmit side

DATA, MID, NMV POC:config or MB_DIS
or MB_LCK

POC:config or MB_DIS
or MB_LCK

POC:config or MB_DIS

Table 33-103. Frame Data field description

Field Description

DATA 0,
DATA 1,

...
DATA N-1

Message Data — Provides the message data received or to be transmitted.
For receive message buffer and receive FIFOs, this field provides the message data received for this
message buffer.
For transmit message buffers, the field provides the message data to be transmitted.

MID 0,
MID 1

Message Identifier — If the payload preamble bit PPI is set in the message buffer frame header, the
MID field holds the message ID of a dynamic frame located in the message buffer. The receive FIFO
filter uses the received message ID for message ID filtering.

NMV 0,
NMV 1,

...
NMV 11

Network Management Vector — If the payload preamble bit PPI is set in the message buffer frame
header, the network management vector field holds the network management vector of a static frame
located in the message buffer.
Note: The MID and NMV bytes replace the corresponding DATA bytes.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1552 Freescale Semiconductor

The application configures the number of utilized individual message buffers by writing the message
buffer number of the last utilized message buffer into the LAST_MB_UTIL field in the Message Buffer
Segment Size and Utilization Register (FR_MBSSUTR).

The application configures the size of the two segments of individual message buffers by writing the
message buffer number of the last message buffer in the first segment into the LAST_MB_SEG1 field in
the Message Buffer Segment Size and Utilization Register (FR_MBSSUTR)

The application configures the length of the message buffer data fields for both of the message buffer
segments by writing to the MBSEG2DS and MBSEG1DS fields in the Message Buffer Data Size Register
(FR_MBDSR).

Depending on the current receive functionality of the CC, the application must configure the receive
shadow buffers. For each segment and for each channel with at least one individual receive message buffer
assigned, the application must configure the related receive shadow buffer using the Receive Shadow
Buffer Index Register (FR_RSBIR).

33.6.6.1.2 Specific configuration data

The second part of the message buffer configuration data is specific for each message buffer.

These data can be changed only when either

• the protocol is in the POC:config state or

• the message buffer is disabled, that is, FR_MBCCSRn[EDS] = 0

The individual message buffer type is defined by the MTD and MBT bits in the Message Buffer
Configuration, Control, Status Registers (FR_MBCCSRn) as given in Table 33-104.

The message buffer specific configuration data are

1. MCM, MBT, MTD bits in Message Buffer Configuration, Control, Status Registers
(FR_MBCCSRn)

2. all fields and bits in Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn)

3. all fields and bits in Message Buffer Frame ID Registers (FR_MBFIDRn)

4. all fields and bits in Message Buffer Index Registers (FR_MBIDXRn)

Table 33-104. Individual message buffer types

FR_MBCCSRn
Individual message buffer description

MTD MBT

0 0 Receive Message Buffer

0 1 Reserved

1 0 Single Transmit Message Buffer

1 1 Double Transmit Message Buffer

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1553

The meaning of the specific configuration data depends on the message buffer type, as given in the detailed
message buffer type descriptions Section 33.6.6.2, Single transmit message buffers”, Section 33.6.6.3,
Receive message buffers”, and Section 33.6.6.4, Double transmit message buffer”.

33.6.6.2 Single transmit message buffers

The section provides a detailed description of the functionality of single buffered transmit message buffers.

A single transmit message buffer is used by the application to provide message data to the CC that will be
transmitted over the FlexRay Bus. The CC uses the transmit message buffers to provide information about
the transmission process and status information about the slot in which message was transmitted.

The individual message buffer with message buffer number n is configured to be a single transmit message
buffer by the following settings:

• FR_MBCCSRn[MBT] = 0 (single buffered message buffer)

• FR_MBCCSRn[MTD] = 1 (transmit message buffer)

33.6.6.2.1 Access regions

To certain message buffer fields, both the application and the CC have access. To ensure data consistency,
a message buffer locking scheme is implemented, which is used to control the access to the data, control,
and status bits of a message buffer. The access regions for single transmit message buffers are depicted in
Figure 33-129. A description of the regions is given in Table 33-105. If an region is active as indicated in
Table 33-106, the access scheme given for that region applies to the message buffer.

Figure 33-129. Single transmit message buffer access regions

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

FR_MBCCSRn[CMT]

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

FR_MBCCFRn[MTM/CHA/CHB/CCF*]

FR_MBFIDRn[FID]

FR_MBIDXRn[MBIDX]

FR_MBCCSRn[MBT/MTD]

TX

NF

CMT

SR

CFG

MSG

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1554 Freescale Semiconductor

The trigger bits FR_MBCCSRn[EDT] and FR_MBCCSRn[LCKT], and the interrupt enable bit
FR_MBCCSRn[MBIE] are not under access control and can be accessed from the application at any time.
The status bits FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] are not under access control and can be
accessed from the CC at any time.

The interrupt flag FR_MBCCSRn[MBIF] is not under access control and can be accessed from the
application and the CC at any time. CC clear access has higher priority.

The CC restricts its access to the regions depending on the current state of the message buffer. The
application must adhere to these restrictions in order to ensure data consistency. The transmit message
buffer states are given in Figure 33-130. A description of the states is given in Table 33-106, which also
provides the access scheme for the access regions.

The status bits FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] provide the application with the
required message buffer status information. The internal status information is not visible to the application.

33.6.6.2.2 Message buffer states

This section describes the transmit message buffer states and provides a state diagram.

Table 33-105. Single transmit message buffer access regions description

Region
Access from

Region used for
Application Module

CFG read/write — Message Buffer Configuration

MSG read/write — Message Data and Slot Status Access

NF — read-only Message Header Access for Null Frame Transmission

TX — read/write Message Transmission and Slot Status Update

CM — read-only Message Buffer Validation

SR — read-only Message Buffer Search

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1555

Figure 33-130. Single transmit message buffer states

Table 33-106. Single transmit message buffer state description (Sheet 1 of 2)

State
FR_MBCCSRn Access region

Description
EDS LCKS Appl. Module

Idle 1 0 — CM, SR Idle – Message Buffer is idle.
Included in message buffer search.

HDis 0 0 CFG — Disabled – Message Buffer under configuration.
Excluded from message buffer search.

HDisLck 0 1 CFG — Disabled and Locked – Message Buffer under configuration.
Excluded from message buffer search.

HLck 1 1 MSG SR Locked – Applications access to data, control, and status.
Included in message buffer search.

CCSa 1 0 — — Slot Assigned – Message buffer assigned to next static slot.
Ready for Null Frame transmission.

HLckCCSa 1 1 MSG — Locked and Slot Assigned – Applications access to data,
control, and status.Message buffer assigned to next static slot

CCNf 1 0 — NF Null Frame Transmission – Header is used for null frame
transmission

HLckCCNf 1 1 MSG NF Locked and Null Frame Transmission – Applications access
to data, control, and status. Header is used for null frame
transmission.

CCMa 1 0 — CM Message Available – Message buffer is assigned to next slot
and cycle counter filter matches.

HDis

RESET_STATE
HD

HE
Idle

SA
DSS

SU
CCSu

CCSa CCTx

TX

HLck HLckCCSa CCNf

HL
HU

CCMa

HL
HU

HLckCCNf HLckCCMa

SSS

STS

HE

HL

STS

HU

HL

DSS

MA

SSS

HDisLck

HD

HU
HL

HU

STS
MA

SSS

SA

DSS

STS

DSS

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1556 Freescale Semiconductor

33.6.6.2.3 Message buffer transitions

Application transitions

The application transitions can be triggered by the application using the commands described in
Table 33-107. The application issues the commands by writing to the Message Buffer Configuration,
Control, Status Registers (FR_MBCCSRn). Only one command can be issued with one write access. Each
command is executed immediately. If the command is ignored, it must be issued again.

Message Buffer Enable and Disable

The enable and disable commands issued by writing 1 to the trigger bit FR_MBCCSRn[EDT]. The
transition that will be triggered by each of these command depends on the current value of the status bit
FR_MBCCSRn[EDS]. If the command triggers the disable transition HD and the message buffer is in one
of the states CCSa, HLckCCSa, CCMa, HLckCCMa, CCNf, HLckCCNf, or CCTx, the disable transition
has no effect (command is ignored) and the message buffer state is not changed. No notification is given
to the application.

If the communication controller is started as a non-coldstart node, and the message buffers are configured
and enabled in the POC config state for Slot 1, then the message buffer cannot be disabled in the
INTEGRATION_LISTEN state by directly writing 1 to the EDT bit. To facilitate this, a FREEZE
command needs to be issued just before running the message buffer disable for slot 1. Executing this
command enables the message buffer disable during the LISTEN states.

Message Buffer Lock and Unlock

The lock and unlock commands issued by writing 1 to the trigger bit FR_MBCCSRn[LCKT]. The
transition that will be triggered by each of these commands depends on the current value of the status bit
FR_MBCCSRn[LCKS]. If the command triggers the lock transition HL and the message buffer is in the
state CCTx, the lock transition has no effect (command is ignored) and message buffer state is not changed.
In this case, the message buffer lock error flag LCK_EF in the CHI Error Flag Register (FR_CHIERFR)
is set.

HLckCCMa 1 1 MSG — Locked and Message Available – Applications access to data,
control, and status. Message buffer is assigned to next slot and
cycle counter filter matches.

CCTx 1 0 — TX Message Transmission – Message buffer data transmit.
Payload data from buffer transmitted

CCSu 1 0 — TX Status Update – Message buffer status update. Update of
status flags, the slot status field, and the header index.

Table 33-106. Single transmit message buffer state description (Sheet 1 of 2) (continued)

State
FR_MBCCSRn Access region

Description
EDS LCKS Appl. Module

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1557

Module transitions

The module transitions that can be triggered by the CC are described in Table 33-108. Each transition will
be triggered for certain message buffers when the related condition is fulfilled.

Transition priorities

The application can trigger only one transition at a time. There is no need to specify priorities among them.

As shown in the first part of Table 33-109, the module transitions have a higher priority than the
application transitions. For all states except the CCMa state, both a lock/unlock transition HL/HD and a
module transition can be executed at the same time. The result state is reached by first applying the
application transition and subsequently the module transition to the intermediately reached state. For
example, if the message buffer is in the HLck state and the application unlocks the message buffer by the
HU transition and the module triggers the slot assigned transition SA, the intermediate state is Idle and the
resulting state is CCSa.

The priorities among the module transitions is given in the second part of Table 33-109.

Table 33-107. Single transmit message buffer application transitions

Transition Command Condition Description

HE FR_MBCCSRn[EDT] = 1 FR_MBCCSRn[EDS] = 0 Application triggers message buffer enable

HD FR_MBCCSRn[EDS] = 1 Application triggers message buffer disable

HL FR_MBCCSRn[LCKT] = 1 FR_MBCCSRn[LCKS] = 0 Application triggers message buffer lock

HU FR_MBCCSRn[LCKS] = 1 Application triggers message buffer unlock

Table 33-108. Single transmit message buffer module transitions

Transition Condition Description

SA Slot match and
static slot

Slot Assigned – Message buffer is assigned to next static slot.

MA Slot match and
CycleCounter match

Message Available – Message buffer is assigned to next slot and cycle
counter filter matches.

TX Slot start and
FR_MBCCSRn[CMT] = 1

Transmission Slot Start – Slot Start and commit bit CMT is set. In case of
a dynamic slot, pLatestTx is not exceeded.

SU Status updated Status Updated – Slot Status field and message buffer status flags
updated. Interrupt flag set.

STS Static slot start Static Slot Start – Start of static slot.

DSS Dynamic slot start or
symbol window start or

NIT start

Dynamic Slot or Segment Start – Start of dynamic slot or symbol window
or NIT.

SSS Slot start or
symbol window start or

NIT start

Slot or Segment Start – Start of static slot or dynamic slot or symbol
window or NIT.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1558 Freescale Semiconductor

33.6.6.2.4 Transmit message setup

To transmit a message over the FlexRay bus, the application writes the message data into the message
buffer data field and sets the commit bit CMT in the Message Buffer Configuration, Control, Status
Registers (FR_MBCCSRn). The physical access to the message buffer data field is described in
Section 33.6.3.1, Individual message buffers”.

As indicated by Table 33-106, the application shall write to the message buffer data field and change the
commit bit CMT only if the transmit message buffer is in one of the states HDis, HDisLck, HLck,
HLckCCSa, HLckCCMa, or HLckCCMa. The application can change the state of a message buffer if it
issues the appropriate commands shown in Table 33-107. The state change is indicated through the
FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] status bits.

If the transmit message buffer enters one of the states HDis, HDisLck, HLck, HLckCCSa, HLckCCMa, or
HLckCCMa the FR_MBCCSRn[DVAL] flag is negated.

33.6.6.2.5 Message transmission

As a result of the message buffer search described in Section 33.6.7, Individual message buffer search”,
the CC triggers the message available transition MA for up to two transmit message buffers. This changes
the message buffer state from Idle to CCMa and the message buffers can be used for message transmission
in the next slot.

The CC transmits a message from a message buffer if both of the following two conditions are fulfilled at
the start of the transmission slot:

1. the message buffer is in the message available state CCMa

2. the message data are still valid, that is, FR_MBCCSRn[CMT] = 1

In this case, the CC triggers the TX transition and changes the message buffer state to CCTx. A transmit
message buffer timing and state change diagram for message transmission is given in Figure 33-131. In
this example, the message buffer with message buffer number n is Idle at the start of the search slot,
matches the slot and cycle number of the next slot, and message buffer data are valid, that is,
FR_MBCCSRn[CMT] = 1.

Table 33-109. Single transmit message buffer transition priorities

State Priorities Description

Module versus application

Idle, HLck SA > HD
MA > HD

Slot Assigned > Message Buffer Disable
Message Available > Message Buffer Disable

CCMa TX > HL Transmission Start > Message Buffer Lock

Module internal

Idle, HLck MA > SA Message Available > Slot Assigned

CCMa TX > STS
TX > DSS

Transmission Slot Start > Static Slot Start
Transmission Slot Start > Dynamic Slot Start

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1559

Figure 33-131. Message transmission timing

Figure 33-132. Message transmission from HLck state with unlock

The amount of message data read from the FlexRay memory area and transferred to the FlexRay bus is
determined by the following three items

1. the message buffer segment that the message buffer is assigned to, as defined by the Message
Buffer Segment Size and Utilization Register (FR_MBSSUTR).

2. the message buffer data field size, as defined by the related field of the Message Buffer Data Size
Register (FR_MBDSR)

3. the value of the PLDLEN field in the message buffer header field, as described in
Section 33.6.5.2.1, Frame header description”

If a message buffer is assigned to message buffer segment 1, and PLDLEN > MBSEG1DS, then
2 * MBSEG1DS bytes will be read from the message buffer data field and zero padding is used for the
remaining bytes for the FlexRay bus transfer. If PLDLEN < MBSEG1DS, the CC reads and transfers
2*PLDLEN bytes. The same holds for segment 2 and MBSEG2DS.

33.6.6.2.6 Null frame transmission

A static slot with slot number S is assigned to the CC for channel A, if at least one transmit message buffer
is configured with the FR_MBFIDRn[FID] set to S and FR_MBCCFRn[CHA] set to 1. A Null Frame is
transmitted in the static slot S on channel A, if this slot is assigned to the CC for channel A, and all transmit
message buffers with FR_MBFIDRn[FID] = s and FR_MBCCFRn[CHA] = 1 are either not committed,
that is, FR_MBCCSRn[CMT] = 0, or locked by the application, that is, FR_MBCCSRn[LCKS] = 1, or the
cycle counter filter is enabled and does not match.

Additionally, the application can clear the commit bit of a message buffer that is in the CCMa state, which
is called uncommit or transmit abort. This message buffer will be used for null frame transmission.

As a result of the message buffer search described in Section 33.6.7, Individual message buffer search”,
the CC triggers the slot assigned transition SA for up to two transmit message buffers if at least one of the
conditions mentioned above is fulfilled for these message buffers. The transition SA changes the message
buffer states from either Idle to CCSa or from HLck to HLckCCSa. In each case, these message buffers

search[s+1]
M

T st
ar

t

MA

slot s

TX SU

CCMa CCTx

slot s+1

Idle

M
T st

ar
t

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

M
T st

ar
t

message transmit

SSS

CCSu

search[s+1]
M

T st
ar

t

M
T st

ar
t

MA

slot s

TX SSS

HLckCCMa CCTx

slot s+1

HLck

M
T st

ar
t

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

HU

CCMa

message transmit

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1560 Freescale Semiconductor

will be used for null frame transmission in the next slot. A message buffer timing and state change diagram
for null frame transmission from Idle state is given in Figure 33-133.

Figure 33-133. Null frame transmission from idle state

A message buffer timing and state change diagram for null frame transmission from HLck state is given
in Figure 33-134.

Figure 33-134. Null frame transmission from HLck state

If a transmit message buffer is in the CCSa or HLckCCSa state at the start of the transmission slot, a null
frame is transmitted in any case, even if the message buffer is unlocked or committed before the
transmission slot starts. A transmit message buffer timing and state change diagram for null frame
transmission for this case is given in Figure 33-135.

Figure 33-135. Null frame transmission from HLck state with unlock

Since the null frame transmission will not use the message buffer data, the application can lock/unlock the
message buffer during null frame transmission. A transmit message buffer timing and state change
diagram for null frame transmission for this case is given in Figure 33-136.

Figure 33-136. Null frame transmission from idle state with locking

search[s+1]
M

T st
ar

t

M
T st

ar
t

SA

slot s

STS SSS

CCSa CCNf

slot s+1

Idle

M
T st

ar
t

Idle

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

null frame transmit

search[s+1]
M

T st
ar

t

M
T st

ar
t

SA

slot s

STS SSS

HLckCCSa HLckCCNf

slot s+1

HLck

M
T st

ar
t

HLck

slot s+2

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

null frame transmit

search[s+1]
M

T st
ar

t

M
T st

ar
t

SA

slot s

STS SSS

HLckCCSa CCNf

slot s+1

HLck

M
T st

ar
t

Idle

slot s+2

sl
o

t s
ta

rt

sl
o

t
st

a
rt

sl
o

t
st

a
rt

HU

CCSa

null frame transmit

search[s+1]M
T st

ar
t

M
T st

ar
t

SA

slot s

STS SSS

slot s+1

Idle

M
T st

ar
t

HLck

slot s+2

sl
o

t s
ta

rt

sl
o

t s
ta

rt

sl
o

t s
ta

rt

null frame transmit

HL

CCSa CCNf HLckCCNf

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1561

33.6.6.2.7 Message buffer status update

After the end of each slot, the PE generates the slot status vector. Depending on the this status, the
transmitted frame type, and the amount of transmitted data, the message buffer status is updated.

Message buffer status update after complete message transmission

The term complete message transmission refers to the fact that all payload data stored in the message
buffer were send to FlexRay bus. In this case, the CC updates the slot status field of the message buffer
and triggers the status updated transition SU. With the SU transition, the CC sets the message buffer
interrupt flag FR_MBCCSRn[MBIF] to indicate the successful message transmission.

Depending on the transmission mode flag FR_MBCCFRn[MTM], the CC changes the commit flag
FR_MBCCSRn[CMT] and the valid flag FR_MBCCSRn[DVAL]. If the FR_MBCCFRn[MTM] flag is
negated, the message buffer is in the event transmission mode. In this case, each committed message is
transmitted only once. The commit flag FR_MBCCSRn[CMT] is cleared with the SU transition. If the
FR_MBCCFRn[MTM] flag is asserted, the message buffer is in the state transmission mode. In this case,
each committed message is transmitted as long as the application provides new data or locks the message
buffers. The CC will not clear the FR_MBCCSRn[CMT] flag at the end of transmission and will set the
valid flag FR_MBCCSRn[DVAL] to indicate that the message will be transmitted again.

Message buffer status update after incomplete message transmission

The term incomplete message transmission refers to the fact that not all payload data that should be
transmitted were send to FlexRay bus. This may be caused by the following regular conditions in the
dynamic segment:

1. The transmission slot starts in a minislot with a minislot number greater than pLatestTx.

2. The transmission slot did not exist in the dynamic segment at all.

Additionally, an incomplete message transmission can be caused by internal communication errors. If
those error occur, the Protocol Engine Communication Failure Interrupt Flag PECF_IF is set in the
Protocol Interrupt Flag Register 1 (FR_PIFR1).

In any of these two cases, the status of the message buffer is not changed at all with the SU transition. The
slot status field is not updated, the status and control flags are not changed, and the interrupt flag is not set.

Message buffer status update after null frame transmission

After the transmission of a null frame, the status of the message buffer that was used for the null frame
transmission is not changed at all. The slot status field is not updated, the status and control flags are not
changed, and the interrupt flag is not set.

33.6.6.3 Receive message buffers

The section provides a detailed description of the functionality of the receive message buffers. If receive
message buffers are used it is required to configure the related receive shadow buffer as described in
Section 33.6.3.2, Receive shadow buffers”

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1562 Freescale Semiconductor

A receive message buffer is used to receive a message from the FlexRay Bus based on individual filter
criteria. The CC uses the receive message buffer to provide the following data to the application

1. message data received

2. information about the reception process

3. status information about the slot in which the message was received

A individual message buffer with message buffer number n is configured as a receive message buffer by
the following configuration settings

• FR_MBCCSRn[MBT] = 0 (single buffered message buffer)

• FR_MBCCSRn[MTD] = 0 (receive message buffer)

To certain message buffer fields, both the application and the CC have access. To ensure data consistency,
a message buffer locking scheme is implemented that is used to control the access to the data, control, and
status bits of a message buffer. The access regions for receive message buffers are depicted in
Figure 33-137. A description of the regions is given in Table 33-110. If an region is active as indicated in
Table 33-111, the access scheme given for that region applies to the message buffer.

Figure 33-137. Receive message buffer access regions

Table 33-110. Receive message buffer access region description

Region
Access from

Region used for
Application Module

CFG read/write — Message Buffer Configuration, Message Data and Status Access

MSG read/write — Message Data, Header, and Status Access

RX — write-only Message Reception and Status Update

SR — read-only Message Buffer Search Data

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

FR_MBCCSRn[DVAL/DUP]

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

FR_MBCCFRn[CHA/CHB/CCF*]

FR_MBFIDRn[FID]

FR_MBIDXRn[MBIDX]

FR_MBCCSRn[MTD]

RX

SR

CFG

MSG

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1563

The trigger bits FR_MBCCSRn[EDT] and FR_MBCCSRn[LCKT] and the interrupt enable bit
FR_MBCCSRn[MBIE] are not under access control and can be accessed from the application at any time.
The status bits FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] are not under access control and can be
accessed from the CC at any time.

The interrupt flag FR_MBCCSRn[MBIF] is not under access control and can be accessed from the
application and the CC at any time. CC set access has higher priority.

The CC restricts its access to the regions depending on the current state of the message buffer. The
application must adhere to these restrictions in order to ensure data consistency. The receive message
buffer states are given in Figure 33-138. A description of the message buffer states is given in
Table 33-106, which also provides the access scheme for the access regions.

The status bits FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] provide the application with the
required status information. The internal status information is not visible to the application.

Figure 33-138. Receive message buffer states

Table 33-111. Receive message buffer states and access

State
FR_MBCCSRn Access from

Description
EDS LCKS Appl. Module

Idle 1 0 — SR Idle – Message Buffer is idle.
Included in message buffer search.

HDis 0 0 CFG — Disabled – Message Buffer under configuration.
Excluded from message buffer search.

HDisLck 0 1 CFG — Disabled and Locked – Message Buffer under configuration.
Excluded from message buffer search.

HLck 1 1 MSG — Locked – Applications access to data, control, and status.
Included in message buffer search.

CCBs 1 0 — — Buffer Subscribed – Message buffer subscribed for reception.
Filter matches next (slot, cycle, channel) tuple.

HDis

RESET_STATE
HD

HE
Idle

BS
SNS

SU
CCSu

CCBs CCRx

HLck HLckCCBs HLckCCRx

SSS

SLS

HE

HL

HDisLck

HD

HL
HU

BS

SNS

HL
HU

HU

HL
HU

SLS

SSS

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1564 Freescale Semiconductor

33.6.6.3.1 Message buffer transitions

Application transitions

The application transitions that can be triggered by the application using the commands described in
Table 33-112. The application issues the commands by writing to the Message Buffer Configuration,
Control, Status Registers (FR_MBCCSRn). Only one command can be issued with one write access. Each
command is executed immediately. If the command is ignored, it must be issued again.

Message Buffer Enable and Disable

The enable and disable commands issued by writing 1 to the trigger bit FR_MBCCSRn[EDT]. The
transition that will be triggered by each of these command depends on the current value of the status bit
FR_MBCCSRn[EDS]. If the command triggers the disable transition HD and the message buffer is in one
of the states CCBs, HLckCCBs, or CCRx, the disable transition has no effect (command is ignored) and
the message buffer state is not changed. No notification is given to the application.

If the communication controller is started as a non-coldstart node, and the message buffers are configured
and enabled in the POC config state for Slot 1, then the message buffer cannot be disabled in the
INTEGRATION_LISTEN state by directly writing 1 to the EDT bit. To facilitate this, a FREEZE
command needs to be issued just before running the message buffer disable for slot 1. Executing this
command enables the message buffer disable during the LISTEN states.

Message Buffer Lock and Unlock

The lock and unlock commands issued by writing ‘1’ to the trigger bit FR_MBCCSRn[LCKT]. The
transition that will be triggered by each of these commands depends on the current value of the status bit
FR_MBCCSRn[LCKS]. If the command triggers the lock transition HL while the message buffer is in the
state CCRx, the lock transition has no effect (command is ignored) and message buffer state is not
changed. In this case, the message buffer lock error flag LCK_EF in the CHI Error Flag Register
(FR_CHIERFR) is set.

HLckCCBs 1 1 MSG — Locked and Buffer Subscribed – Applications access to data,
control, and status. Message buffer subscribed for reception.

CCRx 1 0 — — Message Receive – Message data received into related
shadow buffer.

HLckCCRx 1 1 MSG — Locked and Message Receive – Applications access to data,
control, and status. Message data received into related shadow
buffer.

CCSu 1 0 — RX Status Update – Message buffer status update. Update of
status flags, the slot status field, and the header index.

Table 33-111. Receive message buffer states and access (continued)

State
FR_MBCCSRn Access from

Description
EDS LCKS Appl. Module

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1565

Module transitions

The module transitions that can be triggered by the CC are described in Table 33-113. Each transition will
be triggered for certain message buffers when the related condition is fulfilled.

Transition priorities

The application can trigger only one transition at a time. There is no need to specify priorities among them.

As shown in Table 33-114, the module transitions have a higher priority than the application transitions.
For all states except the CCRx state, a module transition and the application lock/unlock transition HL/HU
and can be executed at the same time. The result state is reached by first applying the module transition
and subsequently the application transition to the intermediately reached state. For example, if the message
buffer is in the buffer subscribed state CCBs and the module triggers the slot start transition SLS at the
same time as the application locks the message buffer by the HL transition, the intermediate state is CCRx
and the resulting state is locked buffer subscribed state HLckCCRx.

Table 33-112. Receive message buffer application transitions

Transition Host command Condition Description

HE FR_MBCCSRn[EDT] = 1 FR_MBCCSRn[EDS] = 0 Application triggers message buffer enable

HD FR_MBCCSRn[EDS] = 1 Application triggers message buffer disable

HL FR_MBCCSRn[LCKT] = 1 FR_MBCCSRn[LCKS] = 0 Application triggers message buffer lock

HU FR_MBCCSRn[LCKS] = 1 Application triggers message buffer unlock

Table 33-113. Receive message buffer module transitions

Transition Condition Description

BS Slot match and
CycleCounter match

Buffer Subscribed – The message buffer filter matches next slot and cycle

SLS Slot start Slot Start – Start of either Static Slot or Dynamic Slot

SNS Symbol window start
or

NIT start

Symbol Window or NIT Start – Start of either Symbol Window or NIT

SSS Slot start or
symbol window start

or
NIT start

Slot or Segment Start – Start of either Static Slot, Dynamic Slot, Symbol
Window, or NIT

SU Status updated Status Updated – Slot Status field, message buffer status flags, header index
updated; interrupt flag set

Table 33-114. Receive message buffer transition priorities

State Priorities Description

Module versus application

Idle BS > HD Buffer Subscribed > Message Buffer Disable

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1566 Freescale Semiconductor

33.6.6.3.2 Message Reception

As a result of the message buffer search, the CC changes the state of up to two enabled receive message
buffers from either idle state Idle or locked state HLck to the either subscribed state CCBs or locked buffer
subscribed state HLckCCBs by triggering the buffer subscribed transition BS.

If the receive message buffers for the next slot are assigned to both channels, then at most one receive
message buffer is changed to a buffer subscribed state.

If more than one matching message buffers assigned to a certain channel, then only the message buffer
with the lowest message buffer number is in one of the states mentioned above.

With the start of the next static or dynamic slot the module trigger the slot start transition SLS. This
changes the state of the subscribed receive message buffers from either CCBs to CCRx or from
HLckCCBs to HLckCCRx, respectively.

During the reception slot, the received frame data are written into the shadow buffers. For details on
receive shadow buffers, see Section 33.6.6.3.5, Receive shadow buffers concept”. The data and status of
the receive message buffers that are the CCRx or HLckCCRx are not modified in the reception slot.

33.6.6.3.3 Message buffer update

With the start of the next static or dynamic slot or with the start of the symbol window or NIT, the module
triggers the slot or segment start transition SSS. This transition changes the state of the receiving receive
message buffers from either CCRx to CCSu or from HLckCCRx to HLck, respectively.

If a message buffer was in the locked state HLckCCRx, no update will be performed. The received data
are lost. This is indicated by setting the Frame Lost Channel A/B Error Flag FRLA_EF/FRLB_EF in the
CHI Error Flag Register (FR_CHIERFR).

If a message buffer was in the CCRx state it is now in the CCSu state. After the evaluation of the slot status
provided by the PE the message buffer is updated. The message buffer update depends on the slot status
bits and the segment the message buffer is assigned to. This is described in Table 33-115.

HLck BS > HD Buffer Subscribed > Message Buffer Disable

CCRx SSS > HL Slot or Segment Start > Message Buffer Lock

Table 33-114. Receive message buffer transition priorities (continued)

State Priorities Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1567

NOTE

If the number of the last slot in the current communication cycle on a given
channel is n, then all receive message buffers assigned to this channel with
FR_MBFIDRn[FID] > n will not be updated at all.

When the receive message buffer update has finished the status updated transition SU is triggered, which
changes the buffer state from CCSu to Idle. An example receive message buffer timing and state change
diagram for a normal frame reception is given in Figure 33-139.

Figure 33-139. Message reception timing

The amount of message data written into the message buffer data field of the receive shadow buffer is
determined by the following two items:

1. the message buffer segment that the message buffer is assigned to, as defined by the Message
Buffer Segment Size and Utilization Register (FR_MBSSUTR).

Table 33-115. Receive message buffer update

vSS!ValidFrame vRF!Header!NFIndicator Update description

1 1 Valid non-null frame received
- Message Buffer Data Field updated
- Frame Header Field updated
- Slot Status Field updated
- DUP = 1
- DVAL = 1
- MBIF = 1

1 0 Valid null frame received
- Message Buffer Data Field not updated
- Frame Header Field not updated
- Slot Status Field updated
- DUP = 0
- DVAL not changed
- MBIF = 1

0 x No valid frame received
- Message Buffer Data Field not updated
- Frame Header Field not updated
- Slot Status Field updated
- DUP = 0
- DVAL not changed
- MBIF = 1, if the slot was not an empty dynamic slot
Note: An empty dynamic slot is indicated by the following

frame and slot status bit values:
vSS!ValidFrame = 0 and vSS!SyntaxError = 0 and
vSS!ContentError = 0 and vSS!BViolation = 0.

search[s+1]
M

T st
ar

t

BS

slot s

SLS SU

CCBs CCRx

slot s+1

Idle

M
T st

ar
t

Idle

slot s+2

sl
o

t s
ta

rt

sl
o

t s
ta

rt

M
T st

ar
t

message receive to receive shadow buffer

SSS

CCSu

sl
ot

 s
ta

rt

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1568 Freescale Semiconductor

2. the message buffer data field size, as defined by the related field of the Message Buffer Data Size
Register (FR_MBDSR)

3. the number of bytes received over the FlexRay bus

If the message buffer is assigned to the message buffer segment 1, and the number of received bytes is
greater than 2*FR_MBDSR.MBSEG1DS, the CC writes only 2*FR_MBDSR.MBSEG1DS bytes into the
message buffer data field of the receive shadow buffer. If the number of received bytes is less than
2*FR_MBDSR.MBSEG1DS, the CC writes only the received number of bytes and will not change the
trailing bytes in the message buffer data field of the receive shadow buffer. The same holds for the message
buffer segment 2 with FR_MBDSR.MBSEG2DS.

33.6.6.3.4 Received message access

To access the message data received over the FlexRay bus, the application reads the message data stored
in the message buffer data field of the corresponding receive message buffer. The access to the message
buffer data field is described in Section 33.6.3.1, Individual message buffers”.

The application can read the message buffer data field if the receive message buffer is one of the states
HDis, HDisLck, or HLck. If the message buffer is in one of these states, the CC will not change the content
of the message buffer.

33.6.6.3.5 Receive shadow buffers concept

The receive shadow buffer concept applies only to individual receive message buffers. The intention of
this concept is to ensure that only syntactically and semantically valid received non-null frames are
presented to the application in a receive message buffer. The basic structure of a receive shadow buffer is
described in Section 33.6.3.2, Receive shadow buffers”.

The receive shadow buffers temporarily store the received frame header and message data. After the slot
boundary the slot status information is generated. If the slot status information indicates the reception of
the valid non-null frame (see Table 33-115), the CC writes the slot status into the slot status field of the
receive shadow buffer and exchanges the content of the Message Buffer Index Registers (FR_MBIDXRn)
with the content of the corresponding internal shadow buffer index register. In all other cases, the CC
writes the slot status into the identified receive message buffer, depending on the slot status and the
FlexRay segment the message buffer is assigned to.

The shadow buffer concept, with its index exchange, results in the fact that the FlexRay memory area
located message buffer associated to an individual receive message buffer changes after successful
reception of a valid frame. This means that the message buffer area in the FlexRay memory area accessed
by the application for reading the received message is different from the initial setting of the message
buffer. Therefore, the application must not rely on the index information written initially into the Message
Buffer Index Registers (FR_MBIDXRn). Instead, the index of the message buffer header field must be
fetched from the Message Buffer Index Registers (FR_MBIDXRn).

33.6.6.4 Double transmit message buffer

The section provides a detailed description of the functionality of the double transmit message buffers.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1569

Double transmit message buffers are used by the application to provide the CC with the message data to
be transmitted over the FlexRay Bus. The CC uses this message buffer to provide information to the
application about the transmission process, and status information about the slot in which message data
was transmitted.

In contrast to the single transmit message buffers, the application can provide new transmission data while
the transmission of the previously provided message data is running. This scheme is called double
buffering and can be considered as a FIFO of depth 2.

Double transmit message buffers are implemented by combining two individual message buffers that form
the two sides of an double transmit message buffer. One side is called the commit side and will be accessed
by the application to provide the message data. The other side is called the transmit side and is used by the
CC to transmit the message data to the FlexRay bus. The two sides are located in adjacent individual
message buffers. The message buffer that implements the commit side has an even message buffer number
2n. The transmit side message buffer follows the commit side message buffer and has the message buffer
number 2n+1. The basic structure and data flow of a double transmit message buffer is given in
Figure 33-140.

Figure 33-140. Double transmit buffer structure and data flow

NOTE

Both the commit and the transmit side must be configured with identical
values except for the Message Buffer Index Registers (FR_MBIDXRn).

33.6.6.4.1 Access regions

To certain message buffer fields, both the application and the CC have access. To ensure data consistency,
a message buffer locking scheme is implemented, which controls the exclusive access to the data, control,
and status bits of the message buffer.

The access scheme for double transmit message buffers is depicted in Figure 33-141. The given regions
represent fields that can be accessed from both the application and the CC and, thus, require access
restrictions. A description of the regions is given in Table 33-116.

Commit Side Transmit Side

Application FlexRay Bus

MB# 2n MB# 2n+1

Internal Message
Transfer

message data message data message data

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1570 Freescale Semiconductor

Figure 33-141. Double transmit message buffer access regions layout

The trigger bits FR_MBCCSRn[EDT] and FR_MBCCSRn[LCKT], and the interrupt enable bit
FR_MBCCSRn[MBIE] are not under access control and can be accessed from the application at any time.
The status bits FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] are not under access control and can be
accessed from the CC at any time.

The interrupt flag FR_MBCCSRn[MBIF] is not under access control and can be accessed from the
application and the CC at any time. CC set access has higher priority.

Table 33-116. Double transmit message buffer access regions description

Access

Description
Region

Type

Application Module

Commit side

CFG read/write — Message Buffer Configuration

MSG read/write — Message Buffer Data and Control access

ITX — read/write Internal Message Transfer

SS — write-only Slot Status Update

Transmit side

CFG read/write — Message Buffer Configuration

SR — read-only Message Buffer Search

TX — read-only Internal Message Transfer, Message Transmission

SS — write-only Slot Status Update

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

FR_MBCCSR(2n)[CMT]

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

FR_MBCCFR(2n)[MTM/CHA/CHB/CCF*]

FR_MBFIDR(2n)[FID]

FR_MBIDXR(2n)[MBIDX]

FR_MBCCSR(2n)[MBT/MTD]

Message Buffer Data Field: DATA[0-N]

Message Buffer Header Field: Frame Header

FR_MBCCSR(2n+1)[CMT]

Message Buffer Header Field: Slot Status

Message Buffer Header Field: Data Field Offset

FR_MBCCFR(2n+1)[MTM/CHA/CHB/CCF*]

FR_MBFIDR(2n+1)[FID]

FR_MBIDXR(2n+1)]MBIDX]

FR_MBCCSR(2n+1)[MBT/MTD]

Commit Side Transmit Side

CFG

MSG

CFG

ITX

SS SS

SR

TX

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1571

The CC restricts its access to the regions, depending on the current state of the corresponding part of the
double transmit message buffer. The application must adhere to these restrictions in order to ensure data
consistency. The states for the commit side of a double transmit message buffer are given in Figure 33-142.
A description of the states is given in Table 33-118. The states for the transmit side of a double transmit
message buffer are given in Figure 33-143. A description of the states is given in Table 33-118. The
description tables also provide the access scheme for the access regions.

The status bits FR_MBCCSRn[EDS] and FR_MBCCSRn[LCKS] provide the application with the
required message buffer status information. The internal status information is not visible to the application.

33.6.6.4.2 Message buffer states

This section describes the transmit message buffer states and provides a state diagram.

Figure 33-142. Double transmit message buffer state diagram (commit side)

A description of the states of the commit side of a double transmit message buffer is given in Table 33-117.

Table 33-117. Double transmit message buffer state description (commit side)

State
FR_MBCCSR(2n) Access region

Description
EDS LCKS Appl. Module

Common states

HDis 0 0 CFG — Disabled – Message Buffer under configuration.
Commit Side can not be used for internal message transfer.

CCITx 1 0 — ITX Internal Message Transfer – Message Buffer Data
transferred from commit side to transmit side.

Commit side specific states

Idle 1 0 — ITX, SS Idle – Message Buffer Commit Side is idle.
Commit Side can be used for internal message transfer.

HDis

RESET_STATE
HD

HE
Idle

IS
IE

CCITx

HLck

HE

HL
HU

HDisLck
HU

HD

HL

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1572 Freescale Semiconductor

Figure 33-143. Double transmit message buffer state diagram (transmit side)

A description of the states of the transmit side of a double transmit message buffer is given in Table 33-118.

HDisLck 0 1 CFG SS Disabled and Locked – Message Buffer under configuration.
Commit Side can not be used for internal message transfer.

HLck 1 1 MSG SS Locked – Applications access to data, control, and status.
Commit Side can not be used for internal message transfer.

Table 33-118. Double transmit message buffer state description (transmit side) (sheet 2 of 2)

State
FR_MBCCSRn Access region

Description
EDS LCKS Appl. Module

Common states

HDis 0 0 CFG — Disabled – Message Buffer under configuration.
Excluded from message buffer search.

CCITx 1 0 — TX Internal Message Transfer – Message Buffer Data
transferred from commit side to transmit side

Transmit side specific states

Idle 1 0 — SR Idle – Message Buffer Transmit Side is idle.
Transmit Side is included in message buffer search.

CCSa 1 0 — — Slot Assigned – Message buffer assigned to next static
slot. Ready for Null Frame transmission.

Table 33-117. Double transmit message buffer state description (commit side) (continued)

State
FR_MBCCSR(2n) Access region

Description
EDS LCKS Appl. Module

HDis

RESET_STATE
HD

HE
Idle

SA
DSS

SU
CCSu

CCSa CCTx

TX

CCITx CCSaCCITx CCNf

IS
IE

CCMa

IS
IE

CCNfCCITx CCMaCCITx

SSS

STS

IS

IE STS

IE
IS

DSS

MA

SSS

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1573

33.6.6.4.3 Message buffer transitions

Application transitions

The application transitions that can be triggered by the application using the commands described in
Table 33-119. The application issues the commands by writing to the Message Buffer Configuration,
Control, Status Registers (FR_MBCCSRn). Only one command can be issued with one write access. Each
command is executed immediately. If the command is ignored, it must be issued again.

Message Buffer Enable and Disable

The enable and disable commands can be issued on the transmit side only. Any enable or disable command
issued on the commit side will be ignored without notification. The transitions that will be triggered
depends on the value of the EDS bit. The enable and disable commands will affect both the commit side
and the transmit side at the same time. If the application triggers the disable transition HD while the
transmit side is in one of the states CCSa, CCSaCCITx, CCNf, CCNfCCITx, CCMa, CCMaCCITx, CCTx,
or CCSu, the disable transition has no effect (command is ignored) and the message buffer state is not
changed. No notification is given to the application.

Message Buffer Lock and Unlock

The lock and unlock commands can be issued on the commit side only. Any lock or unlock command
issued on the transmit side will be ignored and the double transmit buffer lock error flag DBL_EF in the

CCSaCCITx 1 0 — TX Slot Assigned and Internal Message Transfer –
Message buffer assigned to next static slot and Message
Buffer Data transferred from commit side to transmit side

CCNf 1 0 — TX Null Frame Transmission – Header is used for null frame
transmission

CCNfCCITx 1 0 — TX Null Frame Transmission and Internal Message
Transfer – Header is used for null frame transmission and
Message Buffer Data transferred from commit side to
transmit side

CCMa 1 0 — — Message Available – Message buffer is assigned to next
slot and cycle counter filter matches

CCMaCCITx 1 0 — — Message Available and Internal Message Transfer –
Message buffer is assigned to next slot and cycle counter
filter matches and Message Buffer Data transferred from
commit side to transmit side.

CCTx 1 0 — TX Message Transmission – Message buffer data transmit.
Payload data from buffer transmitted

CCSu 1 0 — SS Status Update – Message buffer status update. Update of
status flags, the slot status field, and the header index.
Note: The slot status field of the commit side is updated
too, even if the application has locked the commit side.

Table 33-118. Double transmit message buffer state description (transmit side) (sheet 2 of 2) (continued)

State
FR_MBCCSRn Access region

Description
EDS LCKS Appl. Module

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1574 Freescale Semiconductor

CHI Error Flag Register (FR_CHIERFR) will be set. The transitions that will be triggered depends on the
current value of the LCKS bit. The lock and unlock commands will only affect the commit side. If the
application triggers the lock transition HL while the commit side is in the state CCITx, the message buffer
state will not be changed and the message buffer lock error flag LCK_EF in the CHI Error Flag Register
(FR_CHIERFR) will be set.

Module transitions

The module transitions that can be triggered by the CC are described in Table 33-120. The transitions C1
and C2 apply to both sides of the message buffer and are applied at the same time. All other CC transitions
apply to the transmit side only.

Table 33-119. Double transmit message buffer host transitions

Transition Host command Condition Description

HE FR_MBCCSR(2n+1)[EDT] = 1 FR_MBCCSR(2n+1)[EDS] = 0 Application triggers message buffer
enable

HD FR_MBCCSR(2n+1)[EDS] = 1 Application triggers message buffer
disable

HL FR_MBCCSR(2n)[LCKT] = 1 FR_MBCCSR(2n)[LCKS] = 0 Application triggers message buffer
lock

HU FR_MBCCSR(2n)[LCKS] = 1 Application triggers message buffer
unlock

Table 33-120. Double transmit message buffer module transitions

Transition Condition Description

Common transitions

IS See
Section 33.6.6.4.5,
Internal message

transfer

Internal Message Transfer Start – Start transfer of message data from commit
side to transmit side

IE Internal Message Transfer End – Stop transfer of message data from commit
side to transmit side
Note: The internal message transfer is stopped before the slot or segment start.

Transmit side specific transitions

SA Slot match and
static slot

Slot Assigned – Message buffer is assigned to next static slot

MA Slot match and
CycleCounter match

Message Available – Message buffer is assigned to next slot and cycle counter
filter matches

TX Slot start and
FR_MBCCSR(2n + 1)

[CMT] = 1

Transmission Slot Start – Slot Start and commit bit CMT is set.
In case of a dynamic slot, pLatestTx is not exceeded.

SU Status updated Status Updated – Slot Status field and message buffer status flags updated.
Interrupt flag set.

STS Static slot start Static Slot Start – Start of static slot.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1575

Transition priorities

The application can trigger only one transition at a time. There is no need to specify priorities among them.

As shown in the first part of Table 33-121, the module transitions have a higher priority than the
application transitions. The priorities among the CC transitions and the related states are given in the
second part of Table 33-121. These priorities apply only to the transmit side. The internal message transmit
start transition IS has tho lowest priority.

33.6.6.4.4 Message preparation

The application provides the message data through the commit side. The transmission itself is executed
from the transmit side. The transfer of the message data from the commit side to the transmit side is done
by the Internal Message Transfer, which is described in Section 33.6.6.4.5, Internal message transfer

To transmit a message over the FlexRay bus, the application writes the message data into the message
buffer data field of the commit side and sets the commit bit CMT in the Message Buffer Configuration,
Control, Status Registers (FR_MBCCSRn). The physical access to the message buffer data field is
described in Section 33.6.3.1, Individual message buffers”.

As indicated by Table 33-117, the application shall write to the message buffer data field and change the
commit bit CMT only if the transmit message buffer is in one of the states HDis, HDisLck, or HLck. The
application can change the state of a message buffer if it issues the appropriate commands shown in
Table 33-119. The state change is indicated through the FR_MBCCSRn[EDS] and
FR_MBCCSRn[LCKS] status bits.

DSS Dynamic slot start or
symbol window start or

NIT start

Dynamic Slot or Segment Start – Start of dynamic slot or symbol window or
NIT

SSS Slot start or
symbol window start or

NIT start

Slot or Segment Start – Start of static slot or dynamic slot or symbol window
or NIT

Table 33-121. Double transmit message buffer transition priorities

State Priority Description

Module versus application

Idle IS > HD
IS > HL

Internal Message Transfer Start > Message Buffer Disable
Internal Message Transfer Start > Message Buffer Lock

Module internal

Idle MA > SA Message Available > Slot Assigned

CCMa TX > STS
TX > DSS

Transmission Slot Start > Static Slot Start
Transmission Slot Start > Dynamic Slot Start

Table 33-120. Double transmit message buffer module transitions

Transition Condition Description

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1576 Freescale Semiconductor

33.6.6.4.5 Internal message transfer

The internal message transfer transfers the message data from the commit side to the transmit side. The
internal message transfer is implemented as the swapping of the content of the Message Buffer Index
Registers (FR_MBIDXRn) of the commit side and the transmit side. After the swapping, the commit side
CMT bit is cleared, the commit side interrupt flag MBIF is set, the transmit side CMT bit is set, and the
transmit side DVAL bit is cleared.

The conditions and the point in time when the internal message transfer is started are controlled by the
message buffer commit mode bit MCM in the Message Buffer Configuration, Control, Status Registers
(FR_MBCCSRn). The MCM bit configures the message buffer for either the streaming commit mode or
the immediate commit mode. A detailed description is given in Streaming commit mode and Immediate
commit mode. The Internal Message Transfer is triggered with the transition IS. Both sides of the message
buffer enter one of the CCITx states. The internal message transfer is finished with the transition IE.

Streaming commit mode

The intention of the streaming commit mode is to ensure that each committed message is transmitted at
least once. The CC will not start the Internal Message Transfer for a message buffer as long as the message
data on the transmit side is not transmitted at least once.

The streaming commit mode is configured by clearing the message buffer commit mode bit MCM in the
Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn).

In this mode, the internal message transfer from the commit side to the transmit side is started for a double
transmit message buffer when all of the following conditions are fulfilled

1. the commit side is in the Idle state

2. the commit site message data are valid, that is, FR_MBCCSR(2n)[CMT] = 1

3. the transmit side is in one of the states Idle, CCSa, or CCMa

4. the transmit side contains either no valid message data, that is, FR_MBCCSR(2n+1)[CMT] = 0 or
the message data were transmitted at least once, that is, FR_MBCCSR(2n+1)[DVAL] = 1

An example of a streaming commit mode state change diagram is given in Figure 33-144. In this example,
both the commit and the transmit side do not contain valid message data and the application provides two
messages. The message buffer does not match the next slot.

Figure 33-144. Internal message transfer in streaming commit mode

Idle

C
o
m

m
it

T
ra

n
sm

it

Idle

HL

HLck

S
id

e
S

id
e

slot s slot s+1 slot s+2
search[s+1]sl

ot
 s

ta
rt

sl
o
t s

ta
rt

sl
o
t s

ta
rt

HU

CCITx Idle

IS

CCITx

IE

Idle

HL

HLck

HU

Idle

Idle

no internal message transfer,
until message transmitted

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1577

Immediate commit mode

The intention of the immediate commit mode is to transmit the latest data provided by the application.
This implies that it is not guaranteed that each provided message will be transmitted at least once.

The immediate commit mode is configured by setting the message buffer commit mode bit MCM in the
Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn).

In this mode, the internal message transfer from the commit side to the transmit side is started for one
double transmit message buffer when all of the following conditions are fulfilled

1. the commit side is in the Idle state

2. the commit site message data are valid, that is, FR_MBCCSR(2n)[CMT] = 1

3. the transmit side is in one of the states Idle, CCSa, or CCMa

It is not checked whether the transmit side contains no valid message data or valid message data were
transmitted at least once. If message data are valid and not transmitted, they may be overwritten.

An example of a streaming commit mode state change diagram is given in Figure 33-145. In this example,
both the commit and the transmit side do not contain valid message data, and the application provides two
messages and the first message is gets overwritten. The message buffer does not match the next slot.

Figure 33-145. Internal message transfer in immediate commit mode

33.6.6.4.6 Message transmission

For double transmit message buffers, the message buffer search checks only the transmit side part. The
internal scheduling ensures, that the internal message transfer is stopped on the message buffer search start.
Thus, the transmit side of message buffer, that is not in its transmission or status update slot, is always in
the Idle state.

The message transmit behavior and transmission state changes of the transmit side of a double transmit
message buffer are the same as for single buffered transmit buffers, except that the transmit side of double
buffers can not be locked by the application, that is, the HU and HL transition do not exist. Therefore, refer
to Section 33.6.6.2.5, Message transmission”.

33.6.6.4.7 Message buffer status update

The message buffer status update behavior of the transmit side of a double transmit message buffer is the
same as for single transmit message buffers which is described in Section 33.6.6.2.7, Message buffer status
update”.

Idle

C
o

m
m

it
T

ra
n

sm
it

Idle

HL

HLck

S
id

e
S

id
e

slot s slot s+1 slot s+2
search[s+1]sl

o
t s

ta
rt

sl
ot

 s
ta

rt

sl
ot

 s
ta

rt

HU

Idle

IS

CCITx

IE

Idle

HL

HLck

HU

Idle

Idle

IS IE

Idle

Idle

internal message transfer
overwrites non-transmitted message

CCITx CCITx

CCITx

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1578 Freescale Semiconductor

Additionally, the slot status field of the commit side is update after the update of the slot status field of the
transmit side, even if the commit side is locked by the application. This is implemented to provide the slot
status of the most recent transmission slot.

33.6.7 Individual message buffer search

This section provides a detailed description of the message buffer search algorithm.

The message buffer search determines for each enabled channel if a slot s in a communication cycle c is
assigned for frame or null frame transmission or if it is subscribed for frame reception on that channel.

The message buffer search is a sequential algorithm which is invoked at the following protocol related
events:

1. NIT start

2. slot start in the static segment

3. minislot start in the dynamic segment

The message buffer search within the NIT searches for message buffers assigned or subscribed to slot 1.
The message buffer search within slot n searches for message buffers assigned or subscribed to slot n+1.

In general, the message buffer search for the next slot n considers only message buffers which are

1. enabled, that is, FR_MBCCSRn[EDS] = 1, and

2. matches the next slot n, that is, FR_MBFIDRn[FID] = n, and

3. are the transmit side buffer in case of a double transmit message buffer.

On top of that, for the static segment only those message buffers are considered, that match the condition
of at least one row of Table 33-122. For the dynamic segment only those message buffers are considered,
that match the condition of at least one row of Table 33-123. These message buffers are called matching
message buffers.

For each enabled channel the message buffer search may identify multiple matching message buffers.
Among all matching message buffers the message buffers with highest priority according to Table 33-122
for the static segment and according to Table 33-123 for the dynamic segment are selected.

Table 33-122. Message buffer search priority (static segment)

Priority MTD LCKS CMT CCFM1

1 Cycle Counter Filter Match, see Section 33.6.7.1, Message buffer cycle counter filtering”

Description Transition

(highest) 0 1 0 1 1 Transmit buffer, matches cycle count, not locked
and committed

MA

1
1 — 0 1 Transmit buffer, matches cycle count, not

committed
SA

1 1 — 1 Transmit buffer, matches cycle count, locked SA

2 1 — — — Transmit buffer SA

3 0 0 n/a 1 Receive buffer, matches cycle count, not locked SB

(lowest) 4 0 1 n/a 1 Receive buffer, matches cycle count, locked SB

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1579

If there are multiple message buffer with highest priority, the message buffer with the lowest message
buffer number is selected. All message buffer which have the highest priority must have a consistent
channel assignment as specified in Section 33.6.7.2, Message buffer channel assignment consistency”.

Depending on the message buffer channel assignment the same message buffer can be found for both
channel A and channel B. In this case, this message buffer is used as described in Section 33.6.3.1,
Individual message buffers”.

33.6.7.1 Message buffer cycle counter filtering

The message buffer cycle counter filter is a value-mask filter defined by the CCFE, CCFMSK, and
CCFVAL fields in the Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn). This filter
determines a set of communication cycles in which the message buffer is considered for message reception
or message transmission. If the cycle counter filter is disabled, that is, CCFE = 0, this set of cycles consists
of all communication cycles.

If the cycle counter filter of a message buffer does not match a certain communication cycle number, this
message buffer is not considered for message transmission or reception in that communication cycle. In
case of a transmit message buffer assigned to a slot in the static segment, though, this buffer is added to
the matching message buffers to indicate the slot assignment and to trigger the null frame transmission.

The cycle counter filter of a message buffer matches the communication cycle with the number CYCCNT
if at least one of the following conditions evaluates to true:

Eqn. 33-11

Eqn. 33-12

33.6.7.2 Message buffer channel assignment consistency

The message buffer channel assignment given by the CHA and CHB bits in the Message Buffer Cycle
Counter Filter Registers (FR_MBCCFRn) defines the channels on which the message buffer will receive
or transmit. The message buffer with number n transmits or receives on channel A if
FR_MBCCFRn[CHA] = 1 and transmits or receives on channel B if FR_MBCCFRn[CHB] = 1.

To ensure correct message buffer operation, all message buffers assigned to the same slot and with the
same priority must have a consistent channel assignment. That means they must be either assigned to one
channel only, or must be assigned to both channels. The behavior of the message buffer search is not

Table 33-123. Message buffer search priority (dynamic segment)

Priority MTD LCKS CMT CCFM1

1 Cycle Counter Filter Match, see Section 33.6.7.1, Message buffer cycle counter filtering”

Description Transition

(highest) 0 1 0 1 1 Transmit buffer, matches cycle count, not locked
and committed

MA

1 0 0 n/a 1 Receive buffer, matches cycle count, not locked SB

(lowest) 2 0 1 n/a 1 Receive buffer, matches cycle count, locked SB

MBCCFRn CCFE  0=

CYCCNT & MBCCFRn CCFMSK  MBCCFRn CCFVAL  & MBCCFRn CCFMSK =

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1580 Freescale Semiconductor

defined, if both types of channel assignments occur for one slot and priority. An inconsistent channel
assignment for message buffer 0 and message buffer 1 is depicted in Figure 33-146.

Figure 33-146. Inconsistent channel assignment

33.6.7.3 Node related slot multiplexing

The term Node Related Slot Multiplexing applies to the dynamic segment only and refers to the
functionality if there are transmit as well as receive message buffers are configured for the same slot.

According to Table 33-123 the transmit buffer is only found if the cycle counter filter matches, and the
buffer is not locked and committed. In all other cases, the receive buffer will be found. Thus, if the block
has no data to transmit in a dynamic slot, it is able to receive frames on that slot.

33.6.7.4 Message buffer search error

If the message buffer search is running while the next message buffer search start event appears, the
message buffer search is stopped and the Message Buffer Search Error Flag MSB_EF is set in the CHI
Error Flag Register (FR_CHIERFR). This appears only if the CHI frequency is too low to search through
all message buffers within the NIT or a minislot. The message buffer result is not defined in this case. For
more details see Section 33.7.6, Number of usable message buffers”.

33.6.8 Individual message buffer reconfiguration

The initial configuration of each individual message buffer can be changed even when the protocol is not
in the POC:config state. This is referred to as individual message buffer reconfiguration. The
configuration bits and fields that can be changed are given in the section on Specific configuration data.
The common configuration data given in the section on Specific configuration data can not be
reconfigured when the protocol is out of the POC:config state.

33.6.8.1 Reconfiguration schemes

Depending on the target and destination basic state of the message buffer that is to be reconfigured, there
are three reconfiguration schemes.

33.6.8.1.1 Basic type not changed (RC1)

A reconfiguration will not change the basic type of the individual message buffer, if both the message
buffer transfer direction bit FR_MBCCSRn[MTD] and the message buffer type bit FR_MBCCSRn[MBT]
are not changed. This type of reconfiguration is denoted by RC1 in Figure 33-147. Single transmit and
receive message buffers can be RC1-reconfigured when in the HDis or HDisLck state. Double transmit
message buffers can be RC1-reconfigured if both the transmit side and the commit side are in the HDis
state.

MB0 FR_MBCCFR0[CHA] = 1, FR_MBCCFR0[CHB] = 0

MB1 dual channel assignment

single channel assignmentFR_MBFIDR0[FID] = 10

FR_MBFIDR1[FID] = 10FR_MBCCFR1[CHA] = 1, FR_MBCCFR1[CHB] = 1

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1581

33.6.8.1.2 Buffer type not changed (RC2)

A reconfiguration will not change the buffer type of the individual message buffer if the message buffer
buffer type bit FR_MBCCSRn[MBT] is not changed. This type of reconfiguration is denoted by RC2 in
Figure 33-147. It applies only to single transmit and receive message buffers. Single transmit and receive
message buffers can be RC2-reconfigured when in the HDis or HDisLck state.

33.6.8.1.3 Buffer type changed (RC3)

A reconfiguration will change the buffer type of the individual message buffer if the message buffer type
bit FR_MBCCSRn[MBT] is changed. This type of reconfiguration is denoted by RC3 in Figure 33-147.
The RC3 reconfiguration splits one double buffer into two single buffers or combines two single buffer
into one double buffer. In the later case, the two single message buffers must have consecutive message
buffer numbers and the smaller one must be even. Message Buffers can be RC3 reconfigured if they are in
the HDis state.

Figure 33-147. Message buffer reconfiguration scheme

33.6.9 Receive FIFOs

This section provides the functional description of the two receive FIFOs.

33.6.9.1 Overview

The two receive FIFOs implement the queued message buffer concept defined by the FlexRay
Communications System Protocol Specification, Version 2.1 Rev A. One FIFO is assigned to channel A,
the other FIFO is assigned to channel B. Both FIFOs work completely independent from each other.

The message buffer structure of each FIFO is described in Section 33.6.3.3, Receive FIFO”. The area in
the FlexRay memory area for each of the two FIFOs is characterized by:

• The FIFO system memory base address

• The index of the first FIFO entry given by Receive FIFO Start Index Register (FR_RFSIR)

• The number of FIFO entries and the length of each FIFO entry as given by Receive FIFO Depth
and Size Register (RFDSR)

single RX single TX

double TX (commit side)

double TX (transmit side)

RC1
RC1

RC1

RC2

RC3RC3

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1582 Freescale Semiconductor

33.6.9.2 FIFO configuration

The FIFOs can be configured for two different locations of the system memory base address via the FIFO
address mode bit FAM in the Module Configuration Register (FR_MCR).

33.6.9.2.1 Single system memory base address mode

This mode is configured, when the FIFO address mode flag FR_MCR[FAM] is set to 0. In this mode, the
location of the system memory base address for the FIFO buffers is System Memory Base Address
Register (FR_SYMBADR).

33.6.9.2.2 Dual system memory base address mode

This mode is configured, when the FIFO address mode flag FR_MCR[FAM] is set to 1. In this mode, the
location of the system memory base address for the FIFO buffers is Receive FIFO System Memory Base
Address Register (FR_RFSYMBADR).

The FIFO control and configuration data are given in Section 33.6.3.7, Receive FIFO control and
configuration data”. The configuration of the FIFOs consists of two steps.

1. The first step is the allocation of the required amount of memory for the FlexRay memory area.
This includes the allocation of the message buffer header area and the allocation of the message
buffer data fields. For more details see Section 33.6.4, FlexRay memory area layout”.

2. The second step is the programming of the configuration data register while the PE is in
POC:config.

The following steps configure the layout of the FIFO:

• Configure the FIFO update and address modes in Module Configuration Register (FR_MCR)

• Configure the FIFO system memory base address

• Configure the Receive FIFO Start Index Register (FR_RFSIR) with the first message buffer header
index that belongs to the FIFO

• Configure the Receive FIFO Depth and Size Register (RFDSR) with FIFO entry size

• Configure the Receive FIFO Depth and Size Register (RFDSR) with FIFO depth

• Configure the FIFO filters

33.6.9.3 FIFO periodic timer

The FIFO periodic timer is used to generate an FIFO almost-full interrupt at certain point in time, if the
almost-full watermark is not reached, but the FIFO is not empty. This can be used to prevent frames from
get stuck in the FIFO for a long time.

The FIFO periodic timer is configured via the Receive FIFO Periodic Timer Register (FR_RFPTR). If the
periodic timer duration FR_RFPTR[PTD] is configured to 0x0000, the periodic timer is continuously
expired. If the periodic timer duration FR_RFPTR[PTD] is configured to 0x3FFF, the periodic timer never
expires. If the periodic timer is configured to a value ptd, greater than 0x0000 and smaller 0x3FFF, the
periodic timer expires and is restarted at the start of every communication cycle, and expires and is
restarted after ptd macroticks have been elapsed.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1583

33.6.9.4 FIFO reception

The FIFO reception is a CC internal operation.

A message frame reception is directed into the FIFO, if no individual message buffer is assigned for
transmission or subscribed for reception for the current slot. In this case the FIFO filter path shown in
Figure 33-148 is activated.

If the FIFO filter path indicates that the received frame has to be appended to the FIFO and the FIFO is
not full, the CC writes the received frame header into the message buffer header field indicated by the CC
internal FIFO write index. The frame payload data are written into the corresponding message buffer data
field. If the status of the received frame indicates a valid non-null frame, the slot status information is
written into the message buffer header field and the CC internal FIFO write index is updated by 1 and the
FIFO fill level FLA (FLB) in the Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR) is
incremented.If the status of the received frame indicates an invalid or null frame, the frame is not appended
to the FIFO.

33.6.9.5 FIFO almost-full interrupt generation

If the FIFO fill level FLA (FLB) is updated after a frame reception and exceeds the FIFO watermark level
WM, that is, FLA > WMA (FLB > WMB), then the FIFO almost-full interrupt flag FR_GIFER[FAFAIF]
(FR_GIFER[FAFBIF]) is asserted.If the periodic timer expires, and FIFOA (FIFOB) is not empty, that is,
FLA > 0 (FLB > 0), then the FIFO almost-full interrupt flag FR_GIFER[FAFAIF] (FR_GIFER[FAFBIF])
is asserted.

33.6.9.6 FIFO overflow error generation

If the FIFOA (FIFOB) is full, that is, FLA = FIFO_DEPTHA (FLB = FIFO_DEPTHB) and the conditions
for a FIFO reception as described in Section 33.6.9.4, FIFO reception” are fulfilled, then the FIFO
overflow error flag FR_CHIERFR[FOVA_EF] (FR_CHIERFR[FOVB_EF]) is asserted.

33.6.9.7 FIFO message access

The FIFOA (FIFOB) contains valid messages if the FIFO fill level FLA (FLB) is greater than 0. The
Receive FIFO A Read Index Register (FR_RFARIR) (Receive FIFO B Read Index Register
(FR_RFBRIR)) pointing to a message buffer with valid content and the oldest frames stored in the FIFO.

If the FIFO fill level FLA (FLB) is 0, than the FIFOA (FIFOB) contains no valid messages and the Receive
FIFO A Read Index Register (FR_RFARIR) (Receive FIFO B Read Index Register (FR_RFBRIR))
pointing to a message buffer with invalid content. In this case the application must not read data from the
FIFO.

To access the oldest message in the FIFOA (FIFOB), the application first reads the read index RDIDX out
of the Receive FIFO A Read Index Register (FR_RFARIR) (Receive FIFO B Read Index Register
(FR_RFBRIR)). This read index points to the message buffer header field of the oldest message buffer that
contains valid received message data. The application can access the message data as described in
Section 33.6.3.3, Receive FIFO”. When the application has read the message buffer data and status
information, it can update the FIFO as described in Section 33.6.9.8, FIFO update”.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1584 Freescale Semiconductor

33.6.9.8 FIFO update

The application updates the FIFOA (FIFOB) by writing a pop count value pc different from 0 to the
PCA (PCB) field in the Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR).

As a result of the this operation, the CC removes the oldest pc entries from FIFOA (FIFOB).

If the specified pop count value pc is greater than the current fill level fl provided in FLA (FAB) field, then
only fl entries are removed from the FIFOA (FIFOB), the remaining fl-pc requested pop operations are
discarded without any notification. In this case FIFOA (FIFOB) is empty after the update operation.

The read index in the Receive FIFO A Read Index Register (FR_RFARIR) (Receive FIFO B Read Index
Register (FR_RFBRIR)) is incremented by the number of removed items. If the read index reaches the top
of the FIFO, it wraps around to the FIFO start index defined in Receive FIFO Start Index Register
(FR_RFSIR) automatically.

33.6.9.8.1 FIFO interrupt flag update

Th FIFO Interrupt Flag Update mode is configured when the FIFO update mode flag FR_MCR[FUM] is
set to ‘0’. In this mode FIFOA (FIFOB) will be updated by one entry, when the interrupt flag
FR_GIFER[FAFAIF] (FR_GIFER[FAFBIF]) is written with ‘1’ by the application.

If the FIFO is empty, the update request is ignored without any notification.

The read index in the Receive FIFO A Read Index Register (FR_RFARIR) (Receive FIFO B Read Index
Register (FR_RFBRIR)) is incremented by 1 if the FIFO was not empty. If the read index reaches the top
of the FIFO, it wraps around to the FIFO start index automatically.

33.6.9.9 FIFO filtering

The FIFO filtering is activated after all enabled individual receive message buffers have been searched
without success for a message buffer to receive the current frame.

The CC provides three sets of FIFO filters. The FIFO filters are applied to valid non-null frames only. The
FIFO will not receive invalid or null-frames. For each FIFO filter, the pass criteria is specified in the
related section given below. Only frames that have passed all filters will be appended to the FIFO. The
FIFO filter path is depicted in Figure 33-148.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1585

Figure 33-148. Received frame FIFO filter path

Valid Frame Received (vRF)

Individual

Null Frame

Frame ID Value-

Frame ID

Append to FIFO (vRF)

Frame ID

No

Frame Received

FIFO full

Set FIFO Overflow Interrupt Flag

Message Buffer Found
?

No

Passed

Passed

Passed

Yes

(vRF!Header!NFIndicator = 0)
?

Mask Rejection Filter
?

Range Rejection Filter
?

Range Acceptance Filter
?

in Dynamic Segment
?

?

Store Into Message Buffer (vRF)

Yes

No

Else

Ignore frame

Yes

Else

Else

Message ID
(vRF!Header!PPIndicator = 1)

?

Message ID

Yes

Passed

Acceptance Filter
?

No

Yes

No

Else

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1586 Freescale Semiconductor

A received frame passes the FIFO filtering if it has passed all three type of filter.

33.6.9.9.1 RX FIFO frame ID value-mask rejection filter

The frame ID value-mask rejection filter is a value-mask filter and is defined by the fields in the Receive
FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR) and the Receive FIFO Frame ID
Rejection Filter Mask Register (FR_RFFIDRFMR). Each received frame with a frame ID FID that does
not match the value-mask filter value passes the filter, that is, is not rejected.

Consequently, a received valid frame with the frame ID FID passes the RX FIFO Frame ID Value-Mask
Rejection Filter if Equation 33-13 is fulfilled.

Eqn. 33-13

The RX FIFO Frame ID Value-Mask Rejection Filter can be configured to pass all frames by the following
settings.

• FR_RFFIDRFVR[FIDRFVAL] = 0x000 and FR_RFFIDRFMR[FIDRFMSK] = 0x7FF

Using the settings above, only the frame with frame ID 0 will be rejected, which is an invalid frame. All
other frames will pass.

The RX FIFO Frame ID Value-Mask Rejection Filter can be configured to reject all frames by the
following settings.

• FR_RFFIDRFMR[FIDRFMSK] = 0x000

Using the settings above, Equation 33-13 can never be fulfilled (0 != 0) and thus all frames are rejected;
no frame will pass. This is the reset value for the RX FIFO.

33.6.9.9.2 RX FIFO frame ID range rejection filter

Each of the four RX FIFO Frame ID Range filters can be configured as a rejection filter. The filters are
configured by the Receive FIFO Range Filter Configuration Register (FR_RFRFCFR) and controlled by
the Receive FIFO Range Filter Control Register (FR_RFRFCTR). The RX FIFO Frame ID range filters
apply to all received valid frames. A received frame with the frame ID FID passes the RX FIFO Frame ID
Range rejection filters if either no rejection filter is enabled, or, for all of the enabled RX FIFO Frame ID
Range rejection filters, that is, FR_RFRFCTR[FiMD] = 1 and FR_RFRFCTR[FiEN] = 1, Equation 33-14
is fulfilled.

Eqn. 33-14

Consequently, all frames with a frame ID that fulfills Equation 33-15 for at least one of the enabled
rejection filters will be rejected and thus not pass.

Eqn. 33-15

FID & FR_RFFIDRFMR FIDRFMSK  FR_RFFIDRFVR FIDRFVAL  & FR_RFFIDRFMR FIDRFMSK 

FID FR_RFRFCFRSEL SIDIBD 0=   or FR_RFRFCFRSEL SIDIBD 1=  FID

FR_RFRFCFRSEL SIDIBD 0=  FID FR_RFRFCFRSEL SIDIBD 1= 

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1587

33.6.9.9.3 RX FIFO frame ID range acceptance filter

Each of the four RX FIFO Frame ID Range filters can be configured as an acceptance filter. The filters are
configured by the Receive FIFO Range Filter Configuration Register (FR_RFRFCFR) and controlled by
the Receive FIFO Range Filter Control Register (FR_RFRFCTR). The RX FIFO Frame ID range filters
apply to all received valid frames. A received frame with the frame ID FID passes the RX FIFO Frame ID
Range acceptance filters if either no acceptance filter is enabled, or, for at least one of the enabled RX FIFO
Frame ID Range acceptance filters, that is, FR_RFRFCTR[FiMD] = 0 and FR_RFRFCTR[FiEN] = 1,
Equation 33-16 is fulfilled.

Eqn. 33-16

33.6.9.9.4 RX FIFO message ID acceptance filter

The RX FIFO Message ID Acceptance Filter is a value-mask filter and is defined by the Receive FIFO
Message ID Acceptance Filter Value Register (FR_RFMIDAFVR) and the Receive FIFO Message ID
Acceptance Filter Mask Register (FR_RFMIDAFMR). This filter applies only to valid frames received in
the dynamic segment with the payload preamble indicator bit PPI set to 1. All other frames will pass this
filter.

A received valid frame in the dynamic segment with the payload preamble indicator bit PPI set to 1 and
with the message ID MID (the first two bytes of the payload) will pass the RX FIFO Message ID
Acceptance Filter if Equation 33-17 is fulfilled.

Eqn. 33-17

The RX FIFO Message ID Acceptance Filter can be configured to accept all frames by setting

• FR_RFMIDAFMR[MIDAFMSK] = 0x000

Using the settings above, Equation 33-17 is always fulfilled and all frames will pass.

33.6.10 Channel device modes

This section describes the two FlexRay channel device modes that are supported by the CC.

33.6.10.1 Dual channel device mode

In the dual channel device mode, both FlexRay ports are connected to physical FlexRay bus lines. The
FlexRay port consisting of FR_A_RX, FR_A_TX, and FR_A_TX_EN is connected to the physical bus
channel A and the FlexRay port consisting of FR_B_RX, FR_B_TX, and FR_B_TX_EN is connected to
the physical bus channel B. The dual channel system is shown in Figure 33-149.

 FR_RFRFCFRSEL SIDIBD 0=  FID FR_RFRFCFRSEL SIDIBD 1= 

MID & FR_RFMIDAFMR MIDAFMSK  FR_RFMIDAFMR MIDAFVAL  & FR_RFMIDAFMR MIDAFMSK =

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1588 Freescale Semiconductor

Figure 33-149. Dual channel device mode

33.6.10.2 Single channel device mode

The single channel device mode supports devices that have only one FlexRay port available. This FlexRay
port consists of the signals FR_A_RX, FR_A_TX, and FR_A_TX_EN and can be connected to either the
physical bus channel A (shown in Figure 33-150) or the physical bus channel B (shown in Figure 33-151).

If the device is configured as a single channel device by setting FR_MCR.SCD to 1, only the internal
channel A and the FlexRay Port A is used. Depending on the setting of FR_MCR.CHA and
FR_MCR.CHB, the internal channel A behaves either as a FlexRay Channel A or FlexRay Channel B. The
bit FR_MCR.CHA must be set, if the FlexRay Port A is connected to a FlexRay Channel A. The bit
FR_MCR.CHB must be set if the FlexRay Port A is connected to a FlexRay Channel B. The two FlexRay
channels differ only in the initial value for the frame CRC cCrcInit. For a single channel device, the
application can access and configure only the registers related to internal channel A.

CHI PE

cfg(A)

reg(A)

cCrcInit[A]

cCrcInit[B]

cfg(B)

reg(B)

channel 0

channel 1

FlexRay Channel A
FlexRay Bus Driver

Channel A

FR_A_RX

FR_A_TX

FR_A_TX_EN

FlexRay Channel B
FlexRay Bus Driver

Channel B

FR_B_RX

FR_B_TX

FR_B_TX_EN

FLEXRAY

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1589

Figure 33-150. Single channel device mode (channel A)

Figure 33-151. Single channel device mode (channel B)

33.6.11 External clock synchronization

The application of the external rate and offset correction is triggered when the application writes to the
EOC_AP and ERC_AP fields in the Protocol Operation Control Register (FR_POCR). The PE applies the
external correction values in the next even-odd cycle pair as shown in Figure 33-152 and Figure 33-153.

CHI PE

cfg(A)

reg(A)

cCrcInit[A]

cCrcInit[B]

cfg(B)

reg(B)

channel A

channel B

FlexRay Channel A
FlexRay Bus Driver

Channel A

FR_A_RX

FR_A_TX

FR_A_TX_EN

FR_B_RX

FR_B_TX

FR_B_TX_EN

FLEXRAY

CHI PE

cfg(A)

reg(A)

cCrcInit[B]

cfg(B)

reg(B)

channel A

channel B

FlexRay Channel B

Init Value for Frame CRC is cCrcInit[B]cCrcInit[A]

FlexRay Bus Driver
Channel A

FR_A_RX

FR_A_TX

FR_A_TX_EN

FR_B_RX

FR_B_TX

FR_B_TX_EN

FLEXRAY

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1590 Freescale Semiconductor

NOTE

The values provided in the EOC_AP and ERC_AP fields are the values that
were written from the application most recently. If these value were already
applied, they will not be applied in the current cycle pair again.

If the offset correction applied in the NIT of cycle 2n+1 shall be affect by the external offset correction,
the EOC_AP field must be written to after the start of cycle 2n and before the end of the static segment of
cycle 2n+1. If this field is written to after the end of the static segment of cycle 2n+1, it is not guaranteed
that the external correction value is applied in cycle 2n+1. If the value is not applied in cycle 2n+1, then
the value will be applied in the cycle 2n+3. Refer to Figure 33-152 for timing details.

Figure 33-152. External offset correction write and application timing

If the rate correction for the cycle pair [2n+2, 2n+3] shall be affect by the external offset correction, the
ERC_AP field must be written to after the start of cycle 2n and before the end of the static segment start
of cycle 2n+1. If this field is written to after the end of the static segment of cycle 2n+1, it is not guaranteed
that the external correction value is applied in cycle pair [2n+2, 2n+3]. If the value is not applied for cycle
pair [2n+2, 2n+3], then the value will be applied for cycle pair [2n+4, 2n+5]. Refer to Figure 33-153 for
details.

Figure 33-153. External rate correction write and application timing

33.6.12 Sync frame ID and sync frame deviation tables

The FlexRay protocol requires the provision of a snapshot of the Synchronization Frame ID tables for the
even and odd communication cycle for both channels. The CC provides the means to write a copy of these
internal tables into the FlexRay memory area and ensures application access to consistent tables by means
of table locking. Once the application has locked the table successfully, the CC will not overwrite these
tables and the application can read a consistent snapshot.

NOTE

Only synchronization frames that have passed the synchronization frame
filters are considered for clock synchronization and appear in the sync frame
tables.

static segment NIT static segment NIT

EOC_AP write window EOC_AP application

cycle 2n cycle 2n+1

static segment NIT

ERC_AP write window ERC_AP application

cycle 2n

static segment NIT

cycle 2n+1

static segment NIT

cycle 2n+2

static segment NIT

cycle 2n+3

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1591

33.6.12.1 Sync frame ID table content

The Sync Frame ID Table is a snapshot of the protocol related variables vsSyncIdListA and vsSyncIdListB
for each even and odd communication cycle. This table provides a list of the frame IDs of the
synchronization frames received on the corresponding channel and cycle that are used for the clock
synchronization.

33.6.12.2 Sync frame deviation table content

The Sync Frame Deviation Table is a snapshot of the protocol related variable zsDev(id)(oe)(ch)!Value.
Each Sync Frame Deviation Table entry provides the deviation value for the sync frame, with the frame
ID presented in the corresponding entry in the Sync Frame ID Table.

Figure 33-154. Sync table memory layout

33.6.12.3 Sync frame ID and sync frame deviation table setup

The CC writes a copy of the internal synchronization frame ID and deviation tables into the FlexRay
memory area if requested by the application. The application must provide the appropriate amount of
FlexRay memory area for the tables. The memory layout of the tables is given in Figure 33-154. Each table
occupies 120 16-bit entries.

While the protocol is in POC:config state, the application must program the offsets for the tables into the
Sync Frame Table Offset Register (FR_SFTOR).

FR_SFTOR FR_SFTOR + 180

Sync Frame ID ChA 1
Sync Frame ID ChA 2
Sync Frame ID ChA 3
Sync Frame ID ChA 4
Sync Frame ID ChA 5
Sync Frame ID ChA 6
Sync Frame ID ChA 7
Sync Frame ID ChA 8
Sync Frame ID ChA 9
Sync Frame ID ChA 10
Sync Frame ID ChA 11
Sync Frame ID ChA 12
Sync Frame ID ChA 13
Sync Frame ID ChA 14
Sync Frame ID ChA 15

Sync Deviation ChA 1
Sync Deviation ChA 2
Sync Deviation ChA 3
Sync Deviation ChA 4
Sync Deviation ChA 5
Sync Deviation ChA 6
Sync Deviation ChA 7
Sync Deviation ChA 8
Sync Deviation ChA 9
Sync Deviation ChA 10
Sync Deviation ChA 11
Sync Deviation ChA 12
Sync Deviation ChA 13
Sync Deviation ChA 14
Sync Deviation ChA 15

FR_SFTOR + 60 FR_SFTOR +120

Sync Frame ID ChA 1
Sync Frame ID ChA 2
Sync Frame ID ChA 3
Sync Frame ID ChA 4
Sync Frame ID ChA 5
Sync Frame ID ChA 6
Sync Frame ID ChA 7
Sync Frame ID ChA 8
Sync Frame ID ChA 9
Sync Frame ID ChA 10
Sync Frame ID ChA 11
Sync Frame ID ChA 12
Sync Frame ID ChA 13
Sync Frame ID ChA 14
Sync Frame ID ChA 15

Sync Deviation ChA 1
Sync Deviation ChA 2
Sync Deviation ChA 3
Sync Deviation ChA 4
Sync Deviation ChA 5
Sync Deviation ChA 6
Sync Deviation ChA 7
Sync Deviation ChA 8
Sync Deviation ChA 9
Sync Deviation ChA 10
Sync Deviation ChA 11
Sync Deviation ChA 12
Sync Deviation ChA 13
Sync Deviation ChA 14
Sync Deviation ChA 15

Offset + $00
Offset + $02
Offset + $04
Offset + $06
Offset + $08
Offset + $0A
Offset + $0C
Offset + $0E
Offset + $10
Offset + $12
Offset + $14
Offset + $16
Offset + $18
Offset + $1A
Offset + $1C

Sync Frame ID ChB 1
Sync Frame ID ChB 2
Sync Frame ID ChB 3
Sync Frame ID ChB 4
Sync Frame ID ChB 5
Sync Frame ID ChB 6
Sync Frame ID ChB 7
Sync Frame ID ChB 8
Sync Frame ID ChB 9
Sync Frame ID ChB 10
Sync Frame ID ChB 11
Sync Frame ID ChB 12
Sync Frame ID ChB 13
Sync Frame ID ChB 14
Sync Frame ID ChB 15

Sync Deviation ChB 1
Sync Deviation ChB 2
Sync Deviation ChB 3
Sync Deviation ChB 4
Sync Deviation ChB 5
Sync Deviation ChB 6
Sync Deviation ChB 7
Sync Deviation ChB 8
Sync Deviation ChB 9
Sync Deviation ChB 10
Sync Deviation ChB 11
Sync Deviation ChB 12
Sync Deviation ChB 13
Sync Deviation ChB 14
Sync Deviation ChB 15

Sync Frame ID ChB 1
Sync Frame ID ChB 2
Sync Frame ID ChB 3
Sync Frame ID ChB 4
Sync Frame ID ChB 5
Sync Frame ID ChB 6
Sync Frame ID ChB 7
Sync Frame ID ChB 8
Sync Frame ID ChB 9
Sync Frame ID ChB 10
Sync Frame ID ChB 11
Sync Frame ID ChB 12
Sync Frame ID ChB 13
Sync Frame ID ChB 14
Sync Frame ID ChB 15

Sync Deviation ChB 1
Sync Deviation ChB 2
Sync Deviation ChB 3
Sync Deviation ChB 4
Sync Deviation ChB 5
Sync Deviation ChB 6
Sync Deviation ChB 7
Sync Deviation ChB 8
Sync Deviation ChB 9
Sync Deviation ChB 10
Sync Deviation ChB 11
Sync Deviation ChB 12
Sync Deviation ChB 13
Sync Deviation ChB 14
Sync Deviation ChB 15

Offset + $1E
Offset + $20
Offset + $22
Offset + $24
Offset + $26
Offset + $28
Offset + $2A
Offset + $2C
Offset + $2E
Offset + $30
Offset + $32
Offset + $34
Offset + $36
Offset + $38
Offset + $3A

FR_SFCNTR

SFEVA
SFEVB

FR_SFCNTR

SFODA
SFODB

EVEN ODD EVEN ODD

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1592 Freescale Semiconductor

33.6.12.4 Sync frame ID and sync frame deviation table generation

The application controls the generation process of the Sync Frame ID and Sync Frame Deviation Tables
into the FlexRay memory area using the Sync Frame Table Configuration, Control, Status Register
(FR_SFTCCSR). A summary of the copy modes is given in Table 33-124.

The Sync Frame Table generation process is described in the following for the even cycle. The same
sequence applies to the odd cycle.

If the application has enabled the sync frame table generation by setting FR_SFTCCSR[SIDEN] to 1, the
CC starts the update of the even cycle related tables after the start of the NIT of the next even cycle. The
CC checks if the application has locked the tables by reading the FR_SFTCCSR[ELKS] lock status bit. If
this bit is set, the CC will not update the table in this cycle. If this bit is cleared, the CC locks this table and
starts the table update. To indicate that these tables are currently updated and may contain inconsistent
data, the CC clears the even table valid status bit FR_SFTCCSR[EVAL]. Once all table entries related to
the even cycle have been transferred into the FlexRay memory area, the CC sets the even table valid bit
FR_SFTCCSR[EVAL] and the Even Cycle Table Written Interrupt Flag EVT_IF in the Protocol Interrupt
Flag Register 1 (FR_PIFR1). If the interrupt enable flag EVT_IE is set, an interrupt request is generated.

To read the generated tables, the application must lock the tables to prevent the CC from updating these
tables. The locking is initiated by writing a 1 to the even table lock trigger FR_SFTCCSR[ELKT]. When
the even table is not currently updated by the CC, the lock is granted and the even table lock status bit
FR_SFTCCSR[ELKS] is set. This indicates that the application has successfully locked the even sync
tables and the corresponding status information fields SFRA, SFRB in the Sync Frame Counter Register
(FR_SFCNTR). The value in the FR_SFTCCSR[CYCNUM] field provides the number of the cycle that
this table is related to.

The number of available table entries per channel is provided in the FR_SFCNTR[SFEVA] and
FR_SFCNTR[SFEVB] fields. The application can now start to read the sync table data from the locations
given in Figure 33-154.

Table 33-124. Sync frame table generation modes

FR_SFTCCSR
Description

OPT SDVEN SIDEN

0 0 0 No Sync Frame Table copy

0 0 1 Sync Frame ID Tables will be copied continuously

0 1 0 Reserved

0 1 1 Sync Frame ID Tables and Sync Frame Deviation Tables will be copied continuously

1 0 0 No Sync Frame Table copy

1 0 1 Sync Frame ID Tables for next even-odd-cycle pair will be copied

1 1 0 Reserved

1 1 1 Sync Frame ID Tables and Sync Frame Deviation Tables for next even-odd-cycle
pair will be copied

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1593

After reading all the data from the locked tables, the application must unlock the table by writing to the
even table lock trigger FR_SFTCCSR[ELKT] again. The even table lock status bit FR_SFTCCSR[ELKS]
is reset immediately.

If the sync frame table generation is disabled, the table valid bits FR_SFTCCSR[EVAL] and
FR_SFTCCSR[EVAL] are reset when the counter values in the Sync Frame Counter Register
(FR_SFCNTR) are updated. This is done because the tables stored in the FlexRay memory area are no
longer related to the values in the Sync Frame Counter Register (FR_SFCNTR).

Figure 33-155. Sync frame table trigger and generation timing

33.6.12.5 Sync frame table access

The sync frame tables will be transferred into the FlexRay memory area during the table write windows
shown in Figure 33-155. During the table write, the application can not lock the table that is currently
written. If the application locks the table outside of the table write window, the lock is granted
immediately.

33.6.12.5.1 Sync frame table locking and unlocking

The application locks the even/odd sync frame table by writing 1 to the lock trigger bit ELKT/OLKT in
the Sync Frame Table Configuration, Control, Status Register (FR_SFTCCSR). If the affected table is not
currently written to the FlexRay memory area, the lock is granted immediately, and the lock status bit
ELKS/OLKS is set. If the affected table is currently written to the FlexRay memory area, the lock is not
granted. In this case, the application must issue the lock request again until the lock is granted.

The application unlocks the even/odd sync frame table by writing 1 to the lock trigger bit ELKT/OLKT.
The lock status bit ELKS/OLKS is cleared immediately.

33.6.13 MTS generation

The CC provides a flexible means to request the transmission of the Media Access Test Symbol MTS in
the symbol window on channel A or channel B.

The application can configure the set of communication cycles in which the MTS will be transmitted over
the FlexRay bus by programming the CYCCNTMSK and CYCCNTVAL fields in the MTS A
Configuration Register (FR_MTSACFR) and MTS B Configuration Register (MTSBCFR).

The application enables or disables the generation of the MTS on either channel by setting or clearing the
MTE control bit in the MTS A Configuration Register (FR_MTSACFR) or MTS B Configuration Register
(MTSBCFR). If an MTS is to be transmitted in a certain communication cycle, the application must set
the MTE control bit during the static segment of the preceding communication cycle.

FR_SFTCCSR.[OPT,SIDEN,SDVEN] write window
even table write

static segment NIT static segment NIT static segment NIT

cycle 2n-1 cycle 2n cycle 2n+1

odd table write

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1594 Freescale Semiconductor

The MTS is transmitted over channel A in the communication cycle with number CYCCNT, if
Equation 33-19, Equation 33-20, and Equation 33-20 are fulfilled.

Eqn. 33-18

Eqn. 33-19

Eqn. 33-20

The MTS is transmitted over channel B in the communication cycle with number CYCCNT, if
Equation 33-18, Equation 33-21, and Equation 33-22 are fulfilled.

Eqn. 33-21

Eqn. 33-22

33.6.14 Key slot transmission

33.6.14.1 Key slot assignment

A key slot is assigned to the CC if the key_slot_id field in the Protocol Configuration Register 18
(FR_PCR18) is configured with a value greater than 0 and less or equal to number_of_static_slots in
Protocol Configuration Register 2 (FR_PCR2), otherwise no key slot is assigned.

33.6.14.2 Key slot transmission in POC:startup

If a key slot is assigned and the CC is in the POC:startup state, startup null frames will be transmitted as
specified by FlexRay Communications System Protocol Specification, Version 2.1 Rev A.

33.6.14.3 Key slot transmission in POC:normal active

If a key slot is assigned and the CC is in POC:normal active, a frame of the type as shown in Table 33-125
is transmitted. If a transmit message buffer is configured for the key slot and a valid message is available,
a message frame is transmitted (see Section 33.6.6.2.5, Message transmission”). If no transmit message
buffer is configured for the key slot or no valid message is available, a null frame is transmitted (see
Section 33.6.6.2.6, Null frame transmission”).

FR_PSR0 PROTSTATE  POC:normal active=

FR_MTSACRF MTE  1=

CYCCNT & FR_MTSACFR CYCCNTMSK 
FR_MTSACFR CYCCNTVAL  & FR_MTSACFR CYCCNTMSK =

FR_MTSBCRF MTE  1=

CYCCNT & FR_MTSBCFR CYCCNTMSK 
FR_MTSBCFR CYCCNTVAL  & FR_MTSBCFR CYCCNTMSK =

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1595

33.6.15 Sync frame filtering

Each received synchronization frame must pass the Sync Frame Acceptance Filter and the Sync Frame
Rejection Filter before it is considered for clock synchronization. If the synchronization frame filtering is
globally disabled, that is, the SFFE control bit in the Module Configuration Register (FR_MCR) is cleared,
all received synchronization frames are considered for clock synchronization. If a received
synchronization frame did not pass at least one of the two filters, this frame is processed as a normal frame
and is not considered for clock synchronization.

33.6.15.1 Sync frame acceptance filtering

The synchronization frame acceptance filter is implemented as a value-mask filter. The value is configured
in the Sync Frame ID Acceptance Filter Value Register (FR_SFIDAFVR) and the mask is configured in
the Sync Frame ID Acceptance Filter Mask Register (FR_SFIDAFMR). A received synchronization frame
with the frame ID FID passes the sync frame acceptance filter, if Equation 33-23 or
Equation 33-24evaluates to true.

Eqn. 33-23

Eqn. 33-24

NOTE

Sync frames are transmitted in the static segment only. Thus FID < 1023.

33.6.15.2 Sync frame rejection filtering

The synchronization frame rejection filter is a comparator. The compare value is defined by the Sync
Frame ID Rejection Filter Register (FR_SFIDRFR). A received synchronization frame with the frame ID
FID passes the sync frame rejection filter if Equation 33-25 or Equation 33-26 evaluates to true.

Eqn. 33-25

Eqn. 33-26

NOTE

Sync frames are transmitted in the static segment only. Thus FID < 1023.

Table 33-125. Key slot frame type

FR_PCR11[key_slot_used_for_sync] FR_PCR11[key_slot_used_for_startup] Key slot frame type

0 0 normal frame

0 1 normal frame1

1 The frame transmitted has an semantically incorrect header and will be detected as an invalid frame at the receiver.

1 0 sync frame

1 1 startup frame

FR_MCR SFFE  0=

ID & FR_SFIDAFMR FMSK  FR_SFIDAFVR FVAL  & FR_SFIDAFMR FMSK=

FR_MCR SFFE  0=

FID FR_SFIDRFR SYNFRID 

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1596 Freescale Semiconductor

33.6.16 Strobe signal support

The CC provides a number of strobe signals for observing internal protocol timing related signals in the
protocol engine. The signals are listed and described in Table 33-12.

33.6.16.1 Strobe signal assignment

Each of the strobe signals listed in Table 33-12 can be assigned to one of the four strobe ports using the
Strobe Signal Control Register (FR_STBSCR). To assign multiple strobe signals, the application must
write multiple times to the Strobe Signal Control Register (FR_STBSCR) with appropriate settings.

To read out the current settings for a strobe signal with number N, the application must execute the
following sequence.

1. Write to FR_STBSCR with WMD = 1 and SEL = N. (updates SEL field only)

2. Read STBCSR.
The SEL field provides N and the ENB and STBPSEL fields provides the settings for signal N.

33.6.16.2 Strobe signal timing

This section provides detailed timing information of the strobe signals with respect to the protocol engine
clock.

The strobe signals display internal PE signals. Due to the internal architecture of the PE, some signals are
generated several PE clock cycles before the actual action is performed on the FlexRay Bus. These signals
are listed in Table 33-12 with a negative clock offset. An example waveform is given in Figure 33-156.

Figure 33-156. Strobe signal timing (type = pulse, clk_offset = -2)

Other signals refer to events that occurred on the FlexRay Bus some cycles before the strobe signal is
changed. These signals are listed in Table 33-12 with a positive clock offset. An example waveform is
given in Figure 33-157.

Figure 33-157. Strobe signal timing (type = pulse, clk_offset = +4)

PE Clock

Strobe Signal

FlexRay Bus Event

-2

PE Clock

Strobe Signal

FlexRay Bus Event

+4

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1597

33.6.17 Timer support

The CC provides two timers, which run on the FlexRay time base. Each timer generates a maskable
interrupt when it reaches a configured point in time. Timer T1 is an absolute timer. Timer T2 can be
configured to be an absolute or a relative timer. Both timers can be configured to be repetitive. In the
non-repetitive mode, timer stops if it expires. In repetitive mode, timer is restarted when it expires.

Both timers are active only when the protocol is in POC:normal active or POC:normal passive state. If
the protocol is not in one of these modes, the timers are stopped. The application must restart the timers
when the protocol has reached the POC:normal active or POC:normal passive state.

33.6.17.1 Absolute timer T1

The absolute timer T1 has the protocol cycle count and the macrotick count as the time base. The timer 1
interrupt flag TI1_IF in the Protocol Interrupt Flag Register 0 (FR_PIFR0) is set at the macrotick start
event, if Equation and Equation 33-28 are fulfilled

Eqn. 33-27

Eqn. 33-28

If the timer 1 interrupt enable bit TI1_IE in the Protocol Interrupt Enable Register 0 (FR_PIER0) is
asserted, an interrupt request is generated.

The status bit T1ST is set when the timer is triggered, and is cleared when the timer expires and is
non-repetitive. If the timer expires but is repetitive, the T1ST bit is not cleared and the timer is restarted
immediately. The T1ST is cleared when the timer is stopped.

33.6.17.2 Absolute / Relative timer T2

The timer T2 can be configured to be an absolute or relative timer by setting the T2_CFG control bit in the
Timer Configuration and Control Register (FR_TICCR). The status bit T2ST is set when the timer is
triggered, and is cleared when the timer expires and is non-repetitive. If the timer expires but is repetitive,
the T2ST bit is not cleared and the timer is restarted immediately. The T2ST is cleared when the timer is
stopped.

33.6.17.2.1 Absolute timer T2

If timer T2 is configured as an absolute timer, it has the same functionality timer T1 but the configuration
from Timer 2 Configuration Register 0 (FR_TI2CR0) and Timer 2 Configuration Register 1 (FR_TI2CR1)
is used. On expiration of timer T2, the interrupt flag TI2_IF in the Protocol Interrupt Flag Register 0
(FR_PIFR0) is set. If the timer 1 interrupt enable bit TI1_IE in the Protocol Interrupt Enable Register 0
(FR_PIER0) is asserted, an interrupt request is generated.

CYCTR CTCCNT  & FR_TI1CYSR T1_CYC_MSK 
FR_TI1CYSR T1_CYC_VAL  & FR_TI1CYSR T1_CYC_MSK =

FR_MTCTR MTCT  FR_TI1MTOR T1_MTOFFSET =

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1598 Freescale Semiconductor

33.6.17.2.2 Relative timer T2

If the timer T2 is configured as a relative timer, the interrupt flag TI2_IF in the Protocol Interrupt Flag
Register 0 (FR_PIFR0) is set, when the programmed amount of macroticks MT[31:0], defined by Timer
2 Configuration Register 0 (FR_TI2CR0) and Timer 2 Configuration Register 1 (FR_TI2CR1), has
expired since the trigger or restart of timer 2. The relative timer is implemented as a down counter and
expires when it has reached 0. At the macrotick start event, the value of MT[31:0] is checked and then
decremented. Thus, if the timer is started with MT[31:0] == 0, it expires at the next macrotick start.

33.6.18 Slot status monitoring

The CC provides several means for slot status monitoring. All slot status monitors use the same slot status
vector provided by the PE. The PE provides a slot status vector for each static slot, for each dynamic slot,
for the symbol window, and for the NIT, on a per channel base. The content of the slot status vector is
described in Table 33-126. The PE provides the slot status vector within the first macrotick after the end
of the related slot/window/NIT, as shown in Figure 33-158.

Figure 33-158. Slot status vector update

NOTE

The slot status for the NIT of cycle n is provided after the start of cycle n+1.

cy
cl

e
 s

ta
rt

sl
o

t
st

a
rt

sl
ot

 s
ta

rt

sy
m

bo
l w

in
d

o
w

M
T

st
at

us
(N

IT
)

M
T

st
a

tu
s(

sl
ot

 1
)

st
at

us
(s

lo
t

k)
M

T

st
a

tu
s(

sl
ot

 n
)

M
T

N
IT

 s
ta

rt
st

at
us

(s
ym

.w
in

)
M

T

cy
cl

e
 s

ta
rt

st
a

tu
s(

N
IT

)

communication cycle

static segment dynamic segment symbol window NIT

slot 1

M
T

st
a

rt

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1599

33.6.18.1 Channel status error counter registers

The two channel status error counter registers, Channel A Status Error Counter Register (FR_CASERCR)
and Channel B Status Error Counter Register (FR_CBSERCR), incremented by one, if at least one of four
slot status error bits, vSS!SyntaxError, vSS!ContentError, vSS!BViolation, or vSS!TxConflict is set to 1.
The status vectors for all slots in the static and dynamic segment, in the symbol window, and in the NIT
are taken into account. The counters wrap round after they have reached the maximum value.

Table 33-126. Slot status content

Slot Status content

 static /
dynamic

Slot

Slot related status
vSS!ValidFrame - valid frame received
vSS!SyntaxError - syntax error occurred while receiving
vSS!ContentError - content error occurred while receiving
vSS!BViolation - boundary violation while receiving
for slots in which the module transmits:
vSS!TxConflict - reception ongoing while transmission starts
for slots in which the module does not transmit:
vSS!TxConflict - reception ongoing while transmission starts
first valid - channel that has received the first valid frame
Received frame related status
extracted from
a) header of valid frame, if vSS!ValidFrame = 1
b) last received header, if vSS!ValidFrame = 0
c) set to 0, if nothing was received
vRF!Header!NFIndicator - Null Frame Indicator (0 for null frame)
vRF!Header!SuFIndicator - Startup Frame Indicator
vRF!Header!SyFIndicator - Sync Frame Indicator

Symbol
Window

Window related status
vSS!ValidFrame - always 0
vSS!ContentError - content error occurred while receiving
vSS!SyntaxError - syntax error occurred while receiving
vSS!BViolation - boundary violation while receiving
vSS!TxConflict - reception ongoing while transmission starts
Received symbol related status
vSS!ValidMTS - valid Media Test Access Symbol received
Received frame related status
see static/dynamic slot

NIT NIT related status
vSS!ValidFrame - always 0
vSS!ContentError - content error occurred while receiving
vSS!SyntaxError - syntax error occurred while receiving
vSS!BViolation - boundary violation while receiving
vSS!TxConflict - always 0
Received frame related status
see static/dynamic slot

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1600 Freescale Semiconductor

33.6.18.2 Protocol status registers

The Protocol Status Register 2 (FR_PSR2) provides slot status information about the Network Idle Time
NIT and the Symbol Window. The Protocol Status Register 3 (FR_PSR3) provides aggregated slot status
information.

33.6.18.3 Slot status registers

The eight slot status registers, Slot Status Registers (FR_SSR0–FR_SSR7), can be used to observe the
status of static slots, dynamic slots, the symbol window, or the NIT without individual message buffers.
These registers provide all slot status related and received frame / symbol related status information, as
given in Table 33-126, except of the first valid indicator for non-transmission slots.

33.6.18.4 Slot status counter registers

The CC provides four slot status error counter registers, Slot Status Counter Registers
(FR_SSCR0–FR_SSCR3). Each of these slot status counter registers is updated with the value of an
internal slot status counter at the start of a communication cycle. The internal slot status counter is
incremented if its increment condition, defined by the Slot Status Counter Condition Register
(FR_SSCCR), matches the status vector provided by the PE. All static slots, the symbol window, and the
NIT status are taken into account. Dynamic slots are excluded. The internal slot status counting and update
timing is shown in Figure 33-159.

Figure 33-159. Slot status counting and FR_SSCRn update

The PE provides the status of the NIT in the first slot of the next cycle. Due to these facts, the FR_SSCRn
register reflects, in cycle n, the status of the NIT of cycle n-2, and the status of all static slots and the
symbol window of cycle n-1.

The increment condition for each slot status counter consists of two parts, the frame related condition part
and the slot related condition part. The internal slot status counter FR_SSCRn_INT is incremented if at
least one of the conditions is fulfilled:

1. frame related condition:

cy
cl

e
st

ar
t

sl
o

t s
ta

rt

sl
o

t s
ta

rt

sy
m

b
ol

 w
in

d
o

w

M
T

st
a

tu
s(

N
IT

)

M
T

st
a

tu
s(

sl
o

t
1

)

st
a

tu
s(

sl
o

t
k)

M
T

st
a

tu
s(

sl
o

t
n

)
M

T

N
IT

 s
ta

rt
st

a
tu

s(
sy

m
.w

in
)

M
T

cy
cl

e
st

ar
t

st
at

us
(N

IT
)

communication cycle

static segment dynamic segment symbol window NIT

slot 1
M

T

incr. FR_SSCRn_INT

FR_SSCRn = FR_SSCRn_INT

FR_SSCRn_INT not updated

FR_SSCRn = FR_SSCRn_INT

on error
incr. FR_SSCRn_INT

on error

st
a

rt

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1601

• (FR_SSCCRn[VFR] | FR_SSCCRn[SYF] | FR_SSCCRn[NUF] | FR_SSCCRn[SUF]) // count on
frame condition
= 1;

and

• ((~FR_SSCCRn[VFR] | vSS!ValidFrame) & // valid frame restriction
(~FR_SSCCRn[SYF] | vRF!Header!SyFIndicator) & // sync frame indicator restriction
(~FR_SSCCRn[NUF] | ~vRF!Header!NFIndicator) & // null frame indicator restriction
(~FR_SSCCRn[SUF] | vRF!Header!SuFIndicator)) // startup frame indicator restriction
= 1;

NOTE

The indicator bits SYF, NUF, and SUF are valid only when a valid frame
was received. Thus it is required to set the VFR always, whenever count on
frame condition is used.

2. slot related condition:

• ((FR_SSCCRn[STATUSMASK[3]] & vSS!ContentError) | // increment on content error
(FR_SSCCRn[STATUSMASK[2]] & vSS!SyntaxError) | // increment on syntax error
(FR_SSCCRn[STATUSMASK[1]] & vSS!BViolation) | // increment on boundary violation
(FR_SSCCRn[STATUSMASK[0]] & vSS!TxConflict)) // increment on transmission conflict
= 1;

If the slot status counter is in single cycle mode, that is, FR_SSCCRn[MCY] = 0, the internal slot status
counter FR_SSCRn_INT is reset at each cycle start. If the slot status counter is in the multicycle mode,
that is, FR_SSCCRn[MCY] = 1, the counter is not reset and incremented, until the maximum value is
reached.

33.6.18.5 Message buffer slot status field

Each individual message buffer and each FIFO message buffer provides a slot status field, which provides
the information shown in Table 33-126 for the static/dynamic slot. The update conditions for the slot status
field depend on the message buffer type. Refer to the Message Buffer Update Sections in Section 33.6.6,
Individual message buffer functional description”.

33.6.19 System bus access

This section provides a description of the system bus accesses failures and the related CC behavior. System
bus access failures may occur when the CC transfers data to or from the flexray memory area.

The system bus access failure types are described in Section 33.6.19.1, System bus access failure types”.

The behavior of the CC after the occurrence of a system bus access failure is described in
Section 33.6.19.2, System bus access failure response”.

33.6.19.1 System bus access failure types

This section describes the two types of system bus access failures.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1602 Freescale Semiconductor

The behavior of the CC after the occurrence of a system bus failure is defined by the SBFF bit in the
Module Configuration Register (FR_MCR).

33.6.19.1.1 System bus illegal address access

If the system bus detects an CC access to an illegal address, the CC receives a notification from the system
bus about this event and sets the ILSA_EF flag in the CHI Error Flag Register (FR_CHIERFR).

33.6.19.1.2 System bus access timeout

A system bus access timeout is detected if an access to the flexray memory area is not finished in time.
The timeout value is derived from the SYMATOR[TIMEOUT] setting (see Section 33.7.1.1, Configure
System Memory Access Time-Out Register (FR_SYMATOR)”

If a system bus access timeout is detected, the CC sets the SBCF_EF flag in the CHI Error Flag Register
(FR_CHIERFR).

33.6.19.2 System bus access failure response

This section describes the two types of behavior of the CC after the occurrence of a system bus access
failure. The actual behavior is defined by the SBFF bit in the Module Configuration Register (FR_MCR).

33.6.19.2.1 Continue after system bus access failure

If the SBFF bit in the Module Configuration Register (FR_MCR) is 0, the CC will continue its operation
after the occurrence of the system bus access failure, but will not generate any system bus accesses until
the start of the next communication cycle.Since no data are read from or written to the flexray memory
area, no messages are received or transmitted. Consequently, none of the individual message buffers or
receive FIFOs will be updated until the next communication cycle starts.

If a frame is under transmission when the system bus failure occurs, a correct frame is generated with the
remaining header and frame data are replaced by all zeros. Depending on the point in time this can affect
the PPI bit, the Header CRC, the Payload Length in case of an dynamic slot, and the payload data. Starting
from the next slot in the current cycle, no frames will be transmitted and received, except for the key slot,
where a sync or startup null-frame is transmitted, if the key slot is assigned.

If a frame is received when the system bus failure occurs, the reception is aborted and the related receive
message buffer is not updated.

Normal operation is resumed after the start of next communication cycle.

33.6.19.2.2 Freeze after system bus access failure

If the SBFF bit in the Module Configuration Register (FR_MCR) is set to 1, the CC will go into the freeze
mode immediately after the occurrence of one of the system bus access failures.

33.6.20 Interrupt support

The CC provides 172 individual interrupt sources and five combined interrupt sources.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1603

33.6.20.1 Individual interrupt sources

33.6.20.1.1 Message buffer interrupts

The CC provides 128 message buffer interrupt sources.

Each individual message buffer provides an interrupt flag FR_MBCCSRn[MBIF] and an interrupt enable
bit FR_MBCCSRn[MBIE]. The CC sets the interrupt flag when the slot status of the message buffer was
updated. If the interrupt enable bit is asserted, an interrupt request is generated.

33.6.20.1.2 FIFO interrupts

The CC provides two FIFO interrupt sources.

Each of the two FIFOs provides a Receive FIFO Almost Full Interrupt Flag. The CC sets the Receive FIFO
Almost Full Interrupt Flags (FR_GIFER[FAFBIF], FR_GIFER[FAFAIF]) in the Global Interrupt Flag and
Enable Register (FR_GIFER) if the corresponding Receive FIFO fill level exceeds the defined watermark.

33.6.20.1.3 Wakeup interrupt

The CC provides one interrupt source related to the wakeup.

The CC sets the Wakeup Interrupt Flag FR_GIFER[WUPIF] when it has received a wakeup symbol on the
FlexRay bus. The CC generates an interrupt request if the interrupt enable bit FR_GIFER[WUPIE] is
asserted.

33.6.20.1.4 Protocol interrupts

The CC provides 25 interrupt sources for protocol related events. For details, see Protocol Interrupt Flag
Register 0 (FR_PIFR0) and Protocol Interrupt Flag Register 1 (FR_PIFR1). Each interrupt source has its
own interrupt enable bit.

33.6.20.1.5 CHI interrupts

The CC provides 16 interrupt sources for CHI related error events. For details, see CHI Error Flag Register
(FR_CHIERFR). There is one common interrupt enable bit FR_GIFER[CHIE] for all CHI error interrupt
sources.

33.6.20.2 Combined interrupt sources

Each combined interrupt source generates an interrupt request only when at least one of the interrupt
sources that is combined generates an interrupt request.

33.6.20.2.1 Receive message buffer interrupt

The Receive Message Buffer Interrupt request is generated when at least one of the individual receive
message buffers generates an interrupt request MBXIRQ[n] and the interrupt enable bit FR_GIFER[RBIE]
is set.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1604 Freescale Semiconductor

33.6.20.2.2 Transmit message buffer interrupt

The Transmit Message Buffer Interrupt request is generated when at least one of the individual transmit
message buffers generates an interrupt request MBXIRQ[n] and the interrupt enable bit FR_GIFER[TBIE]
is asserted.

33.6.20.2.3 Protocol interrupt

The Protocol Interrupt request is generated when at least one of the individual protocol interrupt sources
generates an interrupt request and the interrupt enable bit FR_GIFER[PRIE] is set.

33.6.20.2.4 CHI interrupt

The CHI Interrupt request is generated when at least one of the individual CHI error interrupt sources
generates an interrupt request and the interrupt enable bit FR_GIFER[CHIE] is set.

33.6.20.2.5 Module interrupt

The Module Interrupt request is generated if at least one of the combined interrupt sources generates an
interrupt request and the interrupt enable bit FR_GIFER[MIE] is set.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1605

Figure 33-160. Scheme of FR_GIFER interrupt signal generation

Interrupt Sources Interrupt Signals

FR_MBCCSRn[MBIF]

n

FR_CHIERFR[15:0]
16

FR_PIFR0[15:0]
16

FR_PIFR1[9:0]
10

Receive Message Buffer Interrupt

CHI Interrupt

FR_GIFER[FAFAIF]
RX FIFO A Almost Full Interrupt

FR_GIFER[WUPIF]
Wakeup Interrupt

FR_GIFER[RBIE]FR_MBCCSRn[MTD]
RXBUF

TXBUF

FR_GIFER[PRIE]

FR_GIFER[WUPIE]

FR_MBCCSRn[MBIE] &

FR_PIER0[15:0]

FR_PIER1[9:0]

OR

&

&

&FR_GIFER[CHIE]

&
&

n

& OR Transmit Message Buffer Interrupt

FR_GIFER[TBIE] &

n

OR

OR
&

&FR_GIFER[FAFAIE]

FR_GIFER[FAFBIF]
RX FIFO B Almost Full Interrupt

&FR_GIFER[FAFBIE]

&

FR_GIFER[RBIF]

FR_GIFER[TBIF]

FR_GIFER[PRIF]

FR_GIFER[CHIF]

Protocol Interrupt

FR_GIFER

n

PE

OR
&

Module InterruptFR_GIFER[MIF]

FR_GIFER[MIE]

RX FIFO A

RX FIFO B

Protocol Interrupt

CHI Interrupt

Wakeup Interrupt

RX FIFO A Almost Full Interrupt

RX FIFO B Almost Full Interrupt

Receive Message Buffer Interrupt

Transmit Message Buffer Interrupt

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1606 Freescale Semiconductor

Figure 33-161. Scheme of FR_EEIFER interrupt signal generation

Figure 33-162. Scheme of FR_CIFR flags generation

FR_EEIFER[LRNE_IF]
LRAM Non-Corrected Error Interrupt

&

LRAM ECC

Interrupt Sources Interrupt SignalsFR_EEIFER

FR_EEIFER[LRNE_IE]

FR_EEIFER[LRCE_IF]

&FR_EEIFER[LRCE_IE]

FR_EEIFER[DRNE_IF]

&FR_EEIFER[DRNE_IE]

FR_EEIFER[DRCE_IF]

&FR_EEIFER[DRCE_IE]

DRAM ECC

LRAM Corrected Error Interrupt

DRAM Non-Corrected Error Interrupt

DRAM Corrected Error Interrupt

Interrupt Sources

FR_MBCCSRn[MBIF]
n

FR_CHIERFR[15:0]
16

FR_PIFR0[15:0]
16

FR_PIFR1[9:0]
10

FR_CIFR[FAFAIF]

FR_CIFR[WUPIF]

FR_MBCCSRn[MTD]
RXBUF

TXBUF

OR&

n

& OR
n

OR

OR

FR_CIFR[FAFBIF]

FR_CIFR[RBIF]

FR_CIFR[TBIF]

FR_CIFR[PRIF]

FR_CIFR[CHIF]

FR_CIFR

n

PE

OR
FR_CIFR[MIF]

RX FIFO A

RX FIFO B

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1607

33.6.21 Lower bit rate support

The CC supports a number of lower bit rates on the FlexRay bus channels. The lower bit rates are
implemented by modifying the duration of the microtick pdMicrotick, the number of samples per microtick
pSamplesPerMicrotick, the number of samples per bit cSamplesPerBit, and the strobe offset cStrobeOffset.
The application configures the FlexRay channel bit rate by setting the BITRATE field in the Module
Configuration Register (FR_MCR). The protocol values are set internally. The available bit rates, the
related BITRATE field configuration settings and related protocol parameter values are shown in
Table 33-127.

NOTE

The bit rate of 8 Mbit/s is not defined by the FlexRay Communications
System Protocol Specification, Version 2.1 Rev A.

33.6.22 PE data memory (PE DRAM)

The PE Data Memory (PE DRAM) is 128 word, 16-bit wide memory with byte access, which contains the
program data of the PE internal CPU. The PE DRAM is divided into two banks, 8-bit each. The memory
data [7:0] are assigned to BANK0, the memory data [15:8] are assigned to BANK1.

The FlexRay module provides means to access the PE DRAM from the application. The PE DRAM
application access is initiated and controlled via PE DRAM Access Register (FR_PEDRAR) and PE
DRAM Data Register (FR_PEDRDR). This functionality is used to check the memory error detection.

Table 33-127. FlexRay channel bit rate control

FlexRay channel
bit rate
[Mbit/s]

FR_MCR.BITRATE

p
d

M
ic

ro
ti

ck
[n

s]

g
d

S
a

m
p

le
C

lo
ck

P
er

io
d

[n
s]

p
S

am
p

le
s

P
er

M
ic

ro
ti

ck

cS
a

m
p

le
s

P
e

rB
it

c
S

tr
o

b
eO

ff
se

t

10.0 000 25.0 12.5 2 8 5

8.0 011 25.0 12.5 2 10 6

5.0 001 25.0 25.0 1 8 5

2.5 010 50.0 50.0 1 8 5

Table 33-128. PE DRAM layout

ADDR BANK1 BANK0

0x00 byte1 byte0

0x01 byte3 byte2

...

0x7F byte255 byte254

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1608 Freescale Semiconductor

33.6.22.1 PE DRAM read access

A read access from the PE DRAM can be initiated in any protocol state. The following sequence describes
a read access from the PE DRAM address 0x70.

1. FR_PEDRAR = 0x00E0; // INST = 0x0; ADDR = 070

2. wait until FR_PEDRAR[DAD] == 1; // wait for end of PE DRAM access

3. val = FR_PEDRDR[DATA]; // get read PE DRAM data

The read access is handled by the PE internal CPU with the lowest execution priority. This may cause an
response delay with a maximum of 1000 PE clock cycle (25µs).

33.6.22.2 PE DRAM write access

A write access into the PE DRAM can be initiated in any protocol state. The following sequence describes
a write access to the PE DRAM address 0x70.

1. FR_PEDRAR = 0x30E0; // INST = 0x3; ADDR = 0x70

2. wait until FR_PEDRAR[DAD] == 1; // wait for end of PE DRAM access

3. val = FR_PEDRDR[DATA]; // get read back PE DRAM data

The write access is handled by the PE internal CPU with the lowest execution priority. This may causes
an response delay with a maximum of 1000 PE clock cycle (25µs).

If the conditions given in Section 33.6.22.3, PE DRAM write access limitations” are fulfilled, the data
provided in PE DRAM Data Register (FR_PEDRDR) are written into the PE DRAM, read back in the next
clock cycle and stored into the PE DRAM Data Register (FR_PEDRDR). Otherwise, data are not written
into the PE DRAM and 0x0000 is stored into the PE DRAM Data Register (FR_PEDRDR).

33.6.22.3 PE DRAM write access limitations

The PE DRAM is used by the protocol engine if the module is not in POC:default config state. The only
address not used by the protocol engine is 0x70. To prevent the corruption of protocol engine data the
following PE DRAM write access limitations apply for application writes.

1. When the module is in POC:default config state, all PE DRAM addresses are writable.

2. When the module is not in POC:default config state, only PE DRAM address 0x70 is writable.

33.6.23 CHI lookup-table memory (CHI LRAM)

The CHI Lookup-Table Memory (CHI LRAM) is an CHI internal memory which contains the message
buffer configuration data. The configuration data for two message buffers are contained in one memory
row. The CHI LRAM is divided into six memory banks.

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1609

The CHI LRAM is accessed by the application via regular register read and write accesses.

33.6.24 Memory content error detection

The FlexRay module provides integrated memory content error detection for both the CHI LRAM and PE
DRAM, and memory content error correction for the PE DRAM. The memory error detection for the CHI
LRAM uses an standard Hamming code with a Hamming distance of 3 and detects all single-bit and
double-bit errors (SEDDED). The memory error detection and correction for the PE DRAM uses an
enhanced Hamming code with a Hamming distance of 4 and detects and corrects all single-bit errors and
detects all double-bit errors (SECDED).

This section describes the reporting of the occurrence of memory content errors, the reaction of the module
on the occurrence, and how the application can inject memory errors in order to trigger the report and
response behavior.

33.6.24.1 Memory error types

A memory error is the distortion of one or more bits read out of the memory. The reading of the values of
all zeros and all ones is considered as an special case. The FlexRay module detects and indicates the
memory errors as shown in Table 33-130. The entries on the top have higher priority.

Each memory read access reads out all banks of the addressed row, and runs error detection on all banks,
even in the case that the application has triggered a read from only one bank. This may lead to the reporting
of an memory error if at least one bank contains a memory error, even if an error free bank has been read.

Table 33-129. CHI LRAM layout

AD
R

BANK5 BANK4 BANK3 BANK2 BANK1 BANK0

0x0
0

FR_MBIDXR1 FR_MBFIDR1 FR_MBCCFR1 FR_MBIDXR0 FR_MBFIDR0 FR_MBCCFR0

0x0
1

FR_MBIDXR3 FR_MBFIDR3 FR_MBCCFR3 FR_MBIDXR2 FR_MBFIDR2 FR_MBCCFR2

...

0x1
F

FR_MBIDXR12
7

FR_MBFIDR12
7

FR_MBCCFR12
7

FR_MBIDXR12
6

FR_MBFIDR12
6

FR_MBCCFR12
6

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1610 Freescale Semiconductor

33.6.24.2 Memory error reporting

The memory error reporting is enabled only if the ECC functionality enable bit ECCE in the Module
Configuration Register (FR_MCR) is set.

For each of the two memories exists two sets of internal registers to store the detection of one corrected
and one non-corrected memory error.

If a memory error is detected, the module checks whether the related error interrupt flag in the ECC Error
Interrupt Flag and Enable Register (FR_EEIFER) is set.

• If the error interrupt flag is set, the related internal error reporting register is not updated and the
related error overflow flag is set to 1 to indicate a loss of error condition.

• If the error interrupt flag is not set, the internal reporting register is updated and the error interrupt
flag is set to 1. If two or more memory errors of the same type are detected, the error for the bank
with the lower bank number will be reported, and the error overflow flag will be set to 1.

If a memory error is detected for at least two banks of one memory, the related error overflow flag is set
to 1 to indicate a loss of error condition.

33.6.24.2.1 PE DRAM checkbits

The coding of the checkbits reported in ECC Error Report Code Register (FR_EERCR) for PE DRAM
memory errors is shown in Table 33-132. This table shows the implemented enhanced Hamming code. If
the error injection was applied to distort the checkbits, then the distorted checkbits are reported.

Table 33-130. Detected memory error types

Memory Priority Memory data Indication

CHI LRAM 0 (highest) All zero’s No Error – Valid Data

PE DRAM Non-Corrected Error

CHI LRAM All one’s Non-Corrected Error

PE DRAM

CHI LRAM 1 (lowest) One bit flipped Non-Corrected Error

PE DRAM Corrected Error

CHI LRAM Two bits flipped Non-Corrected Error

PE DRAM

CHI LRAM Three or more bits flipped One out of {No error, Non-Corrected Error}, defined by
coding given in Section 33.6.24.2.3, CHI LRAM checkbits”
and Section 33.6.24.2.3, CHI LRAM checkbits”

PE DRAM One out of {No error, Corrected Error, Non-Corrected Error},
defined by coding given in Section 33.6.24.2.1, PE DRAM
checkbits” and Section 33.6.24.2.2, PE DRAM syndrome”

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1611

This coding of the checkbit ensures that neither 0x000 nor 0xFFF are valid code words and written into
the memory

33.6.24.2.2 PE DRAM syndrome

The coding of the syndrome reported in ECC Error Report Code Register (FR_EERCR) for PE DRAM
memory errors is shown in Table 33-132.

Table 33-131. PE DRAM checkbits coding

CODE
CODE DATA

3 2 1 0 7 6 5 4 3 2 1 0

41

1 The checkbit CODE[4] is set to 1 if and only if there is a even number of 1’s in columns with X.

X X X X X X X X X X X X

32

2 The checkbits CODE[3]... CODE[0] are set to 1 if and only if there is a odd number of 1’s in all columns with X.

— — — — X X X X — — — —

2 — — — — X — — — X X X —

1 — — — — — X X — X X — X

0 — — — — — X — X X — X X

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1612 Freescale Semiconductor

33.6.24.2.3 CHI LRAM checkbits

The coding of the checkbits reported in ECC Error Report Code Register (FR_EERCR) for CHI LRAM
memory errors is shown in Table 33-133. This table shows the implemented Hamming code. If the error
injection was applied to distort the checkbits, then the distorted checkbits are reported.

???

Table 33-132. FR_EERCR[CODE] PE DRAM syndrome coding

FR_EERCR[CODE]
Description

[4] [3:0]

0x1 0x0 No Error (Never appears in error report registers)

0x0 0x0 If data == 0: Non-Corrected Error (Dedicated Handling of All Zero Code Word)
If data != 0: Corrected Error (Parity Bit 4)

0x0 0x1 Corrected Error (Parity Bit 0)

0x0 0x2 Corrected Error (Parity Bit 1)

0x0 0x3 Corrected Error (Data Bit 0)

0x0 0x4 Corrected Error (Parity Bit 2)

0x0 0x5 Corrected Error (Data Bit 1)

0x0 0x6 Corrected Error (Data Bit 2)

0x0 0x7 Corrected Error (Data Bit 3)

0x0 0x8 Corrected Error (Parity Bit 3)

0x0 0x9 Corrected Error (Data Bit 4)

0x0 0xA Corrected Error (Data Bit 5)

0x0 0xB Corrected Error (Data Bit 6)

0x0 0xC Corrected Error (Data Bit 7)

0x0 0xD – 0xF Non-Corrected Error

0x1 0x1 – 0xF Non-Corrected Error

Table 33-133. CHI LRAM checkbits coding

CODE1

1 The checkbit CODE[n] is set to 1 if and only if there is a odd number of 1’s in all columns with X.

DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4 X X X X X — — — — — — — — — — —

3 — — — — — X X X X X X X — — — —

2 X X — — — X X X X — — — X X X —

1 — — X X — X X — — X X — X X — X

0 X — X — X X — X — X — X X — X X

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1613

33.6.24.2.4 CHI LRAM syndrome

The coding of the syndrome reported in ECC Error Report Code Register (FR_EERCR) for CHI LRAM
memory errors is shown in Table 33-134.

33.6.24.3 Memory error response

The memory error response is enabled only when the ECC functionality enable bit ECCE in the Module
Configuration Register (FR_MCR) is set.

In case of the detection of a corrected memory error, the FlexRay module continues its normal operation
using the corrected data word. This section describes the behavior of the FlexRay module after the
detection of a non-corrected memory error.

33.6.24.3.1 CHI LRAM memory error response after module read

The FlexRay module reads the message buffer configuration buffer data located in the CHI LRAM for
each message buffer one time in each slot and in the NIT.

If a non-corrected memory error is detected during this module read access, the FlexRay module will
consider the affected message buffer as disabled for the current search and will exclude this buffer from
the search. The configuration of the affected message buffer is not changed.

If the affected message buffer is a tx message buffer, no frame will be transmitted from this message buffer
in the next slot. If the affected message buffer is a rx message buffer, no frame will be received to this
message buffer in the next slot.

33.6.24.3.2 CHI LRAM memory error response after application read

The application can read the content of the CHI LRAM via reading the FR_MBCCFRn, FR_MBFIDRn,
and FR_MBIDXRn registers. If a non-corrected memory error is detected during this kind of read access,
the module indicates the detected memory error, delivers the non-corrected data read and continues its
normal operation.

33.6.24.3.3 PE DRAM error response after module read

If the module detects an non-corrected memory error during read of program data which is contained in
PE DRAM, this is considered as an fatal protocol error and the module enters the protocol freeze state
immediately.

33.6.24.3.4 PE DRAM error response after application read in POC:default config state

If the module detects an non-corrected memory error during an application triggered read from any PE
DRAM address and the protocol is in the POC:default config state, this is considered as an fatal protocol

Table 33-134. FR_EERCR[CODE] CHI LRAM syndrome coding

FR_EERCR[CODE] Description

0x00 No Error (Never appears in error report registers)

0x01 – 0x1F Non-Corrected Error

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1614 Freescale Semiconductor

error and the module enters the protocol freeze state. This behavior allows for checking the freeze
functionality in case of the detection of non-corrected errors.

33.6.24.3.5 PE DRAM error response after application read out of POC:default config

If the module detects an non-corrected memory error during an application triggered read from any PE
DRAM address, and the protocol is not in the POC:default config state, this error is not considered as an
fatal error and the protocol state is not changed. This prevents any interference of the running protocol by
PE DRAM error injection reads.

33.6.25 Memory error injection

The error injection functionality is used by the application to inject data errors into the memories to trigger
and check the memory error detection functionality.

The error injection is enabled only if the ECC functionality enable bit ECCE in the Module Configuration
Register (FR_MCR) and the error injection enable control bit EIE in the ECC Error Report and Injection
Control Register (FR_EERICR) are set.

The error injection mode is configured by the EIM configuration bit in the ECC Error Report and Injection
Control Register (FR_EERICR).When the error injection is enabled, each write access to the configured
memory location will be distorted.

The injector has the same behavior for FlexRay module memory writes and application memory writes.

33.6.25.1 CHI LRAM error injection

The following sequence describes an error injection sequence for the CHI LRAM. This sequence includes
the setup of the error injector followed by an application triggered write access to provoke an distortion of
the memory content. When the FlexRay module is in POC:default config, there are no limitations and
impacts of error injection for the application. For error injection out of POC:default config see
Section 33.7.3, CHI LRAM error injection out of POC:default config”.

Injector setup:

1. FR_MCR[ECCE] = 1;

enable ECC functionality

2. FR_EERICE[EIE] = I_MODE;

configure error injection mode

3. FR_EEIAR[MID] = 1;

select CHI LRAM for error injection

4. FR_EEIAR[BANK] = I_BANK;

define the bank for error injection; I_BANK = {0,1,2,3,4,5}

5. FR_EEIAR[ADDR] = I_ADDR;

define the address for error injection; 0 <= I_ADDR <= 0x1F

6. FR_EEIDR[DATA] = D_DIST;

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1615

define the data distortion pattern

7. FR_EEICR[CODE] = C_DIST;

define the checkbit distortion pattern

8. FR_EERICE[EIE] = 1;

enable error injection

Application write access:

1. If (I_BANK==0)  FR_MBCCFR(2*I_ADDR) = DATA;
If (I_BANK==1)  FR_MBFIDR(2*I_ADDR) = DATA;
If (I_BANK==2)  FR_MBIDXR(2*I_ADDR) = DATA;
If (I_BANK==3)  FR_MBCCFR(2*I_ADDR+1) = DATA;
If (I_BANK==4)  FR_MBFIDR(2*I_ADDR+1) = DATA;
If (I_BANK==5)  FR_MBIDXR(2*I_ADDR+1) = DATA;

write DATA to the defined injection bank and injection address

33.6.25.2 PE DRAM error injection

The following sequence describes an error injection sequence for the PE DRAM. This sequence includes
the setup of error injector followed by an application triggered write access to provoke an distortion of the
memory content. When the FlexRay module is in POC:default config, there are no limitations and impacts
of error injection for the application. For error injection out of POC:default config see Section 33.7.4, PE
DRAM error injection out of POC:default config”.

Injector Setup:

1. FR_MCR[ECCE] = 1;

— enable ECC functionality

2. FR_EERICE[EIE] = I_MODE;

— configure error injection mode

3. FR_EEIAR[MID] = 0;

— select PE DRAM for error injection

4. FR_EEIAR[BANK] = I_BANK;

— define the bank for error injection; I_BANK = {0,1}

5. FR_EEIAR[ADDR] = I_ADDR;

— define the address for error injection; 0<= I_ADDR <= 0x7F

6. FR_EEIDR[DATA] = D_DIST;

— define the data distortion pattern

7. FR_EEICR[CODE] = C_DIST;

— define the checkbit distortion pattern

8. FR_EERICE[EIE] = 1;

— enable error injection

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1616 Freescale Semiconductor

Application Write Access (I_ADDR = 0x70):

1. FR_PEDRAR:= 0x30E0; // INST = 0x3; ADDR = 0x70

2. wait until FR_PEDRAR[DAD] == 1; // wait for end of PE DRAM access

3. val = FR_PEDRDR[DATA]; // get read back PE DRAM data

NOTE

The write access to the PE DRAM triggers a read from PE DRAM in the
next cycle, which triggers the detection of the distorted data.

33.7 Application information

33.7.1 Module configuration

This section describes essential parts of the module configuration.

33.7.1.1 Configure System Memory Access Time-Out Register (FR_SYMATOR)

To ensure reliable operation of the CC, the application has to ensure that the TIMEOUT value in System
Memory Access Time-Out Register (FR_SYMATOR) and the CHI clock frequency fCHI in MHz fulfill
Equation 33-291.

Eqn. 33-29

If the SYMATOR[TIMEOUT] value and fCHI violates Equation 33-29, the behavior of the CC becomes
unreliable and undefined. It may happen that frames are not transmitted at all, including key slot frames.

For a given SYMATOR[TIMEOUT] value fCHI can be increased without causing unreliable operation of
the CC. The same holds for reducing the SYMATOR[TIMEOUT] value for a given fCHI.

Some examples for maximum values of the SYMATOR[TIMEOUT] for a minimum CHI frequency are
given in Table 33-135.

1. See Section 33.3, Controller host interface clocking” for all constraints of minimum CHI clock frequency.

Table 33-135. Maximum SYMATOR[TIMEOUT] examples

fCHI SYMATOR[TIMEOUT] fCHI SYMATOR[TIMEOUT]

 18 MHz 0  100 MHz  37

 23 MHz  2  120 MHz  46

 27 MHz  4  140 MHz  55

 32 MHz  6  160 MHz  64

 60 MHz  19  180 MHz  73

 80 MHz  28  200 MHz  82

0 SYMATOR[TIMEOUT] 0.45 fCHI 8– 

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1617

33.7.1.1.1 System bus wait state constraints

The SYMATOR[TIMEOUT] value corresponds directly to a certain acceptable number of wait states on
the system bus.

For single channel configurations and if the sync frame table generation functionality is not used
(FR_SFTCCSR[SDVEN,SIDEN] = 0) no timeout will be detected if less than
2*SYMATOR[TIMEOUT] + 1 wait states will be seen on the system bus for each system bus access.

For dual channel configurations, or if the sync frame table generation functionality is used, no timeout will
be detected if less than SYMATOR[TIMEOUT] - 1 wait states will be seen on the system bus for each
system bus access.

33.7.2 Initialization Sequence

This section describes the required steps to initialize the CC. The first subsection describes the steps
required after a system reset, the second section describes the steps required after preceding shutdown of
the CC.

33.7.2.1 Module Initialization

This section describes the module related initialization steps after a system reset.

1. Configure CC.

a) configure the control bits in the Module Configuration Register (FR_MCR)

b) configure the system memory base address in System Memory Base Address Register
(FR_SYMBADR)

2. Enable the CC.

a) write 1 to the module enable bit MEN in the Module Configuration Register (FR_MCR)

The CC now enters the Normal Mode. The application can commence with the protocol initialization
described in Section 33.7.2.2, Protocol Initialization”.

33.7.2.2 Protocol Initialization

This section describes the protocol related initialization steps.

1. Configure the Protocol Engine.

a) issue CONFIG command via Protocol Operation Control Register (FR_POCR)

b) wait for POC:config in Protocol Status Register 0 (FR_PSR0)

c) configure the FR_PCR0,..., FR_PCR30 registers to set all protocol parameters

2. Configure the Message Buffers and FIFOs.

a) set the number of message buffers used and the message buffer segmentation in the Message
Buffer Segment Size and Utilization Register (FR_MBSSUTR)

b) define the message buffer data size in the Message Buffer Data Size Register (FR_MBDSR)

c) configure each message buffer by setting the configuration values in the Message Buffer
Configuration, Control, Status Registers (FR_MBCCSRn), Message Buffer Cycle Counter

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1618 Freescale Semiconductor

Filter Registers (FR_MBCCFRn), Message Buffer Frame ID Registers (FR_MBFIDRn),
Message Buffer Index Registers (FR_MBIDXRn)

d) configure the FIFOs

e) issue CONFIG_COMPLETE command via Protocol Operation Control Register (FR_POCR)

f) wait for POC:ready in Protocol Status Register 0 (FR_PSR0)

After this sequence, the CC is configured as a FlexRay node and is ready to integrate into the FlexRay
cluster.

33.7.2.3 CHI LRAM initialization

The module will start reading CHI LRAM data if it has entered the start up state, thus, all ECC bits have
to set correctly. To fulfill this requirement, the application must write initial values into all message buffer
configuration registers FR_MBCCFRn, FR_MBFIDRn, and FR_MBIDXRn during the protocol config
state, even if the message buffers are not used.

33.7.2.4 PE DRAM initialization

The PE DRAM initialization is performed by the module in the POC:default config state. This
initialization runs for 4.8 µs, and will delay the state transition from POC:default config into POC:config.

33.7.3 CHI LRAM error injection out of POC:default config

When the FlexRay module is out of the POC:default config state, it reads the configuration data of all
utilized message buffers in every slot. If the module reads the CHI LRAM address that was used for error
injection, an memory error is detected and the message buffer is not used for transmission or reception.
This section describes how to inject errors on the CHI LRAM without disturbing the running application.

• Set injection address to FR_EEIDR[ADDR] = 0x1F

— only the last two message buffers are affected by error injection

• Utilize less than 63 message buffers; FR_MBSSUTR[LAST_MB_UTIL]  62

— the last two message buffers are not used and configuration data are not read by the module

33.7.4 PE DRAM error injection out of POC:default config

When the FlexRay module is out of the POC:default config state, only the PE DRAM address 0x70 is
writable by the application. This location is not used by the FlexRay module.

33.7.5 Shut down sequence

This section describes a secure shut down sequence to stop the CC. The main targets of this sequence are

• Finish all ongoing reception and transmission

• Do not corrupt FlexRay bus and do not disturb ongoing FlexRay bus communication

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1619

For a shutdown the application shall perform the following tasks:

1. Disable all enabled message buffers.

a) Repeatedly write ‘1’ to FR_MBCCSRn[EDT] until FR_MBCCSRn[EDS] == 0.

2. Stop Protocol Engine.

a) Issue HALT command via Protocol Operation Control Register (FR_POCR)

b) Wait for POC:halt in Protocol Status Register 0 (FR_PSR0)

33.7.6 Number of usable message buffers

This section describes the required minimum CHI clock frequency for a specified number of utilized
message buffers configured in the Message Buffer Segment Size and Utilization Register
(FR_MBSSUTR), a configured minislot length gdMinislot, and a configured nominal macrotick length
gdMacrotick1.

Additional constraints for the minimum CHI clock frequency are given in Section 33.3, Controller host
interface clocking”.

The CC uses a sequential search algorithm to determine the individual message buffer assigned or
subscribed to the next slot. This search is started at the start of slot and must be finished before the start of
the next slot.

The shortest FlexRay slot is an corrected empty dynamic slot. An corrected empty dynamic slot is a
minislot and consists of gdMinislot corrected macroticks with a duration of gdMacrotick. The minimum
duration of an corrected macrotick is gdMacrotickmin = 39 µT. This results in a minimum length of an
correct slot

Eqn. 33-30

The message buffer search engine runs on the CHI clock and evaluates one individual message buffer per
CHI clock cycle. For internal status update operations and to account for clock domain crossing jitter, an
additional amount of 10 CHI clock cycles is required to ensure correct search engine operation.

For a given number of utilized message buffers FR_MBSSUTR[LAST_MB_UTIL] + 1 and for a given
CHI clock frequency fchi, this results in a search duration of

Eqn. 33-31

The message buffer search must be finished within one slot which requires that Equation 33-32 must be
fulfilled:

Eqn. 33-32

This results in the formula given in Equation 33-33 which determines the required minimum CHI
frequency for a given number of message buffers that are utilized.

Eqn. 33-33

1. See Section 33.3, Controller host interface clocking” for all constraints of minimum CHI clock frequency.

slotmin 39 pdMicrotick gdMinislot =

search
1

fchi
-------- FR_MBSSUTR[LAST_MB_UTIL]+10 =

search slotmin

fchi
FR_MBSSUTR[LAST_MB_UTIL]+10 

39 pdMicrotick gdMinislot 
--

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1620 Freescale Semiconductor

The required minimum CHI Clock frequency for a selected set of relevant protocol parameters and for the
LAST_MB_UTIL field in the Message Buffer Segment Size and Utilization Register (FR_MBSSUTR) set
to 127 is given in Table 33-136.

33.7.7 Protocol control command execution

This section considers the issues of the protocol control command execution.

The application issues any of the protocol control commands listed in the POCCMD field of Table 33-16
by writing the command to the POCCMD field of the Protocol Operation Control Register (FR_POCR).
As a result the CC sets the BSY bit while the command is transferred to the PE. When the PE has accepted
the command, the BSY flag is cleared. All commands are accepted by the PE.

The PE maintains a protocol command vector. For each command that was accepted by the PE, the PE sets
the corresponding command bit in the protocol command vector. If a command is issued while the
corresponding command bit is set, the command is not queued and is lost.

If the command execution block of the PE is idle, it selects the next accepted protocol command with the
highest priority from the current protocol command vector according to the protocol control command
priorities given in Table 33-137. If the current protocol state does not allow the execution of this protocol
command (see POC state changes in FlexRay Communications System Protocol Specification, Version 2.1
Rev A) the CC asserts the illegal protocol command interrupt flag IPC_IF in the Protocol Interrupt Flag
Register 1 (FR_PIFR1). The protocol command is not executed in this case.

Some protocol commands may be interrupted by other commands or the detection of a fatal protocol error
as indicated by Table 33-137. If the application issues the FREEZE or READY command, or if the PE
detects a fatal protocol error, some commands already stored in the command vector will be removed from
this vector.

Table 33-136. Minimum fchi [MHz] examples (128 message buffers)

pdMicrotick
[ns]

gdMinislot

2 3 4 5 6 7

25.0 70.77 47.18 35.39 28.31 23.59 20.22

50.0 35.39 23.59 17.70 14.16 11.80 10.11

Table 33-137. Protocol control command priorities

Protocol command Priority Interrupted by Cleared and terminated by

FREEZE (highest) 1 none

READY 2

CONFIG_COMPLETE 3

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1621

33.7.8 Message buffer search on simple message buffer configuration

This sections describes the message buffer search behavior for a simplified message buffer configuration.
The FIFO behavior is not considered in this section.

33.7.8.1 Simple message buffer configuration

A simple message buffer configuration is a configuration that has at most one transmit message buffer and
at most one receive message buffer assigned to a slot S. The simple configuration used in this section
utilizes two message buffers, one single buffered transmit message buffer and one receive message buffer.

The transmit message buffer has the message buffer number t and is configured as shown in Table 33-138.

ALL_SLOTS 4 FREEZE, READY,
CONFIG_COMPLETE,

fatal protocol error

FREEZE, READY, CONFIG_COMPLETE,
fatal protocol error

ALLOW_COLDSTART 5

RUN 6 FREEZE,
fatal protocol error

WAKEUP 7 FREEZE,
fatal protocol error

DEFAULT_CONFIG 8 FREEZE,
fatal protocol error

CONFIG 9

HALT (lowest) 10 FREEZE, READY, CONFIG_COMPLETE,
fatal protocol error

Table 33-138. Transmit buffer configuration

Register Field Value Description

FR_MBCCSRt MCM — used only for double buffers

MBT 0 single transmit buffer

MTD 1 transmit buffer

FR_MBCCFRt MTM 0 event transition mode

CHA 1 assigned to channel A

CHB 0 not assigned to channel B

CCFE 1 cycle counter filter enabled

CCFMSK 000011 cycle set = {4n} = {0,4,8,12,...}

CCFVAL 000000

FR_MBFIDRt FID S assigned to slot S

Table 33-137. Protocol control command priorities (continued)

Protocol command Priority Interrupted by Cleared and terminated by

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1622 Freescale Semiconductor

The availability of data in the transmit buffer is indicated by the commit bit FR_MBCCSRt[CMT] and the
lock bit FR_MBCCSRt[LCKS].

The receive message buffer has the message buffer number r and is configured as shown in Table 33-139.

Furthermore the assumption is that both message buffers are enabled (FR_MBCCSRt[EDS] = 1 and
FR_MBCCSRr[EDS] = 1).

NOTE

The cycle set {4n+2} = {2,6,10,...} is assigned to the receive buffer only.

The cycle set {4n} = {0,4,8,12,...} is assigned to both buffers.

33.7.8.2 Behavior in static segment

In this case, both message buffers are assigned to a slot S in the static segment.

The configuration of a transmit buffer for a static slot S assigns this slot to the node as a transmit slot. The
FlexRay protocol requires:

• When a slot occurs, if the slot is assigned to a node on a channel that node must transmit either a
normal frame or a null frame on that channel. Specifically, a null frame will be sent if there is no
data ready, or if there is no match on a transmit filter (cycle counter filtering, for example).

Regardless of the availability of data and the cycle counter filter, the node will transmit a frame in the static
slot S. In any case, the result of the message buffer search will be the transmit message buffer t. The receive
message buffer r will not be found, no reception is possible.

33.7.8.3 Behavior in dynamic segment

In this case, both message buffers are assigned to a slot S in the dynamic segment. The FlexRay protocol
requires:

Table 33-139. Receive buffer configuration

Register Field Value Description

FR_MBCCSRr MCM — n/a

MBT — n/a

MTD 0 receive buffer

FR_MBCCFRr MTM — n/a

CHA 1 assigned to channel A

CHB 0 not assigned to channel B

CCFE 1 cycle counter filter enabled

CCFMSK 000001 cycle set = {2n} = {0,2,4,6,...}

CCFVAL 000000

FR_MBFIDRr FID S subscribed slot

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1623

• When a slot occurs, if a slot is assigned to a node on a channel that node only transmits a frame on
that channel if there is data ready and there is a match on relevant transmit filters (no null frames
are sent).

The transmission of a frame in the dynamic segment is determined by the availability of data and the match
of the cycle counter filter of the transmit message buffer.

33.7.8.3.1 Transmit data not available

If transmit data are not available, that is, the transmit buffer is not committed FR_MBCCSRt[CMT] = 0
and/or locked FR_MBCCSRt[LCKS] = 1,

a) for the cycles in the set {4n}, which is assigned to both buffers, the receive buffer will be found
and the node can receive data, and

b) for the cycles in the set {4n + 2}, which is assigned to the receive buffer only, the receive buffer
will be found and the node can receive data.

The receive cycles are shown in Figure 33-163

Figure 33-163. Transmit data not available

33.7.8.3.2 Transmit data available

If transmit data are available, that is, the transmit buffer is committed FR_MBCCSRt[CMT] = 1 and not
locked FR_MBCCSRt[LCKS] = 0,

a) for the cycles in the set {4n}, which is assigned to both buffers, the transmit buffer will be found
and the node transmits data.

b) for the cycles in the set {4n + 2}, which is assigned to the receive buffer only, the receive buffer
will be found and the node can receive data.

The receive and transmit cycles are shown in Figure 33-163.

Figure 33-164. Transmit data not available

0

RX

1 2

RX

3 4

RX

5 6

RX

7 59 60

RX

61 62

RX

8

RX

63

0

TX

1 2

RX

3 4

TX

5 6

RX

7 59 60

TX

61 62

RX

8

TX

63

FlexRay Communication Controller (FlexRay)

MPC5644A Microcontroller Reference Manual, Rev. 6

1624 Freescale Semiconductor

Periodic Interrupt Timer (PIT)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1625

Chapter 34
Periodic Interrupt Timer (PIT)

34.1 Information specific to this device

This section presents device-specific parameterization and customization information not specifically
referenced in the remainder of this chapter.

34.1.1 Device-specific features

• 1 Periodic Interrupt Timer Module (PIT/RTI)

— 32-bit counter

— 4 Timer Channels

— 1 Real Time Interrupt (RTI): timer channel clocked from the crystal oscillator that can be used
to wake the part from stop mode.

• The counter period of a running timer can be modified, by first disabling the timer, setting a new
load value and then enabling the timer again (see Figure 34-8). In the case of the RTI, because of
the different clock domains (system clock / oscillator clock), a delay must be respected between
setting the new value and re-enabling the RTI. (Modification to Section 34.5.1.1, Timers / RTI.).

34.2 Introduction

Figure 34-1 shows the PIT block diagram.

Periodic Interrupt Timer (PIT)

MPC5644A Microcontroller Reference Manual, Rev. 6

1626 Freescale Semiconductor

Figure 34-1. Block diagram of PIT_RTI

34.2.1 Overview

This specification describes the function of the Periodic Interrupt Timer block (PIT). The PIT is an array
of timers that can be used to raise interrupts and trigger DMA channels. Real Time Interrupt Timer (RTI)
is a dedicated interrupt timer, which runs on a separate clock and can be used for system wakeup.

34.2.2 Features

The main features of this block are:

• Timers can generate DMA trigger pulses

• Timers can generate interrupts

• All interrupts are maskable

• Independent timeout periods for each timer

RTI

Timer n

Timer 1

.

.

.

PIT
Registers

Peripheral

interrupts

timeout

load_value

Peripheral

PIT

.

.

.

triggers

Independent
RTI Oscillator

Bus

Clock

Bus Clock

Periodic Interrupt Timer (PIT)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1627

34.3 Signal description

The PIT module has no external pins.

34.4 Memory map and register description

This section provides a detailed description of all registers accessible in the PIT module.

34.4.1 Memory map

Table 34-1 gives an overview of all PIT registers.

NOTE

Register Address = Base Address + Address Offset, where the Base Address
is defined at the MCU level and the Address Offset is defined at the module
level.

NOTE

Reserved registers will read as 0, writes will have no effect.

34.4.2 Register descriptions

This section describes in address order all the PIT registers and their individual bits.

Table 34-1. PIT memory map

Address offset Use Access Location

0x000 PIT Module Control Register (PITMCR) R/W on page 34-1628

0x004–0x0EC Reserved R —

0x0F0–0x0FC RTI channel 1

1 See Table 34-2.

0x100–0x10C Timer Channel 0 1

0x110–0x11C Timer Channel 1 1

0x120–0x12C Timer Channel 2 1

0x130–0x13C Timer Channel 3 1

Table 34-2. Timer channel n / RTI channel registers

Address offset Use Access Location

Channel + 0x00 Timer Load Value Register n (LDVALn) R/W on page 34-1628

Channel + 0x04 Current Timer Value Register n (CVALn) R on page 34-1629

Channel + 0x08 Timer Control Register n (TCTRLn) R/W on page 34-1630

Channel + 0x0C Timer Flag Register n (TFLGn) R/W on page 34-1630

Periodic Interrupt Timer (PIT)

MPC5644A Microcontroller Reference Manual, Rev. 6

1628 Freescale Semiconductor

34.4.2.1 PIT Module Control Register (PITMCR)

This register controls whether the timer clocks should be enabled and whether the timers should run in
debug mode.

34.4.2.2 Timer Load Value Register n (LDVALn)

These registers select the timeout period for the timer interrupts. In the case of the RTI, it will take several
cycles until this value is synchronized into the RTI clock domain. For all other timers the value change is
visible immediately. The synchronization mechanism allows 0 wait states in this case.

Offset 0x000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 MDIS
_RTI

MDIS FRZ
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-2. PIT Module Control Register (PITMCR)

Table 34-3. PITMCR field descriptions

Field Description

MDIS_RTI Module Disable—RTI section
This is used to disable the RTI timer. This bit should be enabled before any RTI setup is done.
0: Clock for RTI is enabled (default)
1: Clock for RTI disabled

MDIS Module Disable—PIT section
This is used to disable the standard timers. The RTI timer is not affected by this bit. This bit should be
enabled before any other setup is done.
0: Clock for PIT Timers is enabled (default)
1: Clock for PIT Timers is disabled

FRZ Freeze
Allows the timers to be stopped when the device enters debug mode.
0: Timers continue to run in debug mode.
1: Timers are stopped in debug mode.

Periodic Interrupt Timer (PIT)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1629

34.4.2.3 Current Timer Value Register n (CVALn)

These registers indicate the current timer position. In the case of the RTI, this will show a value which is
several cycles old, since it originates from a potentially different clock domain.

Offset channel_base + 0x00 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TSV31 TSV30 TSV29 TSV28 TSV27 TSV26 TSV25 TSV24 TSV23 TSV22 TSV21 TSV20 TSV19 TSV18 TSV17 TSV16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TSV15 TSV14 TSV13 TSV12 TSV11 TSV10 TSV9 TSV8 TSV7 TSV6 TSV5 TSV4 TSV3 TSV2 TSV1 TSV0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-3. Timer Load Value Register (LDVAL)

Table 34-4. LDVAL field descriptions

Field Description

TSVn Time Start Value Bits
These bits set the timer start value. The timer will count down until it reaches 0, then it will generate
an interrupt and load this register value again. Writing a new value to this register will not restart the
timer, instead the value will be loaded once the timer expires. To abort the current cycle and start a
timer period with the new value, the timer must be disabled and enabled again (see Figure 34-8).

NOTE: For the RTI, the timer should not be set to a value lower than 32 cycles, otherwise interrupts
may be lost, as it takes several cycles to clear the RTI interrupt. For the other timers, this limit does
not apply, however there will be practical limits, since the processor will require several cycles to
service an interrupt.

Offset channel_base + 0x04 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TVL31 TVL30 TVL29 TVL28 TVL27 TVL26 TVL25 TVL24 TVL23 TVL22 TVL21 TVL20 TVL19 TVL18 TVL17 TVL16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TVL15 TVL14 TVL13 TVL12 TVL11 TVL10 TVL9 TVL8 TVL7 TVL6 TVL5 TVL4 TVL3 TVL2 TVL1 TVL0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-4. Current Timer Value Register (CVAL)

Periodic Interrupt Timer (PIT)

MPC5644A Microcontroller Reference Manual, Rev. 6

1630 Freescale Semiconductor

34.4.2.4 Timer Control Register n (TCTRLn)

These registers contain the control bits for each timer.

34.4.2.5 Timer Flag Register n (TFLGn)

These registers hold the PIT interrupt flags.

Table 34-5. CVAL field descriptions

Field Description

TVLn Current Timer Value
These bits represent the current timer value. Note that the timer uses a downcounter.

NOTE: The timer values will be frozen in Debug mode if the FRZ bit is set in the PIT Module Control
Register (see Figure 34-2).

Offset channel_base + 0x08 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIE TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-5. Timer Control Register (TCTRL)

Table 34-6. TCTRL field descriptions

Field Description

TIE Timer Interrupt Enable Bit
0: Interrupt requests from Timer x are disabled
1: Interrupt will be requested whenever TIF is set
When an interrupt is pending (TIF set), enabling the interrupt will immediately cause an interrupt
event. To avoid this, the associated TIF flag must be cleared first.

TEN Timer Enable Bit
0: Timer will be disabled
1: Timer will be active

Periodic Interrupt Timer (PIT)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1631

34.5 Functional description

34.5.1 General

This section gives detailed information on the internal operation of the module. Each timer can be used to
generate trigger pulses as well as to generate interrupts, each interrupt will be available on a separate
interrupt line. Additionally the RTI timer can be used to wakeup the processor.

34.5.1.1 Timers / RTI

The timers generate triggers at periodic intervals, when enabled. They load their start values, as specified
in their LDVAL registers, then count down until they reach 0. Then they load their respective start value
again. Each time a timer reaches 0, it will generate a trigger pulse, and set the interrupt flag.

All interrupts can be enabled or masked (by setting the TIE bits in the TCTRL registers). A new interrupt
can be generated only after the previous one is cleared. Since in the case of the RTI, clearing the interrupt
crosses clock domains, a minimum load value of 32 should be maintained.

If desired, the current counter value of the timer can be read via the CVAL registers. The value of the RTI
counter can be delayed considerably, as it is synchronized to the bus clock from the RTI clock domain.

The counter period can be restarted, by first disabling, then enabling the timer with the TEN bit (see
Figure 34-7).

Offset channel_base + 0x0C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 34-6. Timer Flag Register (TFLG)

Table 34-7. TFLG field descriptions

Field Description

TIF Time Interrupt Flag
TIF is set to 1 at the end of the timer period.This flag can be cleared only by writing it with a 1. Writing
a 0 has no effect. If enabled (TIE = 1), TIF causes an interrupt request.
0: Timeout has not yet occurred
1: Timeout has occurred

Periodic Interrupt Timer (PIT)

MPC5644A Microcontroller Reference Manual, Rev. 6

1632 Freescale Semiconductor

The counter period of a running timer can be modified, by first disabling the timer, setting a new load value
and then enabling the timer again (see Figure 34-8).

It is also possible to change the counter period without restarting the timer by writing the LDVAL register
with the new load value. This value will then be loaded after the next trigger event (see Figure 34-9).

Figure 34-7. Stopping and starting a timer

Figure 34-8. Modifying running timer period

Figure 34-9. Dynamically setting a new load value

34.5.1.2 Debug mode

In Debug mode the timers will be frozen—this is intended to aid software development, allowing the
developer to halt the processor, investigate the current state of the system (e.g. the timer values) and then
continue the operation.

34.5.2 Interrupts

All of the timers support interrupt generation. The RTI is typically used for system wakeup, but can be
used for interrupt generation as well. Refer to the section “Functional description” in Chapter 15, Interrupt
Controller (INTC) for related vector addresses and priorities.

Timer interrupts can be disabled by setting the TIE bits to zero. The timer interrupt flags (TIF) are set to 1
when a timeout occurs on the associated timer, and are cleared to 0 by writing a 1 to that TIF bit.

p1p1

Timer Enabled Disable
Timer

p1

Start Value = p1

Trigger
Event

p1

Re-Enable
Timer

p1

Timer Enabled Disable
Timer, Start Value = p1

Trigger
Event

Re-Enable
Timer

p1

Set new
Load Value

p2 p2 p2

p1p1

Timer Enabled New Start
Value p2 set

p1 p2

Start Value = p1

p2

Trigger
Event

Periodic Interrupt Timer (PIT)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1633

The PIT generates a real time interrupt when the selected interrupt time period elapses. The RTI interrupt
is disabled locally by setting the TIE bit to zero. The real time interrupt flag (TIF) is set to 1 when a timeout
occurs, and is cleared by writing a 1 to the TIF bit. (The flag will be set regardless of whether the interrupt
is enabled.)

The RTI can be used for periodic wakeup from a low power mode. It can also be used to generate a general
purpose interrupt.

34.6 Initialization and application information

34.6.1 Example configuration

In the example configuration

• the PIT clock has a frequency of 50 MHz

• the RTI clock has a frequency of 10 MHz

• the RTI shall be set up to create a wakeup interrupt every 500 ms

• timer 1 shall create an interrupt every 5.12 ms

• timer 3 shall create a trigger event every 30 ms

First the PIT module needs to be activated by writing a 0 to the MDIS bit in the PITMCR.

The 50 MHz clock frequency equates to a clock period of 20 ns and the 10 MHz frequency equates to a
clock period of 100 ns. Therefore the RTI timer needs to trigger every 500 ms/100 ns = 5000000 cycles.
Timer 1 needs to trigger every 5.12 ms/20 ns = 256000 cycles and timer 3 every 30 ms/20 ns = 1500000
cycles. The value for the LDVAL register trigger would be calculated as (period / clock period)  1.

This means that RTI LDVAL will be written with 0x004C_4B3F, LDVAL1 with 0x0003_E7FF and
LDVAL3 with 0x0016_E35F.

To generate the wakeup interrupt, the interrupt line must be enabled by writing a 1 to the RTI TIE bit in
the TCTRL register. To start the RTI, the TEN bit in the RTI TCTRL register must also be set.

The interrupt for Timer 1 is enabled by setting the TIE bit in the TCTRL1 register. The timer is started by
writing a 1 to bit TEN in the TCTRL1 register.

Timer 3 shall be used only for triggering. Therefore Timer 3 is started by writing a 1 to bit TEN in the
TCTRL3 register, bit TIE stays at 0.

The following example code matches the described setup:
// turn on PIT
PIT_CTRL = 0x00;

// RTI
PIT_RTI_LDVAL = 0x004C4B3F; // setup RTI for 5000000 cycles
PIT_RTI_TCTRL = PIT_TIE; // let RTI generate interrupts
PIT_RTI_TCTRL |= PIT_TEN; // start RTI

// Timer 1
PIT_LDVAL1 = 0x0003E7FF; // setup timer 1 for 256000 cycles
PIT_TCTRL1 = TIE; // enable Timer 1 interrupts

Periodic Interrupt Timer (PIT)

MPC5644A Microcontroller Reference Manual, Rev. 6

1634 Freescale Semiconductor

PIT_TCTRL1 |= TEN; // start timer 1

// Timer 3
PIT_LDVAL3 = 0x0016E35F; // setup timer 3for 1500000 cycles
PIT_TCTRL3 = TEN; // start timer 3

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1635

Chapter 35
Power Management Controller (PMC)

35.1 Introduction

Internally, MPC5644A devices have four supply voltages, nominally 5 V, 3.3 V, 1.2 V and 1.0 V VSTBY.
Externally only a 5 V supply is required. The other voltages are supplied by internal regulators. All supply
voltages have voltage monitors and both the VDD regulator and all monitors are adjustable. The PMC
controls the internal voltage supplies, with the exception of VSTBY, which has its own regulator.
Additionally the PMC controls the low voltage inhibit (LVI) circuits and power-on reset (POR) functions.

Note that although MPC5644Adevices have features intended for use in low-power applications, reduced
power modes are achieved by clock gating. It is not possible to switch off the power to any on-chip module.
Reduced power consumption is achieved by turning off the system clock to the modules. See Chapter 5,
Operating Modes and Clocking for details.

The power management controller contains circuitry to generate the internal 3.3 V supply and to control
the regulation of 1.2 V supply with external npn ballast transistor. It also contains low voltage inhibit (LVI)
and power-on reset (POR) circuits for the 1.2 V supply, the 3.3 V supply, the 3.3 V/5 V supply of the
closest I/O segment (VDDEH1) and the 5 V supply of the regulators (VDDREG). There is no requirement
for special power up or down sequencing. VDDREG can be tied to VSS to bypass the 3.3 V and 1.2 V
internal regulators.

NOTE

Although it is possible to bypass the internal regulators by tying the
VDDREG to ground (VSS), doing so also disables most PMC functions,
e.g., the user-programmable LVIs.

Regulators and power supply LVI/POR control blocks use a precision bandgap voltage reference.

A low impedance buffered version of the absolute and curvature corrected bandgap voltage reference is
available to be measured using an ADC dedicated channel. The PMC block has the following operating
modes:

• Normal mode

• Low power RAM test

• VDDREG supply grounded (See Section 35.4, Functional description for details)

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1636 Freescale Semiconductor

35.1.1 Block diagram

Figure 35-1. Power management controller diagram

VDDREG

VDDREG

VDDEH

VDD33

VDD

VDD

LVI-vddreg

LVI-vddeh

LVI-vdd33

LVI-vdd

LVI-1P0

VRCCTL

VDDSNS

VDD33

VSSREG

VDDREG

VDDEH

VDD33

VDD

POR-vddreg

POR-vddeh

POR-vdd33

POR-vdd

REG1p2ref

POR-vddreg

REG-3p3ref

POR-vddreg

VBGref

LVI3p3ref

LVI1p2ref

LVI1p0ref

REG3p3ref

REG1p2ref

LVI/VREG
Reference

LVI5-vddreg

LVI3-vddeh

LVI3-vdd33

LVI1.2-vdd

LVI1.0-vdd

POR5-vddreg

POR3-vddeh

POR3-vdd33

POR1.2-vdd

Vreg1p2

Vreg3p3

Digital Interface

Configuration and Status Registers

Trimming Register

POR-vddeh, POR-vdd33, POR_vdd

LVI-vddreg, LVI-vddeh, LVI-vdd33, LVI-vdd

LVREH, LVRE50, LVRE33, LVREC
LVI from

LVRER

reset-pin segment

POR from
reset-pin segment

POR

Analog Kernel

VHHgenerator

VDDREG

VDD33

VDDEH

VHH

VHH

VHH

VSSA_LVI

VRC3p3SNS

VSSREG
VSSREG

VSSREG

VSSREG VSSA_LVI (only for LVI VSSREG
 resistive dividers)

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1637

Figure 35-2. Bandgap reference block diagram

35.2 External signal description

Table 35-1 provides an overview of the PMC supply signals.

35.2.1 Detailed signal descriptions

This section provides the descriptions of external signals coming into and going out of the power
management control unit.

Table 35-1. Power management controller external signals (maximum ratings)

Name Type Voltage Description

VDDREG Supply 4.5 – 5.5 V Power supply for the voltage regulator

VDDEH1 Supply 2.7 – 5.5 V Power supply of the closest I/O segment

VRC331,2

1 This table represents the maximum variation of the supply when internal regulators are used. For external
power supply requirements check the PMC electrical specifications in the “PMC Operating Conditions and
External Regulators Voltage” table in the device data sheet.

2 Within the PMC block, the signal VDD33 is the output of the internal 3.3 V voltage regulator and the signal
VRC33 is used as the feedback of the internal 3.3 V voltage regulator. These signals are shorted together
on the production package. Throughout this document, references to VRC33 and VDD33 refer to the
production package signal VRC33.

Supply 3.3 – 3.6 V 3.3 V bypass capacitor or 3.3 V external power supply

VDD Supply 1.2 – 1.32 V 1.2 V supply from external ballast transistor

VSSREG Ground — Ground supply for digital core and PMC

VRCCTL Output — Regulator drive for external npn base

Bandgap
Reference VBG

Absolute Ref

VBG
Buffer

VBG Trim

POR-vddreg

VBG

ABS trim

VBGref

VDDREG

DVSSVBGref VREF_buff

AVSS

AVSS
AVSS

DVSS

VDDREG

VDDREG

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1638 Freescale Semiconductor

35.2.1.1 VDDREG

Quiet 5 V supply for the voltage regulator and LVI block. It must have an external decoupling capacitor
of the order of 4.7 µF – 20 µF. Regulators and LVI can be turned off by grounding VDDREG. In this case
external regulation and low voltage control must be supplied.

35.2.1.2 VDDEH1

Power supply input (5 V or 3.3 V nominal), taken from one of the pad ring I/O segment which is near the
voltage regulator.

35.2.1.3 VRC33

When the internal 3.3 V voltage regulator is enabled, this pin must be connected to an external bypass
capacitor of 600 nF – 2 µF with low ESR (max 50 m). If the voltage regulator is not powered or the
regulator is disabled (pin VDDREG to ground or shutdown bit PMC_SR[V33DIS] set to ‘1’), this pin must
be connected to an external 3.3 V supply.

35.2.1.4 VDD

This is the 1.2 V supply coming from the emitter of an external NPN ballast transistor, whose base current
is supplied by VRCCTL. If the internal voltage regulator controller is not powered (pin VDDREG tied to
ground) or the external ballast transistor is not present, the VDD pin must be connected to an external 1.2 V
power supply.

For maximum transient performance, the recommended bypass capacitor for each pin that supplies the
digital core is 2.2 µF – 6 µF with very low ESR (max 50 m). A ceramic capacitor is also desirable, with
100 nF capacitance. Moreover, a 1 µF to 2 µF cap might be connected to the base of the external bipolar.

35.2.1.5 VRCCTL

1.2 V regulator output that drives the base of the external NPN transistor.

35.3 Memory map/register definition

Table 35-2 shows the PMC memory map. The PMC memory map has three registers for configuring,
monitoring, and trimming the LVI monitors.

NOTE

The PMC base address (PMC_BASE) is 0xC3FB_C000. Register addresses
in this chapter are given as offsets to PMC_BASE.

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1639

35.3.1 Module Configuration Register (MCR)

The configuration register contains configuration and reset and interrupt enable bits for the LVI monitors.

Please note that in the MPC5644A devices the LVI reset is equivalent to a POR. After an LVI reset, bit
SIU_RSR[PORS] is set and the PMC_SR is reset—no LVI event information is retained. To enable
application to report an LVI event, disable the reset using the appropriate field, i.e., LVRER or LVREH,
and enable the interrupt for the LVI using its interrupt enable field, e.g., LVIER. You must make sure that
the ISR will be finished before the voltage sinks below its functional specification and this may require an
increase in the LVI level.

The software system reset and the POR/LVI reset are handled differently by the device. See Section 4.5,
Reset source descriptions for more details. After a software system reset different status flags are set in the
SIU_RSR register.

NOTE

LVI resets and interrupts are only enabled when the voltage regulator is
enabled (VDDREG = 5 V). If the user grounds VDDREG
(VDDREG = 0 V) and supplies the voltages externally (1.2 V and 3.3 V), it
is also necessary to provide the LVI monitoring externally.

Table 35-2. Power management controller memory map

Address Register Location

PMC_BASE (0XC3FB_C000)
+ 0x0000

MCR — Module Configuration Register on page
35-1639

PMC_BASE (0XC3FB_C000)
+ 0x0004

TRIMR — Trimming Register on page
35-1641

PMC_BASE (0XC3FB_C000)
+ 0x0008

SR — Status Register on page
35-1644

Offset: PMC_BASE + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

LV
R

E
R

LV
R

E
H

LV
R

E
50

LV
R

E
33

LV
R

E
C 0 0 0

LV
IE

R

LV
IE

H

LV
IE

50

LV
IE

33

LV
IC

0 0
T

LK

W

Reset 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-3. Module Configuration Register (MCR)

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1640 Freescale Semiconductor

Table 35-3. MCR field descriptions

Field Description

0
LVRER

Reset-pin-supply LVI (VDDEH6) LVI reset enable
This bit defines whether an LVI assertion on the VDDEH6 supply will generate system reset or not.
0 No reset—LVI assertion on the supply of the I/O segment that contains the reset pin does not cause

system reset.
1 Reset—LVI assertion on the supply of the I/O segment that contains the reset pin causes system

reset.

1
LVREH

VDDEH1 LVI reset enable
This bit defines whether an LVI assertion on the VDDEH1 supply will generate system reset or not.
0 No reset—LVI assertion on the VDDEH supply does not cause system reset.
1 Reset—LVI assertion on the VDDEH supply causes system reset.

2
LVRE50

5 V LVI reset enable
This bit defines whether an LVI assertion on the 5 V supply of the voltage regulator (VDDREG) will
generate system reset or not.
0 No reset—LVI assertion on the 5 V supply of the voltage regulator does not cause system reset.
1 Reset—LVI assertion on the 5 V supply of the voltage regulator causes system reset.

3
LVRE33

3.3 V LVI reset enable
This bit defines whether an LVI assertion on the 3.3 V supply will generate system reset or not.
0 No reset—LVI assertion on the 3.3 V supply does not cause system reset.
1 Reset—LVI assertion on the 3.3 V supply causes system reset.

4
LVREC

1.2 V LVI reset enable
This bit defines whether an LVI assertion on the 1.2 V supply will generate system reset or not.
0 No reset—LVI assertion on the 1.2 V supply does not cause system reset.
1 Reset—LVI assertion on the 1.2 V supply causes system reset.

5:7 Reserved

8
LVIER

Reset-pin-supply (VDDEH6) LVI enable
This bit enables the generation of the LVI interrupt request when the VDDEH6 LVI falls below the
corresponding LVI threshold. The LVI interrupt is independent from LVI reset. If both, interrupt and reset,
are enabled, then reset and interrupt will be generated, but reset will then clear the interrupt.
0 Disabled—LVI interrupt request is disabled.
1 Enabled—LVI interrupt request is enabled.

9
LVIEH

VDDEH1 LVI enable
This bit enables the generation of the LVI interrupt request when the VDDEH1 supply falls below the
corresponding LVI threshold. The LVI interrupt is independent from LVI reset. If both, interrupt and reset,
are enabled, then reset and interrupt will be generated, but reset will then clear the interrupt.
0 Disabled—LVI interrupt request is disabled.
1 Enabled—LVI interrupt request is enabled.

10
LVIE50

5 V LVI enable
This bit enables the generation of the LVI interrupt request when the 5 V supply of the voltage regulator
(VDDREG) falls below the corresponding LVI threshold. The LVI interrupt is independent from LVI reset.
If both, interrupt and reset, are enabled, then reset and interrupt will be generated, but reset will then
clear the interrupt.
0 Disabled—LVI interrupt request is disabled.
1 Enabled—LVI interrupt request is enabled.

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1641

35.3.2 Trimming Register (TRIMR)

The trimming register enables the user to fine tune the voltage of the regulators and the LVI thresholds. It
can only be written when bit PMC_MCR[TLK] is negated. Once PMC_MCR[TLK] has been asserted, this
register becomes read-only until the next system reset.

11
LVIE33

3.3 V LVI enable
This bit enables the generation of the LVI interrupt request when the 3.3 V power supply goes below the
corresponding LVI threshold. The LVI interrupt is independent from LVI reset. If both, interrupt and reset,
are enabled, then reset and interrupt will be generated, but reset will then clear the interrupt.
0 Disabled—LVI interrupt request is disabled.
1 Enabled—LVI interrupt request is enabled.

12
LVIC

1.2 V LVI enable
This bit enables the generation of the LVI interrupt request when the 1.2 V power supply goes below the
corresponding LVI threshold. The LVI interrupt is independent from LVI reset. If both, interrupt and reset,
are enabled, then reset and interrupt will be generated, but reset will then clear the interrupt.
0 Disabled—LVI interrupt request is disabled.
1 Enabled—LVI interrupt request is enabled.

13–14 Reserved, should be cleared

15
TLK

Trimming lock
This is a set-only bit that comes out of reset negated, and can be asserted one time after reset to lock
the trimming register. Once asserted, it cannot be negated anymore. When TLK is asserted, the
Trimming Register becomes read-only and cannot be changed until the next reset.
0 Trimming register can be written.
1 Trimming register is read-only.

16:31 Reserved

Offset: PMC_BASE + 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 LVDREGTRIM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R VDD33TRIM LVD33TRIM VDDCTRIM LVDCTRIM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-4. Trimming Register (TRIMR)

Table 35-3. MCR field descriptions (continued)

Field Description

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1642 Freescale Semiconductor

Table 35-4. TRIMR field descriptions

Field Description

0–11 Reserved, should be cleared

12–15
LVDREGTRIM

LVI 5 V trimming
This field is used to fine tune the voltage threshold of the 5 V rising LVI, which is used to monitor
the VDDREG supply. Nominal configuration:
0111 4.43 V
0110 4.41 V
0101 4.39 V
0100 4.37 V
0011 4.35 V
0010 4.33 V
0001 4.31 V
0000 4.29 V Default.
1111 4.27 V
1110 4.25 V
1101 4.23 V
1100 4.21 V
1011 4.19 V
1010 4.17 V
1001 4.15 V
1000 4.13 V

16–19
VDD33TRIM

VREG 3.3 V trimming
This field is used to fine tune the voltage of the 3.3 V regulator. Nominal configuration:
0111 3.60 V
0110 3.57 V
0101 3.54 V
0100 3.51 V
0011 3.48 V
0010 3.45 V
0001 3.42 V
0000 3.39 V Default.
1111 3.36 V
1110 3.33 V
1101 3.30 V
1100 3.27 V
1011 3.24 V
1010 3.21 V
1001 3.18 V
1000 3.15 V

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1643

20–23
LVD33TRIM

LVI 3.3 V trimming
This field is used to fine tune the voltage threshold of the 3.3 V rising LVI, which is used to monitor
the 3.3 V regulated output and the VDDEH supply. Nominal configuration:
0111 3.23 V
0110 3.21 V
0101 3.19 V
0100 3.17 V
0011 3.15 V
0010 3.13 V
0001 3.11 V
0000 3.09 V Default.
1111 3.07 V
1110 3.05 V
1101 3.03 V
1100 3.01 V
1011 2.99 V
1010 2.97 V
1001 2.95 V
1000 2.93 V

Note: The recommended value for the LVD33TRIM is 0b0011. In the cut 1 device, the register
should be written by software.

24–27
VDDCTRIM

VREG 1.2 V trimming
This field is used to fine tune the voltage of the 1.2 V regulator. Nominal configuration:
0111 1.42 V
0110 1.40 V
0101 1.38 V
0100 1.36 V
0011 1.34 V
0010 1.32 V
0001 1.30 V
0000 1.28 V Default.
1111 1.26 V
1110 1.24 V
1101 1.22 V
1100 1.20 V
1011 1.18 V
1010 1.16 V
1001 1.14 V
1000 1.12 V

Table 35-4. TRIMR field descriptions (continued)

Field Description

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1644 Freescale Semiconductor

35.3.3 Status Register (SR)

The status register contains interrupt flag bits for the LVD monitors.

28–31
LVDCTRIM

LVI 1.2 V trimming
This field is used to fine tune the voltage threshold of the 1.2 V rising LVI. Nominal configuration:
0111 1.30 V
0110 1.28 V
0101 1.26 V
0100 1.24 V
0011 1.22 V
0010 1.20 V
0001 1.18 V
0000 1.16 V Default
1111 1.14 V
1110 1.12 V
1101 1.10 V
1100 1.08 V
1011 1.06 V
1010 1.04 V
1001 1.02 V
1000 1.0 V

Offset: PMC_BASE + 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0

LV
F

V
S

T
B

Y

B
G

R
D

Y

B
G

T
S 0 0 0 0 0 0 0

V
33

D
IS

W
LV

F
C

S
T

B
Y

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0

LV
F

R

LV
F

H

LV
F

50

LV
F

33

LV
F

C 0 0 0

W

LV
F

C
R

LV
F

C
H

LV
F

C
50

LV
F

C
33

LV
F

C
C

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 35-5. Status Register (SR)

Table 35-4. TRIMR field descriptions (continued)

Field Description

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1645

Table 35-5. SR field descriptions

Field Description

0–4 Reserved

5
LVFVSTBY

Brown out flag
This bit indicates that a brown out condition was detected on the RAM standby regulator switch.
0 No brown out detected
1 Brown out detected

6
BGRDY

Bandgap Status1
This read-only bit is asserted when the bandgap circuit has finished its startup procedure during
power-up. The LVIs are disabled (output negated) while BGRDY is negated.
0 Bandgap not ready—LVIs disabled
1 Bandgap ready—LVIs enabled

7
BGTS

Bandgap Status 2
This read-only bit stores bandgap temperature status information.
0 Temperature out of range—above 160 °C
1 Temperature in range—below 160 °C

8:12 Reserved

13
LVFCSTBY

Standby-RAM-supply LVF clear
This write-only bit is used to clear the low-voltage flag reported by the RAM standby regulator switch.
Writing 1 to this bit informs the RAM standby regulator switch to clear LVFVSTBY. Writing 0 has no
effect. Reading this bit always returns 0.
0 No effect
1 Clears LVFVSTBY

14 Reserved

15
V33DIS

3.3 V Internal Regulator Shutdown status bit
0 Enabled—Vreg3p3 ON
1 Disabled—Vreg3p3 OFF

16
LVFCR

Reset-pin-supply (VDDEH6) LVI clear
This write-only bit is used to clear the LVI interrupt flag associated with the VDDEH6 supply. Writing
1 to this bit clears the LVFR flag. Writing 0 has no effect. Reading this bit always return 0.
0 No effect
1 Clears the LVFR flag

17
LVFCH

VDDEH1 LVI clear
This write-only bit is used to clear the LVI interrupt flag associated with the VDDEH1 supply. Writing
1 to this bit clears the LVFH flag. Writing 0 has no effect. Reading this bit always return 0.
0 No effect
1 Clears the LVFH flag

18
LVFC50

5 V LVI clear
This write-only bit is used to clear the LVI interrupt flag associated with the 5 V voltage regulator
supply (VDDREG). Writing 1 to this bit clears the LVF50 flag. Writing 0 has no effect. Reading this bit
always return 0.
0 No effect
1 Clears the LVF50 flag

19
LVFC33

3.3 V LVI clear
This write-only bit is used to clear the LVI interrupt flag associated with the 3.3 V supply. Writing 1 to
this bit clears the LVF33 flag. Writing 0 has no effect. Reading this bit always return 0.
0 No effect
1 Clears the LVF33 flag

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1646 Freescale Semiconductor

20
LVFCC

1.2 V LVI clear
This write-only bit is used to clear the LVI interrupt flag associated with the 1.2 V supply. Writing 1 to
this bit clears the LVFC flag. Writing 0 has no effect. Reading this bit always return 0.
0 No effect
1 Clears the LVFC flag

21:23 Reserved

24
LVFR

Reset-pin-supply (VDDEH6) LVI flag
This read-only bit is the LVI interrupt flag associated with the VDDEH6 supply. It is asserted when the
supply falls below the corresponding LVI threshold, and can be cleared by the CPU by writing 1 to
the LVFCR bit. If the LVIER bit is also asserted, an LVI interrupt is sent to the CPU. If LVRER is also
asserted, a system reset will be generated, which will clear the LVFR flag and negate the interrupt
request.
0 No occurrence
1 LVI occurrence detected on the VDDEH6 supply

25
LVFH

VDDEH1 LVI flag
This read-only bit is the LVI interrupt flag associated with the VDDEH1 supply. It is asserted when the
supply falls below the corresponding LVI threshold, and can be cleared by the CPU by writing 1 to
the LVFCH bit. If the LVIEH bit is also asserted, an LVI interrupt is sent to the CPU. If LVREH is also
asserted, a system reset will be generated, which will clear the LVFH flag and negate the interrupt
request.
0 No occurrence
1 LVI occurrence detected on the VDDEH1 supply

26
LVF50

5 V LVI flag
This read-only bit is the LVI interrupt flag associated with the 5 V supply of the voltage
regulator. It can be cleared by the CPU by writing 1 to the LVFC50 bit. If the LVIE50 bit is also
asserted, an LVI interrupt is sent to the CPU. If LVRE50 is also asserted, a system reset will be
generated, which will clear the LVF50 flag and negate the interrupt request.
0 No occurrence
1 LVI occurrence detected on the 5 V supply of the voltage regulator

27
LVF33

3.3 V LVI flag
This read-only bit is the LVI interrupt flag associated with the 3.3 V supply. It is asserted when the
3.3 V supply falls below the corresponding LVI threshold, and can be cleared by the CPU by writing
1 to the LVFC33 bit. If the LVIE33 bit is also asserted, an LVI interrupt is sent to the CPU. If LVRE33
is also asserted, a system reset will be generated, which will clear the LVF33 flag and negate the
interrupt request.
0 No occurrence
1 LVI occurrence detected on the 3.3 V supply

28
LVFC

1.2 V LVI flag
This read-only bit is the LVI interrupt flag associated with the 1.2 V supply. It is asserted when the
1.2 V supply falls below the corresponding LVI threshold, and can be cleared by the CPU by writing
1 to the LVFCC bit. If the LVIC bit is also asserted, an LVI interrupt is sent to the CPU. If LVREC is
also asserted, a system reset will be generated, which will clear the LVFC flag and negate the
interrupt request.
0 No occurrence
1 LVI occurrence detected on the 1.2 V supply

29:31 Reserved

Table 35-5. SR field descriptions (continued)

Field Description

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1647

35.4 Functional description

The power management controller provides the base current for an external ballast transistor to generate
the 1.2 V supply. It also contains a 3.3 V regulator and several POR / LVI voltage monitors for system
supervision.

A 5 V loose tolerance detection circuit (POR 5 V) is used to determine if the supply voltage VDDREG is
high enough to guarantee the startup of bandgap voltage reference. As a consequence 5 V and 3 V LVIs
can safely startup with reliable output value. The device is kept in reset until 5 V LVI has been cleared,
allowing for correct 3.3 V regulator, 1.2 V regulator and 1.2 V LVI startup. Internal 3.3 V and 1.2 V POR
are included to provide minimum low voltage reset capability.

Internal 3.3 V and 1.2 V POR are included to provide minimum low voltage reset capability.

The voltage regulators can be disabled to support the connection of external power supplies to the 3.3 V
and 1.2 V pins. It can be done in two ways:

1. Grounding VDDREG

Internal regulators are automatically disabled, external bipolar transistor is omitted. In this case, all
LVI monitors are also disabled. Therefore, when using external power supplies and grounding
VDDREG, the user has to provide external LVI monitoring.

2. Keeping VDDREG powered

External bipolar transistor is omitted, 3.3 V internal regulator is disabled after startup by setting the
V33DIS bit in the NVUSRO register (Non Volatile User Option register in the flash memory. See
Section 35.4.3, 3.3 V internal voltage regulator for more details.). In this case there is no need of
external LVI monitoring.

As PORs are powered by VHH their value is reliable also when VDDREG is grounded, as long as
VDDEH1 or VDD33 are at the correct voltage.

35.4.1 Bandgap

The bandgap voltage of the PMC is capable of generating a reference voltage of 1.219 V. It is used as
reference to generate all supply voltages, for this reason it is powered directly out of the 5 V domain to
avoid startup racing conditions. Supply voltage range is from 4.5 V to 5.5 V. The bandgap shall work with
decreased performance down to 4.0 V supply.

The bandgap is calibrated during factory test—see the “PMC Electrical Characteristics” table in the device
data sheet for accuracy details. The calibration data is typically stored in flash memory and is automatically
read from the flash every time the part is initiated through reset. The default LVI thresholds are set to a
safe value that accommodates the full uncalibrated bandgap range, so that external voltages can be applied
in the specified ranges—see the “PMC Electrical Characteristics” table in the device data sheet for details.

The bandgap has two monitor signals: bandgap_OK and temperature_OK. The former is low during
startup and rises when bandgap reference has settled (uses an internal POR on the bandgap supply); the
latter is a low accuracy temperature sensor, which goes low when an over temperature condition has
occurred, i.e., when local temperature is higher than 160 – 200 °C. Both signals and POR value are
available in the status register (PMC_SR) as bandgap status bits.

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1648 Freescale Semiconductor

Bandgap is powered by the same supply of the voltage regulator. When voltage regulator supply is
removed (to allow for external powering of 3.3 V and 1.2 V domains), bandgap voltage reference will also
be disabled.

35.4.2 5 V LVI

A programmable low voltage monitor is connected internally to the 5 V supply that feeds the voltage
regulator (VDDREG). The output of the LVI goes to logical 1 when the monitored voltage rises above the
LVI rising trip point. In case the monitored voltage falls below the falling trip point, the LVI output goes
to logical 0.

The assertion and negation voltages are adjustable via software by writing to field
PCM_TRIMR[LVDREGTRIM], which selects one of the 16 voltages available. The reset value of the
4-bit register is “0000”, corresponding to the rising trip point voltage of 4.29 V. This is the typical default
value, the real default value may vary from sample to sample according to process, temperature and
voltage supply conditions, as detailed in the “PMC Electrical Characteristics” table in the device data
sheet.

35.4.3 3.3 V internal voltage regulator

The 3.3 V internal voltage regulator supplies a total DC current of up to 80 mA or a maximum transient
current peak up to 300 mA (if the external decoupling capacitor has the recommended value of
600 nF – 2 µF and ESR < 50 m).

The regulator is powered by VDDREG and works in the range 4.5 V to 5.5 V, down to 4.0 V with lower
current drive capabilities, and uses the bandgap voltage as absolute reference. The 3.3 V regulator output
is connected to an I/O pad (VRC33) for external capacitance decoupling, then all blocks (except the flash)
that need a 3.3 V supply are connected to the VRC33 pad. The 3.3 V flash power supply is taken at a pad
next to the regulator I/O, which is double bonded together with the VRC33 pad.

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1649

Figure 35-6. Vreg 3.3 V power connection

The regulator output voltage is adjustable via software by writing to field PCM_TRIMR[VDD33TRIM],
which selects one of the 16 voltages available. The reset value of the 4-bit register is “0000”,
corresponding to nominal voltage of 3.39 V. This is the typical default value, the real default value may
vary from sample to sample according to process, temperature and voltage supply conditions, as detailed
in the “PMC Electrical Characteristics” table in the device data sheet.

The 3.3 V supply is internally connected to a 5 V ADC channel such that the actual voltage may be read.
Moreover, if an external 3.3 V voltage source will be used, the user can disable this regulator by clearing
the shutdown bit NVUSRO[V33DIS]. The user might have both internal 3.3 V regulator and external
3.3 V voltage sources at the same time at the cost of additional power consumption on the external voltage
source. It is recommended to disable the internal 3.3 V regulator in this case.

Additional features of this regulator include a current limiter that protects a PMOS pass device from
overload condition and soft start-up to avoid overshoot during power-on.

If an external 3.3 V supply will be used, this regulator can be disabled by setting vdd33shutdown bit to
logical 1. The bit resides in the NVUSRO register in the flash memory shadow row. See Figure 35-7 and
Table 35-6 for details.

Osc

Vreg 3.3Vref_3p3

Vreg 1.2

Internal 3.3V
Supply

VRC33

Flash

VDDREG

VDDREG

VDD33
VRC

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1650 Freescale Semiconductor

35.4.4 3.3 V LVI

The PMC contains two 3.3 V low voltage monitors. One is connected to the internal 3.3 V supply and the
other is connected to VDDEH1.

The output of the LVI goes to logical 1 when the monitored voltage rises above the rising trip point. In case
the monitored voltage falls below the falling trip point, the LVI output goes to logical 0. The assertion and
negation voltages are adjustable via software by writing to field PCM_TRIMR[LVD33TRIM], which
selects one of the 16 voltages available. The reset value of the 4-bit register is “0000”, corresponding to
rising trip point voltage of 3.09 V. This is the typical default value, the real default value may vary from
sample to sample according to process, temperature and voltage supply conditions, as detailed in the
“PMC Electrical Characteristics” table in the device data sheet.

The LVIs can be programmed to trigger power-on reset (enabled by default). If programmed to generate
reset, the monitors are able to hold reset from 3.3 V POR until greater or equal to LVI threshold.

Address: 0x00FF_FE10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reset x x x x x x x x x x x x x x x x

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

V
33

D
IS

W

Reset x x x x x x x x x x x x x x x 1

= not implemented

Figure 35-7. Non-Volatile User Options Register (NVUSRO) - Array0

Table 35-6. Non-Volatile User Options Register (NVUSRO) field description

Field Description

0:30 Reserved

31
V33DIS

VREG33 shutdown bit

1: 3.3 V regulator is enabled.
0: 3.3 V regulator is disabled.

Note: The shutdown bit is masked until the 1.2 V achieves its POR trip point, keeping the 3p3 regulator
on. After a POR the reset value reflects the state of the shadow flash bit at 0x00FF_FE10.

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1651

35.4.5 1.2 V voltage regulator controller

A voltage regulator controller is used to source current to the base of an external NPN transistor which
operates as an emitter follower. The 1.2 V supply is produced at the emitter of this transistor with a
maximum DC current of 400 mA (or maximum transient current of 1.2 A).

The regulator output voltage is adjustable using software, to permit the device to center the supply for
maximum transient margin. This adjustment is achieved by writing to field PCM_TRIMR[VDDCTRIM],
which selects one of the 16 voltages available. The reset value of the 4-bit register is “0000”,
corresponding to a typical default voltage of 1.28 V.

The 1.2 V supply can be internally connected internally to a 5 V ADC channel such that the actual voltage
may be read.

35.4.6 1.2 V LVI

A programmable low voltage monitor is connected to the 1.2 V supply. The output of the LVI goes to
logical 1 when the monitored voltage rises above the rising trip point. In case the monitored voltage falls
below the falling trip point, the LVI output goes to logical 0.

The assertion and negation voltages are adjustable via software by writing to field
PCM_TRIMR[LVDCTRIM], which selects one of the 16 voltages available. The reset value of the 4-bit
register is “0000”, corresponding to a rising trip point voltage of 1.16 V. This is the typical default value,
the real default value may vary from sample to sample according to process, temperature and voltage
supply conditions, as detailed in the “PMC Electrical Characteristics” table in the device data sheet.

The LVI 1.2 V can be programmed to trigger power-on reset (enabled by default). If programmed to
generate reset, the monitor is able to hold reset from 1.2 V POR until greater or equal to LVI threshold.

35.4.7 Resets and interrupts

35.4.7.1 Power-on reset

Power-on reset (POR) circuits are present at the following power supplies:

• 3.3 V / 5 V supply of the closest I/O segment (VDDEH1);

• 5 V supply of the PMC block and bandgap (VDDREG);

• 3.3 V regulated supply VDD33;

• 1.2 V regulated supply.

Power-on reset will assert when the voltage levels of the POR power supplies begin to rise. Each POR will
negate when its power supply rises into the specified range. The behavior for each POR during power
supply ramping is shown in Figure 35-8.

The dependence between POR and LVI is summarized in Figure 35-9. As shown, the LVI will reach a
consistent state before the POR actually releases the reset, avoiding false startup condition. This is valid
for each voltage supply monitored by POR/LVI.

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1652 Freescale Semiconductor

The PORs for each power supply are not intended to indicate that the power supply has dropped below the
specified voltage range for the device. The 1.2 V and the 3.3 V supplies are monitored, respectively, by
the LVI 1.2 V and LVI 3.3 V circuits for this purpose.

Figure 35-8. POR rising and falling edges

Figure 35-9. POR - LVI relative rising and falling edges

POR indeterminate

POR_B asserts

POR_B negates (ramp up) POR_B asserts (ramp down)

POR indeterminate

Specified Power Supply Range
Power Supply

Vsupply

POR asserts
LVI asserts

POR negates

LVI negates LVI asserts

POR asserts

LVI indeterminate

POR indeterminate

SPECIFIED Vsupply RANGE

POR & LVI
Overlap

POR & LVI
Overlap

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1653

The LVI monitors can be configured to generate power-on reset by programming the LVRER, LVREH,
LVRE50, LVRE33 and LVREC bits in the MCR register.

The combination of POR and LVI sources within the PMC generates a single power-on reset output signal
which can be distributed throughout the device.

The following sections discuss the various modules and functions that use the POR.

35.4.7.1.1 Clock control

The clock control divides the system clock to generate CLKOUT. Because CLKOUT toggles during
system reset, one of the sources of reset for the dividers is POR.

35.4.7.1.2 SIU

The SIU uses POR in its reset controller state machine, synchronizers and RESET filter, SIU_RSR,
SIU_RCSR, SIU_CCR and an internal register.

Reset controller state machine

Because the reset controller state machine is active during system reset, it is reset with POR.

Synchronizers and Reset filter

Signals affecting the reset controller’s ability to negate system reset need to be synchronized with
synchronizers reset by POR if they are asynchronous or come from clock domains other than the system
clock.

A synchronized and filtered assertion of the RESET pin will hold the device in system reset. The
synchronizers and filter are reset with POR so that RESET appears to be asserted while POR is asserted.
Synchronizers for the watchdog, Nexus, checkstop, and JTAG sources of reset use POR to reset the
synchronizers, but system reset can suffice because those sources are not analyzed until after system reset
negates. The loss of clock source synchronizers also are reset with POR, but since loss of clock results in
loss of lock, which needs and uses POR as reset, system reset can suffice for loss of clock.

The synchronization of WKPCFG and BOOTCFG uses POR. In the case of WKPCFG, the pin is applied
during POR. In the case of BOOTCFG, the pin value is latched before the negation of system reset.
Changes in BOOTCFG have no effect after the negation of system reset.

SIU_RSR

Because POR sets the PORS bit of the SIU_RSR to indicate that POR was the source of reset, the other
source indicators, ERS, LLRS, LCRS, WDRS, CRS, and SSRS, are reset with POR. The WKPCFG and
BOOTCFG bits are reset with POR so that the WKPCFG and BOOTCFG values can be latched at the
negation of system reset. The RGF bit also is reset with POR. The SERF bit is reset with POR, but also is
cleared during system reset. System reset can suffice to reset the SERF bit.

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1654 Freescale Semiconductor

SIU_SRCR

The CRE bit of the SIU_SRCR is reset with POR. The SSR and SER bits are reset with POR, but system
reset can suffice for both of them.

SIU_CCR

The MATCH and DISNEX bits of the SIU_CCR use POR.

35.4.7.1.3 Flash memory

The flash state machine is reset during POR. VFLASH must be at a high enough voltage to read the
shadow row before system reset negates. RESET must be asserted when VFLASH is below the minimum
specification. Since the synchronized and filtered RESET appears as asserted during POR and then must
remain asserted until VFLASH is within specification, it is used to reset the flash state machine.

When the system reset is caused by other sources besides POR or RESET assertion, the flash state machine
uses the system reset indication as an input, but not as a reset, to indicate that the state machine is to read
the shadow row.

Note: the field LVD33TRIM of the register TRIMR must be programmed with “0011” at least, in order to
enhance the LVI33 threshold by 60 mV and monitor the VDD33 Voltage in all the corners (voltage,
process and temperature). This is to ensure that the voltage never becomes lower than 3.0 V in order to
guarantee the operations on the flash.

35.4.7.1.4 FMPLL

The FMPLL analog hard block is held in power down state during POR to guarantee that it starts operating
only when voltages are high enough to allow its operation.

The FMPLL programmer’s model registers are reset with POR so that the FMPLL does not lose lock every
time a system reset is asserted.

The Clock Quality Monitor (CQM) inside the FMPLL uses POR to initialize its registers and counters
because it operates during system reset to detect when the crystal oscillator has stabilized.

35.4.7.1.5 NPC

The NPC uses POR because it can be configured during system reset.

35.4.7.1.6 JTAGC

The assertion of POR is equivalent to the negation of the JCOMP pin.

35.4.7.1.7 e200z4

The e200z4 is reset with POR or system reset except in some portions of its Nexus interface, which only
are reset with POR.

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1655

35.4.7.1.8 Padring

The padring 3-states all of the output pins, including CLKOUT, MCKO, and RSTOUT when the 1.2 V
supply is too low to propagate internal signals, including the POR indication. When the POR indication
can be propagated, the output pins, including CLKOUT, MCKO, and RSTOUT, also are 3-stated during
POR.

During POR, the actual value of the pin cannot be read. Instead, the padring drives an input value. The
actual value during POR is important for only two pins: WKPCFG and PLLREF. The values driven during
POR for all other pins are irrelevant. For those pins, the input value is a 0.

WKPCFG

During POR, the direction of the weak pull is determined by the reset state of the WPS bit in the
SIU_PCRs. For those pins whose WPS reset state is determined by the WKPCFG pin, the value of
WKPCFG is treated as a 1 during POR to be consistent with the default pull up for the WKPCFG pin.
Therefore, those pins whose WPS reset state is determined by WKPCFG will have a pull up during POR.

PLLREF

The PLLREF pins selects whether crystal or external clock is used as clock source in bypass mode, which
is the default mode out of POR. Furthermore, PLLREF selects whether the clock reference is monitored
or not by the Clock Quality Monitor. If the reference is the crystal oscillator, it is monitored. If the
reference is an external clock, it is not monitored.

The PLLREF value during POR is kept at logic level 0 to minimize the probability of a clock glitch in the
more stringent case when PLLREF = 0, therefore the CQM will not monitor the reference clock and the
internal POR will be released as soon as the voltages achieve the LVI thresholds. The clock glitch may
occur when the POR is released near the external clock falling edge. Even if such a glitch happens, it will
be still inside the POR pulse because all synchronous logic that use POR are supposed to synchronize the
POR negation with a double-register.

35.4.7.2 Interrupts

The PMC generates one interrupt request signal for each LVI source: reset-pin-supply (VDDEH6) LVI,
VDDEH1 LVI, 5 V LVI, 3.3 V LVI and 1.2 V LVI. The module also generates combined interrupt request
signal which is asserted whenever any of the three individual interrupt request signals becomes asserted.

35.4.8 Soft-Start (for 1.2 V and 3.3 V regulators)

A soft-start circuit has been implemented for 1.2 V and 3.3 V regulators. This circuit controls the reference
voltage rise time to avoid abrupt ramp-up of these regulators.

35.4.9 ADC test mux

During PMC functional mode it is possible to perform direct measurements through the ADC. PMC
internal voltages are routed to the ADC. Each signal can be measured with ADC running at full speed.

I

Power Management Controller (PMC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1656 Freescale Semiconductor

For any measurements it is strongly recommended to disable all LVI outputs to the logic via software as
the multiplexer toggling could induce false detection.

35.5 Electrical characteristics

For electrical characteristics, please refer to the device data sheet.

Table 35-7. eQADC test mux channel for internal PMC signals

eQADC channel ADC Description

45 ADC0/ADC1 Buffered Band Gap

128 ADC0/ADC1 Temp Sensor

129 ADC0/ADC1 VSSA

144 ADC0 Buffered Band Gap

145 ADC0 Reference Voltage for 1.2 V LVD

146 ADC0 Reference for 1.2 V Regulator

147 ADC0 Reference Voltage for 3.3 V LVD

162 ADC0 VDDA

163 ADC0 50% VDDEH6

164 ADC0 VSSA

165 ADC0 50% VDDEH7

166 ADC0 50% VDDEH4

167 ADC0 VSSA

180 ADC0 Reference Voltage for 5.0 V LVD

181 ADC0 Reference Voltage for 3.3 V LVD

182 ADC0 Reference for 3.3 V Regulator

194 ADC1 Test output from Stby PMC

195 ADC1 50% VDDEH1B

196 ADC1 VRC33

197 ADC1 VRC33

198 ADC1 50% VDDEH4

199 ADC1 50% VDDEH1A

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1657

Chapter 36
JTAG Controller (JTAGC)

36.1 Information specific to this device

This section presents device-specific parameterization, customization, and feature availability information
not specifically referenced in the remainder of this chapter.

36.1.1 Device-specific parameters

Table 36-1 shows the parameters and associated values for this device.

36.1.2 Device identification register parameters

Table 36-2 shows the fields and values for the Device Identification Register on this device.

36.1.3 Auxiliary TAP controller instructions

Table 36-3 lists the auxiliary TAP controller instructions (discussed in Section 36.5.4, JTAGC block
instructions) available on this device.

Table 36-1. Device-specific parameters

Parameter Value

Number of JCOMP bits used 1

Length of the boundary scan chain path for the device 248

Number of auxiliary TAP controllers that share the TAP with the JTAGC via an
ACCESS_AUX_TAP_x instruction (not including the JTAGC)

5

Size of the CENSOR_CTRL register (bits) 64

Table 36-2. Device identification register parameters

Field Value

Part revision number (PRN) Changes in each revision

Design center code (DC) 0x2B

Part identification number (PIN) 0x202

Manufacturer identity code (MIC) 0x00E

Table 36-3. Device-specific auxiliary TAP controller Instructions

Instruction Code[4:0] Instruction summary

ACCESS_AUX_TAP_NPC 10000 Enables access to the NPC TAP controller

ACCESS_AUX_TAP_ONCE 10001 Enables access to the e200z4 OnCE TAP controller

ACCESS_AUX_TAP_eTPU 10010 Enables access to the eTPU Nexus TAP controller

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1658 Freescale Semiconductor

36.2 Introduction

Figure 36-1 is a block diagram of the JTAG Controller (JTAGC) block.

Figure 36-1. JTAG STL (IEEE 1149.1) block diagram

36.2.1 Overview

The JTAGC block provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode. Testing is performed via a boundary scan technique, as
defined in the IEEE 1149.1-2001 standard. All data input to and output from the JTAGC block is
communicated in serial format.

36.2.2 Features

The JTAGC block is compliant with the IEEE 1149.1-2001 standard, and supports the following features:

• IEEE 1149.1-2001 Test Access Port (TAP) interface

— 4 pins (TDI, TMS, TCK, and TDO)

• JCOMP input that provides reset control and the ability to share the TAP

TCK

TMS

TDI

Test Access Port (TAP)

TDO

32-bit Device Identification Register

Boundary Scan Register

.

.

Controller

1-bit Bypass Register.

5-bit TAP Instruction Decoder

5-bit TAP Instruction Register

.

.

.

JCOMP

5-bit TAP Instruction Decoder.

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1659

• 5-bit instruction register that supports several IEEE 1149.1-2001 defined instructions as well as
several public and private device-specific instructions (Refer to Table 36-7 for a list of supported
instructions.)

• Sharing of the TAP with other TAP controllers via ACCESS_AUX_TAP_x instructions

• Test data registers: a bypass register, a boundary scan register, and a device identification register

• TAP controller state machine that controls the operation of the data registers, instruction register
and associated circuitry

36.2.3 Modes of operation

The JTAGC block uses JCOMP and a power-on reset indication as its primary reset signals. Several IEEE
1149.1-2001 defined test modes are supported, as well as a bypass mode.

36.2.3.1 Reset

The JTAGC block is placed in reset when either power-on reset is asserted, JCOMP is negated, or the TMS
input is held high for enough consecutive rising edges of TCK to sequence the TAP controller state
machine into the Test-Logic-Reset state. Holding TMS high for five consecutive rising edges of TCK
guarantees entry into the Test-Logic-Reset state regardless of the current TAP controller state. Asserting
power-on reset or setting JCOMP to a value other than the value required to enable the JTAGC block
results in asynchronous entry into the reset state. While in reset, the following actions occur:

• The TAP controller is forced into the Test-Logic-Reset state, thereby disabling the test logic and
allowing normal operation of the on-chip system logic to continue unhindered.

• The instruction register is loaded with the IDCODE instruction.

36.2.3.2 IEEE 1149.1-2001 defined test modes

The JTAGC block supports several IEEE 1149.1-2001 defined test modes. A test mode is selected by
loading the appropriate instruction into the instruction register while the JTAGC is enabled. Supported test
instructions include EXTEST, HIGHZ, CLAMP, SAMPLE and SAMPLE/PRELOAD. Each instruction
defines the set of data register(s) that may operate and interact with the on-chip system logic while the
instruction is current. Only one test data register path is enabled to shift data between TDI and TDO for
each instruction.

The boundary scan register is enabled for serial access between TDI and TDO when the EXTEST,
SAMPLE or SAMPLE/PRELOAD instructions are active. The single-bit bypass register shift stage is
enabled for serial access between TDI and TDO when the HIGHZ, CLAMP or reserved instructions are
active. The functionality of each test mode is explained in more detail in Section 36.5.4, JTAGC block
instructions.

36.2.3.3 Bypass Mode

When no test operation is required, the BYPASS instruction can be loaded to place the JTAGC block into
bypass mode. While in bypass mode, the single-bit bypass shift register is used to provide a
minimum-length serial path to shift data between TDI and TDO.

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1660 Freescale Semiconductor

36.3 External signal description

36.3.1 Overview

The JTAGC consists of five signals that connect to off chip development tools and allow access to test
support functions. The JTAGC signals are outlined in Table 36-4.

36.3.2 Detailed signal descriptions

This section describes each of the signals listed in Table 36-4 in more detail.

36.3.2.1 TCK—Test Clock Input

Test Clock Input (TCK) is an input pin used to synchronize the test logic and control register access
through the TAP.

36.3.2.2 TDI—Test Data Input

Test Data Input (TDI) is an input pin that receives serial test instructions and data. TDI is sampled on the
rising edge of TCK.

36.3.2.3 TDO—Test Data Output

Test Data Output (TDO) is an output pin that transmits serial output for test instructions and data. TDO is
three-stateable and is actively driven only in the Shift-IR and Shift-DR states of the TAP controller state
machine, which is described in Section 36.5.3, TAP controller state machine. The TDO output of this block
is clocked on the falling edge of TCK and sampled by the development tool on the rising edge of TCK.

36.3.2.4 TMS—Test Mode Select

Test Mode Select (TMS) is an input pin used to sequence the IEEE 1149.1-2001 test control state machine.
TMS is sampled on the rising edge of TCK.

Table 36-4. JTAG signal properties

Name I/O Function Reset state Pull1

1 The pull is not implemented in this block. Pullup/pulldown devices are implemented in the pads.

TCK Input Test Clock — Down

TDI Input Test Data In — Up

TDO Output Test Data Out High Z2

2 TDO output buffer enable is negated when the JTAGC is not in the Shift-IR or Shift-DR states. A
weak pull may be implemented at the TDO pad for use when JTAGC is inactive.

—

TMS Input Test Mode Select — Up

JCOMP Input JTAG Compliancy — Down

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1661

36.3.2.5 JCOMP—JTAG compliancy

The JCOMP signal provides IEEE 1149.1-2001 compatibility and provides the ability to share the TAP.
The JTAGC TAP controller is enabled when JCOMP is set to the JTAGC enable encoding, otherwise the
JTAGC TAP controller remains in reset.

36.4 Register definition

This section provides a detailed description of the JTAGC block registers accessible through the TAP
interface, including data registers and the instruction register. Individual bit-level descriptions and reset
states of each register are included. These registers are not memory-mapped and can only be accessed
through the TAP.

36.4.1 Register descriptions

The JTAGC block registers are described in this section.

36.4.1.1 Instruction Register

The JTAGC block uses a 5-bit instruction register as shown in Table 36-2. The instruction register allows
instructions to be loaded into the block to select the test to be performed or the test data register to be
accessed or both. Instructions are shifted in through TDI while the TAP controller is in the Shift-IR state,
and latched on the falling edge of TCK in the Update-IR state. The latched instruction value can only be
changed in the Update-IR and Test-Logic-Reset TAP controller states. Synchronous entry into the
Test-Logic-Reset state results in the IDCODE instruction being loaded on the falling edge of TCK.
Asynchronous entry into the Test-Logic-Reset state results in asynchronous loading of the IDCODE
instruction. During the Capture-IR TAP controller state, the instruction shift register is loaded with the
value 0b10101, making this value the register’s read value when the TAP controller is sequenced into the
Shift-IR state.

Figure 36-2. 5-bit Instruction Register

36.4.1.2 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer between TDI and TDO
when the BYPASS, CLAMP, HIGHZ or reserve instructions are active. After entry into the Capture-DR
state, the single-bit shift register is set to a logic 0. Therefore, the first bit shifted out after selecting the
bypass register is always a logic 0.

4 3 2 1 0

R 1 0 1 0 1

W Instruction Code

Reset: 0 0 0 0 1

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1662 Freescale Semiconductor

36.4.1.3 Device Identification Register

The device identification register, shown in Figure 36-3, allows the revision number, part number,
manufacturer, and design center responsible for the design of the part to be determined through the TAP.
The device identification register is selected for serial data transfer between TDI and TDO when the
IDCODE instruction is active. Entry into the Capture-DR state while the device identification register is
selected loads the IDCODE into the shift register to be shifted out on TDO in the Shift-DR state. No action
occurs in the Update-DR state. The part revision number (PRN) and part identification number (PIN) fields
are system plugs, and the manufacturer identity code (MIC) is a constant value assigned to the
manufacturer by the JEDEC.

The shift register LSB is forced to logic 1 on the rising edge of TCK following entry into the Capture-DR
state. Therefore, the first bit to be shifted out after selecting the IDCODE register is always a logic 1. The
remaining 31 bits are forced to the value of the device identification register on the rising edge of TCK
following entry into the Capture-DR state.

Figure 36-3. Device Identification Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Part Revision Number Design Center Part Identification Number

W

Reset PRN DC PIN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Part Identification Number Manufacturer Identity Code 1

W

Reset PIN (cont’d) —1

1 See Table 36-2 for value.

— — — — — — — — — — 1

= Reserved

Table 36-5. Device identification register field descriptions

Field Description

31–28
PRN

Part Revision Number
Bits [31:28] contain the revision number of the part.

27–22
DC

Design Center
Bits [27:22] indicate the design center.

21–12
PIN

Part Identification Number
Bits [21:12] contain the part number of the device.

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1663

36.4.1.4 CENSOR_CTRL Register

The CENSOR_CTRL register is a 64-bit shift register path from TDI to TDO selected when the
ENABLE_CENSOR_CTRL instruction is active. The default reset value of the CENSOR_CTRL register
is 64’b0. The CENSOR_CTRL register transfers its value to a parallel hold register on the rising edge of
TCK when the TAP controller state machine is in the Update-DR state. Once the
ENABLE_CENSOR_CTRL instruction is executed, the register value will remain valid until a JTAG reset
occurs.

Figure 36-4. CENSOR_CTRL Register

36.4.1.5 Boundary Scan Register

The boundary scan register is connected between TDI and TDO when the EXTEST, SAMPLE or
SAMPLE/PRELOAD instructions are active. It is used to capture input pin data, force fixed values on
output pins, and select a logic value and direction for bidirectional pins. Each bit of the boundary scan
register represents a separate boundary scan register cell, as described in the IEEE 1149.1-2001 standard
and discussed in Section 36.5.5, Boundary scan. The size of the boundary scan register and bit ordering is
device-dependent.

11–1
MIC

Manufacturer’s Identification Code
Bits [11:1] contain the JEDEC (Joint Electron Device Engineering Council) manufacturer’s
identification code.

Bit [0] IDCODE Register ID
Bit [0] identifies this register as the device identification register and not the bypass register

*1

1 The size of CENSOR_CTRL is 64 bits.

... 2 1 0

R
CENSOR_CTRL

W

Reset: *2

2 The reset value of CENSOR_CTRL is 64’b0.

* * * *

Table 36-6. CENSOR_CTRL register field descriptions

Field Description

63–0
CENSOR_CTRL

[63:0]

Censorship Control
The CENSOR_CTRL bits are used to control chiptop censorship functions.

Table 36-5. Device identification register field descriptions (continued)

Field Description

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1664 Freescale Semiconductor

36.5 Functional description

36.5.1 JTAGC reset configuration

While in reset, the TAP controller is forced into the Test-Logic-Reset state, thus disabling the test logic
and allowing normal operation of the on-chip system logic. In addition, the instruction register is loaded
with the IDCODE instruction.

36.5.2 IEEE 1149.1-2001 (JTAG) test access port

The JTAGC block uses the IEEE 1149.1-2001 TAP for accessing registers. This port can be shared with
other TAP controllers on the MCU. Ownership of the port is determined by the value of the JCOMP signal
and the currently loaded instruction. For more detail on TAP sharing via JTAGC instructions refer to
Section 36.5.4.7, ACCESS_AUX_TAP_x instructions.

Data is shifted between TDI and TDO through the selected register starting with the least significant bit,
as illustrated in Figure 36-5. This applies for the instruction register, test data registers, and the bypass
register.

Figure 36-5. Shifting data through a register

36.5.3 TAP controller state machine

The TAP controller is a synchronous state machine that interprets the sequence of logical values on the
TMS pin. Figure 36-6 shows the machine’s states. The value shown next to each state is the value of the
TMS signal sampled on the rising edge of the TCK signal. As Figure 36-6 shows, holding TMS at logic 1
while clocking TCK through a sufficient number of rising edges also causes the state machine to enter the
Test-Logic-Reset state.

Selected Register

MSB LSB

TDI TDO

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1665

Figure 36-6. IEEE 1149.1-2001 TAP controller finite state machine

TEST LOGIC
RESET

RUN-TEST/IDLE SELECT-DR-SCAN SELECT-IR-SCAN

CAPTURE-DR CAPTURE-IR

SHIFT-DR SHIFT-IR

EXIT1-DR EXIT1-IR

PAUSE-DR PAUSE-IR

EXIT2-DR EXIT2-IR

UPDATE-DR UPDATE-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS at the time
of a rising edge of TCK.

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1666 Freescale Semiconductor

36.5.3.1 Enabling the TAP controller

The JTAGC TAP controller is enabled by setting JCOMP to the JTAGC enable value. The JTAGC TAP
controller is enabled by setting JCOMP to a logic 1 value.

36.5.3.2 Selecting an IEEE 1149.1-2001 register

Access to the JTAGC data registers is achieved by loading the instruction register with any of the JTAGC
block instructions while the JTAGC is enabled. Instructions are shifted in via the Select-IR-Scan path and
loaded in the Update-IR state. At this point, all data register access is performed via the Select-DR-Scan
path.

The Select-DR-Scan path is used to read or write the register data by shifting in the data (LSB first) during
the Shift-DR state. When reading a register, the register value is loaded into the IEEE 1149.1-2001 shifter
during the Capture-DR state. When writing a register, the value is loaded from the IEEE 1149.1-2001
shifter to the register during the Update-DR state. When reading a register, there is no requirement to shift
out the entire register contents. Shifting may be terminated once the required number of bits have been
acquired.

36.5.4 JTAGC block instructions

The JTAGC block implements the IEEE 1149.1-2001 defined instructions listed in Table 36-7. This
section gives an overview of each instruction; refer to the IEEE 1149.1-2001 standard for more details. All
undefined opcodes are reserved.

Table 36-7. JTAG Instructions

Instruction Code[4:0] Instruction summary

IDCODE 00001 Selects device identification register for shift

SAMPLE/PRELOAD 00010 Selects boundary scan register for shifting, sampling, and
preloading without disturbing functional operation

SAMPLE 00011 Selects boundary scan register for shifting and sampling without
disturbing functional operation

EXTEST 00100 Selects boundary scan register while applying preloaded values
to output pins and asserting functional reset

HIGHZ 01001 Selects bypass register while three-stating all output pins and
asserting functional reset

CLAMP 01100 Selects bypass register while applying preloaded values to output
pins and asserting functional reset

ACCESS_AUX_TAP_x 10000–11110 Grants one of the auxiliary TAP controllers ownership of the TAP
as shown in the cells below. The number of auxiliary TAP
controllers sharing the port is 4.

ACCESS_AUX_TAP_NPC 10000 Enables access to the NPC TAP controller

ACCESS_AUX_TAP_ONCE 10001 Enables access to the primary OnCE TAP controller (Primary
CPU)

ACCESS_AUX_TAP_eTPU 10010 Enables access to the eTPU Nexus TAP controller

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1667

36.5.4.1 IDCODE instruction

IDCODE selects the 32-bit device identification register as the shift path between TDI and TDO. This
instruction allows interrogation of the MCU to determine its version number and other part identification
data. IDCODE is the instruction placed into the instruction register when the JTAGC block is reset.

36.5.4.2 SAMPLE/PRELOAD instruction

The SAMPLE/PRELOAD instruction has two functions:

• First, the SAMPLE portion of the instruction obtains a sample of the system data and control
signals present at the MCU input pins and just before the boundary scan register cells at the output
pins. This sampling occurs on the rising edge of TCK in the Capture-DR state when the
SAMPLE/PRELOAD instruction is active. The sampled data is viewed by shifting it through the
boundary scan register to the TDO output during the Shift-DR state. Both the data capture and the
shift operation are transparent to system operation.

• Secondly, the PRELOAD portion of the instruction initializes the boundary scan register cells
before selecting the EXTEST or CLAMP instructions to perform boundary scan tests. This is
achieved by shifting in initialization data to the boundary scan register during the Shift-DR state.
The initialization data is transferred to the parallel outputs of the boundary scan register cells on
the falling edge of TCK in the Update-DR state. The data is applied to the external output pins by
the EXTEST or CLAMP instruction. System operation is not affected.

36.5.4.3 SAMPLE instruction

The SAMPLE instruction obtains a sample of the system data and control signals present at the MCU input
pins and just before the boundary scan register cells at the output pins. This sampling occurs on the rising
edge of TCK in the Capture-DR state when the SAMPLE instruction is active. The sampled data is viewed
by shifting it through the boundary scan register to the TDO output during the Shift-DR state. There is no
defined action in the Update-DR state. Both the data capture and the shift operation are transparent to
system operation.

36.5.4.4 EXTEST—external test instruction

EXTEST selects the boundary scan register as the shift path between TDI and TDO. It allows testing of
off-chip circuitry and board-level interconnections by driving preloaded data contained in the boundary
scan register onto the system output pins. Typically, the preloaded data is loaded into the boundary scan

BYPASS 11111 Selects bypass register for data operations

Factory debug reserved 00101, 00110,
01010, 00111

Intended for factory debug only

Reserved1 All other opcodes Decoded to select bypass register

1 The manufacturer reserves the right to change the decoding of reserved instruction codes in the future.

Table 36-7. JTAG Instructions (continued)

Instruction Code[4:0] Instruction summary

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1668 Freescale Semiconductor

register using the SAMPLE/PRELOAD instruction before the selection of EXTEST. EXTEST asserts the
internal system reset for the MCU to force a predictable internal state while performing external boundary
scan operations.

36.5.4.5 HIGHZ instruction

HIGHZ selects the bypass register as the shift path between TDI and TDO. While HIGHZ is active all
output drivers are placed in an inactive drive state (e.g., high impedance). HIGHZ also asserts the internal
system reset for the MCU to force a predictable internal state.

36.5.4.6 CLAMP instruction

CLAMP allows the state of signals driven from MCU pins to be determined from the boundary scan
register while the bypass register is selected as the serial path between TDI and TDO. CLAMP enhances
test efficiency by reducing the overall shift path to a single bit (the bypass register) while conducting an
EXTEST type of instruction through the boundary scan register. CLAMP also asserts the internal system
reset for the MCU to force a predictable internal state.

36.5.4.7 ACCESS_AUX_TAP_x instructions

The JTAGC is configurable to allow up to fifteen other TAP controllers on the device to share the port with
it. This is done by providing ACCESS_AUX_TAP_x instructions for each of these TAP controllers. When
this instruction is loaded, control of the JTAG pins are transferred to the selected TAP controller. Any data
input via TDI and TMS is passed to the selected TAP controller, and any TDO output from the selected
TAP controller is sent back to the JTAGC to be output on the pins. The JTAGC regains control of the JTAG
port during the UPDATE-DR state if the PAUSE-DR state was entered. Auxiliary TAP controllers are held
in RUN-TEST/IDLE while they are inactive. Instructions not used to access an auxiliary TAP controller
on a device are treated like the BYPASS instruction.

36.5.4.8 BYPASS instruction

BYPASS selects the bypass register, creating a single-bit shift register path between TDI and TDO.
BYPASS enhances test efficiency by reducing the overall shift path when no test operation of the MCU is
required. This allows more rapid movement of test data to and from other components on a board that are
required to perform test functions. While the BYPASS instruction is active the system logic operates
normally.

36.5.5 Boundary scan

The boundary scan technique allows signals at component boundaries to be controlled and observed
through the shift-register stage associated with each pad. Each stage is part of a larger boundary scan
register cell, and cells for each pad are interconnected serially to form a shift-register chain around the
border of the design. The boundary scan register consists of this shift-register chain, and is connected
between TDI and TDO when the EXTEST, SAMPLE, or SAMPLE/PRELOAD instructions are loaded.
The shift-register chain contains a serial input and serial output, as well as clock and control signals.

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1669

36.6 Initialization/application information

The test logic is a static logic design, and TCK can be stopped in either a high or low state without loss of
data. However, the system clock is not synchronized to TCK internally. Any mixed operation using both
the test logic and the system functional logic requires external synchronization.

To initialize the JTAGC block and enable access to registers, the following sequence is required:

1. Set the JCOMP signal to the JTAGC enable value, thereby enabling the JTAGC TAP controller.

2. Load the appropriate instruction for the test or action to be performed.

JTAG Controller (JTAGC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1670 Freescale Semiconductor

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1671

Chapter 37
Nexus Port Controller (NPC)

37.1 Information specific to this device

This section presents device-specific parameterization, customization, and feature availability information
not specifically referenced in the remainder of this chapter.

37.1.1 Device-specific features

• Nexus Class 3+

• 14-bit full duplex pin interface for high visibility throughput

— Reduced port mode (RPM) comprises 4 pins

— Auxiliary Output Port
1 MCKO (Message Clock Out) pin

4 MDO (Message Data Out) pins

2 MSEO (Message Start/End Out) pins

1 RDY (Ready) pin

1 EVTO (Event Out) pin

— Auxiliary Input Port

1 EVTI (Event In) pin

— 5-pin JTAG port (JCOMP, TDI, TDO, TMS, and TCK)

• Host Processor (e200z4) Development Support

— IEEE-ISTO 5001-2010 standard Class 2 compliant

— Program Trace via Branch Trace Messaging (BTM). Branch trace messaging displays program
flow discontinuities (direct branches, indirect branches, exceptions, etc.), allowing the
development tool to interpolate what transpires between the discontinuities. Thus, static code
can be traced

— Watchpoint Messaging (WPM) via the auxiliary port

— Watchpoint Trigger enable of Program Trace Messaging

— Subset of Power Architecture embedded category software debug facilities with OnCE block
(Nexus Class 1 features)

• eTPU Development Support

— IEEE-ISTO 5001™ - 2003 standard Class 1 compliant for the eTPU engine

— Nexus based breakpoint/watchpoint configuration and single step support

— Run-time access to the on-chip memory map via the Nexus Read/Write Access protocol. This
feature supports accesses for run-time internal visibility, calibration variable acquisition,
calibration constant tuning, and external rapid prototyping for powertrain automotive
development systems

— All features are independently configurable and controllable via the IEEE 1149.1 I/O port

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1672 Freescale Semiconductor

— The Nexus block reset is controlled with JCOMP, power-on reset, and the TAP state machine.
All theses sources are independent of system reset

— Power-on-reset status indication during reset via MDO[0] in disabled and reset modes

• As some of the pads used for the Nexus interface are multi-voltage pads, the maximum supported
interface frequency is limited to 40 MHz in some modes. This corresponds to a MCKO clock
divider of 1/2 for system clocks up to 80 MHz, and 1/4 for system clocks > 80 MHz.

• Nexus Double Data Rate (DDR) mode is not available in the MPC5644A family of devices.

• A control bit in the Nexus port controller, NP_PCR[NEXCFG], is used to control whether the
added signals for full width trace port are routed to the MDO[4:11] signals, or the
CAL_MDO[4:11] signals. Although the CAL_MDO[4:11] signals are only available in the 496
CSP package, this control bit still needs to be programmed when the device is assembled in any
other package.

Table 37-1 shows the maximum trace port frequencies supported in different configurations, as
well as the operation of the NPC_PCR[FPM] and [NEXCFG] control bits.

37.1.2 Parameter values

Table 37-1. Nexus trace port routing and speed

Package

Max.
trace
port
MHz

Port width
NPC_PCR[FPM]

Port routing bit
NPC_PCR[NEXCFG]

MDO[0:3]
usage

MDO[4:11]
usage

CAL_MDO[4:11]
usage

Production
(176QFP,
208BGA,
324BGA)

80 4 MDO
(Narrow, FPM=0)

Don’t care Trace port
use

I/O use Inactive

40 12 MDO
(Wide, FPM=1)

NEXCFG = 1 Trace port
use

Debug/Cal
package

(496 CSP)

80 4 MDO
(Narrow, FPM=0)

Don't care I/O use

40 12 MDO
(Wide, FPM=1)

NEXCFG = 1
Use MDO

Trace port
use

Trace port use

80 NEXCFG = 0
(Default setting)
Use CAL_MDO

I/O use Trace port use

Table 37-2. Parameter values

Parameter Description Value

NPC parameters

RPM_MDO (R) Number of MDO pins available in reduced-port mode 4

NUM_AUX (X) Number of Nexus devices on the device sharing the
Nexus auxiliary port (not including the NPC)

1

NUM_BKPT (B) Number of breakpoint requests coming into the block
from Nexus and non-Nexus sources on the device

1

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1673

37.2 Introduction

Figure 37-1 is a block diagram of the Nexus Port Controller (NPC) block.

NUM_EVTO (E) Number of sources that output an EVTO 2

NUM_JCOMP (J) Number of JCOMP bits used. Depends on the number
of non-Nexus blocks sharing the TAP

1

DC Design Code for the design center responsible for the
design of the device (TECD)

0x2B

Part Identification Number
(npc_did_pn_plug[9:0])

Part number of the device 0x202

Part Revision Number
(npc_did_rev_plug[3:0])

Revision number of the device 0x1

NPC JCOMP Plug
(npc_jcomp_plug)

JCOMP value required to grant Nexus control of the
JTAG port

0b1

NSEDI parameters

Part Identification Number
(nex_did_pn_plug[9:0])

Part number of the eTPU 0x125

Part Revision Number
(nex_did_rev_plug[3:0])

Revision number of the eTPU 0x0

Table 37-2. Parameter values (continued)

Parameter Description Value

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1674 Freescale Semiconductor

Figure 37-1. Nexus Port Controller block diagram

37.2.1 Overview

On a system-on-chip device, there are often multiple blocks that require development support. Each of
these blocks implements a development interface based on the IEEE-ISTO 5001-2001 standard. The
blocks share input and output ports that interface with the development tool. The NPC controls the usage
of the input and output port in a manner that allows all the individual development interface blocks to share
the port, and appear to the development tool to be a single block.

37.2.2 Features

The NPC block performs the following functions:

• Controls arbitration for ownership of the Nexus Auxiliary Output Port

• Nexus Device Identification Register and Messaging

• Generates MCKO enable and frequency division control signals

• Controls sharing of EVTO

• Generates an MCKO clock gating control signal to enable gating of MCKO when the auxiliary
output port is idle

• Control of the device-wide debug mode

Port
Arbiter

Message
Transmitter

MDO/MSEO
Generation

JTAG

TDI

TDO

TCK

TMS

Debug
Mode

Control

Register

TDO
Generation

Reset
Control

JCOMP EVTO
Control

Control
Interface

PSTAT
MDO Mux

MDO

MSEO_B

Miscellaneous
Logic

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1675

• Generates asynchronous reset signal for Nexus blocks based on JCOMP input and power-on reset
status

• System clock locked status indication via MDO[0] following power-on reset

37.2.3 Modes of operation

The NPC block uses the JCOMP input and an internal power-on reset indication as its primary reset
signals. Upon exit of reset, the mode of operation is determined by the Port Configuration Register (PCR)
settings.

37.2.3.1 Reset

The NPC block is asynchronously placed in reset when either power-on reset is asserted, JCOMP is not
set for Nexus access or the TAP controller state machine is in the Test-Logic-Reset state. Holding TMS
high for five consecutive rising edges of TCK guarantees entry into the Test-Logic-Reset state regardless
of the current TAP controller state. Following negation of power-on reset, the NPC remains in reset until
the system clock achieves lock. The NPC is unaffected by other sources of reset. While in reset, the
following actions occur:

• The TAP controller is forced into the Test-Logic-Reset state

• The auxiliary output port pins are negated

• The TDI, TMS, and TCK TAP inputs are ignored (when in power-on reset or JCOMP not set for
NPC operation only)

• Registers default back to their reset values

37.2.3.2 Disabled-Port Mode

In disabled-port mode, auxiliary output pin port enable signals are negated, thereby disabling message
transmission. Any debug feature that generates messages can not be used. The primary features available
are Class 1 features and read/write access to the registers. Class 1 features include the ability to trigger a
breakpoint event indication through EVTO.

37.2.3.3 Full-Port Mode

Full-port mode (FPM) is entered by asserting the MCKO_EN and FPM bits in the PCR. All trace features
are enabled or can be enabled by writing the configuration registers via the TAP. The number of MDO pins
available is device-specific.

37.2.3.4 Reduced-Port Mode

Reduced-port mode (RPM) is entered by asserting the MCKO_EN bit and negating the FPM bit in the
PCR. All trace features are enabled or can be enabled by writing the configuration registers via the TAP.
The number of MDO pins available is device-specific.

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1676 Freescale Semiconductor

37.3 External signal description

37.3.1 Overview

The NPC pin interface provides for the transmission of messages from Nexus blocks to the external
development tools and for access to Nexus client registers. The NPC pin definition is outlined in
Table 37-3.

37.3.2 Detailed signal descriptions

This section describes each of the signals listed in Table 37-3 in more detail.Note that the JTAG test clock
(TCK) input from the pin is not a direct input to the NPC. The NPC requires two separate input clocks for
TCK clocked logic, one for posedge (rising edge TCK) logic and one for negedge (falling edge TCK)
logic. Both clocks are derived from the pin TCK, and generated external to the NPC.

37.3.2.1 EVTO_B — Event Out

Event Out (EVTO) is an output pin that is asserted upon breakpoint occurrence to provide breakpoint
status indication. The EVTO output of the NPC is generated based on the values of the individual EVTO
signals from all Nexus blocks that implement the signal.

37.3.2.2 JCOMP - JTAG Compliancy

The JCOMP signal provides the ability to share the TAP. The NPC TAP controller is enabled when JCOMP
is set to the NPC enable encoding, otherwise the NPC TAP controller remains in reset.

Table 37-3. NPC signal properties

Name Port Function Reset State Pull1

1 The pull is not implemented in this block. Pullup/pulldown devices are implemented in the pads.

EVTO_B Auxiliary Event Out pin 0b1 —

JCOMP JTAG JTAG Compliancy and TAP Sharing Control — Down

MDO Auxiliary Message Data Out pins 02

2 Following a power-on reset, MDO[0] remains asserted until power-on reset is exited and the system clock
achieves lock.

—

MSEO Auxiliary Message Start/End Out pins 0b11 —

TCK JTAG Test Clock Input — Down

TDI JTAG Test Data Input — Up

TDO JTAG Test Data Output High Z3

3 TDO output buffer enable is negated when the NPC is not in the Shift-IR or Shift-DR states. A weak pull may
be implemented on TDO at the SoC level.

—

TMS JTAG Test Mode Select Input — Up

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1677

37.3.2.3 MDO - Message Data Out

Message Data Out (MDO) are output pins used for uploading OTM, BTM, DTM, and other messages to
the development tool. The development tool should sample MDO on the rising edge of MCKO. The width
of the MDO bus used is determined by reset configuration.

37.3.2.4 MSEO - Message Start/End Out

Message Start/End Out (MSEO) is an output pin that indicates when a message on the MDO pins has
started, when a variable length packet has ended, or when the message has ended. The development tool
should sample MSEO on the rising edge of MCKO.

37.3.2.5 TCK - Test Clock Input

Test Clock Input (TCK) pin is used to synchronize the test logic and control register access through the
JTAG port.

37.3.2.6 TDI - Test Data Input

Test Data Input (TDI) pin receives serial test instruction and data. TDI is sampled on the rising edge of
TCK.

37.3.2.7 TDO - Nexus Test Data Output

Test Data Output (TDO) pin transmits serial output for instructions and data. TDO is three-stateable and
is actively driven in the SHIFT-IR and SHIFT-DR controller states. TDO is updated on the falling edge of
TCK and sampled by the development tool on the rising edge of TCK.

37.3.2.8 TMS - Test Mode Select

Test Mode Select Input (TMS) pin is used to sequence the IEEE 1149.1-2001 TAP controller state
machine. TMS is sampled on the rising edge of TCK.

37.4 Register definition

This section provides a detailed description of the NPC registers accessible to the end user. Individual
bit-level descriptions and reset states of the registers are included.

Table 37-4 shows the NPC registers by index values. The registers are not memory-mapped and can only
be accessed via the TAP. The NPC block does not implement the client select control register because the
value does not matter when accessing the registers. Note that the bypass and instruction registers have no
index values. These registers are not accessed in the same manner as Nexus client registers. Refer to the
individual register descriptions for more detail.

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1678 Freescale Semiconductor

37.4.1 Register descriptions

This section consists of NPC register descriptions.

37.4.1.1 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer between TDI and TDO
when the BYPASS instruction or any unimplemented instructions are active. After entry into the
Capture-DR state, the single-bit shift register is set to a logic 0. Therefore, the first bit shifted out after
selecting the bypass register is always a logic 0.

37.4.1.2 Instruction Register

The NPC block uses a 4-bit instruction register as shown in Figure 37-2. The instruction register is
accessed via the SELECT_IR_SCAN path of the tap controller state machine, and allows instructions to
be loaded into the block to enable the NPC for register access (NEXUS_ENABLE) or select the bypass
register as the shift path from TDI to TDO (BYPASS or unimplemented instructions).

Instructions are shifted in through TDI while the TAP controller is in the Shift-IR state, and latched on the
falling edge of TCK in the Update-IR state. The latched instruction value can only be changed in the
Update-IR and Test-Logic-Reset TAP controller states. Synchronous entry into the Test-Logic-Reset state
results in synchronous loading of the BYPASS instruction. Asynchronous entry into the Test-Logic-Reset
state results in asynchronous loading of the BYPASS instruction. During the Capture-IR TAP controller
state, the instruction register is loaded with the value of the previously executed instruction, making this
value the register’s read value when the TAP controller is sequenced into the Shift-IR state.

Figure 37-2. 4-bit Instruction Register

37.4.1.3 Nexus Device ID Register (DID)

The device identification register, shown in Figure 37-3, allows the part revision number, design center,
part identification number, and manufacturer identity code of the part to be determined through the
auxiliary output port.

Table 37-4. NPC registers

Index Register

0 Device ID Register (DID)

127 Port Configuration Register (PCR)

3 2 1 0

R Previous Instruction Opcode

W Instruction Opcode

Reset: BYPASS Instruction Opcode (0xF)

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1679

Figure 37-3. Nexus Device ID Register

37.4.1.4 Port Configuration Register (PCR)

Figure 37-4. Port Configuration Register (PCR)

Register index: 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R Part Revision Number Design Center Part Identification Number
W

RESET: PRN DC PIN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R Part Identification

Number
Manufacturer Identity Code 1

W
RESET: PIN (cont’d.) 0 0 0 0 0 0 0 1 1 1 0 1

= Reserved

Table 37-5. DID field descriptions

Bit Name Description

31:2
8

PRN Part Revision Number
These bits contain the revision number of the part.

27:2
2

DC Design Center
These bits indicate the device design center.

21:1
2

PIN Part Identification Number
These bits contain the part number of the device.

11:1 MIC Manufacturer Identity Code
These bits contain the reduced Joint Electron Device Engineering Council (JEDEC) ID for
Freescale Semiconductor, 0xE.

0 Bit [0] IDCODE Register ID
Bit [0] identifies this register as the device identification register and not the bypass register.

Register index: 127

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
R FPM MCK

O_GT
MCK
O_EN

MCKO_DIV EVT_
EN

0 NEXC
FG

0 0 0 0 0 0 0

W
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
R LP_D

BG
0 0 0 0 0 LP2_

SYN
LP1_
SYN

0 0 0 0 0 0 0 PSTA
T_ENW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Reserved

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1680 Freescale Semiconductor

The PCR, shown in Figure 37-4, is used to select the NPC mode of operation, enable MCKO and select
the MCKO frequency, and enable or disable MCKO gating. This register should be configured as soon as
the NPC is enabled.

The PCR register may be rewritten by the debug tool subsequent to the enabling of the NPC for low power
debug support. In this case, the debug tool may set and clear the LP_DBG and LPn_SYN bits, but must
preserve the original state of the remaining bits in the register.

NOTE

The mode or clock division must not be modified after MCKO has been
enabled. Changing the mode or clock division while MCKO is enabled can
produce unpredictable results.

Table 37-6. PCR field descriptions

Bit Name Description

31 FPM Full Port Mode
The value of the FPM bit determines if the auxiliary output port uses the full MDO port or a
reduced MDO port to transmit messages.
1 = All MDO pins are used to transmit messages
0 = A subset of MDO pins are used to transmit messages

30 MCKO_GT MCKO Clock Gating Control
This bit is used to enable or disable MCKO clock gating. If clock gating is enabled, the MCKO
clock is gated when the NPC is in enabled mode but not actively transmitting messages on the
auxiliary output port. When clock gating is disabled, MCKO is allowed to run even if no auxiliary
output port messages are being transmitted.
1 = MCKO gating is enabled
0 = MCKO gating is disabled

29 MCKO_EN MCKO Enable
This bit enables the MCKO clock to run. When enabled, the frequency of MCKO is determined
by the MCKO_DIV field.
1 = MCKO clock is enabled
0 = MCKO clock is driven to zero

28:2
6

MCKO_DIV MCKO Division Factor
The value of this signal determines the frequency of MCKO relative to the system clock
frequency when MCKO_EN is asserted. Table 37-7 shows the meaning of MCKO_DIV Values.
In this table, SYS_CLK represents the system clock frequency.

25 EVT_EN EVTO/EVTI Enable
This bit enables the EVTO/EVTI port functions.
1 = EVTO/EVTI port enabled
0 = EVTO/EVTI port disabled

24 — Reserved

23 NEXCFG Nexus Configuration Select
Generic Nexus control bit. Function is device-specific.
1 = NEXCFG set
0 = NEXCFG cleared

22:1
6

— Reserved

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1681

15 LP_DBG_E
N

Low Power Debug Enable
This bit enables debug functionality on exit from low power modes on supported devices.
1 = Low power debug enabled
0 = Low power debug disabled

14:1
0

— Reserved

9:8 LPn_SYN Low Power Mode n Synchronization
These bits are used to synchronize the entry into low power modes between the device and
debug tool. Supported devices set these bits before a pending entry into low power mode. After
reading the bit as set, the debug tool then clears the bit to acknowledge to the device that it
may enter the low power mode.
1 = Low power mode entry pending
0 = Low power mode entry acknowledged

7:1 — Reserved

0 PSTAT_EN Processor Status Mode Enable1

This bit enables processor status (PSTAT) mode. In PSTAT mode, all auxiliary output port MDO
pins are used to transmit processor status information, and Nexus messaging is unavailable.
1 = PSTAT mode enabled
0 = PSTAT mode disabled

1 PSTAT Mode is intended for factory processor debug only. The PSTAT_EN bit should be written to disable PSTAT
mode if Nexus messaging is desired. No Nexus messages are transmitted under any circumstances when PSTAT
mode is enabled.

Table 37-7. MCKO_DIV values

MCKO_DIV[2:0] MCKO frequency

0 SYS_CLK1

1 The SYS_CLK setting for MCKO frequency should only be used if this setting does not violate the
maximum operating frequency of the auxiliary port pins.

1 SYS_CLK/2

2 SYS_CLK/3

3 SYS_CLK/4

4 Reserved

5 Reserved

6 Reserved

7 SYS_CLK/8

Table 37-6. PCR field descriptions (continued)

Bit Name Description

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1682 Freescale Semiconductor

37.5 Functional description

37.5.1 NPC reset configuration

The NPC is placed in disabled mode upon exit of reset. If message transmission via the auxiliary port is
desired, a write to the PCR is then required to enable the NPC and select the mode of operation. Asserting
MCKO_EN places the NPC in enabled mode and enables MCKO. The frequency of MCKO is selected by
writing the MCKO_DIV field. Asserting or negating the FPM bit selects full-port or reduced-port mode,
respectively.

Table 37-8 describes the NPC reset configuration options.

37.5.2 Auxiliary output port

The auxiliary output port is shared by each of the Nexus modules on the device. The NPC communicates
with each of the Nexus modules and arbitrates for access to the port.

37.5.2.1 Output message protocol

The protocol for transmitting messages via the auxiliary port is accomplished with the MSEO functions.
The MSEO pins are used to signal the end of variable-length packets and the end of messages. They are
not required to indicate the end of fixed-length packets. MDO and MSEO are sampled on the rising edge
of MCKO.

Figure 37-5 illustrates the state diagram for MSEO transfers. All transitions not included in the figure are
reserved, and must not be used.

Table 37-8. NPC reset configuration options

JCOMP equal to
npc_jcomp_plug?

MCKO_EN bit of the Port
Configuration Register

FPM bit of the Port
Configuration Register

Configuration

no X X Reset

yes 0 X Disabled

yes 1 1 Full-Port Mode

yes 1 0 Reduced-Port Mode

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1683

Figure 37-5. MSEO transfers (for 2-bit MSEO)

37.5.2.2 Output messages

In addition to sending out messages generated in other Nexus blocks, the NPC can also output the device
ID message contained in the device ID register and the port replacement output message on the MDO pins.
The device ID message can also be sent out serially through TDO.

Table 37-9 describes the device ID and port replacement output messages that the NPC can transmit on the
auxiliary port. The TCODE is the first packet transmitted.

Idle

Start

Message

Normal

Transfer

End

Packet

End

Message

MSEO = 11

MSEO = 01

M
SEO = 00

M
S

E
O

 =
 00

MSEO = 00

MSEO = 00

MSEO = 00

MSEO = 11

M
SEO =

 1
1

MSEO = 01

MSEO = 01

M
S

E
O

 =
 1

1

MSEO = 11

M
S

E
O

 =
 0

1

MSEO = 01

MSEO = 10 M
SEO =

 1
0

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1684 Freescale Semiconductor

Figure 37-6 shows the various message formats that the pin interface formatter has to encounter. Note that
for variable-length fields, the transmitted size of the field is determined from the range of the least
significant bit to the most significant non-zero-valued bit (i.e. most significant zero-valued bits are not
transmitted).

The double edges in Figure 37-6 indicate the starts and ends of messages. Fields without shaded areas
between them are grouped into super-fields and can be transmitted together without end-of-packet
indications between them.

37.5.2.3 Rules of message

• A variable-sized field within a message must end on a port boundary. (Port boundaries depend on
the number of MDO pins active with the current reset configuration.)

• A variable-sized field may start within a port boundary only when following a fixed-length field.

• Super-fields must end on a port boundary.

• When a variable-length field is sized such that it does not end on a port boundary, it is necessary
to extend and zero fill the remaining bits after the highest order bit so that it can end on a port
boundary.

• Multiple fixed-length packets may start and/or end on a single clock.

• When any packet follows a variable-length packet, it must start on a port boundary.

• The field containing the TCODE number is always transferred out first, followed by subsequent
fields of information.

• Within a field, the lowest significant bits are shifted out first. Figure 37-7 shows the transmission
sequence of a message that is made up of a TCODE followed by two fields.

Table 37-9. NPC output messages

Message name
Min. packet
size (bits)

Max. packet
size (bits)

Packet type Packet name Packet description

Device ID Message 6 6 fixed TCODE Value = 1

32 32 fixed ID DID register contents

Message TCODE Field #1 Field #2 Field #3 Field #4 Field #5
Min.
size1
(bits)

Max.
size2
(bits)

Device ID Message 1 Fixed = 32 NA NA NA NA 38 38

NOTES:

1. Minimum information size. The actual number of bits transmitted depends on the number of MDO pins

2. Maximum information size. The actual number of bits transmitted depends on the number of MDO pins

Figure 37-6. Message Field Sizes

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1685

Figure 37-7. Transmission sequence of messages

37.5.3 IEEE 1149.1-2001 (JTAG) TAP

The NPC block uses the IEEE 1149.1-2001 TAP for accessing registers. Each of the individual Nexus
blocks on the device implements a TAP controller for accessing its registers as well. TAP signals include
TCK, TDI, TMS, and TDO. There may also be other blocks on the MCU that use the TAP and implement
a TAP controller. The value of the JCOMP input controls ownership of the port between Nexus and
non-Nexus blocks sharing the TAP.

Refer to the IEEE 1149.1-2001 specification for further detail on electrical and pin protocol compliance
requirements.

The NPC implements a Nexus controller state machine that transitions based on the state of the IEEE
1149.1-2001 state machine shown in Figure 37-9. The Nexus controller state machine is defined by the
IEEE-ISTO 5001-2010 standard. It is shown in Figure 37-10.

The instructions implemented by the NPC TAP controller are listed in Table 37-10. The value of the
NEXUS-ENABLE instruction is 0b0000. Each unimplemented instruction acts like the BYPASS
instruction. The size of the NPC instruction register is 4-bits.

Data is shifted between TDI and TDO starting with the least significant bit as illustrated in Figure 37-8.
This applies for the instruction register and all Nexus tool-mapped registers.

Figure 37-8. Shifting data into register

Table 37-10. Implemented instructions

Instruction name Private/Public Opcode Description

NEXUS-ENABLE public 0x0 Activate Nexus controller state machine to read and write NPC
registers.

BYPASS private 0xF NPC BYPASS instruction. Also the value loaded into the NPC
IR upon exit of reset.

TCODE (6 bits) FIELD #1 FIELD #2

1 2 3

msb lsb msb lsb msb lsb

Selected Register

MSB LSB

TDI TDO

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1686 Freescale Semiconductor

37.5.3.1 Enabling the NPC TAP controller

Assertion of the power-on reset signal or setting JCOMP to a value other than the NPC enable encoding
resets the NPC TAP controller. When not in power-on reset, the NPC TAP controller is enabled by driving
JCOMP with the NPC enable value and exiting the Test-Logic-Reset state. Loading the NEXUS-ENABLE
instruction then grants access to Nexus debug.

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1687

Figure 37-9. IEEE 1149.1-2001 TAP controller state machine

TEST LOGIC
RESET

RUN-TEST/IDLE SELECT-DR-SCAN SELECT-IR-SCAN

CAPTURE-DR CAPTURE-IR

SHIFT-DR SHIFT-IR

EXIT1-DR EXIT1-IR

PAUSE-DR PAUSE-IR

EXIT2-DR EXIT2-IR

UPDATE-DR UPDATE-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS
at the time of a rising edge of TCK.

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1688 Freescale Semiconductor

37.5.3.2 Retrieving device IDCODE

The Nexus TAP controller does not implement the IDCODE instruction. However, the device
identification message can be output by the NPC through the auxiliary output port or shifted out serially
by accessing the Nexus Device ID register through the TAP. Transmission of the device identification
message on the auxiliary output port MDO pins occurs immediately after a write to the PCR, if the NPC
is enabled. Transmission of the device identification message serially via TDO is achieved by performing
a read of the register contents as described in Section 37.5.3.4, Selecting a Nexus client register.

37.5.3.3 Loading NEXUS-ENABLE instruction

Access to the NPC registers is enabled when the TAP controller instruction register is loaded with the
NEXUS-ENABLE instruction. This instruction is shifted in via the SELECT-IR-SCAN path and loaded
in the UPDATE-IR state. At this point, the Nexus controller state machine, shown in Figure 37-10,
transitions to the REG_SELECT state. The Nexus controller has three states: idle, register select, and data
access. Table 37-11 illustrates the IEEE 1149.1 sequence to load the NEXUS-ENABLE instruction.

Figure 37-10. NEXUS controller state machine

Table 37-11. Loading NEXUS-ENABLE instruction

Clock TMS IEEE 1149.1 state Nexus state Description

0 0 RUN-TEST/IDLE IDLE IEEE 1149.1-2001 TAP controller in idle state

1 1 SELECT-DR-SCAN IDLE Transitional state

2 1 SELECT-IR-SCAN IDLE Transitional state

3 0 CAPTURE-IR IDLE Internal shifter loaded with current instruction

4 0 SHIFT-IR IDLE TDO becomes active, and the IEEE 1149.1-2001
shifter is ready. Shift in all but the last bit of the
NEXUS_ENABLE instruction.3 TCKS

12 1 EXIT1-IR IDLE Last bit of instruction shifted in

IDLE

REG_SELECT

DATA_ACCESS

NEXUS-ENABLE=0

NEXUS-ENABLE=1

TEST-LOGIC-RESET=1

UPDATE-DR=1

UPDATE-DR=1

NEXUS-ENABLE=1 &&
UPDATE-IR=1

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1689

37.5.3.4 Selecting a Nexus client register

When the NEXUS-ENABLE instruction is decoded by the TAP controller, the input port allows
development tool access to all Nexus registers. Each register has a 7-bit address index.

All register access is performed via the SELECT-DR-SCAN path. The Nexus Controller defaults to the
REG_SELECT state when enabled. Accessing a register requires two passes through the
SELECT-DR-SCAN path: one pass to select the register and the second pass to read/write the register.

The first pass through the SELECT-DR-SCAN path is used to enter an 8-bit Nexus command consisting
of a read/write control bit in the LSB followed by a 7-bit register address index, as illustrated in
Figure 37-11. The read/write control bit is set to 1 for writes and 0 for reads.

The second pass through the SELECT-DR-SCAN path is used to read or write the register data by shifting
in the data (LSB first) during the SHIFT-DR state. When reading a register, the register value is loaded into
the IEEE 1149.1-2001 shifter during the CAPTURE-DR state. When writing a register, the value is loaded
from the IEEE 1149.1-2001 shifter to the register during the UPDATE-DR state. When reading a register,
there is no requirement to shift out the entire register contents. Shifting may be terminated once the
required number of bits have been acquired.

Table 37-12 illustrates a sequence which writes a 32-bit value to a register

13 1 UPDATE-IR IDLE NEXUS-ENABLE loaded into instruction register

14 0 RUN-TEST/IDLE REG_SELECT Ready to be read/write Nexus registers

MSB LSB

7-bit register index R/W

Figure 37-11. IEEE 1149.1 controller command input

Table 37-12. Write to a 32-bit Nexus client register

Clock TMS IEEE 1149.1 state Nexus state Description

0 0 RUN-TEST/IDLE REG_SELECT IEEE 1149.1-2001 TAP controller in idle state

1 1 SELECT-DR-SCAN REG_SELECT First pass through SELECT-DR-SCAN path

2 0 CAPTURE-DR REG_SELECT Internal shifter loaded with current value of
controller command input.

3 0 SHIFT-DR REG_SELECT TDO becomes active, and write bit and 6 bits of
register index shifted in.

7 TCKs

12 1 EXIT1-DR REG_SELECT Last bit of register index shifted into TDI

13 1 UPDATE-DR REG_SELECT Controller decodes and selects register

14 1 SELECT-DR-SCAN DATA_ACCESS Second pass through SELECT-DR-SCAN path

15 0 CAPTURE-DR DATA_ACCESS Internal shifter loaded with current value of register

Table 37-11. Loading NEXUS-ENABLE instruction (continued)

Clock TMS IEEE 1149.1 state Nexus state Description

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1690 Freescale Semiconductor

37.5.4 Nexus JTAG port sharing

Each of the individual Nexus blocks on the device implements a TAP controller for accessing its registers.
When Nexus has ownership of the TAP, only the block whose NEXUS-ENABLE instruction is loaded has
control of the TAP. This allows the interface to all of these individual TAP controllers to appear to be a
single port from outside the device. If no register is selected as the shift path for a Nexus block, that block
acts like a single-bit shift register, or bypass register.

37.5.5 MCKO and ipg_sync_mcko

MCKO is an output clock to the development tools used for the timing of MSEO and MDO pin functions.
MCKO is derived from the system clock and its frequency is determined by the value of the MCKO_DIV
field in the PCR. Possible operating frequencies include system clock, one-half system clock, one-quarter
system clock, and one-eighth system clock speed.

The NPC also generates an MCKO clock gating control output signal. This output can be used by the
MCKO generation logic to gate the transmission of MCKO when the auxiliary port is enabled but not
transmitting messages. The setting of the MCKO_GT bit inside the PCR determines whether or not MCKO
gating control is active. The MCKO_GT bit resets to a logic 0. In this state gating of MCKO is disabled.
To enable gating of MCKO, the MCKO_GT bit in the PCR is written to a logic 1.

37.5.6 EVTO sharing

The NPC block controls sharing of the EVTO output between all Nexus clients that produce an EVTO
signal. The NPC assumes incoming EVTO signals will be asserted for one system clock period. After
receiving a single clock period of asserted EVTO from any Nexus client, the NPC latches the result, and
drives EVTO for one MCKO period on the following clock. When there is no active MCKO, such as in
disabled mode, the NPC drives EVTO for two system clock periods. EVTO sharing is active as long as the
NPC is not in reset.

16 0 SHIFT-DR DATA_ACCESS TDO becomes active, and outputs current value of
register while new value is shifted in through TDI

31 TCKs

48 1 EXIT1-DR DATA_ACCESS Last bit of current value shifted out TDO. Last bit of
new value shifted in TDI.

49 1 UPDATE-DR DATA_ACCESS Value written to register

50 0 RUN-TEST/IDLE REG_SELECT Controller returned to idle state. It could also return
to SELECT-DR-SCAN to write another register.

Table 37-12. Write to a 32-bit Nexus client register (continued)

Clock TMS IEEE 1149.1 state Nexus state Description

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1691

37.5.7 Nexus reset control

The JCOMP input that is used as the primary reset signal for the NPC is also used by the NPC to generate
a single-bit reset signal for other Nexus blocks. If JCOMP is negated, an internal reset is asserted,
indicating that all Nexus modules should be held in reset.

37.5.8 System clock locked indication

Following a power-on reset, MDO[0] can be monitored to provide the lock status of the system clock.
MDO[0] is driven to a logic 1 until the system clock achieves lock after exiting power-on reset. Once the
system clock is locked, MDO[0] is negated and tools may begin Nexus configuration. Loss of lock
conditions that occur subsequent to the exit of power-on reset and the initial lock of the system clock do
not cause a Nexus reset, and therefore do not result in MDO[0] driven high.

37.6 Initialization/Application information

37.6.1 Accessing NPC tool-mapped registers

To initialize the TAP for Nexus register accesses, the following sequence is required:

1. Enable the Nexus TAP controller

2. Load the TAP controller with the NEXUS-ENABLE instruction

To write control data to NPC tool-mapped registers, the following sequence is required:

1. Write the 7-bit register index and set the write bit to select the register with a pass through the
SELECT-DR-SCAN path in the TAP controller state machine.

2. Write the register value with a second pass through the SELECT-DR-SCAN path. Note that the
prior value of this register is shifted out during the write.

To read status and control data from NPC tool-mapped registers, the following sequence is required:

1. Write the 7-bit register index and clear the write bit to select register with a pass through
SELECT-DR-SCAN path in the TAP controller state machine.

2. Read the register value with a second pass through the SELECT-DR-SCAN path. Data shifted in
is ignored.

See the IEEE-ISTO 5001-2001 standard for more detail.

Nexus Port Controller (NPC)

MPC5644A Microcontroller Reference Manual, Rev. 6

1692 Freescale Semiconductor

Development Trigger Semaphore (DTS)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1693

Chapter 38
Development Trigger Semaphore (DTS)

38.1 Introduction

Devices in the MPC5644A family1 include a system development feature, the Development Trigger
Semaphore (DTS) module, that enables software to signal an external tool by driving a persistent (affected
only by reset or an external tool) signal on an external device pin. There are a variety of ways this module
can be used, including as a component of an external real-time data acquisition system2.

38.2 Overview

The Development Trigger Semaphore (DTS) module consists of three registers and a small amount of
combinational logic to generate an output signal—DTS Trigger Output (DTO). The registers are as
follows.

• DTS_SEMAPHORE register—Any bit in this 32-bit register, when set to a value of logic ‘1’,
causes the DTS module output signal to be asserted, enabling an external tool to detect up to 32
signals from the application software. In an application, each bit is generally associated with a
specific data set.

Only the processor core and DMA module can set bits in this register. The bits can only be cleared
by a tool access via Nexus Read/Write Access over the JTAG port.

• DTS_STARTUP register—This register provides a mechanism for the external tool to notify
software running on the CPU that the tool is connected and can provide information about either
the type of tool or options that can be used by the software.

• DTS_ENABLE register—This register provides an enable/disable capability for the DTS feature.

The architecture is shown in Figure 38-1.

Figure 38-1. DTS block diagram
1. Revision 2 and later
2. When used as a component of a triggered data acquisition system, Nexus read/write access is via the JTAG interface of the
Nexus debug port and is different than the data acquisition protocol defined in the IEEE-ISTO 5001-2003 or IEEE-ISTO
5001-2010 Nexus standards, which use the Nexus Auxiliary port.

DTS_EN

DTS_SEMPAPHORE

32-bit

DTS_ENABLE

System Clock

System Reset

XBAR Master ID

Peripheral Bus

(DTO)

DTS_STARTUP

DTS Trigger Output

Development Trigger Semaphore (DTS)

MPC5644A Microcontroller Reference Manual, Rev. 6

1694 Freescale Semiconductor

The DTS Trigger Output (DTO) signal is connected to one of the EVTO inputs of the Nexus Port
Controller (NPC). The other EVTO inputs to the NPC are connected to the other Nexus modules in the
device. DTO is asserted when any bit in the DTS_SEMAPHORE register is set.

NOTE

When the DTS module is enabled (DTS_ENABLE[DTS_EN] = 0b1), the
Nexus EVTO function of the EVTO pin is disabled and EVTO becomes the
DTO. Unlike the EVTO function that only asserts for one clock, the DTO
function remains asserted until the tool reads the DTS_SEMAPHORE
register, clearing the register’s contents.

Figure 38-2 shows the chain of events that begins with setting of any bit in the DTS_SEMAPHORE
register and the clearing of the register caused by a Nexus read.

Figure 38-2. DTO event sequence

38.3 DTS device connections

The DTS module connects to the Peripheral Bridge (PBRIDGE) for access to the registers. The PBRIDGE
is connected to a slave port of the Crossbar bus interface (XBAR). Connected to the XBAR master ports
are the core (e200z4, with one master port for the Instruction and another for the Load/Store bus), the
eDMA module, the FlexRay module, and an External Bus interface1.

The registers have limited access as described in Section 38.3.1, DTS register access. Access is based on
the XBAR Master ID of the accessing module. Access to the DTS_SEMAPHORE register is limited to the
e200z4 core and the eDMA module and is restricted to only setting bits. Only an access via a Nexus
Read/Write Access from an external tool through the Nexus/JTAG port of the device can clear bits in the

1. The External Bus Interface XBAR master port is used for internal test of the device and is not accessible to the user.

DTS Trigger Output (DTO)

EVTO pin

DTS_SEMAPHORE register

CPU writes
DTS_SEMAPHORE
to a non-zero value

Internal DTO signal
is asserted

EVTO asserted
externally

Initial conditions:
– DTS_ENABLE[DTS_EN] = 0b1
– DTS_SEMAPHORE = 0x0000_0000

Nexus RWA reads
DTS_SEMAPHORE,
which clears register

Internal DTO
signal is negated

EVTO negated
externally

~ ~
~ ~

~ ~

Development Trigger Semaphore (DTS)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1695

DTS_SEMAPHORE register1. Similarly, the DTS_ENABLE and DTS_STARTUP registers can only be
written via a Nexus Read/Write Access.

NOTE

Nexus Read/Write Accesses use the load/store bus of the core to perform
accesses, but Nexus accesses have a different Master ID than normal core
load/stores.

Figure 38-3. DTS device connections

38.3.1 DTS register access

A summary of accesses to all DTS registers by bus masters is provided in Table 38-1. Note that only proper
32-bit accesses are valid. The effect of write accesses, that are not 32 bits, is not defined.

Access to DTS module registers is controlled based on the XBAR Master ID of the accessing module. The
table below shows the XBAR Master IDs for each of port.

1. DTS_SEMAPHORE bits are cleared automatically when read through the Nexus/JTAG port.

Table 38-1. DTS register access effects

Register
32-bit Read 32-bit Write

RWA1

1 Nexus Read/Write access via an external tool.

e200z4 eDMA FlexRay RWA1 e200z4 eDMA FlexRay

DTS_ENABLE Data Data Data Data Data No effect No effect No effect

DTS_STARTUP Data Data Data Data Data No effect No effect No effect

DTS_SEMAPHORE Data and
Clear2

2 A read of the DTS_SEMAPHORE register by either Nexus Read/Write Access module is destructive and clears all
bits in the register.

Data Data Data No effect Bit OR Bit OR No effect

eDMA

FlexRay

X
B

A
R

P
B

R
ID

G
E

XBAR Slave Port

XBAR Master ID

D
T

S

Peripheral Bus

XBAR Master ID

e200z4

DTS Trigger Output

EVTO Pin(DTO)

EBI

NPCE
V

T
O

 I
np

u
ts

Development Trigger Semaphore (DTS)

MPC5644A Microcontroller Reference Manual, Rev. 6

1696 Freescale Semiconductor

NOTE

The XBAR Master ID should not be confused with the Master Port number
of the XBAR. See Chapter 9, Multi-Layer AHB Crossbar Switch (XBAR),
for details.

Tools must access the DTS registers (DTS_ENABLE, DTS_STARTUP, and DTS_SEMAPHORE)
through the Nexus Read/Write Access mechanism of the e200z4 core. JTAG accesses through either core
appear as if the access is via the core and therefore will not have the same level of access as a Nexus R/W
access.

38.4 Memory map

Table 38-2 shows the memory map of the Development Trigger Semaphore module registers. Three 32-bit
registers are implemented. The rest of the memory map (0xC3F9_C00C through 0xC3F9_FFFF) is
reserved.

38.5 Register descriptions

38.5.1 DTS Output Enable Register (DTS_ENABLE)

This DTS_ENABLE register controls the DTS Trigger Output (DTO) and whether DTO is active on the
EVTO output pin of the device. Figure 38-4 shows the format of the DTS_ENABLE register.

NOTE

Access to the DTS_SEMAPHORE and DTS_STARTUP registers are
unaffected by the state of this register.

Table 38-2. DTS Module

Address Register Description Size (bits) Access

DTS_BASE (0xC3F9_C000) DTS_ENABLE DTS output enable register 32 Restricted R/W1

1 Only certain types of accesses are allowed. See separate description.

DTS_BASE + 0x0004 DTS_STARTUP DTS startup register 32 Restricted R/W1

DTS_BASE + 0x0008 DTS_SEMAPHORE DTS semaphore register 32 Restricted R/W1

DTS_BASE + 0x000C –
DTS_BASE + 0xFFFF

Reserved

Development Trigger Semaphore (DTS)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1697

38.5.2 DTS Startup Register (DTS_STARTUP)

The DTS_STARTUP register is used for tool detection and startup information exchange between the tool
and software running on the microcontroller.

Address: DTS_BASE+0x0000 Access: Restricted R/W1

1 The DTS_ENABLE register can be read by the e200z4 core, but can only be written by a Nexus Read Write Access
(RWA).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D
T

S
_

E
N

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 38-4. DTS_ENABLE register

Table 38-3. DTS_ENABLE field descriptions

Name Description

31
DTS_EN

DTS Enable
Controls whether the DTO signal is routed to the EVTO pin.

0: DTS output is disabled.
1: DTS output is enabled. Any bit set in the DTS_SEMAPHORE register will assert the DTS Trigger

Output signal (DTO).

Note: The DTS Enable bit is cleared by a device reset (either the assertion of the external RESET
or by an internally generated reset). A JTAG reset does not change the state of this register.

Development Trigger Semaphore (DTS)

MPC5644A Microcontroller Reference Manual, Rev. 6

1698 Freescale Semiconductor

38.5.3 DTS Semaphore Register (DTS_SEMAPHORE)

The DTS_SEMAPHORE register is used by software to assert the DTO signal on the device EVTO pin.
A 0b1 in any bit of this register causes the DTO signal on the EVTO pin to be driven low. The intended
use of this register is for the DTO signal to notify tools that data is available. Individual bits are used to
identify the specific data.

Address: DTS_BASE+0x0004 Access: Restricted R/W1

1 The DTS_STARTUP register can be read by the e200z4 core, the eDMA module and Nexus but can only be
updated by a Nexus Read Write Access (RWA).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

A
D

31

A
D

30

A
D

29

A
D

28

A
D

27

A
D

26

A
D

25

A
D

24

A
D

23

A
D

22

A
D

21

A
D

20

A
D

19

A
D

18

A
D

17

A
D

16

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

A
D

15

A
D

14

A
D

13

A
D

12

A
D

11

A
D

10

A
D

9

A
D

8

A
D

7

A
D

6

A
D

5

A
D

4

A
D

3

A
D

2

A
D

1

A
D

0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 38-5. DTS_STARTUP register

Table 38-4. DTS_STARTUP field descriptions

Name Description

AD[31:0] Application Dependent register bits
The bits have no defined meaning to the microcontroller. They are used to by an external tool to
pass information, e.g., application options and status, to application software running on target
microcontroller at startup time. Use a Nexus RWA 32-bit write access to update the contents of this
register.

Note: A device reset (either from the RESET pin or an internally generated reset) clears all bits in
the register. A JTAG reset does not change the contents of the register.

Development Trigger Semaphore (DTS)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1699

38.6 Example application

The calibration process of a new engine requires real-time access to calibration tables and the ability to
update the tables in real-time1. The DTS module enables this capability by enabling software to assert a
signal to an external device pin to notify an external tool that data is available. The tool can then retrieve
the data.

In this type of application the DTS_SEMAPHORE register and DTS Trigger Output (DTO) signal provide
a mechanism to notify the calibration tool that the calibration variable or variables (or sets of
measurements), up to 32, have been updated with new values and are available for the tool to access.

Address: DTS_BASE+0x0008 Access: Restricted R/W1

1 The e200z4 core and eDMA modules can set bits in the DTS_SEMAPHORE register but cannot clear them—writes
by the core and eDMA are bitwise ORed to the contents of the register. Nexus can only read this register but all bits
are cleared after the read operation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
T

31

S
T

30

S
T

29

S
T

28

S
T

27

S
T

26

S
T

25

S
T

24

S
T

23

S
T

22

S
T

21

S
T

20

S
T

19

S
T

18

S
T

17

S
T

16

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

S
T

15

S
T

14

S
T

13

S
T

12

S
T

11

S
T

10

S
T

9

S
T

8

S
T

7

S
T

06

S
T

5

S
T

04

S
T

3

S
T

02

S
T

1

S
T

0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 38-6. DTS_SEMAPHORE register

Table 38-5. DTS_SEMAPHORE field descriptions

Name Description

ST[31:0] Semaphore Trigger
When a core or eDMA writes a logical ‘1’ to a bit, the bit is set. A write of ‘0’ by the core or DMA does
not change the state of the bit.

 • All register bits are set to ‘1’ by a device reset.
 • A JTAG reset does not change the state of this register.
 • The register can be accessed, with restrictions, by any core, DMA or any Nexus RWA.
 • For the core or DMA, only 32-bit write or read accesses are valid.
 • A core or DMA valid read access returns the current value of the register and leaves the register

unchanged.

0: No flag
1: Flag is set

1. MPC5644A devices also include an MMU modification feature, which enables real-time switching of calibration tables.

Development Trigger Semaphore (DTS)

MPC5644A Microcontroller Reference Manual, Rev. 6

1700 Freescale Semiconductor

NOTE

It is the user’s responsibility to ensure that the tool has time to retrieve the
data prior to that particular trigger being set a second time. It is also
permissible to have multiple triggers active at the same time or for a second
trigger to be set before a previous trigger has been serviced, as long as it is
not the same trigger (unless it is acceptable to the tool to not receive every
data set).

Figure 38-7 shows an example DTS startup sequence for an external real-time data acquisition system. The
startup and synchronization sequence can be as simple or as complicated as the need requires. However, a
typical startup sequence is as follows:

1. The DTS_STARTUP register is cleared by a power on reset or any CPU reset.

2. The tool writes a non-zero value to the DTS_STARTUP register.

3. The CPU (user application software) then reads the value of the DTS_STARTUP register. Based
on this value, different initialization options can be selected. The bits can be used for any
application specific definitions.

4. Since the DTS_SEMAPHORE register is cleared when the tool reads the current value. The tool
should perform all necessary initialization before reading this register. The application software
can then check that the DTS_SEMAPHORE register was cleared by the tool, to determine that it
is safe to start using it for its intended raster trigger semaphore function.

5. An optional hand shake from the CPU can be used to inform the tool that the user software has
detected that the tool is attached and the CPU has performed the proper initialization for the tool
by writing a predefined value to the DTS_SEMAPHORE register (the example shown in the figure
above uses 0xAAAA_AAAA—all A’s was used since it is unrealistic that 16 channels could be
enabled very quickly after start up after a reset).

Figure 38-7. DTS startup sequence example

Development Trigger Semaphore (DTS)

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1701

Development Trigger Semaphore (DTS)

MPC5644A Microcontroller Reference Manual, Rev. 6

1702 Freescale Semiconductor

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1703

Appendix A
Revision history

A.1 Revisions 1

A.2 Changes between revisions 1 and 2

Table A-1. Revision 1

Date Changes

31-Oct-2008 Initial release

Table A-2. Changes between revisions 1 and 2

Chapter Changes

Chapter 2
Memory Map

Updated allocated size for the following address locations:
 • 0x0100_0000 and 0x1FFF_FFFF
 • 0x2000_0000 and 0x2FFF_FFFF
 • 0x3000_0000 and 0x3FFF_FFFF

Added two more reserved spaces 0xC3FD_3800 in place of 0xC3FD_4400

FLASH shadow Row - FL_1 address range changed

Chapter 3
Signal Description

Signal Properties table:
 • Removed Signal column
 • Added Function column containing description of all Pins
 • Removed Default State After Reset
 • Added PCR PA Field column
 • Added Status column with Pre-reset and Post-reset state and function

Signal Details table:
 • Signal descriptions updated.

Chapter 4 (Resets) • Resets detail added
 • “Boot Configuration (BOOTCFG[0:1])“ section added.
 • Column of BOOTCFG values added to “Reset Vector Location” table
 • PS0 bit added to RCHW structure.

Chapter 5
Operating Modes and Clocking

 • Added FlexCAN clock divider to list of clock dividers
 • Added details to FlexCAN clock support

Chapter 7
Enhanced Direct Memory Access
Controller (eDMA)

Completely rewritten

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1704 Freescale Semiconductor

Chapter 8
Multi-Layer AHB Crossbar Switch
(XBAR)

 • Master Port functionality and Slave Port functionality sections deleted
 • Detail added to SGPCR[PARK] description
 • MPR[MSTRx] descriptions updated with port functions
 • Parking section added
 • HLP bit removed from SGPCR register. It has no effect
 • Register summary removed.
 • MPRn register reset value is now 0x43020010

Removed following bits from XBAR_SGPCRn registers (ports controlled by this
bits do not exist on this device):
 • HPE6
 • HPE5
 • HPE4
 • HPE3
 • HPE1

Chapter 10
Flash

Register names changed:
 • CR register renamed to MCR
 • LML register renamed to LMLR
 • HBL register renamed to HLR
 • SLL register renamed to SLMLR
 • LMS register renamed to LMSR
 • HBS register renamed to HSR
 • ADR register renamed to AR
 • PFCR1 register renamed to BIUCR
 • PFAPR register renamed to BIUAPR
 • PFCR2 register renamed to BIUCR2

Register field value definitions:
 • BIUAPR[MnAP] values table updated with correct master port information
 • BIUCR[MnPFE] values table updated with correct master port information

Registers added:
 • UT0-UT2
 • UM0-UM4

Flash segmentation diagram and memory map updated

Chapter 11
SRAM

 • Note about MUDCR register and reference to ECSM chapter adde.d
 • Added a section on initialization

Chapter 12
Memory Protection Unit (MPU)

New chapter

Chapter 14
Interrupt Controller (INTC)

 • PCR_SELx fields removed from INTC_PSR register maps.
 • Interrupt vector 307 is sourced by MCM (mcm_ipi_ecc_1bit_int) and is

source of both flash and SRAM single-bit ECC error correction.

Table A-2. Changes between revisions 1 and 2 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1705

Chapter 15
System Integration Unit (SIU)

Significant amount of new detail added to PCR register sections

Register names changed:
 • SIU_CMPAH renamed to SIU_CARH
 • SIU_CMPAL renamed to SIU_CARL
 • SIU_CMPBH renamed to SIU_CBRH
 • SIU_CMPBL renamed to SIU_CMRL

Register field deleted:
 • SIU_DIRER[EIRE6] deleted

Register field added:
SIU_OSR[OVF6]

Chapter 17
Error Correction Status Module
(ECSM)

Features List updated

Registers added/Memory map updated:
 • Miscellaneous Reset Status Register (MRSR)
 • Miscellaneous User-Defined Control (MUDCR)
 • ECC Error Generation Register (EEGR)
 • Misc Wakeup Control Register (MWCR)

All ECSM register names are now prefixed with “ECSM_”.

Register reset values verified/updated

ECSM_MUDCR[SWSR] moved to bit 1

Chapter 19
Software Watchdog Timer (SWT)

SWT_CR register renamed to SWT_MCR.

Chapter 20
Boot Assist Module (BAM)

Calibration boot is not supported--EBI boot is supported instead

Chapter 21
Configurable Enhanced Modular
IO Subsystem (eMIOS200)

Register name changes:
 • EMIOSS[n] register is now named EMIOS_CSR[n]
 • GFR register is now named EMIOS_GFR
 • MCR register is now named EMIOS_MCR
 • OUDR register is now named EMIOS_OUDR
 • UCDIS register is now named EMIOS_UCDIS
 • CADR register is now named EMIOS_CADR
 • CBDR register is now named EMIOS_CBDR
 • CCNTR register is now named EMIOS_CCNTR
 • CCR register is now named EMIOS_CCR
 • ALTAn registers are now named EMIOS_ALTAn

All available functions are now available on all channels. Formerly, some
channel groups had a limited subset of functions.

Chapter 23
Enhanced Queued
Analog-to-Digital Converter
(eQADC)

 • Reset value for AGR1/2 registers changed to 0x4000
 • Reset value for AOR1/2 registers changed to 0x0000

Chapter 24
Flash Fuse Loader (FFL)

 • New chapter

Table A-2. Changes between revisions 1 and 2 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1706 Freescale Semiconductor

Chapter 27
Deserial Serial Peripheral
Interface (DSPI)

DSPI Frequency Support section added.

DSPI_HCR register deleted. It is not user-configurable.

DSPI_RSER register fields renamed:
 • DSPI_RSER[EOQF_RE] renamed to DSPI_RSER[EOQFRE]
 • DSPI_RSER[TFUF_RE] renamed to DSPI_RSER[TFUFRE]
 • DSPI_RSER[TFFF_RE] renamed to DSPI_RSER[TFFFRE]
 • DSPI_RSER[TFFF_DIRS] renamed to DSPI_RSER[TFFFDIRS]
 • DSPI_RSER[DPEF_RE] renamed to DSPI_RSER[DPEFRE]
 • DSPI_RSER[SPEF_RE] renamed to DSPI_RSER[SPEFRE]
 • DSPI_RSER[DDIF_RE] renamed to DSPI_RSER[DDIFRE]
 • DSPI_RSER[RFOF_RE] renamed to DSPI_RSER[RFOFRE]
 • DSPI_RSER[RFDF_RE] renamed to DSPI_RSER[RFDFRE]
 • DSPI_RSER[RFDF_DIRS] renamed to DSPI_RSER[RFDFDIRS]

DSPI_DSICR register fields deleted:
 • DMS
 • PES
 • PE
 • PP

SPI_DSICR1 register fields deleted:
 • DSE1
 • DSE0

Registers deleted:
 • DSPI_SSR
 • DSPI_PISRn
 • DSPI_DIMR
 • DSPI_DPIR

Table A-2. Changes between revisions 1 and 2 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1707

Chapter 28
Enhanced Serial Communications
Interface (eSCI)

Registers converted to 16- and 32-bit format to match header file:
 • Fields formerly found in registers SCIBDH, SCIBDL, SCICR1 and SCICR2

are now contained in SCI_CR1
 • Fields formerly found in registers SCICR3 and SCICR4 are now contained in

SCI_CR2
 • Registers SCIDRH and SCIDRL have been combined into a single register

named SCI_DR
 • Fields formerly found in registers SCISR1, SCIRSR2, LINSTAT1 and

LINSTAT2 are now contained in SCI_SR
 • Fields formerly found in registers LINCTRL1, LINCTRL2 and LINCTRL3 are

now contained in SCI_LCR
 • The LINTX register is now named SCI_LTR
 • The LINRX register is now named SCI LRR
 • Fields formerly found in registers LINCRCP1, LINCRCP2 and SCICR5 are

now contained in SCI_LPR.

Field name changes:
 • SCICR3[BERIE] is now SCI_CR2[IEBERR]
 • SCICR3[BRCL] is now SCI_CR2[BRK13]
 • SCICR4[BESM] is now SCI_CR2[BESM13]
 • SCICR4[BESTP] is now SCI_CR2[SBSTP]
 • SCIDRH[RN] is now SCI_DR[R8]
 • SCIDRH[TN] is now SCI_DR[T8]
 • SCISR2[RACT] is now SCI_SR[RAF]

Table A-2. Changes between revisions 1 and 2 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1708 Freescale Semiconductor

Chapter 29
FlexCAN Module

Message Buffer Architecture section added

Typical CAN System figure and text added to Overview section

Block diagram replaced

Message buffer architecture block diagram added

Register name changes:
 • CTRL renamed to CR
 • IMASK2 renamed to IMRH
 • IMASK1 renamed to IMRL
 • IFLAG2 renamed to IFRH
 • IFLAG1 renamed to IFRL

MCR register fields renamed:
 • MCR[NOT_RDY] renamed to MCR[NOTRDY]
 • MCR[SOFT_RST] renamed to MCR[SOFTRST]
 • MCR[FRZ_ACK] renamed to MCR[FRZACK]
 • MCR[WRN_EN] renamed to MCR[WRNEN]
 • MCR[LPM_ACK] renamed to MCR[MDISACK]
 • MCR[BCC] renamed to MCR[MBFEN]

CR register fields renamed:
 • CR[BOFF_MSK] renamed to CR[BOFFMSK]
 • CR[ERR_MSK] renamed to CR[ERRMSK]
 • CR[CLK_SRC] renamed to CR[CLKSRC]
 • CR[TWRN_MSK] renamed to CR[TWRNMSK]
 • CR[RWRN_MSK] renamed to CR[RWRNMSK]
 • CR[BOFF_REC] renamed to CR[BOFFREC]

ESR register fields renamed:
 • ESR[TWRN_INT] renamed to ESR[TWRNINT]
 • ESR[RWRN_INT] renamed to ESR[RWRNINT]
 • ESR[BIT1_ERR] renamed to ESR[BIT1ERR]
 • ESR[BIT0_ERR] renamed to ESR[BIT0ERR]
 • ESR[ACK_ERR] renamed to ESR[ACKERR]
 • ESR[CRC_ERR] renamed to ESR[CRCERR]
 • ESR[FRM_ERR] renamed to ESR[FRMERR]
 • ESR[STF_ERR] renamed to ESR[STFERR]
 • ESR[TX_WRN] renamed to ESR[TXWRN]
 • ESR[RX_WRN] renamed to ESR[RXWRN]
 • ESR[FLT_CONF] renamed to ESR[FLTCONF]
 • ESR[BOFF_INT] renamed to ESR[BOFFINT]
 • ESR[ERR_INT] renamed to ESR[ERRINT]
 • ESR[WAK_INT] renamed to ESR[WAKINT]

Table A-2. Changes between revisions 1 and 2 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1709

Chapter 32
Power Management Controller
(PMC)

 • “Low power RAM test” added to list of operating modes.
 • In the Functional Description section, detail added regarding disabling the

voltage regulators.
 • PMC Signals table updated:

* VDDREG is 4.5-5.5V (was 4.0- 5.5V)
* VDD3p3 is 3.3-3.6V (was 3.0-3.6V)
* VDD1p1 is 1.2-1.32V (was 1.08-1.32V)

 • VDDREG requires decoupling capacitor on the order of 4.7 F - 20 F (was
1.0 F - 20 F)

 • Vdd1p2: bypass capacitor ESR max is 50m (was 10m). Ceramic
capacitor value is 100nF (was 200nF). Deleted sentence stating: “ When
switching current load is lower, it is possible to reduce the requirements of the
bypass capacitor to 1 F - 5 F and 100 m ESR.“

 • MCR register reset value is 0x98000000 (was 0x00000000)
 • SR register reset value is “0x03000000 or 0x06000000 (was 0x02000000 or

0x06000000)
 • NVUSRO register info added--contains bit used to shutdown 3.3V regulator.
 • Changes to MCR register:

* LVRE5 field is now LVRE50
* LVIE5 field is now LVIE50

 • Changes to TRIMR register:
* LVI50TRIM is now LVDREGTRIM
* V33TRIM is now VDD33TRIM
* LVI33TRIM is now LVD33TRIM
* V12TRIM is now VDDCTRIM
* LVI12TRIM field is now LVDCTRIM
* Updated VDD33TRIM values
* Updated VDDCTRIM values
* Updated LVDCTRIM values

 • Changes to SR register:
* BRW field is now LVFVSTBY
* LVI5C is now LVFC50
* LVI3C is now LVFC33
* LVI1C is now LVFCC
* Updated VDD33TRIM values

Table A-2. Changes between revisions 1 and 2 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1710 Freescale Semiconductor

Chapter 32
Power Management Controller
(PMC)
(cont.)

 • In functional description bandgap reference of 2.7V deleted.
 • In bandgap section, description of 1.219V reference voltage “...that varies by

±4% before calibration and ±1% after calibration over temperature and
lifetime” deleted.

 • In 5V LVI section, following statement deleted: “Maximum hysteresis value
between rising and falling trip points is 90 mV”

 • In 5V LVI section, “In case the monitored voltage falls below the *nominal* trip
point, the LVI output goes to logical 0” changed to, “In case the monitored
voltage falls below the *falling* trip point, the LVI output goes to logical 0“.

 • In LVI section, description of resistor chain deleted.
 • Nominal 4.29V trip value noted as being typical and subject to variance.
 • In 3.3V internal voltage regulator section, following text deleted: “Tolerance of

the 3.3 V supply is -5% / +10% including line and load variation. Detail on
disabling voltage regulator added.

 • In 3.3V LVI section, noted that there are 2 LV monitors. Also deleted
hysteresis spec.

 • In 3.3V LVI section noted 3.09V (was 3.00V) trip value as being typical and
subject to variance.

 • In 1.2V regulator section, “tolerance of ±10%” on 1.2V supply current deleted.
 • In 1.2V regulator section, default voltage is 1.28 V (was 1.270V).
 • 1.2V LVI section: hysteresis spec deleted. Rising trip point is 1.16 (was 1.08).
 • Power On Reset section: typical values table deleted.
 • Sections added describing modules affected by PMC.
 • ADC test mux section added
 • Electrical characteristics removed. See data sheet.
 • Replaced PMC block diagram
 • Replaced bandgap reference block diagram
 • Replaced Vreg 3.3 V power connection diagram
 • VDDEH referring to supply of closest I/O segment changed to VDDEH1.

Chapter 33
JTAG Controller

Device-specific info section added

Chapter 35
Temperature Sensor

New chapter

Table A-2. Changes between revisions 1 and 2 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1711

A.3 Changes between revisions 2 and 3
Table A-3. Changes between revisions 2 and 3

Chapter Changes

Chapter 1
Introduction

Updated several instances of text to indicate 8 KB instruction cache (was
incorrectly stated as 4 KB)

Updates to device comparison:
 • Max clock speed for device is 150 MHz (was 145 MHz)

Updates to features list:
 • Core clock speed for device is 150 MHz (was 145 MHz)
 • Correction: there are 6 reaction channels (noted as 5)
 • Development Trigger Semaphore (DTS) added to features list and feature

details
 • FlexRay now has 128 message buffers and ECC support

Chapter 2
Memory Map

 • “Allocated Size” for reserved area from 0x4003_0000 to 0xBFFF_FFFF
changed to 2 GB - 192 KB.

 • Range from 0xFFF0_0000 to 0xFFF0_3FFF is no longer reserved—it is
allocated to PBRIDGE (AIPS-lite) registers

 • Reaction Module (REACM) registers added at starting address
0xC403_0000. This space was previously reserved. There is reserved space
before and after these registers.

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1712 Freescale Semiconductor

Chapter 3
Signal Description

In Power/ground segmentation table, VDDA voltage changed to 5 V (was
incorrectly noted as being 1.2 V)

Power segment VDDEH1A renamed to VDDEH1

Changes to Signal Properties table (changes apply to Revision 2 and later
devices:

EBI changes:
 • WE_BE[2] (A2) and CAL_WE_BE[2] (A3) signals added to CS[2] (PCR 2)
 • WE_BE[3] (A2) and CAL_WE_BE[3] (A3) signals added to CS[3] (PCR 3)

Calibration bus changes:
 • CAL_WE[2]/BE[2] (A2) signal added to CAL_CS[2] (PCR 338)
 • CAL_WE[3]/BE[3] (A2) signal added to CAL_CS[3] (PCR 339)
 • CAL_ALE (A1) added to CAL_ADDR[15] (PCR 340)

eQADC changes:
 • AN[8] and AN[38] pins swapped. AN[8] Is now on pins 9 (176-pin), B3

(208-ball) and E1 (324-ball). AN[8] was on D3 (324-ball) on previous devices.
AN[38] Is now on D3 (324-ball). AN[38] was on pins 9 (176-pin), B3 (208-ball)
and E1 (324-ball) on previous devices.

 • ANZ function added to pin AN11

Reaction channels added to eTPU2:
 • RCH0_A (A3) added to ETPU_A[14] (PCR 128)
 • RCH0_B (A2) added to ETPU_A[20] (PCR 134)
 • RCH0_C (A2) added to ETPU_A[21] (PCR 135)
 • RCH1_A (A2) added to ETPU_A[15] (PCR 129)
 • RCH1_B (A2) added to ETPU_A[9] (PCR 123)
 • RCH1_C (A2) added to ETPU_A[10] (PCR 124)
 • RCH2_A (A2) added to ETPU_A[16] (PCR 130)
 • RCH3_A (A2) added to ETPU_A[17] (PCR 131
 • RCH4_A (A2) added to ETPU_A[18] (PCR 132))
 • RCH4_B (A2) added to ETPU_A[11] (PCR 125)
 • RCH4_C (A2) added to ETPU_A[12] (PCR 126)
 • RCH5_A (A2) added to ETPU_A[19] (PCR 133)
 • RCH5_B (A2) added to ETPU_A[28] (PCR 142)
 • RCH5_C (A2) added to ETPU_A[29] (PCR 143)

Reaction channels added to eMIOS:
 • RCH2_B (A2) added to EMIOS[2] (PCR 181)
 • RCH2_C (A2) added to EMIOS[4] (PCR 183)
 • RCH3_B (A2) added to EMIOS[10] (PCR 189)
 • RCH3_C (A2) added to EMIOS[11] (PCR 190)

Pad changes:
 • ETPUA16 (PCR 130) has Medium (was Slow) pad
 • ETPUA17 (PCR 131) has Medium (was Slow) pad
 • ETPUA18 (PCR 132) has Medium (was Slow) pad
 • ETPUA19 (PCR 133) has Medium (was Slow) pad
 • ETPUA25 (PCR 139) has Slow+LVDS (was Medium+LVDS) pads

Table A-3. Changes between revisions 2 and 3

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1713

Chapter 3
Signal Description
(cont)

Signal Details table updated:
 • Added eTPU2 reaction channels
 • Changed IRQ[0:15] to two ranges, excluding IRQ6, which does not exist on

this device
 • Changed TCR_A to TCRCLKA (TCR_A is the pin name, not the signal name)
 • Changed WE_BE[0:1] to WE_BE[0:3] (2 new signals added to Rev. 2). Also

changed notation from “WE_BE[n]” to “WE[n]/BE[n]” to be consistent.

Changes to Power/ground segmentation table:
 • ADDR[20:21] removed from VDDE2 segment; they are in VDDE-EH
 • CAL_CS1 removed from VDDE12 segment (there is no CAL_CS1 on this

device)
 • CAL_EVTO and CAL_MCKO removed from VDDE12 segment. Those pins

do not exist
 • VDDE-VDDEH renamed to VDDE-EH
 • EMIOS24 removed from VDDEH segment. That pin does not exist.
 • ETPUA[0:9] added to VDDEH4 segment
 • Renamed TCR_A in VDDEH4 segment to TCRCLKA.
 • EXTAL and XTAL added to VDDEH6 segment
 • AN15-FCK added to VDDEH7 segment
 • GPIO98, GPIO99, GPIO206, GPIO207 and GPIO219 added to VDDEH7

segment.
 • MSEO1 added to VDDEH7 segment

Chapter 4
Resets

Most of chapter updated

Chapter 5
Operating Modes and Clocking

 • Max clock speed is now 150 MHz (was 145 MHz)
 • EPREDIV/IDF divider = /7 for 150 MHz clock (was /8 for 145 MHz clock)
 • EMFD/NDIV loop divider = 60 for 150 MHz clock (was 58 for 145 MHz clock)
 • VCO clock out = 266.67 MHz for 150 MHz clock (was 290 MHz for 145 MHz

clock)
 • ERFD/ODF output divider = /1 for 150 MHz clock (was /2 for 145 MHz clock)
 • EPREDIV/IDF divider = /7 for 100 MHz clock (was /4)
 • EMFD/NDIV loop divider = 80 for 100 MHz clock (was 40)
 • ERFD/ODF output divider = /1 for 100 MHz clock (was /4)
 • Editorial and formatting changes
 • Changed field name PLLCFG to CLKCFG in Section 5.4.4.1, “Bypass mode

with crystal reference and Section 5.4.4.2, “Bypass mode with external
reference

 • Replaced text of footnote defining OCR register with reference to the
ez200z4 core reference manual.

 • Section 5.4.4.6, “Clock dividers:
 • Changed “The MCU provides four clock dividers” to “The MCU provides five

clock dividers”
 • Editorial changes
 • Added explanation of how SYSDIV programming depends on values of fields

BYPASS and SYSCLKDIV in SIU_SYSDIV register
 • Section 5.4.4.6.4, “Engineering Clock Divider (ENGDIV): Removed phrase

“according to the below mentioned equation” from first paragraph (no
equation present)

 •
 • Replaced text of footnote defining OCR register with reference to the

ez200z4 core reference manual.

Table A-3. Changes between revisions 2 and 3

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1714 Freescale Semiconductor

Chapter 6
Performance Optimization

 • New chapter

Chapter 7
e200z4 Core

 • MMU is 24-entry (was 16-entry)
 • Instruction cache is 8_KB (was incorrectly stated as 4_KB)
 • Supports WAIT power-saving mode (previously incorrectly stated DOZE,

NAP and SLEEP modes were also supported)

Chapter9
Multi-Layer AHB Crossbar Switch
(XBAR)

 • XBAR device-specific block diagram: Replaced z446n3 with e200z4
 • Master/Slave mappings: Replaced z446n3 with e200z4

Chapter 10
Peripheral Bridge (PBRIDGE)

 • Previously there were no control registers for the peripheral bridge. Registers
added: Master Privilege Control Register (MPCR), Peripheral Access Control
Registers (PACR) and Off-Platform Peripheral Access Control Registers
(OPACR).

Chapter 11
Flash memory

Added UTn registers to memory map

MCR field description:
 • Removed references to “Tdone” and “Tres” from DONE field description
 • Removed references to “Tpsus” from PSUS field description
 • Removed references to “Tesus” from ESUS field description

Updated Flash memory map

Added UMISR[0:4] registers

Footnote added warning that flash configuration registers must not be written by
software executing from flash memory.

Chapter 12
SRAM

 • Detail on Standby SRAM power sources added to Standby Mode section

Chapter 13
Memory Protection Unit (MPU)

Changes to MPU RGD Alternate Access Control n (MPU_RGDAACn)
 • Four new fields added; M7RE, M7WE, M6RE and M6WE
 • Three fields deleted: M1PE, M1SM, M1UM and M0PE

Warning added to Application Information section discussing errors caused by
application code that crosses MPU region boundaries.

Table A-3. Changes between revisions 2 and 3

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1715

Chapter 15
Interrupt Controller (INTC)

Interrupts added:
 • DSPI_BSR[SPEF]
 • DSPI_BSR[DPEF]
 • DSPI_BSR[DDIF]
 • DSPI_CSR[SPEF]
 • DSPI_CSR[DPEF]
 • DSPI_CSR[DDIF]
 • DSPI_DSR[SPEF]
 • DSPI_DSR[DPEF]
 • DSPI_DSR[DDIF]
 • GIFER[LRNE]
 • GIFER[DRNE]
 • GIFER[LRCE]
 • GIFER[DRCE]
 • REACM_GE
 • REACM[0]
 • REACM[1]
 • REACM[2]
 • REACM[3]

Other updates:
 • Interrupt 307 source updated
 • Largest addressable IRQ vector number is now 485
 • The total number of interrupts available is 486
 • There are 279 peripheral IRQs
There are 199 reserved IRQs.

Table A-3. Changes between revisions 2 and 3

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1716 Freescale Semiconductor

Chapter 16
System Integration Unit (SIU)

Changes to SIU_PCR2:
 • Two new functions added: WE[2]/BE[2] and CAL_WE[2]/BE[2]
 • PA field expanded to 4 bits

Changes to SIU_PCR3:
 • Two new functions added: WE[3]/BE[3] and CAL_WE[3]/BE[3]
 • PA field expanded to 4 bits

Changes to SIU_PCR123:
 • New function added: RCH1_B

Changes to SIU_PCR124:
 • New function added: RCH1_C

Changes to SIU_PCR125:
 • New function added: RCH4_B

Changes to SIU_PCR126:
 • New function added: RCH4_C
 • PA field expanded to 3 bits

Changes to SIU_PCR128:
 • New function added: RCH0_A
 • PA field expanded to 4 bits

Changes to SIU_PCR129:
 • New function added: RCH1_A
 • PA field expanded to 3 bits

Changes to SIU_PCR130:
 • New function added: RCH2_A
 • PA field expanded to 3 bits

Changes to SIU_PCR131:
 • New function added: RCH3_A
 • PA field expanded to 3 bits

Changes to SIU_PCR132:
 • New function added: RCH4_A
 • PA field expanded to 3 bits

Changes to SIU_PCR133:
 • New function added: RCH5_A
 • PA field expanded to 3 bits

Changes to SIU_PCR134:
 • New function added: RCH0_B

Changes to SIU_PCR135:
 • New function added: RCH0_C

Table A-3. Changes between revisions 2 and 3

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1717

Chapter 16
System Integration Unit (SIU)
(cont)

Changes to SIU_PCR142:
 • New function added: RCH5_B
 • PA field expanded to 3 bits

Changes to SIU_PCR143:
 • New function added: RCH5_C
 • PA field expanded to 3 bits

Changes to SIU_PCR181:
 • New function added: RCH2_B
 • PA field expanded to 3 bits

Changes to SIU_PCR183:
 • New function added: RCH2_C
 • PA field expanded to 3 bits

Changes to SIU_PCR189:
 • New function added: RCH3_B
 • PA field expanded to 3 bits

Changes to SIU_PCR190:
 • New function added: RCH3_C
 • PA field expanded to 3 bits

Changes to SIU_PCR219:
 • This pin is not used to select GPIO[219]. Instead, it is used to control the

electrical characteristics of the MCKO pin.

New SIU_PCR registers added (control the electrical characteristics of
MDO[0:3] pins):
 • SIU_PCR[220]
 • SIU_PCR[221]
 • SIU_PCR[222]
 • SIU_PCR[223]

New SIU_PCR registers added (control the electrical characteristics of
MSEO[0:1] pins):
 • SIU_PCR[224]
 • SIU_PCR[225]

New SIU_PCR registers added (control the electrical characteristics of EVTO
and TDO pins respectively:
 • SIU_PCR[227]
 • SIU_PCR[228]

New SIU_PCR registers added (control the electrical characteristics of
RSTOUT, EVTI and EMIOS5 (output only) pins respectively:
 • SIU_PCR[230]
 • SIU_PCR[231]
 • SIU_PCR[232]

Table A-3. Changes between revisions 2 and 3

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1718 Freescale Semiconductor

Chapter 16
System Integration Unit (SIU)
(cont)

New SIU_PCR registers added (control the electrical characteristics of TXDC
and RXDC pins respectively:
 • SIU_PCR[244]
 • SIU_PCR[245]

New SIU_PCR registers added (control the electric characteristics of some
calibration bus pins):
 • SIU_PCR336
 • SIU_PCR338
 • SIU_PCR339
 • SIU_PCR340
 • SIU_PCR341
 • SIU_PCR342
 • SIU_PCR343
 • SIU_PCR345

Added clarification to eQADC Trigger Input Select Register (SIU_ETISR)
section.

New register added: Core MMU PID Control Register (SIU_EMPCR0). Provides
capability of real-time modification of MMU entries.

GPIO function added to SIU_PCR219 register. Also added 2-bit PA field.
Section 16.7, “Memory map and register descriptions: Changed signal name

notation for DSPI:
- PCSxn or DSPI_x_CS[n] is now DSPI_x_PCS[n]
- SOUTx is now DSPI_x_SOUT
- SINx is now DSPI_x_SIN
- SCKx is now DSPI_x_SCK

SIU address map: Added page index ‘Location’ column
Removed “Pin” column from PCR PA values tables (incl. table in Sample PCR

map)
Pad Configuration Register (SIU_PCR12): Replaced “DATA[0]” with “DATA[16]”

in footnotes
SIU_PCR113 PA values: Change name TCR_A to TCRCLKA
SIU_PCR138 to SIU_PCR143 PA values tables: Added footnote explaining that

the eTPU function controlled by these registers has an additional
dependency on the SIU_ISEL8 register settings

SIU_PCR143 PA values: Corrected PA value for ALT2—was 0b0100; is 0b100
Updated Section 16.7.15.138, “Pad Configuration Register 219 (SIU_PCR219)
SIU_PCR228 PA values: Changed PA value for TDO—was ‘—’; is ‘01’
SIU_PCR232 PA values: Changed pin and associated content from “EMIOS[5]

output only” to “TDI”

Table A-3. Changes between revisions 2 and 3

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1719

Chapter 16
System Integration Unit (SIU)
(cont)

 • System Clock Register field description: Added note to SYSCLKDIV field
description to explain that clock divider selection depends on BYPASS field
value

 • Added Section 16.7.24, “IMUX Select Register 10 (SIU_ISEL10 or
SIU_DECFIL1)

 • eQADC advance trigger selection: Changed input for values 00000 and
00111 to “Reserved”

 • REACMSTP field added to SIU_HLT register
 • REACMACK field added to SIY_HLTACK register
 • NSETIACK field added to SIU_HLTACK register

Chapter 17
Frequency-Modulated Phase
Locked Loop (FMPLL)

 • ESYNCR1 register reset value updated
 • ESYNCR2 register reset value updated

Chapter 21
Boot Assist Module (BAM)

Added/updated register values in Calibration Bus/EBI Register Settings table:
 • EBI_MCR and EBI_BR0 values updated
 • Values added for SIU_PCR0, SIU_PCR[8:11], SIU_PCR[12:27],

SIU_PCR[28:43], SIU_PCR64 and SIU_PCR[68:69].

Added new section: Enabling Debug of a Censored Device

Chapter 23
Enhanced Time Processing Unit
(eTPU2)

Changes to register reset values:
 • ETPU_TBCR register reset value is 0x2000_0000
 • ETPU_REDCR register reset value is 0x0000_0200

Chapter 24
Reaction Module

New chapter

Chapter 25
Enhanced Queued
Analog-to-Digital Converter
(eQADC)

 • Note added to”50% x VREF” in “Non-Multiplexed Channel Assignments” and
“Multiplexed Channel Assignments” tables explaining that value is accurate
only before calibration and should not be used for calibration of the ADC.

 • Reference to Applications Note AN2989 “Design, Accuracy and Calibration
of Analog to Digital Converts on the MPC5500 family” added.

 • New section added: “ADC Sampling Delay after Power-Up”

Chapter 27
Temperature Sensor

Location of TSC3 changed; register field descriptions updated

Chapter 28
Flash Fuse Loader (FFL)

 • Moved location of third temperature sensor calibration constant
 • Added device serial number location

Chapter 32
FlexCAN

Register field name changes
 • ECR[Rx_Err_Counter] is now ECR[RXECNT]
 • ECR[Tx_Err_Counter] is now ECR[TXECNT]

Table A-3. Changes between revisions 2 and 3

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1720 Freescale Semiconductor

Chapter 34
FlexRay Module

ECC has been added to the PE DRAM memory
 • Single-bit Error Detection and Correction
 • Multi-bit Error Detection

ECC has been added to the CHI LRAM memory
 • Single-bit Error Detection
 • Multi-bit Error Detection

Module now has 128 message buffers (was 64)

New sections added:
 • “Controller Host Interface Clocking”
 • “System Bus Access”
 • “PE Data Memory (PE DRAM)”
 • “CHI Lookup-Table Memory (CHI LRAM)”
 • “Memory Content Error Detection”

Memory management content added to Application Information section.

New registers added:
 • FR_PEDRAR
 • FR_PEDRDR
 • FR_EEIFER
 • FR_EERICR
 • FR_EERAR
 • FR_EERDR
 • FR_EERCR
 • FR_EEIAR
 • FR_EEIDR
 • FR_EEICR

Chapter 38
Development Trigger Semaphore
(DTS)

New chapter

Table A-3. Changes between revisions 2 and 3

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1721

A.4 Changes between revisions 3 and 4
Table A-4. Changes between revisions 3 and 4

Chapter Changes

Throughout document • Most occurrences of “PowerPC” have been replaced with either “Power
Architecture” or “Power ISA (Instruction Set Architecture)”

 • Editorial and formatting changes

Chapter 1
Introduction

 • Nexus development interface (NDI) is compliantIEEE-ISTO 5001-2003 and
2010 standards

Updates to device comparison table:
 • Interrupt controller has 486 channels
 • 199 interrupt vectors are reserved (was 197)

ADC conversion times updated:
 • 12-bit conversion time: 938 ns (1M sample/sec)
 • 10-bit conversion time: 813 ns (1.2M sample/second)
 • 8-bit conversion time: 688 ns (1.4M sample/second)

Chapter 2
Memory Map

DTS module registers mapping changed: 0xC3F9_C000 - 0xC3F9_FFFF

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1722 Freescale Semiconductor

Chapter 3
Signal Description

Change in signal name notation for DSPI signals:
 • PCS_x[n] is now DSPI_x_PCS[n]
 • SOUT_x is now DSPI_x_SOUT
 • SIN_x is now DSPI_x_SIN
 • SCK_x is now DSPI_x_SCK

Change in signal name notation for CAN signals:
CNTXx is now CAN_x_TX
CNRXx is now CAN_x_RX

Change in signal name notation for SCI signals:
RXDx is now SCI_x_RX
TXDx is now SCI_x_TX

Pin 96 added to list of VSS pins for 176-pin package

GPIO[219] and MCKO pins are both controlled by SIU_PCR219, which does not
have a PA field. Both are single-function pins. See SIU_PCR219 section in SIU
chapter for details.

Clarification: Following signals are active low:
 • (EBI) CS[0:3]
 • (EBI) BDIP
 • (EBI) OE
 • (EBI) TA
 • (EBI) TS
 • (EBI) RD_WR
 • (EBI) WE[0:1]/BE[0:1]
 • (Nexus) MSEO[0:1]
 • (Nexus) RDY
 • IRQ[0:15]
 • (FlexRay) FR_A_TX_EN
 • (FlexRay) FR_B_TX_EN

Note added to MultiV pads: Multivoltage pads are automatically configured in
low swing mode when a JTAG or Nexus function is selected, otherwise they are
high swing.

Note added to VDDEH7 voltage on AN12-AN15: For pins AN12-AN15, if the
analog features are used the VDDEH7 input pins should be tied to VDDA
because that segment must meet the VDDA specification to support analog
input function.

Added VRL, VRH, and REFBYPC functions after reset.

Clarification: “10” on BOOTCFG[0:1] causes boot from external memory using
EBI

Table A-4. Changes between revisions 3 and 4 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1723

Chapter 3
Signal Description
(cont)

Changes to Pad types table:
 • Multiv high swing mode range changed.
 • Footnote added: VEEDEH7 supply cannot be below 4.5 V when in low-swing

mode.

Power segment for eTPUA[10:20] changed from VDDEH2 to VDDEH1.

WE[n], BE[n] and CAL_CS[n] signals are active low.

T21 added to VSS list on 324 ball BGA package.

Footnote added to VRC33: Do not use VRC33 to drive external circuits

Chapter 4
Resets

Chapter content replaced. The most significant changes are:
 • Watchdog timeout table updated
 • RCHW location table updated
 • BOOTCFG options table updated

Chapter 5
Operating Modes and Clocking

FMPLL_ESYNCR1[PLLCFG] field is now called FMPLL_ESYNCR1[CLKCFG]

Added explanation of how SYSDIV programming depends on values of fields
BYPASS and SYSCLKDIV in SIU_SYSDIV register

Chapter 8
Enhanced Direct Memory Access
Controller (eDMA)

Notation change: Register bitfield naming changed from
MODULE_REGISTER.FIELD to MODULE_REGISTER[FIELD]

Chapter 10
Peripheral Bridge (PBRIDGE)

Renamed Master Privilege Register (MPROT) to Master Privilege Control
Register (MPCR)

Correction: Offset 0x0044, bits 20–23 are OPAC13 (was OPACR3)

Chapter 11
Flash memory

Added block size column to flash memory map

Memory map updates:
 • Corrected FLASH_x_UT0 register addresses
 • Added UMISRn registers

Footnote added warning that flash configuration registers must not be written by
software executing from flash memory.

All references to Stop Mode removed.

Chapter 13
Memory Protection Unit (MPU)

Warning added to Application Information section discussing errors caused by
application code that crosses MPU region boundaries.

Chapter 14
External Bus Interface (EBI

DBM bit added to EBI_MCR register

Chapter 15
Interrupt Controller (INTC)

 • Interrupt 307 source updated
 • Largest addressable IRQ vector number is now 485
 • The total number of interrupts available is 486
 • There are 279 peripheral IRQs
 • There are 199 reserved IRQs.

Table A-4. Changes between revisions 3 and 4 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1724 Freescale Semiconductor

Chapter 16
System Integration Unit (SIU)

“Memory map and register descriptions” section: Changed signal name notation
for DSPI:
- PCSxn or DSPI_x_CS[n] is now DSPI_x_PCS[n]
- SOUTx is now DSPI_x_SOUT
- SINx is now DSPI_x_SIN
- SCKx is now DSPI_x_SCK

SIU address map: Added page index ‘Location’ column
Removed “Pin” column from PCR PA values tables (including table in Sample

PCR map)
Pad Configuration Register (SIU_PCR12): Replaced “DATA[0]” with “DATA[16]”

in footnotes
SIU_PCR113 PA values: Change name TCR_A to TCRCLKA
SIU_PCR138 to SIU_PCR143 PA values tables: Added footnote explaining that

the eTPU function controlled by these registers has an additional
dependency on the SIU_ISEL8 register settings

SIU_PCR143 PA values: Corrected PA value for ALT2—was 0b0100; is 0b100
Updated “Pad Configuration Register 219 (SIU_PCR219)” section
SIU_PCR228 PA values: Changed PA value for TDO—was ‘—’; is ‘01’
SIU_PCR232 PA values: Changed pin and associated content from “EMIOS[5]

output only” to “TDI”
Added details to SIU_PCR219 section. This PCR is unusual in that it controls

configuration for two pins: GPIO[219] and MCKO, but not all fields apply to
both pins.

SIU_SYSDIV field description: Added note to SYSCLKDIV field description to
explain that clock divider selection depends on BYPASS field value

Added Section 16.7.24, “IMUX Select Register 10 (SIU_ISEL10 or
SIU_DECFIL1)

eQADC advance trigger selection: Changed input for values 00000 and 00111
to “Reserved”

REACMSTP field added to SIU_HLT register
REACMACK field added to SIY_HLTACK register
NSETIACK field added to SIU_HLTACK register
Flash removed from list of modules affected by SIU_HLT_CPUSTP]

Chapter 17
Frequency-Modulated Phase
Locked Loop (FMPLL)

Bypass mode with crystal reference mode can be entered after reset by
programming FMPLL_ESYNCR1[CLKCFG] (previously pointed to PLLCFG
field).

Chapter 19
System Timer Module (STM)

STM memory map:
 • Added location page index column
 • Changed name of STM_CNT (was STM Counter Value; is STM Count

Register)
 • Removed 32-bit size and R/W access from ‘Reserved’ rows

Chapter 20
Software Watchdog Timer (SWT)

 • Deleted device-specific information section
 • Updated reset value of SWT_MCR register
 • Updated reset value of SWT_TO register
 • Updated reset value of SWT_CO register

Table A-4. Changes between revisions 3 and 4 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1725

Chapter 21
Boot Assist Module (BAM)

EBI register settings table updates:
 • SIU_PCR3xx registers deleted
 • EBI_MCR and EBI_BR0 comments updated

Update to “Booting from the External Bus Interface (EBI) section:
 • Deleted statement that The RCHW[PS0] bit has to be programmed to ‘1’,

since the EBI does not support a 32-bit port size.
 • Deleted statement that The BAM program first checks that the device is in the

CSP package
 • Correction: BOOTCFG0 pin must be driven high for serial boot (was

BOOTCFG)

Updates to BAM Program Operation section:
 • Boot Modes table updated

BAM program flow chart updated

Chapter 22
Configurable Enhanced Modular
IO Subsystem (eMIOS200)

Added “Device-specific features” section (includes notation that Doze mode is
not supported)

“STAC client submodule” section: Removed content referencing two eTPU
engines

Chapter 23
Enhanced Time Processing Unit
(eTPU2)

 • Detailed memory map: Added page index location column; updated register
names

 • Removed content referencing block guides
 • ETPU_ECR field description: Modified description of bit STF to reflect single

engine implementation
 • Added note in device specific features: TCRCLK and Channel 0 are

connected together internally on the 176-pin LQFP package.
 • SIU_ISEL8 cross reference added to device specific features list
 • SIU_ISEL8 cross reference added to Channel Configuration and Control

Registers section

Table A-4. Changes between revisions 3 and 4 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1726 Freescale Semiconductor

Chapter 24
Reaction Module

REACM Channel n Configuration Register (REACM_CR) renamed to
REACM_CHCRn

REACM Channel n Status Register (REACM_SR) renamed to REACM_CHSRn

REACM Channel n Router Register (REACM_RR) renamed to
REACM_CHRRn

Updates to “Threshold Bank and Comparator” section:
 • Changed formula for second comparison to:

“COMP = ADC_DATA >= THRESHOLD_VALUE[THRESPT + 1]” (was “>=”
instead “<“)

 • In block diagram, changed “SKy-Blue or eTPU” to “XBAR Master or eTPU”.

Changes to REACM_GEFR register:
 • Added SQER and RAER to list of flags that could cause EFn to be set
 • Added EF5 field

Changes to REACM_CHCRn register:
 • DMAEN field added
 • Note added: If the DOFF value is changed just after the channel is enabled,

it is not assured the new DOFF value is immediately used in the channel
output.

Changes to REACM_STBK register:
 • Note added to SHARED_TIMER field: When using the shared timer for

sequence advance, the counted time (considering prescaler) must be greater
than 64 clock cycles.

Changes to REACM_HOBK register:
 • Note added to HOLD_OFF field: When using the hold-off timer for sequence

advance, the counted time (considering prescaler) must be greater than 64
clock cycles.

New subsection added to ADC Interface section: Input Buffer Overrun

Deleted “No Modulation Mode” section

Added information in Debug Mode description

Deleted Threshold Bank section

DMA Support section added

Correction: there are 3 shared timers implemented (was 16)

Memory map updated

Chapter 26
Decimation Filter

Reformatted register information

Chapter 28
System Information Module and
Trim (SIM)

Renamed chapter (formerly Flash Fuse Loader (FFL))

Added description of unique device ID

Table A-4. Changes between revisions 3 and 4 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1727

A.5 Changes between revisions 4 and 5

Chapter 35
Power Management Controller
(PMC)

Updated voltage regulator external circuit diagram and recommended transistor
data.

Updated ADC channels table

Register changes:
 • Bit values for SR[V33DIS] changed
 • NVUSRO[V33DIS] is R/W and has a reset value of 1
 • NVUSRO register address is 0xC3F8_802C
 • Bit values for NVUSRO[V33DIS] changed; note on reset behavior added

Chapter 36
JTAG Controller (JTAGC)

Number of auxiliary TAP controllers sharing the port is 4.

Chapter 37
Nexus Port Controller (NPC)

DDR section deleted—MPC5644A devices do not support DDR.

Parameter values table updated.

Process core is compliant to IEEE-ISTO 5001-2010 standard

Table A-5. Changes between revisions 4 and 5

Chapter Changes

Preface Replaced all instances of PowerPC Book E with Power Architecture.

Chapter 1
Introduction

 • Conditionalized note 6 of table “Andorra 4M device comparison” as
FSL_Specific.

 • Added a column for Andorra2M features and hence changed title of table1
and section 1.2 to
“MPC5644A, MPC5634MandMPC5642Acomparison”.

Chapter 2
Memory Map

 • In table “Andorra 4M Memory Map”, deleted the ‘Used Size’ entry for ‘Start
Address’ of 0xC3FB_C000.

 • In the table “Signal properties”:
Added a sub-row “Input for external 3.3 V supply” in the row “VRC33”.

 • Added the column ‘Name’ in the table “Pad types”.

Chapter 4
Resets

Unconditionalized the mention of e200z4 Reference Manual.

Chapter 5
Operating Modes and Clocking

Figure 6 “System clock diagram” updated.

Chapter 6
Device Performance Optimization

 • Unconditionalized the mention of e200z4 core Reference Manual.
 • Corrected description of ‘G’ field in the table”MAS2 field descriptions”.

Chapter 8
Enhanced Direct Memory Access
Controller (eDMA)

In the table “DMA request summary for eDMA”:
 • Removed the mention of eTPUB in the RM.
 • Changed the ‘Description’ and ‘Source’ for the channels 32, 33 and 52 - 63.

Table A-4. Changes between revisions 3 and 4 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1728 Freescale Semiconductor

Chapter 11
Flash memory

 • Changed BIUCR reset and BIUAPR reset bits to 0x0000FF00 and
0x000000FF, respectively.

 • Added section “UTest Mode”.
 • Previous errata err001433 (e6878253PDM) integrated into the reference

manual, Added the following in table “UMISRn field descriptions”:
“After running the user-test-mode margin read...”

 • Added a new row “0x00F0_0000 Reserved” in the table “Flash memory
map”.

 • Extracted a new Table 79 “Flash Shadow block mapping“from already
existing Table 78 “Flash memory”.

 • Replaced UMx with UMISRx, throughout.

Chapter 12
General-Purpose Static RAM
(SRAM)

Added text “VSTBY pad needs an external RC...”

Chapter 16
System Integration Unit (SIU)

Conditionalized a cross-reference as FSL-specific in “PARTNUM [0–15]”
description row of the table “SIU_MIDR field description”.

Chapter 17
Frequency-modulated phase
locked loop (FMPLL)

Added a footnote to “VSSPLL” stating “This signal is internally bonded to VSS”,
in table “Signal properties”.

Chapter 21
Boot Assist Module (BAM)

Updated Table 445. “Watchdog timeouts” to match the values in Table 12.
“Watchdog timeout periods”.

Chapter 22
Configurable Enhanced Modular
IO Subsystem (eMIOS200)

Corrected the table “STAC client submodule server slot assignment”.

Chapter 23
Enhanced Time Processing Unit
(eTPU2)

Removed Register ETPUWDSR.

Chapter 25
Enhanced Queued
Analog-to-Digital Converter
(EQADC)

 • In the figure: “On-Chip ADC Control Scheme” renamed block “Result Format”
to “Result Format and Calibration Sub-Block”.

 • Previous errata err002449 (e12982697PDM) integrated into the reference
manual: Added note “Both ADC0 and ADC1 of an eQADC module...”

 • Previous errata err000652 (e6877374PDM) integrated into the reference
manual: Updated table “Non-multiplexed Channel Assignments”and the note
“50% x VREF = 50% ref = (VRH / VRL)/2, but...”

 • Previous errata err001741 (e6860916PDM) integrated into the reference
manual: Added paragraph “For accurate calibration... Command Message
(LST = 0b10 or 0b11)” in section 25.7.6 “ADC Result Calibration”.

Chapter 30
Deserial Serial Peripheral
Interface (DSPI)

 • Removed figure from section 30.10.18.1 “Stop mode (External Stop mode)”,
as per Monaco manual.

 • DSE[1:0] bits added in Figure 727 “DSPI DSI Configuration Register 1
(DSPI_DSICR1)” (bits 14 and15) and Table 739 “DSPI_DSICR1 field
description”per Mamba manual.

 • Errata err003105 (e6183ps) incorporated in the manual:
Added note in section 30.10.6.5 “Continuous selection format”.

 • Errata err003230 (e8845ps) incorporated in the manual:
Added the following bullet point in section 30.10.7 Continuous serial
communications clock
“The TX FIFO must be cleared before initiating any SPI configuration
transfer”

Table A-5. Changes between revisions 4 and 5 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1729

Chapter 32
FlexCAN Module

 • Previous errata err002360 (e6871272PDM) integrated into the reference
manual: Added section 32.5.7.1 “Precautions when using Global Mask and
Individual Mask registers”.

 • In section 32.2.3 “Modes of operation” under bullet “Module Disable
Mode”Replaced the text with “This low power mode...sub-modules”.
In section 35.5.9.2 “Module Disable Mode” Replaced the text with “This low
power mode...and negates the FRZ_ACK bit”.

 • In section 32.5.2 “Transmit process” deleted text and added “The
deactivated message... CODE field”.
Added note “An Abort request to a Exempt... CAN bus arbitration” in section
32.5.6.1 “Transmission abort mechanism”.

Chapter 33
Periodic Interrupt Timer (PIT_RTI)

Section 33.3.1, Overview:
Rephrased “The RTI is a dedicated Real Time Interrupt Timer (RTI)” to “Real
Time Interrupt Timer (RTI) is a dedicated interrupt timer”.

Chapter 34
FlexRay Communication
Controller (FlexRay)

 • Updated Table 834: “Channel assignment description”:Previous errata
err002423 (e6858715PDM) integrated into the reference manual: Removed
the text in the first row and added ‘Reserved’ instead.

 • Updated sections 34.6.6.2.3.1 and 34.6.6.3.3.1, Previous errata err002421
(e6853852PDM) integrated into the reference manual: Added paragraph: “If
the communication controller is started as a non-coldstart node...”

 • Previous errata err001369 (e6949905PDM) integrated into the reference
manual:
Added footnote “The FlexRay controller should be stopped”.

 • Previous errata err001364 (e6886033PDM) integrated into the reference
manual: Added note “Slot status information of... is set” in section 34.5.2.46
“Slot Status Selection Register (FR_SSSR)”.

 • Previous errata err001322 (e6859837PDM) integrated into the reference
manual: Added note “When the ECC functionality... should not be set to 1”.

Chapter 36
JTAG Controller (JTAGC)

Corrected the description for “MIC” field in Table 978.

Table A-5. Changes between revisions 4 and 5 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1730 Freescale Semiconductor

A.6 Changes between revisions 5 and 6

Table A-6. Changes between revisions 5 and 6

Chapter Changes

Introduction • Removed references of “MPC5634M and SPC563M64” from Section 1.2,
MPC5644A and MPC5642A Device Comparison.

 • In Table 1-1 (MPC5644A and MPC5642A comparison) for column
“MPC5642A” done the following changes:
—For row “Packages” removed text “Known Good DIe(KGD)”.
—For row “External bus” added value 4  128-bit.
—For row “Calibration bus” changed the value to “None”.

Signal Description • Changed Table 1 (MPC5644A signal properties).
—in row “RESET” column “Status/During Reset” changed the value from
“RESET / Up” to “— / Up”.
—in row “RSTOUT” column “Status/During Reset” changed the value from
“RSTOUT /Down” to “RSTOUT / Low”.
—in row “RSTOUT” column “Status/After Reset” changed the value from
“RSTOUT/Down” to “RSTOUT /High”.
—in row “PLLREF” column “Status/During Reset” changed the value from “—
/Up” to “PLLREF/UP” and column “Status/After Reset” changed from
“PLLREF/UP” to “— /Up”.
—in row “BOOTCFG[0]” column “Status/During Reset” changed the value
from “— /Down” to “BOOTCFG[0]/Down” and column “Status/After Reset”
changed from “BOOTCFG[0]/Down” to “— /Down”.
—in row “BOOTCFG[1]” column “Status/During Reset” changed the value
from “— /Down” to “BOOTCFG[1]/Down” and column “Status/After Reset”
changed from “BOOTCFG[1]/ Down” to “— /Down”.
—in row “WKPCFG” column “Status/During Reset” changed from “— /Up” to
“WKPCFG/UP” and column “Status/After Reset” changed from
“WKPCFG/UP” to “— /Up”.

 • Updated Table 2 (Pad types) by hiding the “Name” column.

Operating Modes and Clocking • Updated text of Section 5.3.3.1, Support for 150 MHz system clock
generation to “A possible PLL configuration is shown below:
• Input clock (crystal frequency): 40 MHz
• EPREDIV/IDF divider = /8 (1–15 range supported)
• EMFD/NDIV loop divider = 60 (32–96 supported)
• VCO clock out = 300 MHz (256–512 MHz range supported)
• ERFD/ODF output divider = /2 (/2, /4, /8, /16 supported)”.

 • Updated the following texts of Section 5.3.3.2, Support for 100 MHz system
clock generation to
• EPREDIV/IDF divider = /8 (1–15 range supported)
• ERFD/ODF output divider = /4 (/2, /4, /8, /16 supported).

 • Changed the Note of Section 5.3.4.6.2, External Bus Clock (CLKOUT) from
“The CLKOUT pin is only available in the 208- and 324-pin packages” to “The
CLKOUT pin is only available in the 324-pin package”.

Device Performance Optimization • Changed bit 27 in Figure 6-2 (L1 Cache Control and Status Register 1
(L1CSR1)) from “0” to “ICORG”.

 • Added Description for “ICORG” bit.
 • Removed instance of z7 from Section 6.3.4.2, Recommended configuration

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1731

Enhanced Direct Memory Access
Controller

In Table 8-22 (DMA request summary for eDMA) for “Channels” 32,33,58-63 the
change done is as follows:
 • Changed “DMA Request” from “Reserved” to “No request”
 • Changed “Source” and “Description” from “Reserved” to “—”.
 • Updated Section 8.5.8, Dynamic programming

Multi-Layer AHB Crossbar Switch In Figure 9-4 (Slave General Purpose Control Register (XBAR_SGPCRn))
updated
 • Bit “14” from “0” to “HPE1” and access to Read/Write.
 • Bit “13” from “HPE2” to “0” and access to “Read only zero”
 • Bit “11” from “0” to “HPE4” and access to Read/Write.
 • Bit “9” from “0” to “HPE6” and access to Read/Write.

Table A-6. Changes between revisions 5 and 6 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1732 Freescale Semiconductor

System Integration Unit • Table 16-170 (SIU_PCR215 PA values) changed the “I/O” value from “I/O” to
“O”

 • Table 16-216 (SIU_ECCR field description)bit “ENGDICV” changed the
equation from

to

 • Updated Table 16-198 (SIU_PCR350 – SIU_PCR381 DSPI muxing) as
follows:
—Removed column “DSPI deserialize destination”.
—Updated column “PA value” by changing
“0b01” to “0b001”
“0b11” to “0b100”
“0b10” to “0b010”
“0b00” to “0b000”.

 • Updated Table 16-199 (SIU_PCR382 – SIU_PCR389 DSPI muxing) as
follows:
—Removed column “DSPI deserialize destination”.
—Updated column “PA value” by changing
“0b011” to “0b100”

 • Updated Table 16-200 (SIU_PCR390 – SIU_PCR413 DSPI muxing) as
follows:
—Removed column “DSPI deserialize destination”.
—Updated column “PA value” by changing
“0b01” to “0b001”
“0b11” to “0b100”
“0b10” to “0b010”
“0b00” to “0b000”.

 • Change done in Section 16.6.24, IMUX Select Register 10 (SIU_ISEL10) is
as follows:.
Change from: The IMUX Select Register 10 (SIU_ISEL10 or SIU_DECFIL1)
register contains bit fields that specifywhich eTPU output is used to trigger the
decimation filter result output buffer for decimation filters A andB.
Change to: The IMUX Select Register 10 (SIU_ISEL10 or SIU_DECFIL1)
register contains bit fields that specify which eTPU output is connected to the
decimation filter Integrator halt signal (HSELx) and Integrator reset signal
(ZSELx).For more details refer to Section 26.3.3, Integrator halt signal and
Section 26.3.4, Integrator reset signal.

 • Modified the note in Section 16.6.15.48, Pad Configuration Registers 75–82
(SIU_PCR75–SIU_PCR82).

Frequency-modulated phase
locked loop

 • Added note in Section 17.5.2, Clock configuration “Maximum system clock
frequency is 150 MHz and max/min VCO frequency is 256 MHz to 512 MHz”.

 • Replaced instances of fref with ffbk throughout the chapter.

Reaction Module In Section 23.1.1, Features added a note “DMA is not supported in Andorra
devices”.

Table A-6. Changes between revisions 5 and 6 (continued)

Chapter Changes

ENGCLK
SystemClockFrequency

ENGDIVx2
--=

ENGCLK
SystemClockorCrystalOscillator

ENGDIVx2
---=

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

Freescale Semiconductor 1733

Enhanced Queued
Analog-to-Digital Converter
(EQADC)

In Section 25.2.2, Block diagram:
 • Added foot note “Decimation filters A and B and Reaction module”.
 • Added information about Decimation filters A and B and about reaction

module.
 • In Section 25.6.5.2, Distributing Result Data into RFIFOs added information

about Decimation filters A and B and about reaction module.

Decimation Filter • In Section 26.4.2.3, Decimation Filter Module Extended Configuration
Register (DECFILTER_MXCR)/Table 26-12 added two notes:
For bits SZROSEL[1:0], SRQSEL[2:0] and SENSEL[1:0] the note is:
—The hardware input signals are ZSELA for Decimation filter A and ZSELB
fractionation filter B
For bit SHLTSEL[1:0] the note added is:
—The hardware input signals are HSELA for Decimation filter A and HSEB
for Decimation filter B.

 • Updated Section 26.5.10, Soft-reset command description

Deserial Serial Peripheral
Interface

 • In Section 30.8.2.11, DSPI DSI Configuration Register (DSPI_DSICR) added
DMS,PES,PE,PP bits in DSPI_DSICR register.

 • Added the following registers
—DSPI Hardware Configuration Register (DSPI_HCR)
—DSPI DSI Serialization Source Select Register (DSPI_SSR)
—DSPI DSI Parallel Input Select Register 0 (DPSI_PISR0)
—DSPI DSI Parallel Input Select Register 1 (DPSI_PISR1)
—DSPI DSI Parallel Input Select Register 2 (DPSI_PISR2)
—DSPI DSI Parallel Input Select Register 3 (DPSI_PISR3)
—DSPI DSI Deserialized Data Interrupt Mask Register (DSPI_DIMR)
—DSPI DSI Deserialized Data Polarity Interrupt Register (DSPI_DPIR)

Enhanced Serial Communication
Interface

 • Updated Figure 31-4 (Control register 2 (eSCI_CR2))by changing bit
“BRK13” to “BRCL”
“BESM13” to “BESM”
“SBSTP” to “BESTP”.

 • Updated Figure 31-5 (SCI data register (eSCI_DR)) by changing bit
“R8” to “RN”
“R” to “RD[11:8]”.

 • Updated Section 31.4.5.3.4, Single wire mode by removing the text “The
TXDIR bit (eSCI_CR2[1]) determines whether the TXD pin is going to be
used as an input (TXDIR= 0) or an output (TXDIR = 1) in this mode of
operation”.

 • Updated the entire Section 31.3, Memory map and register definition.
 • In Section 31.3.2.2, Control register 1 (eSCI_CR1) changed the access of

bits 16-31 to Read/Write.
 • In Section 31.3.2.2, Control register 1 (eSCI_CR1) changed the access of

bits 21 to read only.

FlexCAN Module • Table 32-12 (ESR Register field descriptions) updated the “Description” for
“Field”
TXWRN to “TX Error Warning”
RXWRN to “RX Error Warning”.

 • Section 32.4.5.8, Error and Status Register (ESR). Changed the text from
“The CPU read action clears bits 16–23” to “The CPU read action clears bits
16–21”.

JTAG Controller Section 36.4.1.1, Instruction Register/Figure 36-2 (5-bit Instruction Register)
changed the Reset value 00001.

Table A-6. Changes between revisions 5 and 6 (continued)

Chapter Changes

Revision history

MPC5644A Microcontroller Reference Manual, Rev. 6

1734 Freescale Semiconductor

Nexus Port Controller In Table 37-1 (Nexus trace port routing and speed) , row “Debug/Cal package”
changes done are as follows:
—In column “Port routing bit NPC_PCR[NEXCFG]” changed the value to “Don’t
care”.
—In column “CAL_MDO[4:11] usage changed the value to “Trace port use”.

Table A-6. Changes between revisions 5 and 6 (continued)

Chapter Changes

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. The described product contains a PowerPC processor
core. The PowerPC name is a trademark of IBM Corp. and used under license.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009-2011. All rights reserved.

MPC5644ARM
Rev. 6
01/2012

	Preface
	Chapter 1 Introduction
	1.1 The MPC5644A Microcontroller Family
	1.2 MPC5644A and MPC5642A Device Comparison
	1.3 Device block diagram
	1.4 Feature summary
	1.4.1 Feature details
	1.4.2 e200z4 core
	1.4.3 Crossbar Switch (XBAR)
	1.4.4 eDMA
	1.4.5 Interrupt controller
	1.4.6 Memory protection unit (MPU)
	1.4.7 FMPLL
	1.4.8 SIU
	1.4.9 Flash memory
	1.4.10 BAM
	1.4.11 eMIOS
	1.4.12 eTPU2
	1.4.13 Reaction module
	1.4.14 eQADC
	1.4.15 DSPI
	1.4.16 eSCI
	1.4.17 FlexCAN
	1.4.18 FlexRay
	1.4.19 System timers
	1.4.19.1 Periodic interrupt timer (PIT)
	1.4.19.2 System timer module (STM)

	1.4.20 Software watchdog timer (SWT)
	1.4.21 Cyclic redundancy check (CRC) module
	1.4.22 Error correction status module (ECSM)
	1.4.23 External bus interface (EBI)
	1.4.24 Calibration EBI
	1.4.25 Power management controller (PMC)
	1.4.26 Nexus port controller
	1.4.27 JTAG
	1.4.28 Development Trigger Semaphore (DTS)

	Chapter 2 Memory Map
	2.1 Introduction
	2.2 Memory map

	Chapter 3 Signal Description
	3.1 Signal Properties
	3.2 Signal Details

	Chapter 4 Resets
	4.1 Reset sources
	4.2 Reset vector
	4.3 Reset pins
	4.3.1 RESET
	4.3.2 RSTOUT

	4.4 FMPLL lock gating signal
	4.5 Reset source descriptions
	4.5.1 Power-on reset (POR)
	4.5.2 External reset
	4.5.3 Loss of lock
	4.5.4 Loss of clock
	4.5.5 Core watchdog timer/debug reset
	4.5.6 JTAG reset
	4.5.7 Software system reset
	4.5.8 Software external reset

	4.6 Reset registers in the SIU
	4.7 Reset configuration
	4.7.1 Reset configuration half word (RCHW)
	4.7.1.1 RCHW overview
	4.7.1.2 RCHW structure

	4.7.2 Reset configuration timing
	4.7.3 Reset weak pull up/down configuration

	Chapter 5 Operating Modes and Clocking
	5.1 Overview
	5.2 Modes of operation
	5.2.1 Normal mode
	5.2.2 Debug mode
	5.2.3 Low power modes
	5.2.3.1 Module disable mode
	5.2.3.2 Module halt mode
	5.2.3.3 Standby mode

	5.3 Clock architecture
	5.3.1 Overview
	5.3.2 Block diagram
	5.3.3 System clock sources
	5.3.3.1 Support for 150 MHz system clock generation
	5.3.3.2 Support for 100 MHz system clock generation
	5.3.3.3 Support for FlexRay operation
	5.3.3.4 Support for CAN interface operation

	5.3.4 FMPLL modes of operation
	5.3.4.1 Bypass mode with crystal reference
	5.3.4.2 Bypass mode with external reference
	5.3.4.3 Normal mode with crystal reference
	5.3.4.4 Normal mode with external reference
	5.3.4.5 Software controlled power management
	5.3.4.5.1 MDIS clock gating
	5.3.4.5.2 Halt clock gating
	5.3.4.5.3 CPU clock gating

	5.3.4.6 Clock dividers
	5.3.4.6.1 System Clock Divider (SYSDIV)
	5.3.4.6.2 External Bus Clock (CLKOUT)
	5.3.4.6.3 Nexus Message Clock (MCKO)
	5.3.4.6.4 Engineering Clock Divider (ENGDIV)
	5.3.4.6.5 FlexCAN Clock Divider (CAN2:1)

	Chapter 6 Device Performance Optimization
	6.1 Introduction
	6.2 Features
	6.3 Configuring hardware features
	6.3.1 Branch target buffer (BTB)
	6.3.1.1 Description
	6.3.1.2 Recommended configuration

	6.3.2 Frequency-modulated PLL
	6.3.2.1 Description
	6.3.2.2 Recommended configuration

	6.3.3 Flash bus interface unit
	6.3.3.1 Description
	6.3.3.2 Recommended configuration

	6.3.4 Crossbar switch
	6.3.4.1 Description
	6.3.4.2 Recommended configuration

	6.3.5 Cache
	6.3.5.1 Description
	6.3.5.2 Recommended configuration

	6.3.6 Memory management unit (MMU)
	6.3.6.1 Description
	6.3.6.1.1 Recommended configuration

	6.4 Application software
	6.4.1 Compiler optimizations
	6.4.2 Signal processing extension
	6.4.3 Hardware single precision floating point
	6.4.4 Variable length encoding

	6.5 Peripherals and general application guidelines
	6.6 Performance optimization checklist

	Chapter 7 e200z4 Core
	7.1 Overview
	7.2 Features
	7.3 Microarchitecture summary
	7.3.1 Instruction unit features
	7.3.2 Integer unit features
	7.3.3 Load/Store unit features
	7.3.4 Cache features
	7.3.5 MMU features
	7.3.6 e200z4 system bus features
	7.3.7 Nexus 3 features

	Chapter 8 Enhanced Direct Memory Access Controller (eDMA)
	8.1 Introduction
	8.1.1 Block diagram
	8.1.2 Features
	8.1.3 Modes of operation
	8.1.3.1 Normal mode
	8.1.3.2 Debug mode

	8.2 External signal description
	8.3 Memory map and registers
	8.3.1 Module memory map
	8.3.2 Register descriptions
	8.3.2.1 eDMA Control Register (EDMA_CR)
	8.3.2.2 eDMA Error Status Register (EDMA_ESR)
	8.3.2.3 eDMA Enable Request Registers (EDMA_ERQRH, EDMA_ERQRL)
	8.3.2.4 eDMA Enable Error Interrupt Registers (EDMA_EEIRH, EDMA_EEIRL)
	8.3.2.5 eDMA Set Enable Request Register (EDMA_SERQR)
	8.3.2.6 eDMA Clear Enable Request Register (EDMA_CERQR)
	8.3.2.7 eDMA Set Enable Error Interrupt Register (EDMA_SEEIR)
	8.3.2.8 eDMA Clear Enable Error Interrupt Register (EDMA_CEEIR)
	8.3.2.9 eDMA Clear Interrupt Request Register (EDMA_CIRQR)
	8.3.2.10 eDMA Clear Error Register (EDMA_CER)
	8.3.2.11 eDMA Set START Bit Register (EDMA_SSBR)
	8.3.2.12 eDMA Clear DONE Status Bit Register (EDMA_CDSBR)
	8.3.2.13 eDMA Interrupt Request Registers (EDMA_IRQRH, EDMA_IRQRL)
	8.3.2.14 eDMA Error Registers (EDMA_ERH, EDMA_ERL)
	8.3.2.15 DMA Hardware Request Status Registers (EDMA_HRSH, EDMA_HRSL)
	8.3.2.16 eDMA Channel n Priority Registers (EDMA_CPRn)
	8.3.2.17 Transfer control descriptor (TCD)

	8.4 Functional description
	8.4.1 eDMA basic data flow

	8.5 Initialization / Application information
	8.5.1 eDMA initialization
	8.5.2 DMA programming errors
	8.5.3 DMA request assignments
	8.5.4 DMA arbitration mode considerations
	8.5.4.1 Fixed-group arbitration, fixed-channel arbitration
	8.5.4.2 Round-robin group arbitration, fixed-channel arbitration
	8.5.4.3 Round-robin group arbitration, round-robin channel arbitration
	8.5.4.4 Fixed-group arbitration, round-robin channel arbitration

	8.5.5 DMA transfer
	8.5.5.1 Single request
	8.5.5.2 Multiple requests
	8.5.5.3 Modulo feature

	8.5.6 TCD status
	8.5.6.1 Minor loop complete
	8.5.6.2 Active channel TCD reads
	8.5.6.3 Pre-emption status

	8.5.7 Channel linking
	8.5.8 Dynamic programming
	8.5.8.1 Dynamic channel linking
	8.5.8.2 Dynamic scatter/gather
	8.5.8.2.1 Method 1 (channel not using major loop channel linking)
	8.5.8.2.2 Method 2 (channel using major loop linking)

	Chapter 9 Multi-Layer AHB Crossbar Switch (XBAR)
	9.1 Introduction
	9.1.1 Overview
	9.1.2 Features
	9.1.3 Limitations
	9.1.4 General operation

	9.2 XBAR registers
	9.2.1 Register summary
	9.2.2 XBAR register descriptions
	9.2.2.1 Master Priority Register (XBAR_MPRn)
	9.2.2.2 Slave General Purpose Control Register (XBAR_SGPCRn)

	9.2.3 Coherency

	9.3 Function
	9.3.1 Arbitration
	9.3.1.1 Fixed priority operation
	9.3.1.2 Round-Robin priority operation
	9.3.1.3 Parking

	9.3.2 Priority assignment

	Chapter 10 Peripheral Bridge (PBRIDGE)
	10.1 PBRIDGE features
	10.2 PBRIDGE modes of operation
	10.3 PBRIDGE block diagram
	10.4 PBRIDGE signal description
	10.5 PBRIDGE functional description
	10.5.1 Read cycles
	10.5.2 Write cycles

	10.6 Memory map and register description
	10.6.1 Memory map
	10.6.2 Register descriptions
	10.6.2.1 Master privilege control registers (MPCR)
	10.6.2.2 Peripheral access control registers (PACR)
	10.6.2.3 Off-platform peripheral access control registers (OPACR)

	Chapter 11 General-Purpose Static RAM (SRAM)
	11.1 Introduction
	11.2 Features
	11.3 Modes of operation
	11.3.1 Normal (Functional) mode
	11.3.2 Standby mode

	11.4 Block diagram
	11.5 External signal description
	11.6 Register memory map
	11.7 Functional description
	11.8 SRAm ecc mechanism
	11.8.1 Access timing
	11.8.2 Reset effects on SRAM accesses

	11.9 Initialization and application information
	11.9.1 Example code

	Chapter 12 Flash memory
	12.1 Introduction
	12.1.1 Block diagram
	12.1.2 Features
	12.1.3 Modes of operation
	12.1.3.1 Flash User mode

	12.2 External signal description
	12.3 Memory map and registers
	12.3.1 Module memory map
	12.3.2 Register descriptions
	12.3.2.1 Module Configuration Register (MCR)
	12.3.2.1.1 MCR simultaneous register writes

	12.3.2.2 Low/Mid-Address Space Block Lock Register (LMLR)
	12.3.2.3 High-Address Space Block Lock Register (HLR)
	12.3.2.4 Secondary Low/Mid-Address Space Block Lock Register (SLMLR)
	12.3.2.5 Low/Mid-Address Space Block Select Register (LMSR)
	12.3.2.6 High-Address Space Block Select Register (HSR)
	12.3.2.7 Address Register (AR)
	12.3.2.8 Bus Interface Unit Configuration Register (BIUCR)
	12.3.2.9 Bus Interface Unit Access Protection Register (BIUAPR)
	12.3.2.10 Bus Interface Unit Configuration Register 2 (BIUCR2)
	12.3.2.11 User Test 0 (UT0) Register
	12.3.2.12 User Test 1 (UT1) Register
	12.3.2.13 User Test 2 (UT2) Register
	12.3.2.14 User Multiple Input Signature Register [0:4] (UMISRn)

	12.4 Functional description
	12.4.1 Flash User Mode
	12.4.2 Flash Read and Write
	12.4.3 Read While Write (RWW)
	12.4.4 UTest Mode
	12.4.4.1 Array Integrity Self Check
	12.4.4.2 Factory Margin Read
	12.4.4.3 ECC Logic Check

	12.4.5 Flash Programming
	12.4.5.1 Software Locking
	12.4.5.1.1 Flash Program Suspend/Resume

	12.4.6 Flash Erase
	12.4.6.1 Flash erase suspend/resume

	12.4.7 Flash shadow block
	12.4.8 Flash reset
	12.4.9 DMA requests
	12.4.10 Interrupt requests

	Chapter 13 Memory Protection Unit (MPU)
	13.1 Introduction
	13.1.1 Features
	13.1.2 Modes of operation

	13.2 MPU-to-XBAR slave port mapping
	13.3 Signal description
	13.4 Memory map and registers
	13.4.1 Module memory map
	13.4.2 Register descriptions
	13.4.2.1 MPU Control/Error Status Register (MPU_CESR)
	13.4.2.2 MPU Error Address Register, Slave Port 0 to 1 (MPU_EARn)
	13.4.2.3 MPU Error Detail Register, Slave Port 0 to 1 (MPU_EDRn)
	13.4.2.4 MPU Region Descriptor n (MPU_RGDn)
	13.4.2.4.1 MPU Region Descriptor n, Word 0 (MPU_RGDn.Word0)
	13.4.2.4.2 MPU Region Descriptor n, Word 1 (MPU_RGDn.Word1)
	13.4.2.4.3 MPU Region Descriptor n, Word 2 (MPU_RGDn.Word2)
	13.4.2.4.4 MPU Region Descriptor n, Word 3 (MPU_RGDn.Word3)

	13.4.2.5 MPU Region Descriptor Alternate Access Control n (MPU_RGDAACn)

	13.5 Functional Description
	13.5.1 Access Evaluation
	13.5.1.1 Access Evaluation-Hit Determination
	13.5.1.2 Access Evaluation-Privilege Violation Determination

	13.5.2 XBAR Error Terminations

	13.6 Initialization Information
	13.7 Application Information

	Chapter 14 External Bus Interface (EBI)
	14.1 Information Specific to This Device
	14.1.1 Device-Specific Features
	14.1.2 Unsupported Features

	14.2 Introduction
	14.2.1 Overview
	14.2.2 Features
	14.2.3 Modes of operation
	14.2.3.1 Single master mode
	14.2.3.2 Module disable mode
	14.2.3.3 Stop mode
	14.2.3.4 Slower-speed modes
	14.2.3.5 16-Bit data bus mode
	14.2.3.6 Multiplexed address on data bus mode
	14.2.3.7 Debug mode
	14.2.3.8 Mode summary table

	14.3 External signal description
	14.3.1 Overview
	14.3.2 Detailed signal descriptions
	14.3.2.1 ADDR [3:31] - Address lines 3-31
	14.3.2.2 BDIP - Burst data in progress
	14.3.2.3 CLKOUT - Clockout
	14.3.2.4 CAL_CS [0:3] - Calibration chip selects 0-3
	14.3.2.5 DATA [0:31] - Data lines 0-31
	14.3.2.6 OE - Output Enable
	14.3.2.7 RD_WR - Read / Write
	14.3.2.8 TA - Transfer Acknowledge
	14.3.2.9 TS - Transfer Start
	14.3.2.10 WE [0:3] / BE [0:3] - Write/Byte Enables 0-3

	14.3.3 Signal output buffer enable logic by mode

	14.4 Memory map/Register definition
	14.4.1 Register Descriptions
	14.4.1.1 EBI Module Configuration Register (EBI_MCR)
	14.4.1.2 EBI Transfer Error Status Register (EBI_TESR)
	14.4.1.3 EBI Bus Monitor Control Register (EBI_BMCR)
	14.4.1.4 EBI Base Registers (EBI_BR0-EBI_BR3, EBI_CAL_BR0-3)
	14.4.1.5 EBI Option Registers (EBI_OR0-EBI_OR3, EBI_CAL_OR0-3)

	14.5 Functional Description
	14.5.1 External Bus Interface Features
	14.5.1.1 32-Bit Data Bus (16-bit Data Bus Mode also supported)
	14.5.1.2 Multiplexed Address on Data Pins (single master)
	14.5.1.3 Memory Controller with Support for Various Memory Types
	14.5.1.4 Burst Support (wrapped only)
	14.5.1.5 Bus Monitor
	14.5.1.6 Port Size Configuration per Chip Select (16 or 32 bits)
	14.5.1.7 Configurable Wait States
	14.5.1.8 Configurable internal or external TA per chip select
	14.5.1.9 Support for Dynamic Calibration with up to 4 chip-selects
	14.5.1.10 Four Write/Byte Enable (WE/BE) Signals
	14.5.1.11 Slower-Speed Clock Modes
	14.5.1.12 Stop and Module Disable Modes for Power Savings
	14.5.1.13 Optional Automatic CLKOUT Gating
	14.5.1.14 Misaligned access support
	14.5.1.15 Compatible with MPC5xx External Bus (with some limitations)

	14.5.2 External bus operations
	14.5.2.1 External clocking
	14.5.2.2 Reset
	14.5.2.3 Basic transfer protocol
	14.5.2.4 Single beat transfer
	14.5.2.4.1 Single beat read flow
	14.5.2.4.2 Single beat write flow
	14.5.2.4.3 Back-to-Back accesses

	14.5.2.5 Burst transfer
	14.5.2.5.1 TBDIP effect on burst transfer

	14.5.2.6 Small accesses (Small port size and short burst length)
	14.5.2.6.1 Small access example #1: 32-bit write to 16-bit port
	14.5.2.6.2 Small access example #2: 32-byte write with external TA
	14.5.2.6.3 Small access example #3: 32-byte read to 32-bit port with BL=1
	14.5.2.6.4 Small access example #4: 64-bit read to 16-bit Port

	14.5.2.7 Size, alignment and packaging on transfers
	14.5.2.8 Termination signals protocol
	14.5.2.9 Non-chip-select burst in 16-bit data bus mode
	14.5.2.10 Calibration bus operation
	14.5.2.11 Misaligned access support
	14.5.2.11.1 Misaligned access support (64 bit AMBA)

	14.5.2.12 Address data multiplexing

	14.6 Initialization/Application information
	14.6.1 Booting from external memory
	14.6.2 Running with SDR (Single Data Rate) burst memories
	14.6.3 Running with asynchronous memories
	14.6.3.1 Example wait state calculation
	14.6.3.2 Timing and connections for asynchronous memories

	14.6.4 Connecting an mcu to multiple memories
	14.6.5 EBI operation with reduced Pinout MCUs
	14.6.5.1 Connecting 16-bit MCU to 32-bit MCU (Master/Master or Master/Slave)
	14.6.5.2 Transfer size with no TSIZ pins (Master/Master or Master/Slave)
	14.6.5.3 No Transfer Acknowledge (TA) Pin
	14.6.5.4 No Transfer Error (TEA) Pin
	14.6.5.5 No Burst Data in Progress (BDIP) Pin

	14.6.6 Summary of Differences from MPC5xx

	Chapter 15 Interrupt Controller (INTC)
	15.1 Information specific to this device
	15.1.1 Device-specific features

	15.2 Introduction
	15.2.1 Block diagram
	15.2.2 Overview
	15.2.3 Features
	15.2.4 Modes of operation
	15.2.4.1 Software vector mode
	15.2.4.2 Hardware vector mode

	15.3 External signal description
	15.4 Memory map and register definition
	15.4.1 Register descriptions
	15.4.1.1 INTC Module Configuration Register (INTC_MCR)
	15.4.1.2 INTC Current Priority Register (INTC_CPR)
	15.4.1.3 INTC Interrupt Acknowledge Register (INTC_IACKR)
	15.4.1.4 INTC End-of-Interrupt Register (INTC_EOIR)
	15.4.1.5 INTC Software Set/Clear Interrupt Registers INTC_SSCIR0_3 - INTC_SSCIR4_7)
	15.4.1.6 INTC Priority Select Registers (INTC_PSR0-485)

	15.5 Functional description
	15.5.1 Interrupt request sources
	15.5.1.1 Peripheral interrupt requests
	15.5.1.2 Software configurable interrupt requests
	15.5.1.3 Unique vector for each interrupt request source

	15.5.2 Priority management
	15.5.2.1 Current priority and preemption
	15.5.2.1.1 Priority arbitrator submodule
	15.5.2.1.2 Request selector submodule
	15.5.2.1.3 Vector encoder submodule
	15.5.2.1.4 Priority comparator submodule

	15.5.2.2 LIFO

	15.5.3 Details on handshaking with processor
	15.5.3.1 Software vector mode handshaking
	15.5.3.1.1 Acknowledging interrupt request to processor
	15.5.3.1.2 End-of-interrupt exception handler

	15.5.3.2 Hardware vector mode handshaking

	15.6 Initialization and application information
	15.6.1 Initialization flow
	15.6.2 Interrupt exception handler
	15.6.2.1 Software vector mode
	15.6.2.2 Hardware vector mode

	15.6.3 ISR, RTOS, and task hierarchy
	15.6.4 Order of execution
	15.6.5 Priority ceiling protocol
	15.6.5.1 Elevating priority
	15.6.5.2 Ensuring coherency

	15.6.6 Selecting priorities according to request rates and deadlines
	15.6.7 Software configurable interrupt requests
	15.6.7.1 Scheduling a lower priority portion of an ISR
	15.6.7.2 Scheduling an ISR on another processor

	15.6.8 Lowering priority within an ISR
	15.6.9 Negating an interrupt request outside of its ISR
	15.6.9.1 Negating an interrupt request as a side effect of an ISR
	15.6.9.2 Negating multiple interrupt requests in one ISR
	15.6.9.3 Proper setting of interrupt request priority

	15.6.10 Examining LIFO contents

	Chapter 16 System Integration Unit (SIU)
	16.1 Overview
	16.2 Features
	16.3 Modes of operation
	16.3.1 Normal mode
	16.3.2 Debug mode

	16.4 Block diagram
	16.5 Signal description
	16.6 Memory map and register descriptions
	16.6.1 Memory map
	16.6.2 MCU ID Register 2 (SIU_MIDR2)
	16.6.3 MCU ID Register (SIU_MIDR)
	16.6.4 Reset Status Register (SIU_RSR)
	16.6.5 System Reset Control Register (SIU_SRCR)
	16.6.6 External Interrupt Status Register (SIU_EISR)
	16.6.7 DMA/Interrupt Request Enable Register (SIU_DIRER)
	16.6.8 DMA/Interrupt Request Select Register (SIU_DIRSR)
	16.6.9 Overrun Status Register (SIU_OSR)
	16.6.10 Overrun Request Enable Register (SIU_ORER)
	16.6.11 IRQ Rising-Edge Event Enable Register (SIU_IREER)
	16.6.12 External IRQ Falling-Edge Event Enable Register (SIU_IFEER)
	16.6.13 External IRQ Digital Filter Register (SIU_IDFR)
	16.6.14 IRQ Filtered Input Register (SIU_IFIR)
	16.6.15 Pad Configuration Registers (SIU_PCR)
	16.6.15.1 Pad Configuration Register 0 (SIU_PCR0)
	16.6.15.2 Pad Configuration Register 1 (SIU_PCR1)
	16.6.15.3 Pad Configuration Register 2 (SIU_PCR2)
	16.6.15.4 Pad Configuration Register 3 (SIU_PCR3)
	16.6.15.5 Pad Configuration Register 8 (SIU_PCR8)
	16.6.15.6 Pad Configuration Register 9 (SIU_PCR9)
	16.6.15.7 Pad Configuration Register 10 (SIU_PCR10)
	16.6.15.8 Pad Configuration Register 11 (SIU_PCR11)
	16.6.15.9 Pad Configuration Register 12 (SIU_PCR12)
	16.6.15.10 Pad Configuration Register 13 (SIU_PCR13)
	16.6.15.11 Pad Configuration Register 14 (SIU_PCR14)
	16.6.15.12 Pad Configuration Register 15 (SIU_PCR15)
	16.6.15.13 Pad Configuration Register 16 (SIU_PCR16)
	16.6.15.14 Pad Configuration Register 17 (SIU_PCR17)
	16.6.15.15 Pad Configuration Register 18 (SIU_PCR18)
	16.6.15.16 Pad Configuration Register 19 (SIU_PCR19)
	16.6.15.17 Pad Configuration Register 20 (SIU_PCR20)
	16.6.15.18 Pad Configuration Register 21 (SIU_PCR21)
	16.6.15.19 Pad Configuration Register 22 (SIU_PCR22)
	16.6.15.20 Pad Configuration Register 23 (SIU_PCR23)
	16.6.15.21 Pad Configuration Register 24 (SIU_PCR24)
	16.6.15.22 Pad Configuration Register 25 (SIU_PCR25)
	16.6.15.23 Pad Configuration Register 26 (SIU_PCR26)
	16.6.15.24 Pad Configuration Register 27 (SIU_PCR27)
	16.6.15.25 Pad Configuration Register 28 (SIU_PCR28)
	16.6.15.26 Pad Configuration Register 29 (SIU_PCR29)
	16.6.15.27 Pad Configuration Register 30 (SIU_PCR30)
	16.6.15.28 Pad Configuration Register 31 (SIU_PCR31)
	16.6.15.29 Pad Configuration Register 32 (SIU_PCR32)
	16.6.15.30 Pad Configuration Register 33 (SIU_PCR33)
	16.6.15.31 Pad Configuration Register 34 (SIU_PCR34)
	16.6.15.32 Pad Configuration Register 35 (SIU_PCR35)
	16.6.15.33 Pad Configuration Register 36 (SIU_PCR36)
	16.6.15.34 Pad Configuration Register 37 (SIU_PCR37)
	16.6.15.35 Pad Configuration Register 38 (SIU_PCR38)
	16.6.15.36 Pad Configuration Register 39 (SIU_PCR39)
	16.6.15.37 Pad Configuration Register 40 (SIU_PCR40)
	16.6.15.38 Pad Configuration Register 41 (SIU_PCR41)
	16.6.15.39 Pad Configuration Register 42 (SIU_PCR42)
	16.6.15.40 Pad Configuration Register 43 (SIU_PCR43)
	16.6.15.41 Pad Configuration Register 62 (SIU_PCR62)
	16.6.15.42 Pad Configuration Register 63 (SIU_PCR63)
	16.6.15.43 Pad Configuration Register 64 (SIU_PCR 64)
	16.6.15.44 Pad Configuration Register 65 (SIU_PCR 65)
	16.6.15.45 Pad Configuration Register 68 (SIU_PCR68)
	16.6.15.46 Pad Configuration Register 69 (SIU_PCR69)
	16.6.15.47 Pad Configuration Register 70 (SIU_PCR70)
	16.6.15.48 Pad Configuration Registers 75-82 (SIU_PCR75-SIU_PCR82)
	16.6.15.48.1 Pad Configuration Register 75 (SIU_PCR75)
	16.6.15.48.2 Pad Configuration Register 76 (SIU_PCR76)
	16.6.15.48.3 Pad Configuration Register 77 (SIU_PCR77)
	16.6.15.48.4 Pad Configuration Register 78 (SIU_PCR78)
	16.6.15.48.5 Pad Configuration Register 79 (SIU_PCR79)
	16.6.15.48.6 Pad Configuration Register 80 (SIU_PCR80)
	16.6.15.48.7 Pad Configuration Register 81 (SIU_PCR81)
	16.6.15.48.8 Pad Configuration Register 82 (SIU_PCR82)

	16.6.15.49 Pad Configuration Register 83 (SIU_PCR83)
	16.6.15.50 Pad Configuration Register 84 (SIU_PCR84)
	16.6.15.51 Pad Configuration Register 85 (SIU_PCR85)
	16.6.15.52 Pad Configuration Register 86 (SIU_PCR86)
	16.6.15.53 Pad Configuration Register 87 (SIU_PCR87)
	16.6.15.54 Pad Configuration Register 88 (SIU_PCR88)
	16.6.15.55 Pad Configuration Register 89 (SIU_PCR89)
	16.6.15.56 Pad Configuration Register 90 (SIU_PCR90)
	16.6.15.57 Pad Configuration Register 91 (SIU_PCR91)
	16.6.15.58 Pad Configuration Register 92 (SIU_PCR92)
	16.6.15.59 Pad Configuration Register 93 (SIU_PCR93)
	16.6.15.60 Pad Configuration Register 94 (SIU_PCR94)
	16.6.15.61 Pad Configuration Register 95 (SIU_PCR95)
	16.6.15.62 Pad Configuration Register 96 (SIU_PCR96)
	16.6.15.63 Pad Configuration Register 97 (SIU_PCR97)
	16.6.15.64 Pad Configuration Register 98 (SIU_PCR98)
	16.6.15.65 Pad Configuration Register 99 (SIU_PCR99)
	16.6.15.66 Pad Configuration Register 100 (SIU_PCR100)
	16.6.15.67 Pad Configuration Register 101 (SIU_PCR101)
	16.6.15.68 Pad Configuration Register 102 (SIU_PCR102)
	16.6.15.69 Pad Configuration Register 103 (SIU_PCR103)
	16.6.15.70 Pad Configuration Register 104 (SIU_PCR104)
	16.6.15.71 Pad Configuration Register 105 (SIU_PCR105)
	16.6.15.72 Pad Configuration Register 106 (SIU_PCR106)
	16.6.15.73 Pad Configuration Register 107 (SIU_PCR107)
	16.6.15.74 Pad Configuration Register 108 (SIU_PCR108)
	16.6.15.75 Pad Configuration Register 109 (SIU_PCR109)
	16.6.15.76 Pad Configuration Register 110 (SIU_PCR110)
	16.6.15.77 Pad Configuration Register 113 (SIU_PCR113)
	16.6.15.78 Pad Configuration Register 114-125 (SIU_PCR114-SIU_PCR125)
	16.6.15.78.1 Pad Configuration Register 114 (SIU_PCR114)
	16.6.15.78.2 Pad Configuration Register 115 (SIU_PCR115)
	16.6.15.78.3 Pad Configuration Register 116 (SIU_PCR116)
	16.6.15.78.4 Pad Configuration Register 117 (SIU_PCR117)
	16.6.15.78.5 Pad Configuration Register 118 (SIU_PCR118)
	16.6.15.78.6 Pad Configuration Register 119 (SIU_PCR119)
	16.6.15.78.7 Pad Configuration Register 120 (SIU_PCR120)
	16.6.15.78.8 Pad Configuration Register 121 (SIU_PCR121)
	16.6.15.78.9 Pad Configuration Register 122 (SIU_PCR122)
	16.6.15.78.10 Pad Configuration Register 123 (SIU_PCR123)
	16.6.15.78.11 Pad Configuration Register 124 (SIU_PCR124)
	16.6.15.78.12 Pad Configuration Register 125 (SIU_PCR125)

	16.6.15.79 Pad Configuration Register 126 (SIU_PCR126)
	16.6.15.80 Pad Configuration Register 127 (SIU_PCR127)
	16.6.15.81 Pad Configuration Register 128 (SIU_PCR128)
	16.6.15.82 Pad Configuration Register 129 (SIU_PCR129)
	16.6.15.83 Pad Configuration Register 130 (SIU_PCR130)
	16.6.15.84 Pad Configuration Register 131 (SIU_PCR131)
	16.6.15.85 Pad Configuration Register 132 (SIU_PCR132)
	16.6.15.86 Pad Configuration Register 133 (SIU_PCR133)
	16.6.15.87 Pad Configuration Register 134 (SIU_PCR134)
	16.6.15.88 Pad Configuration Register 135 (SIU_PCR135)
	16.6.15.89 Pad Configuration Register 136 (SIU_PCR136)
	16.6.15.90 Pad Configuration Register 137 (SIU_PCR137)
	16.6.15.91 Pad Configuration Register 138 (SIU_PCR138)
	16.6.15.92 Pad Configuration Register 139 (SIU_PCR139)
	16.6.15.93 Pad Configuration Register 140 (SIU_PCR140)
	16.6.15.94 Pad Configuration Register 141 (SIU_PCR141)
	16.6.15.95 Pad Configuration Register 142 (SIU_PCR142)
	16.6.15.96 Pad Configuration Register 143 (SIU_PCR143)
	16.6.15.97 Pad Configuration Register 144 (SIU_PCR144)
	16.6.15.98 Pad Configuration Register 145 (SIU_PCR145)
	16.6.15.99 Pad Configuration Register 179 (SIU_PCR179)
	16.6.15.100 Pad Configuration Register 180 (SIU_PCR180)
	16.6.15.101 Pad Configuration Register 181 (SIU_PCR181)
	16.6.15.102 Pad Configuration Register 182 (SIU_PCR182)
	16.6.15.103 Pad Configuration Register 183 (SIU_PCR183)
	16.6.15.104 Pad Configuration Register 184 (SIU_PCR184)
	16.6.15.105 Pad Configuration Register 185 (SIU_PCR185)
	16.6.15.106 Pad Configuration Register 186 (SIU_PCR186)
	16.6.15.107 Pad Configuration Register 187 (SIU_PCR187)
	16.6.15.108 Pad Configuration Register 188 (SIU_PCR188)
	16.6.15.109 Pad Configuration Register 189 (SIU_PCR189)
	16.6.15.110 Pad Configuration Register 190 (SIU_PCR190)
	16.6.15.111 Pad Configuration Register 191 (SIU_PCR191)
	16.6.15.112 Pad Configuration Register 192 (SIU_PCR192)
	16.6.15.113 Pad Configuration Register 193 (SIU_PCR193)
	16.6.15.114 Pad Configuration Register 194 (SIU_PCR194)
	16.6.15.115 Pad Configuration Register 195 (SIU_PCR195)
	16.6.15.116 Pad Configuration Register 196 (SIU_PCR196)
	16.6.15.117 Pad Configuration Register 197 (SIU_PCR197)
	16.6.15.118 Pad Configuration Register 198 (SIU_PCR198)
	16.6.15.119 Pad Configuration Register 199 (SIU_PCR199)
	16.6.15.120 Pad Configuration Register 200 (SIU_PCR200)
	16.6.15.121 Pad Configuration Register 201 (SIU_PCR201)
	16.6.15.122 Pad Configuration Register 202 (SIU_PCR202)
	16.6.15.123 Pad Configuration Register 203 (SIU_PCR203)
	16.6.15.124 Pad Configuration Register 204 (SIU_PCR204)
	16.6.15.125 Pad Configuration Register 206 (SIU_PCR206)
	16.6.15.126 Pad Configuration Register 207 (SIU_PCR207)
	16.6.15.127 Pad Configuration Register 208 (SIU_PCR208)
	16.6.15.128 Pad Configuration Register 209 (SIU_PCR209)
	16.6.15.129 Pad Configuration Register 210 (SIU_PCR210)
	16.6.15.130 Pad Configuration Register 211 (SIU_PCR211)
	16.6.15.131 Pad Configuration Register 212 (SIU_PCR212)
	16.6.15.132 Pad Configuration Register 213 (SIU_PCR213)
	16.6.15.133 Pad Configuration Register 214 (SIU_PCR214)
	16.6.15.134 Pad Configuration Register 215 (SIU_PCR215)
	16.6.15.135 Pad Configuration Register 216 (SIU_PCR216)
	16.6.15.136 Pad Configuration Register 217 (SIU_PCR217)
	16.6.15.137 Pad Configuration Register 218 (SIU_PCR218)
	16.6.15.138 Pad Configuration Register 219 (SIU_PCR219)
	16.6.15.139 Pad Configuration Register 220 (SIU_PCR220)
	16.6.15.140 Pad Configuration Register 221 (SIU_PCR221)
	16.6.15.141 Pad Configuration Register 222 (SIU_PCR222)
	16.6.15.142 Pad Configuration Register 223 (SIU_PCR223)
	16.6.15.143 Pad Configuration Register 224 (SIU_PCR224)
	16.6.15.144 Pad Configuration Register 225 (SIU_PCR225)
	16.6.15.145 Pad Configuration Register 226 (SIU_PCR226)
	16.6.15.146 Pad Configuration Register 227 (SIU_PCR227)
	16.6.15.147 Pad Configuration Register 228 (SIU_PCR228)
	16.6.15.148 Pad Configuration Register 229 (SIU_PCR229)
	16.6.15.149 Pad Configuration Register 230 (SIU_PCR230)
	16.6.15.150 Pad Configuration Register 231 (SIU_PCR231)
	16.6.15.151 Pad Configuration Register 232 (SIU_PCR232)
	16.6.15.152 Pad Configuration Register 244 (SIU_PCR244)
	16.6.15.153 Pad Configuration Register 245 (SIU_PCR245)
	16.6.15.154 Pad Configuration Register 336 (SIU_PCR336)
	16.6.15.155 Pad Configuration Register 338 (SIU_PCR338)
	16.6.15.156 Pad Configuration Register 339 (SIU_PCR339)
	16.6.15.157 Pad Configuration Register 340 (SIU_PCR340)
	16.6.15.158 Pad Configuration Register 341 (SIU_PCR341)
	16.6.15.159 Pad Configuration Register 342 (SIU_PCR342)
	16.6.15.160 Pad Configuration Register 343 (SIU_PCR343)
	16.6.15.161 Pad Configuration Register 345 (SIU_PCR345)
	16.6.15.162 Pad Configuration Register 350 - 381 (SIU_PCR350 - SIU_PCR381)
	16.6.15.163 Pad Configuration Register 382 - 389 (SIU_PCR382 - SIU_PCR389)
	16.6.15.164 Pad Configuration Register 390 - 413 (SIU_PCR390 - SIU_PCR413)

	16.6.16 GPIO Pin Data Output Registers (SIU_GPDO0_3 - SIU_GPDO412_413)
	16.6.17 GPIO Pin Data Input Registers (SIU_GPDI0_3 - SIU_GPDI_232)
	16.6.18 eQADC Trigger Input Select Register (SIU_ETISR)
	16.6.19 External IRQ Input Select Register (SIU_EIISR)
	16.6.20 DSPI Input Select Register (SIU_DISR)
	16.6.21 IMUX Select Register 3 (SIU_ISEL3)
	16.6.22 IMUX Select Register 8 (SIU_ISEL8)
	16.6.23 IMUX Select Register 9 (SIU_ISEL9)
	16.6.24 IMUX Select Register 10 (SIU_ISEL10)
	16.6.25 Chip Configuration Register (SIU_CCR)
	16.6.26 External Clock Control Register (SIU_ECCR)
	16.6.27 Compare A High Register (SIU_CARH)
	16.6.28 Compare A Low Register (SIU_CARL)
	16.6.29 Compare B High Register (SIU_CBRH)
	16.6.30 Compare B Low Register (SIU_CBRL)
	16.6.31 System Clock Register (SIU_SYSDIV)
	16.6.32 Halt Register (SIU_HLT)
	16.6.33 Halt Acknowledge Register (SIU_HLTACK)
	16.6.34 Core MMU PID Control Register (SIU_EMPCR0)

	16.7 Functional description
	16.7.1 System configuration
	16.7.1.1 Boot configuration
	16.7.1.2 Pad configuration

	16.7.2 Reset control
	16.7.3 External interrupt request input (IRQ)
	16.7.3.1 External interrupts

	16.7.4 GPIO operation
	16.7.5 Internal multiplexing
	16.7.5.1 eQADC external trigger input multiplexing
	16.7.5.2 SIU external interrupt input multiplexing
	16.7.5.3 Multiplexed inputs for DSPI multiple transfer operation
	16.7.5.4 Multiplexed inputs for eTPU[29:24]

	Chapter 17 Frequency-modulated phase locked loop (FMPLL)
	17.1 Information specific to this device
	17.1.1 Device-specific features
	17.1.2 Device-specific parameters

	17.2 Introduction
	17.2.1 Overview
	17.2.2 Features
	17.2.3 Modes of operation
	17.2.3.1 Bypass mode with crystal reference
	17.2.3.2 Bypass mode with external reference
	17.2.3.3 Normal mode with crystal reference
	17.2.3.4 Normal mode with external reference

	17.3 External signal description
	17.3.1 Detailed signal descriptions

	17.4 Memory map and register definition
	17.4.1 Memory map
	17.4.2 Register descriptions
	17.4.2.1 Synthesizer Control Register (SYNCR)
	17.4.2.2 Synthesizer Status Register (SYNSR)
	17.4.2.3 Enhanced Synthesizer Control Register 1 (ESYNCR1)
	17.4.2.4 Enhanced Synthesizer Control Register 2 (ESYNCR2)
	17.4.2.5 Synthesizer FM Modulation Register (SYNFMMR)

	17.5 Functional description
	17.5.1 Input clock frequency
	17.5.2 Clock configuration
	17.5.3 Lock detection
	17.5.4 Loss-of-clock detection
	17.5.4.1 Alternate/Backup clock selection
	17.5.4.2 Loss-of-clock reset
	17.5.4.3 Loss-of-clock interrupt request

	17.5.5 Frequency modulation

	Chapter 18 Error Correction Status Module (ECSM)
	18.1 Overview
	18.2 Features
	18.3 Module memory map
	18.4 Register descriptions
	18.4.1 Miscellaneous Reset Status Register (ECSM_MRSR)
	18.4.2 Miscellaneous Wakeup Control Register (ECSM_MWCR)
	18.4.3 Miscellaneous User-Defined Control Register (ECSM_MUDCR)
	18.4.4 ECC registers
	18.4.4.1 ECC Configuration Register (ECSM_ECR)
	18.4.4.2 ECC Status Register (ECSM_ESR)
	18.4.4.3 ECC Error Generation Register (ECSM_EEGR)
	18.4.4.4 Flash ECC Address Register (ECSM_FEAR)
	18.4.4.5 Flash ECC Master Number Register (ECSM_FEMR)
	18.4.4.6 Flash ECC Attributes (ECSM_FEAT) Register
	18.4.4.7 Flash ECC Data Register (ECSM_FEDRH, ECSM_FEDRL)
	18.4.4.8 RAM ECC Address Register (ECSM_REAR)
	18.4.4.9 RAM ECC Syndrome Register (ECSM_PRESR)
	18.4.4.10 RAM ECC Master Number Register (ECSM_REMR)
	18.4.4.11 RAM ECC Attributes Register (ECSM_REAT)
	18.4.4.12 RAM ECC Data Register (ECSM_REDRH, ECSM_REDRL)

	Chapter 19 System Timer Module (STM)
	19.1 Information Specific to This Device
	19.1.1 Device-Specific Features

	19.2 Introduction
	19.2.1 Overview
	19.2.2 Modes of operation

	19.3 External signal description
	19.4 Memory map and register definition
	19.4.1 Memory map
	19.4.2 Register descriptions
	19.4.2.1 STM Control Register (STM_CR)
	19.4.2.2 STM Count Register (STM_CNT)
	19.4.2.3 STM Channel n Control Register (STM_CCRn)
	19.4.2.4 STM Channel n Interrupt Register (STM_CIRn)
	19.4.2.5 STM Channel Compare Register (STM_CMPn)

	19.5 Functional Description

	Chapter 20 Software Watchdog Timer (SWT)
	20.1 Introduction
	20.1.1 Overview
	20.1.2 Features
	20.1.3 Modes of operation

	20.2 External signal description
	20.3 Memory map and register definition
	20.3.1 Memory map
	20.3.2 Register descriptions
	20.3.2.1 SWT Module Control Register (SWT_MCR)
	20.3.2.2 SWT Interrupt Register (SWT_IR)
	20.3.2.3 SWT Time-Out Register (SWT_TO)
	20.3.2.4 SWT Window Register (SWT_WN)
	20.3.2.5 SWT Service Register (SWT_SR)
	20.3.2.6 SWT Counter Output Register (SWT_CO)
	20.3.2.7 SWT Service Key Register (SWT_SK)

	20.4 Functional description

	Chapter 21 Boot Assist Module (BAM)
	21.1 Overview
	21.2 Features
	21.3 Modes of operation
	21.3.1 Normal mode
	21.3.2 Debug mode
	21.3.3 Internal boot mode
	21.3.4 Serial boot mode
	21.3.5 Calibration bus boot mode

	21.4 Memory map
	21.5 Functional description
	21.5.1 BAM Program flow chart
	21.5.2 BAM program operation
	21.5.3 Reset configuration half word (RCHW)
	21.5.3.1 Reset boot vector

	21.5.4 Internal boot mode
	21.5.4.1 Finding reset configuration half word
	21.5.4.2 Enabling debug of a censored device

	21.5.5 Serial boot mode
	21.5.5.1 CAN controller configuration in the fixed baud rate mode
	21.5.5.2 SCI controller configuration in fixed baud rate mode
	21.5.5.3 Serial boot mode download protocol
	21.5.5.4 Download protocol execution
	21.5.5.5 Baud rate detection procedure
	21.5.5.5.1 SCI baud rate detection

	21.5.5.6 CAN baud rate detection

	21.5.6 Booting from the External Bus Interface (EBI)
	21.5.6.1 EBI Configuration for External Bus Interface Boot Mode

	Chapter 22 Configurable Enhanced Modular IO Subsystem (eMIOS200)
	22.1 Device-specific features
	22.2 Introduction
	22.2.1 Features
	22.2.2 Modes of operation
	22.2.3 Channel configurations

	22.3 External signals description
	22.4 Memory map/register definition
	22.4.1 Memory map
	22.4.2 Global registers
	22.4.2.1 eMIOS200 Module Configuration Register (EMIOS_MCR)
	22.4.2.2 eMIOS200 Global Flag Register (EMIOS_GFR)
	22.4.2.3 eMIOS200 Output Update Disable Register (EMIOS_OUDR)
	22.4.2.4 eMIOS200 Channel Disable Register (EMIOS_UCDIS)

	22.4.3 Channel registers
	22.4.3.1 eMIOS200 Channel A Data Register (EMIOS_CADR[n])
	22.4.3.2 eMIOS200 Channel B Data Register (EMIOS_CBDR[n])
	22.4.3.3 eMIOS200 Channel Counter Register (EMIOS_CCNTR[n])
	22.4.3.4 eMIOS200 Channel Control Register (EMIOS_CCR[n])
	22.4.3.5 eMIOS200 Channel Status Register (EMIOS_CSR[n])
	22.4.3.6 eMIOS200 UC Alternate A Register (EMIOS_ALTA[n])

	22.5 Functional description
	22.5.1 Unified channel (UC)
	22.5.1.1 Channel modes of operation
	22.5.1.1.1 General purpose input/output mode (GPIO) mode
	22.5.1.1.2 Single action input capture (SAIC) mode
	22.5.1.1.3 Single action output compare (SAOC) mode
	22.5.1.1.4 Input pulse width measurement (IPWM) mode
	22.5.1.1.5 Input period measurement (IPM) mode
	22.5.1.1.6 Double action output compare (DAOC) mode
	22.5.1.1.7 Modulus counter buffered (MCB) mode
	22.5.1.1.8 Output pulse width and frequency modulation buffered (OPWFMB) mode
	22.5.1.1.9 Output pulse width modulation buffered (OPWMB) mode

	22.5.1.2 Input programmable filter (IPF)
	22.5.1.3 Clock prescaler (CP)
	22.5.1.4 Effect of freeze on the unified channel

	22.5.2 IP bus interface unit (BIU)
	22.5.2.1 Effect of freeze on the BIU

	22.5.3 STAC client submodule
	22.5.3.1 Effect of freeze on the STAC client submodule

	22.5.4 Global clock prescaler submodule (GCP)
	22.5.4.1 Effect of freeze on the GCP

	22.6 Initialization/Application information
	22.6.1 Considerations
	22.6.2 Application information
	22.6.2.1 Channel/Modes initialization

	Chapter 23 Reaction Module (REACM)
	23.1 Introduction
	23.1.1 Features
	23.1.2 Modes of operation
	23.1.2.1 Programing Mode
	23.1.2.2 Low power mode
	23.1.2.3 Channel modes
	23.1.2.4 Debug mode

	23.1.3 Block diagram

	23.2 Signal description
	23.2.1 REACM_RCHn - REACM Channel (n) Output Pin a, b and c

	23.3 Memory map and register definition
	23.3.1 Module memory map
	23.3.2 REACM module configuration register (REACM_MCR)
	23.3.3 REACM Timer Configuration Register (REACM_TCR)
	23.3.4 REACM Threshold Router Register (REACM_THRR)
	23.3.5 REACM ADC Sensor Input Register (REACM_SINR)
	23.3.6 REACM Global Error Flag Register (REACM_GEFR)
	23.3.7 REACM Channel n Configuration Register (REACM_CHCRn)
	23.3.8 REACM Channel n Status Register (REACM_CHSRn)
	23.3.9 REACM Channel n Router Register (REACM_CHRRn)
	23.3.10 REACM Shared Timer Bank Registers (REACM_STBK)
	23.3.11 REACM Hold-off Timer Bank Registers (REACM_HOTBK)
	23.3.12 REACM Threshold Bank Register (REACM_THBK)
	23.3.13 REACM ADC result maximum limit check register (REACM_ADCMAX)
	23.3.14 REACM Modulation Range Pulse Width Register (REACM_RANGEPWD)
	23.3.15 REACM Modulation Minimum Pulse Width Register (REACM_MINPWD)
	23.3.16 REACM Modulation Control Word Bank Registers (REACM_MWBK)

	23.4 Functional description
	23.4.1 Reaction channel
	23.4.2 Modulation control words bank
	23.4.3 Shared timer bank
	23.4.4 Hold-off timer bank
	23.4.5 Threshold bank and comparator
	23.4.6 ADC interface
	23.4.6.1 Input buffer overrun
	23.4.6.2 On-the-fly ADC data acquisition

	23.4.7 Prescalers
	23.4.8 Banked mode support

	23.5 Modulation Modes
	23.5.1 Threshold/Threshold mode
	23.5.2 Threshold/Hold-off mode
	23.5.3 Limitations on the modulation process
	23.5.3.1 Minimum distance between consecutive timer control pulses
	23.5.3.2 Minimum timer control pulse width
	23.5.3.3 CHOFF behavior during modulation
	23.5.3.4 Module initialization

	23.6 Monitored modulation
	23.7 DMA support
	23.8 Reset overview
	23.9 Reaction module interrupts
	23.9.1 Interrupt sources

	23.10 Use cases
	23.10.1 Advancing modulation phase on a threshold level
	23.10.2 Controlling the loop function
	23.10.3 Banked mode

	Chapter 24 Enhanced Time Processing Unit (eTPU2)
	24.1 Information specific to this device
	24.1.1 Device-specific features

	24.2 Introduction
	24.2.1 Overview
	24.2.1.1 eTPU engine
	24.2.1.1.1 Time bases
	24.2.1.1.2 eTPU timer channels
	24.2.1.1.3 Host interface
	24.2.1.1.4 Shared parameter RAM (SPRAM)
	24.2.1.1.5 Scheduler
	24.2.1.1.6 Microengine
	24.2.1.1.7 Single vs. dual eTPU engine system

	24.2.2 Features
	24.2.2.1 eTPU feature summary
	24.2.2.2 eTPU enhancements over TPU3
	24.2.2.3 eTPU2 enhancements over eTPU

	24.2.3 Modes of operation
	24.2.3.1 eTPU mode selection

	24.3 External signal description
	24.3.1 Overview
	24.3.2 Detailed signal descriptions
	24.3.2.1 ipp_do_etpuch_[1|2]([0 - 31]) - eTPU channel output signals
	24.3.2.2 ipp_ind_etpuch_[1|2]([0 - 31]) - eTPU Channel Input Signals
	24.3.2.3 ipp_ind_tcrclk_etpu_[1|2] - Time Base Clock Signal - TCRCLK
	24.3.2.4 ipp_ind_etpu_odis_[1|2]([0 - 3]) eTPU Channel Output Disable Signals

	24.4 Memory map/register definition
	24.4.1 Memory map
	24.4.2 System configuration registers
	24.4.2.1 ETPU_MCR - eTPU Module Configuration Register
	24.4.2.2 ETPU_CDCR - eTPU Coherent Dual-Parameter Controller Register
	24.4.2.3 ETPU_MISCCMPR - eTPU MISC Compare Register
	24.4.2.4 ETPU_SCMOFFDATAR - eTPU SCM Off-range Data Register
	24.4.2.5 ETPU_ECR - eTPU Engine Configuration Register

	24.4.3 Time base registers
	24.4.3.1 ETPU_TBCR - eTPU Time Base Configuration Register
	24.4.3.2 ETPU_TB1R - eTPU Time Base 1 (TCR1) Visibility Register
	24.4.3.3 ETPU_TB2R - eTPU Time Base 2 (TCR2) Visibility Register
	24.4.3.4 ETPU_REDCR - eTPU STAC Configuration Register

	24.4.4 Engine related registers
	24.4.4.1 ETPU_WDTR - eTPU Watchdog Timer Register
	24.4.4.2 ETPU_IDLE - eTPU Idle Register

	24.4.5 Channel registers layout
	24.4.6 Global channel registers
	24.4.6.1 ETPU_CISR - eTPU Channel Interrupt Status Register
	24.4.6.2 ETPU_CDTRSR - eTPU Channel Data Transfer Request Status Register
	24.4.6.3 ETPU_CIOSR - eTPU Channel Interrupt Overflow Status Register
	24.4.6.4 ETPU_CDTROSR - eTPU Channel Data Transfer Request Overflow Status Register
	24.4.6.5 ETPU_CIER - eTPU Channel Interrupt Enable Register
	24.4.6.6 ETPU_CDTRER - eTPU Channel Data Transfer Request Enable Register
	24.4.6.7 ETPU_CPSSR - eTPU Channel Pending Service Status Register
	24.4.6.8 ETPU_CSSR - eTPU Channel Service Status Register

	24.4.7 Channel configuration and control registers
	24.4.7.1 ETPU_CxCR - eTPU Channel x Configuration Register
	24.4.7.2 ETPU_CxSCR - eTPU Channel x Status Control Register
	24.4.7.3 ETPU_CxHSRR - eTPU Channel x Host Service Request Register

	24.5 Functional description
	24.5.1 Functions and threads
	24.5.1.1 Entry points
	24.5.1.1.1 Entry table
	24.5.1.1.2 Entry point address generation
	24.5.1.1.3 Standard condition encoding scheme
	24.5.1.1.4 Alternate condition encoding scheme
	24.5.1.1.5 Entry point format

	24.5.1.2 Time slot transition
	24.5.1.3 Thread ending
	24.5.1.4 Watchdog

	24.5.2 Host interface
	24.5.2.1 System configuration
	24.5.2.2 Interrupts and data transfer requests
	24.5.2.2.1 Interrupt types and sources
	24.5.2.2.2 Interrupt and data transfer request overflow

	24.5.2.3 Parameter access
	24.5.2.3.1 Parameter access widths
	24.5.2.3.2 Parameter addresses and endianness
	24.5.2.3.3 Parameter concurrency
	24.5.2.3.4 Parameter sign extension area

	24.5.2.4 SPRAM organization
	24.5.2.5 Host service requests
	24.5.2.6 SCM access
	24.5.2.6.1 SCM RAM implementations
	24.5.2.6.2 SCM low power
	24.5.2.6.3 SCM off-range data

	24.5.3 Scheduler
	24.5.3.1 Channel enabling and priority assignment
	24.5.3.2 Channel priority schemes
	24.5.3.2.1 Primary scheme - priority among channels on different levels
	24.5.3.2.2 Priority passing disabling
	24.5.3.2.3 Secondary scheme - priority among channels on the same level
	24.5.3.2.4 Priority scheme example

	24.5.3.3 Time Slot Latency

	24.5.4 Parameter sharing and coherency
	24.5.4.1 Host Side Atomic Access
	24.5.4.2 Microengine Side Atomic Accesses
	24.5.4.2.1 Microengine single-parameter atomicity
	24.5.4.2.2 Microengine dual-parameter atomicity
	24.5.4.2.3 Microengine Side Multiple Atomicity

	24.5.4.3 Coherent Dual-parameter Controller (CDC)
	24.5.4.3.1 CDC Programming

	24.5.4.4 Hardware Semaphores
	24.5.4.5 SPRAM Arbitration

	24.5.5 Enhanced Channels
	24.5.5.1 Channel Registers and Flags
	24.5.5.1.1 ER - Event Registers
	MatchA and MatchB Registers
	CaptureA and CaptureB Registers
	TBSA and TBSB - Time Base Selection Registers
	MRLA/B - Match Recognition Latches
	MRLEA/B - Match Recognition Latch Enable
	TDLA/B - Transition Detection Latch
	TCCEA - Transition Continuous Capture Enable

	24.5.5.1.2 Pin Control Registers
	IPACA,IPACB and OPACA,OPACB - Input and Output Pin Action Control Registers
	Output Pin Control Logic and Pin State Output Register - PSTO
	PSTI and PSS - Pin State Input and Pin Sampled State Registers
	PRSS - Pin Request Service Sample
	OBE - Output Buffer Enable control latch

	24.5.5.1.3 General Channel Registers
	Channel Selection Register - CHAN
	PDCM - Predefined Channel Mode
	UDCM - User Defined Channel Mode
	SRI - Match/Transition Service Request Inhibit Latch
	Flag1,Flag0 - Channel “state resolution” flags

	24.5.5.2 Match Recognition
	24.5.5.2.1 MRLA/B - Match Recognition Latches
	24.5.5.2.2 MEF - Match Enable Flag
	24.5.5.2.3 MRLEA/B - Match Recognition Latch Enable

	24.5.5.3 Transition Detection and Time Base Capture
	24.5.5.3.1 TDLA/B - Transition Detect Latches
	24.5.5.3.2 TCCEA - Transition Continuous Capture Enable

	24.5.5.4 Channel Modes
	24.5.5.4.1 Channel Mode Logic and Event Flags
	24.5.5.4.2 Channel modes overview
	Either Match, Blocking Modes (em_b_st, em_b_dt)
	Either Match, Non Blocking Modes (em_nb_st, em_nb_dt)
	Match B Request Modes (m2_st, m2_dt)
	Both Match Request Modes (bm_st, bm_dt)
	Ordered Modes with Match B Request (m2_o_st, m2_o_dt)
	Single match modes (sm_st, sm_dt)
	Single match enhanced mode (sm_st_e)

	24.5.5.4.3 Predefined Channel Modes on Input Signal Processing
	Either Match, Blocking, Single Transition (em_b_st)
	Either Match, Blocking, Double Transition (em_b_dt)
	Either Match, Non Blocking, Single Transition (em_nb_st)
	Either Match, Non Blocking, Double Transition (em_nb_dt)
	Match B Request, Single Transition (m2_st)
	Match B Request, Double Transition (m2_dt)
	Both Match Request, Single Transition (bm_st)
	Both Match Request, Double Transition (bm_dt)
	Ordered Mode with Match B Request, Single Transition (m2_o_st)
	Ordered Mode with Match B Request, Double Transition (m2_o_dt)
	Single Match Enhanced Mode (sm_st_e)
	Single Match, Single Transition (sm_st)
	Single Match, Double Transition (sm_dt)

	24.5.5.4.4 Channel Modes on Output Signal Generation
	Either Match, Blocking Modes (em_b_st, em_b_dt)
	Either Match, Non Blocking Modes (em_nb_st, em_nb_dt)
	Match B Request Modes (m2_st, m2_dt)
	Both Match Request Modes (bm_st, bm_dt)
	Ordered Modes with Match B Request (m2_o_st, m2_o_dt)
	Single Match Modes (sm_st, sm_dt, sm_st_e)
	Match/Transition Pin Action Conflict Resolution

	24.5.5.4.5 Combining Input and Output Signals

	24.5.5.5 Channel Link
	24.5.5.6 Enhanced Digital Filter - EDF
	24.5.5.6.1 Two-Sample Mode
	24.5.5.6.2 Three-Sample Mode
	24.5.5.6.3 Continuous Mode
	24.5.5.6.4 Bypass Mode
	24.5.5.6.5 Filter Clock Prescaler

	24.5.5.7 Channel Timing Modes
	24.5.5.7.1 T2 Channel Timing
	24.5.5.7.2 T2/T4 Channel Timing

	24.5.6 Time Bases
	24.5.6.1 Timer Count Register 1 - TCR1
	24.5.6.1.1 Externally clocked mode
	24.5.6.1.2 Internally clocked mode
	24.5.6.1.3 TCR1 clock prescaling
	24.5.6.1.4 STAC bus client mode
	24.5.6.1.5 STAC bus server mode

	24.5.6.2 Timer Count Register 2 - TCR2
	24.5.6.2.1 TCR2 clock prescaling
	24.5.6.2.2 TCR2 gated mode
	24.5.6.2.3 TCR2 signal transition modes
	24.5.6.2.4 STAC bus client mode
	24.5.6.2.5 STAC bus server mode
	24.5.6.2.6 TCR2 bus in angle clock mode

	24.5.6.3 STAC Interface
	24.5.6.4 GTBE - Global time base enable
	24.5.6.5 TCRCLK digital filter

	24.5.7 EAC - eTPU angle counter
	24.5.7.1 General
	24.5.7.2 Angle mode registers
	24.5.7.2.1 TPR - Tooth program register
	24.5.7.2.2 TCR2 - Timer Counter 2
	24.5.7.2.3 TRR - Tick Rate Register

	24.5.7.3 Acceleration and deceleration
	24.5.7.4 Angle tick generator
	24.5.7.4.1 Calculating the angle tick period integer and fraction
	24.5.7.4.2 Generating the angle ticks

	24.5.7.5 Count control and high rate logic
	24.5.7.5.1 Normal mode
	24.5.7.5.2 Halt mode (Deceleration)
	24.5.7.5.3 High rate mode (Acceleration)

	24.5.7.6 Special cases of missing teeth and last tooth
	24.5.7.6.1 Handling the last tooth
	24.5.7.6.2 Handling missing teeth
	24.5.7.6.3 Combining missing teeth and last tooth

	24.5.7.7 Handling mechanical tooth correction
	24.5.7.8 Handling mis-detected tooth
	24.5.7.9 Handling false tooth detection
	24.5.7.10 Angle logic and channel modes
	24.5.7.11 Restarting angle logic
	24.5.7.12 Special TPR write cases
	24.5.7.12.1 TPR buffering
	24.5.7.12.2 IPH and LAST
	24.5.7.12.3 IPH and TICKS
	24.5.7.12.4 IPH and MISSCNT
	24.5.7.12.5 IPH and HOLD
	24.5.7.12.6 LAST and HOLD

	24.5.8 Microengine
	24.5.8.1 Registers
	24.5.8.1.1 P Register
	24.5.8.1.2 DIOB - Data Input/Output Buffer Register
	24.5.8.1.3 ERTA and ERTB Registers
	24.5.8.1.4 SR - Shift Register
	24.5.8.1.5 MACH and MACL Registers
	24.5.8.1.6 LINK Register
	24.5.8.1.7 RAR - Report Address Register
	24.5.8.1.8 CHAN Register
	24.5.8.1.9 Counter Registers: TCR1, TCR2, TPR and TRR
	24.5.8.1.10 General Purpose Registers: A, B, C and D

	24.5.8.2 ALU and Post-ALU Shifter
	24.5.8.2.1 ALU Flags
	Carry Flag (C)
	Negative flag (N)
	Overflow (V)
	Zero Flag (Z)

	24.5.8.2.2 ALU ADD Operation with and without shifting
	24.5.8.2.3 ADC operation
	24.5.8.2.4 Bitwise Operations
	24.5.8.2.5 Set Bit / Clear bit operations
	24.5.8.2.6 Exchange bit
	24.5.8.2.7 Multibit shift/rotate operations
	24.5.8.2.8 Absolute value operation

	24.5.8.3 MAC and Divide Unit (MDU)
	24.5.8.3.1 Multiply and Multiply-Accumulate Operation Length
	24.5.8.3.2 Divide operation length
	24.5.8.3.3 Signed multiplication (mults)
	24.5.8.3.4 Unsigned multiplication (multu)
	24.5.8.3.5 Signed multiply-accumulate (macs)
	24.5.8.3.6 Unsigned multiply-accumulate (macu)
	24.5.8.3.7 Signed fractional multiplication (fmults)
	24.5.8.3.8 Unsigned Fractional Multiplication (fmultu)
	24.5.8.3.9 Unsigned Divide (div)
	24.5.8.3.10 MDU Flags
	MDU Negative Flag - MN
	MDU Carry Flag - MC
	MDU Zero Flag - MZ
	MDU Overflow Flag - MV
	MDU Busy Flag (MB)

	24.5.8.4 Branch Conditions

	24.5.9 Microinstruction set
	24.5.9.1 SPRAM microoperations
	24.5.9.1.1 SPRAM Addressing Modes
	Absolute addressing mode
	Selected channel relative addressing mode
	Indirect addressing mode
	Engine relative addressing mode

	24.5.9.1.2 SPRam source/destination registers
	24.5.9.1.3 SPRAM operation size
	24.5.9.1.4 SPRAM access direction
	24.5.9.1.5 Zero SPRAM operation
	24.5.9.1.6 DIOB stack operation
	24.5.9.1.7 Semaphore operations

	24.5.9.2 ALU/MDU operations
	24.5.9.2.1 Source and destination register set selection
	Microinstructions with fields ABSE and ABDE
	Microinstructions Without Fields ABSE and ABDE

	24.5.9.2.2 Selecting sources and destination
	Max constant generation with T4BBS = 111
	Special T4ABS source operation: Read match registers
	CHAN_BASE as a Source

	24.5.9.2.3 Flags sampling control
	24.5.9.2.4 B-Source inversion
	24.5.9.2.5 Carry-in Control
	Generating “max” constant

	24.5.9.2.6 Shift operations
	Shift register operations
	Post-ALU shift operations

	24.5.9.2.7 Conditional ALU/MDU operation execution
	24.5.9.2.8 A-Source size override
	24.5.9.2.9 A-source sign extension
	24.5.9.2.10 ALU/MDU Operation Selection
	24.5.9.2.11 Operations with immediate data
	24-bit immediate destination
	Enhanced ALU operations with immediate data

	24.5.9.3 Channel control and configuration microoperations
	24.5.9.3.1 Channel flags operations
	24.5.9.3.2 Comparator and time base selection
	24.5.9.3.3 Transition detection and pin action control
	24.5.9.3.4 Immediate pin state control
	24.5.9.3.5 Write Channel Match and UDCM Registers
	24.5.9.3.6 Clear transition/match event registers
	24.5.9.3.7 Disable matches
	24.5.9.3.8 Disable match and transition service requests
	24.5.9.3.9 Predefined channel modes
	24.5.9.3.10 Channel interrupt and data transfer requests
	24.5.9.3.11 Clear link service request

	24.5.9.4 Flow control microoperations
	24.5.9.4.1 Ending current thread - END
	24.5.9.4.2 Branch operations
	Selecting jump or call microoperations
	Branch target address
	Conditional/Unconditional branch

	24.5.9.4.3 Dispatch microoperation
	24.5.9.4.4 Return from subroutine
	24.5.9.4.5 Flush pipeline
	24.5.9.4.6 HALT microinstruction
	24.5.9.4.7 NOP microinstruction

	24.5.9.5 Illegal Instructions
	24.5.9.6 Microinstruction parallelism issues
	24.5.9.6.1 ALU operations and read match registers
	24.5.9.6.2 ALU and SPRAM operations
	24.5.9.6.3 ERTA/B as ALU destination and ERWA/B
	24.5.9.6.4 ERWA/B and MRLE
	24.5.9.6.5 CHAN assignment, Read Match and ERWA/B
	24.5.9.6.6 Read Match and ERWA/B
	24.5.9.6.7 Stack accesses and ALU operations
	24.5.9.6.8 SRC and ALU/MDU operations
	24.5.9.6.9 Semaphore lock/free and SMLCK branch condition
	24.5.9.6.10 Dispatch and SPRAM read
	24.5.9.6.11 CHAN Assignment, PSC/PSCS, and clear MRLEA/B, MRLA/B, TDLA/B

	24.5.9.7 Microinstruction formats

	24.5.10 Test and Development Support
	24.5.10.1 Overview
	24.5.10.2 Development support features
	24.5.10.2.1 Internal Debug Interface and Nexus Class 3 support
	24.5.10.2.2 Microengine halt state
	24.5.10.2.3 Hardware breakpoints
	24.5.10.2.4 Hardware watchpoints
	24.5.10.2.5 Software breakpoints
	24.5.10.2.6 Single-step execution
	24.5.10.2.7 Forced microinstruction execution
	24.5.10.2.8 Microengine register access
	24.5.10.2.9 Microengine flag access
	24.5.10.2.10 Microengine stall
	24.5.10.2.11 SCM emulation

	24.5.10.3 Test support features
	24.5.10.3.1 SCM Test - Multiple input signature calculator

	24.5.10.4 Performance monitoring features
	24.5.10.4.1 Idle Counter

	24.6 Initialization/Application information
	24.6.1 Configuration sequence
	24.6.2 Reset options
	24.6.2.1 Hardware Reset
	24.6.2.2 Software reset

	24.6.3 Multiple parameter coherency methods
	24.6.4 Programming hints and caveats
	24.6.4.1 Atomic dual access after a call, return
	24.6.4.2 Resource polling
	24.6.4.3 Changing channel function, parameter base, or entry table scheme
	24.6.4.4 Checking and clearing interrupts of a stopped engine

	24.6.5 Estimating worst-case latency
	24.6.5.1 Introduction to worst-case latency
	24.6.5.2 Using worst-case latency estimates to evaluate performance
	24.6.5.3 Priority scheme details used in WCL analysis
	24.6.5.3.1 Priority passing
	24.6.5.3.2 Time-slot transition
	24.6.5.3.3 Channel number priority
	24.6.5.3.4 SPRAM collision rate

	24.6.5.4 First-pass worst-case latency analysis
	24.6.5.4.1 Worst-case assumptions and formula
	Finding the worst-case service time for each active channel
	Mapping the channels for each time slot
	Adding time for time-slot transitions

	24.6.5.4.2 First-pass analysis worst-case latency examples
	Finding the WCL for PWM on Channel 0
	Finding the WCL for PPWA on channel 1
	Finding the WCL for DIO on Channel 2

	24.6.5.5 Second-pass worst-case latency analysis
	24.6.5.5.1 Second-pass analysis guidelines
	24.6.5.5.2 Second-Pass analysis example
	First-Try system configuration
	Second-Try system configuration

	24.6.6 Endianness

	24.7 Appendices
	24.7.1 Microcycle and I/O timing
	24.7.1.1 Execution and channel timing
	24.7.1.2 Input/Output signal delays

	24.7.2 Initialization code example
	24.7.3 Predefined channel mode summary
	24.7.4 MISC algorithm

	Chapter 25 Enhanced Queued Analog-to-Digital Converter (EQADC)
	25.1 Information Specific to This Device
	25.1.1 Device-Specific Pin Configuration Features
	25.1.1.1 AN12/MA0/SDS
	25.1.1.2 AN13/MA1/SDO
	25.1.1.3 AN14/MA2/SDI
	25.1.1.4 AN15/FCK
	25.1.1.5 External Triggers

	25.1.2 Availability of Analog Inputs

	25.2 Introduction
	25.2.1 Module overview
	25.2.2 Block diagram
	25.2.3 Features

	25.3 Modes of operation
	25.3.1 Normal mode
	25.3.2 Streaming mode
	25.3.3 Debug mode
	25.3.4 Stop mode

	25.4 External signal description
	25.4.1 Overview
	25.4.2 Detailed signal descriptions
	25.4.2.1 AN0/DAN0+ - Single-ended analog input/Differential analog input positive terminal
	25.4.2.2 AN1/DAN0- - Single-ended analog input/Differential analog input negative terminal
	25.4.2.3 AN2/DAN1+ - Single-ended analog input/Differential analog input positive terminal
	25.4.2.4 AN3/DAN1- - Single-ended analog input/Differential analog input negative terminal
	25.4.2.5 AN4/DAN2+ - Single-ended analog input/Differential analog input positive terminal
	25.4.2.6 AN5/DAN2- - Single-ended analog input/Differential analog input negative terminal
	25.4.2.7 AN6/DAN3+ - Single-ended analog input/Differential analog input positive terminal
	25.4.2.8 AN7/DAN3- - Single-ended analog input/Differential analog input negative terminal
	25.4.2.9 AN8/ANW - Single-ended analog input/ Single-ended analog input from external multiplexers
	25.4.2.10 AN9/ANX - Single-ended analog input/ Single-ended analog input from external multiplexers
	25.4.2.11 AN10/ANY - Single-ended analog input/ Single-ended analog input from external multiplexers
	25.4.2.12 AN11/ANZ - Single-ended analog input/ Single-ended analog input from external multiplexers
	25.4.2.13 AN12 - Single-ended analog input
	25.4.2.14 AN13 - Single-ended analog input/
	25.4.2.15 AN14 - Single-ended analog input
	25.4.2.16 AN15 - Single-ended analog input
	25.4.2.17 AN16 - Single-ended analog input/
	25.4.2.18 AN17 - Single-ended analog input
	25.4.2.19 AN18 - Single-ended analog input
	25.4.2.20 AN19 - Single-ended analog input
	25.4.2.21 AN20-AN39 - Single-ended analog input
	25.4.2.22 INA_ADC0_0 - INA_ADC0_9 - Single-ended analog input
	25.4.2.23 INA_ADC1_0 - INA_ADC1_9 - Single-ended analog input
	25.4.2.24 MA0-MA2 - External multiplexer control signals
	25.4.2.25 FCK - EQADC SSI free-running clock
	25.4.2.26 SDS - EQADC SSI serial data select
	25.4.2.27 SDI - EQADC SSI serial data in
	25.4.2.28 SDO - EQADC SSI serial data out
	25.4.2.29 VRH, VRL - Voltage reference high and voltage reference low
	25.4.2.30 VDDA, VSSA - 5V VDD and VSS for the 5V analog components
	25.4.2.31 REFBYPC - Reference Bypass Capacitor
	25.4.2.32 ETRIG0-ETRIG5 - External triggers

	25.5 Memory Map/Register Definition
	25.5.1 EQADC Memory Map
	25.5.2 EQADC Register Descriptions
	25.5.2.1 EQADC Module Configuration Register (EQADC_MCR)
	25.5.2.2 EQADC test register (EQADC_TST)
	25.5.2.3 EQADC null message send format register (EQADC_NMSFR)
	25.5.2.4 EQADC External Trigger Digital Filter Register (EQADC_ETDFR)
	25.5.2.5 EQADC CFIFO Push Registers (EQADC_CFPR)
	25.5.2.6 EQADC Result FIFO Pop Registers (EQADC_RFPR)
	25.5.2.7 EQADC CFIFO Control Registers (EQADC_CFCR)
	25.5.2.8 EQADC Interrupt and DMA Control Registers (EQADC_IDCR)
	25.5.2.9 EQADC FIFO and Interrupt Status Registers (EQADC_FISR)
	25.5.2.10 EQADC CFIFO Transfer Counter Registers (EQADC_CFTCR)
	25.5.2.11 EQADC CFIFO Status Snapshot Registers (EQADC_CFSSR)
	25.5.2.12 EQADC CFIFO Status Register (EQADC_CFSR)
	25.5.2.13 EQADC SSI Control Register (EQADC_SSICR)
	25.5.2.14 EQADC SSI Receive Data Register (EQADC_SSIRDR)
	25.5.2.15 EQADC STAC Client Configuration Register (EQADC_REDLCCR)
	25.5.2.16 EQADC CFIFO Registers (EQADC_CFxRw) (x=0, ..,5; w=0, .., 3)
	25.5.2.17 EQADC CFIFO0 Extension Registers (EQADC_CF0ERw) (w=0, .., 3)
	25.5.2.18 EQADC RFIFO Registers (EQADC_RFxRw) (x=0, .., 5; w=0, .., 3)

	25.5.3 On-Chip ADC Registers
	25.5.3.1 ADC0/1 Control Registers (ADC0_CR and ADC1_CR)
	25.5.3.2 ADC Time Stamp Control Register (ADC_TSCR)
	25.5.3.3 ADC Time Base Counter Registers (ADC_TBCR)
	25.5.3.4 ADC0/1 Gain Calibration Constant Registers (ADC0_GCCR and ADC1_GCCR)
	25.5.3.5 ADC0/1 Offset Calibration Constant Registers (ADC0_OCCR and ADC1_OCCR)
	25.5.3.6 Alternate Configuration 1-8 Control Registers (ADC_ACR1-8)
	25.5.3.7 ADC0/1 Alternate Gain Registers (ADC0_AGR1-2 and ADC1_AGR1-2)
	25.5.3.8 ADC0/1 Alternate Offset Register (ADC0_AOR1-2 and ADC1_AOR1-2)
	25.5.3.9 ADC Pull Up/Down Control Register x (ADC_PUDCRx, x=0-7)

	25.6 Functional Description
	25.6.1 Overview
	25.6.2 Data Flow in EQADC
	25.6.2.1 Overview and Basic Terminology
	25.6.2.2 Assumptions/Requirements Regarding the External Device
	25.6.2.2.1 EQADC SSI Protocol Support
	25.6.2.2.2 Number of Command Buffers and Result Buffers
	25.6.2.2.3 Command Execution and Result Return
	25.6.2.2.4 Null and Result Messages

	25.6.2.3 Message Format in EQADC
	25.6.2.3.1 Message Formats for On-Chip ADC Operation
	Conversion Command Format for the Standard Configuration
	Conversion Command Format for Alternate Configurations
	Write Configuration Command Format for On-Chip ADC Operation
	Read Configuration Command Format for On-Chip ADC Operation
	ADC Result Format for On-Chip ADC Operation

	25.6.2.3.2 Message Formats for External Device Operation
	Command Message Format for External Device Operation
	Result Message Format for External Device Operation
	Null Message Format for External Device Operation

	25.6.3 Command/Result Queues
	25.6.4 EQADC Command FIFOs
	25.6.4.1 CFIFO Basic Functionality
	25.6.4.2 CFIFO0 Streaming Mode Description
	25.6.4.2.1 CFIFO0 Operation in Streaming Mode
	25.6.4.2.2 Triggering Description in Streaming Mode
	25.6.4.2.3 CFIFO0 Diagram Description in Streaming Mode
	25.6.4.2.4 Streaming Mode Error Conditions

	25.6.4.3 CFIFO Common Prioritization and Command Transfer
	25.6.4.4 CFIFO Prioritization in Abort Mode
	25.6.4.5 External Trigger Event Detection
	25.6.4.6 CFIFO Scan Trigger Modes
	25.6.4.6.1 Disabled Mode
	25.6.4.6.2 Single-Scan Mode
	Single-Scan Software Trigger
	Single-Scan Edge Trigger
	Single-Scan Level Trigger

	25.6.4.6.3 Continuous-Scan Mode
	Continuous-Scan Software Trigger
	Continuous-Scan Edge Trigger
	Continuous-Scan Level Trigger

	25.6.4.6.4 CFIFO Scan Trigger Mode Start/Stop Summary

	25.6.4.7 CFIFO and Trigger Status
	25.6.4.7.1 CFIFO Operation Status
	25.6.4.7.2 CQueue Completion Status
	25.6.4.7.3 Pause Status
	25.6.4.7.4 Trigger Overrun Status
	25.6.4.7.5 Command Sequence Non-Coherency Detection

	25.6.5 EQADC Result FIFOs
	25.6.5.1 RFIFO Basic Functionality
	25.6.5.2 Distributing Result Data into RFIFOs

	25.6.6 On-Chip ADC Configuration and Control
	25.6.6.1 Enabling and Disabling the On-chip ADCs
	25.6.6.2 ADC Clock and Conversion Speed
	25.6.6.3 ADC Sampling Delay after Power-Up
	25.6.6.4 Time Stamp Feature
	25.6.6.4.1 STAC Client Submodule (REDLC)

	25.6.6.5 ADC pre-gain feature
	25.6.6.6 ADC resolution selection feature
	25.6.6.7 ADC Calibration Feature
	25.6.6.7.1 Overview
	25.6.6.7.2 MAC Unit and Operand Data Format

	25.6.6.8 ADC Control Logic overview and command execution

	25.6.7 Internal/External Multiplexing
	25.6.7.1 Channel assignment
	25.6.7.2 External multiplexing

	25.6.8 EQADC DMA/Interrupt request
	25.6.9 EQADC Synchronous Serial Interface (SSI) Sub-Block
	25.6.9.1 EQADC SSI data transmission protocol
	25.6.9.1.1 Abort Feature

	25.6.9.2 Baud clock generation

	25.6.10 EQADC Parallel Side Interface (PSI) Sub-Block
	25.6.10.1 Input / Output signals description
	25.6.10.2 PSI transmitter / Write section
	25.6.10.3 PSI Receiver / Read section

	25.6.11 Analog Sub-Block
	25.6.11.1 Analog to Digital Converter (ADC)
	25.6.11.1.1 ADC architecture
	25.6.11.1.2 RSD overview
	25.6.11.1.3 RSD Adder
	25.6.11.1.4 Variable Gain Amplification (VGA) for Pre-gain

	25.7 Initialization/Application information
	25.7.1 Multiple queues control setup example
	25.7.1.1 EQADC initialization
	25.7.1.2 Configuring EQADC for applications

	25.7.2 EQADC/DMAC Interface
	25.7.2.1 CQueue/CFIFO transfers
	25.7.2.2 RQueue/RFIFO transfers

	25.7.3 Sending immediate command setup example
	25.7.4 Modifying queues
	25.7.5 CQueue and RQueues usage
	25.7.6 ADC Result Calibration
	25.7.6.1 MAC Configuration Procedure
	25.7.6.2 Example
	25.7.6.3 Quantization Error Reduction During Calibration

	25.7.7 EQADC versus QADC

	Chapter 26 Decimation Filter
	26.1 Information specific to this device
	26.1.1 Device-specific features
	26.1.2 Device-specific parameters

	26.2 Introduction
	26.2.1 Overview
	26.2.2 Features
	26.2.3 Modes of operation
	26.2.3.1 Normal mode
	26.2.3.2 Standalone mode
	26.2.3.3 PSI Input Mixed mode
	26.2.3.4 PSI Output Mixed mode
	26.2.3.5 Cascade mode
	26.2.3.6 Low Power mode
	26.2.3.7 Freeze mode

	26.3 External signal description
	26.3.1 Decimation trigger signal
	26.3.2 Integrator enable signal
	26.3.3 Integrator halt signal
	26.3.4 Integrator reset signal
	26.3.5 Integrator output request signal

	26.4 Memory map and register definition
	26.4.1 Decimation filter device memory map
	26.4.2 Decimation filter register descriptions
	26.4.2.1 Decimation Filter Module Configuration Register (DECFILTER_MCR)
	26.4.2.2 Decimation Filter Module Status Register (DECFILTER_MSR)
	26.4.2.3 Decimation Filter Module Extended Configuration Register (DECFILTER_MXCR)
	26.4.2.4 Decimation Filter Module Extended Status Register (DECFILTER_MXSR)
	26.4.2.5 Decimation Filter Interface Input Buffer Register (DECFILTER_IB)
	26.4.2.6 Decimation Filter Interface Output Buffer Register (DECFILTER_OB)
	26.4.2.7 Decimation Filter Coefficient n Register (DECFILTER_COEFn)
	26.4.2.8 Decimation Filter TAPn Register (DECFILTER_TAPn)
	26.4.2.9 Decimation Filter Interface Enhanced Debug Input Data Register (DECFILTER_EDID)
	26.4.2.10 Decimation Filter Final Integration Value Register (DECFILTER_FINTVAL)
	26.4.2.11 Decimation Filter Final Integration Count Value Register (DECFILTER_FINTCNT)
	26.4.2.12 Decimation Filter Current Integration Value Register (DECFILTER_CINTVAL)
	26.4.2.13 Decimation Filter Current Integration Count Value Register (DECFILTER_CINTCNT)

	26.4.3 Decimation Filter Memory Map for Parallel Side Interface
	26.4.4 PSI Register Description
	26.4.4.1 Decimation Filter Input/Output Buffers Register (DECFILTER_IOB)

	26.5 Functional description
	26.5.1 Overview
	26.5.2 Parallel Side Interface (PSI) description
	26.5.3 Input buffer description
	26.5.3.1 Input buffer overrun

	26.5.4 Output buffer description
	26.5.4.1 Output buffer overrun
	26.5.4.2 Triggered output result description

	26.5.5 Bypass configuration description
	26.5.6 IIR and FIR filter
	26.5.6.1 Rounding
	26.5.6.2 Saturation

	26.5.7 Filter prefill control description
	26.5.8 Timestamp data transmission
	26.5.9 Flush command description
	26.5.10 Soft-reset command description
	26.5.11 Interrupts requests description
	26.5.11.1 Block interrupt request
	26.5.11.2 Input buffer interrupt request
	26.5.11.3 Output buffer interrupt request

	26.5.12 DMA requests description
	26.5.12.1 Input Buffer DMA request
	26.5.12.2 Output buffer DMA request

	26.5.13 Freeze mode description
	26.5.14 Enhanced debug monitor description
	26.5.15 Integrator
	26.5.15.1 Integrator inputs
	26.5.15.2 Integrator outputs
	26.5.15.3 Integrator reset
	26.5.15.4 Integrator enabling and halting
	26.5.15.5 Integrator exceptions

	26.5.16 Cascade mode description
	26.5.16.1 Cascade freeze, stop, and configuration change procedures
	26.5.16.2 Cascade Mode Data/Control Bus description

	26.6 Initialization information
	26.6.1 Initialization procedure

	26.7 Application information
	26.7.1 eQADC IP as the PSI master block

	26.8 Filter example simulation
	26.8.1 Coefficients calculation
	26.8.2 Input data calculation
	26.8.3 Filter results

	Chapter 27 Temperature Sensor
	27.1 Overview
	27.2 Detailed description
	27.3 Temperature formula
	27.3.1 TLOW and THIGH
	27.3.2 TTSENS_CODE(TLOW) and TTSENS_CODE(THIGH)
	27.3.3 VBG_CODE(TLOW)
	27.3.4 Temperature sensor voltage (VTENS(T))
	27.3.5 Bandgap reference voltage (VBG_CODE(T))
	27.3.6 Registers
	27.3.6.1 Temperature Calculation Constants Register 0 (TSENS_TCCR0)
	27.3.6.2 Temperature Calculation Constants Register 1 (TSENS_TCCR1)

	Chapter 28 System Information Module and Trim (SIM)
	28.1 Overview
	28.2 User trim values

	Chapter 29 Cyclic Redundancy Checker (CRC) Unit
	29.1 Overview
	29.2 Features
	29.2.1 Access and performance

	29.3 Calculating a CRC checksum
	29.3.1 Configuring the context
	29.3.2 Initializing the context seed value
	29.3.3 Writing the data stream to the context input
	29.3.4 Reading the checksum

	29.4 Register descriptions
	29.4.1 CRC Configuration Register (CRC_CFG)
	29.4.2 CRC Input Register (CRC_INP)
	29.4.3 CRC Current Status Register (CRC_CSTAT)
	29.4.4 CRC Output Register (CRC_OUTP)

	29.5 Use cases and limitations
	29.5.1 Checksums for configuration registers
	29.5.2 Calculations on incoming/outgoing protocol frames
	29.5.2.1 Calculating checksums on data to be transmitted
	29.5.2.2 Calculating checksums on received data

	Chapter 30 Deserial Serial Peripheral Interface (DSPI)
	30.1 Introduction
	30.2 Overview
	30.3 Features
	30.4 DSPI configurations
	30.4.1 SPI configuration
	30.4.2 DSI configuration
	30.4.3 CSI configuration

	30.5 DSPI frequency support
	30.6 Modes of operation
	30.6.1 Master mode
	30.6.2 Slave mode
	30.6.3 Module Disable mode
	30.6.4 Debug mode

	30.7 External signal description
	30.7.1 Overview
	30.7.2 Detailed signal description
	30.7.2.1 DSPI_x_PCS[0]/SS - Peripheral Chip Select/Slave Select
	30.7.2.2 DSPI_x_PCS[1] - PCS[3] - Peripheral Chip Selects 1 - 3
	30.7.2.3 DSPI_x_PCS[4]/MTRIG - Peripheral Chip Select 4/Master Trigger
	30.7.2.4 DSPI_x_PCS[5]/PCSS - Peripheral Chip Select 5/Peripheral Chip Select Strobe
	30.7.2.5 DSPI_x_SIN - Serial input
	30.7.2.6 DSPI_x_SOUT - Serial output
	30.7.2.7 DSPI_x_SCK - Serial clock
	30.7.2.8 HT - Hardware trigger

	30.8 Memory map and register definition
	30.8.1 Memory map
	30.8.2 Register descriptions
	30.8.2.1 DSPI Module Configuration Register (DSPI_MCR)
	30.8.2.2 DSPI Hardware Configuration Register (DSPI_HCR)
	30.8.2.3 DSPI Transfer Count Register (DSPI_TCR)
	30.8.2.4 DSPI Clock and Transfer Attributes Registers 0-7 (DSPI_CTAR0-DSPI_CTAR7)
	30.8.2.5 DSPI Status Register (DSPI_SR)
	30.8.2.6 DSPI DMA/Interrupt Request Select and Enable Register (DSPI_RSER)
	30.8.2.7 DSPI PUSH TX FIFO Register (DSPI_PUSHR)
	30.8.2.8 DSPI POP RX FIFO Register (DSPI_POPR)
	30.8.2.9 DSPI Transmit FIFO Registers 0-15 (DSPI_TXFR0-DSPI_TXFR15)
	30.8.2.10 DSPI Receive FIFO Registers 0-15 (DSPI_RXFR0-DSPI_RXFR15)
	30.8.2.11 DSPI DSI Configuration Register (DSPI_DSICR)
	30.8.2.12 DSPI DSI Serialization Data Register (DSPI_SDR)
	30.8.2.13 DSPI DSI Alternate Serialization Data Register (DSPI_ASDR)
	30.8.2.14 DSPI DSI Transmit Comparison Register (DSPI_COMPR)
	30.8.2.15 DSPI DSI Deserialization Data Register (DSPI_DDR)
	30.8.2.16 DSPI DSI Configuration Register 1 (DSPI_DSICR1)
	30.8.2.17 DSPI DSI Serialization Source Select Register (DSPI_SSR)
	30.8.2.18 DSPI DSI Parallel Input Select Registers 0 - 3 (DPSI_PISR0 - DPSI_PISR3)
	30.8.2.19 DSPI DSI Deserialized Data Interrupt Mask Register (DSPI_DIMR)
	30.8.2.20 DSPI DSI Deserialized Data Polarity Interrupt Register (DSPI_DPIR)

	30.9 Functional description
	30.9.1 Start and stop of DSPI transfers
	30.9.2 Serial peripheral interface (SPI) configuration
	30.9.2.1 Master mode
	30.9.2.2 Slave mode
	30.9.2.3 FIFO disable operation
	30.9.2.4 Transmit first-in first-out (TX FIFO) buffering mechanism
	30.9.2.4.1 Filling the TX FIFO
	30.9.2.4.2 Draining the TX FIFO

	30.9.2.5 Receive first-in first-out (RX FIFO) buffering mechanism
	30.9.2.5.1 Filling the RX FIFO
	30.9.2.5.2 Draining the RX FIFO

	30.9.3 Deserial serial interface (DSI) configuration
	30.9.3.1 DSI Master mode
	30.9.3.2 Slave mode
	30.9.3.3 DSI serialization
	30.9.3.4 DSI deserialization
	30.9.3.5 DSI transfer initiation control
	30.9.3.5.1 Continuous control
	30.9.3.5.2 Change in data control
	30.9.3.5.3 Triggered control
	30.9.3.5.4 Triggered or change in data control

	30.9.3.6 Multiple transfer operation (MTO)
	30.9.3.6.1 Parallel chaining

	30.9.3.7 Serial chaining
	30.9.3.8 IMUX/SIU support for serial and parallel chaining

	30.9.4 Combined serial interface (CSI) configuration
	30.9.4.1 CSI serialization
	30.9.4.2 CSI deserialization

	30.9.5 DSPI baud rate and clock delay generation
	30.9.5.1 Baud rate generator
	30.9.5.2 PCS to SCK delay (tCSC)
	30.9.5.3 After SCK delay (tASC)
	30.9.5.4 Delay after transfer (tDT)
	30.9.5.5 Peripheral chip select strobe enable (PCSS)

	30.9.6 Transfer formats
	30.9.6.1 Classic SPI transfer format (CPHA = 0)
	30.9.6.2 Classic SPI transfer format (CPHA = 1)
	30.9.6.3 Modified SPI/DSI transfer format (MTFE = 1, CPHA = 0)
	30.9.6.4 Modified SPI/DSI transfer format (MTFE = 1, CPHA = 1)
	30.9.6.5 Continuous selection format

	30.9.7 Continuous serial communications clock
	30.9.8 Timed serial bus (TSB)
	30.9.8.1 MSC dual receiver support with PCS switchover

	30.9.9 Parity generation and check
	30.9.9.1 Parity for SPI frames
	30.9.9.2 Parity for DSI frames

	30.9.10 Interrupts/DMA requests
	30.9.10.1 End of queue interrupt request
	30.9.10.2 Transmit FIFO fill interrupt or DMA request
	30.9.10.3 Transfer complete interrupt request
	30.9.10.4 Transmit FIFO underflow interrupt request
	30.9.10.5 Receive FIFO drain interrupt or DMA request
	30.9.10.6 Receive FIFO overflow interrupt request
	30.9.10.7 SPI frame parity error interrupt request
	30.9.10.8 DSI frame parity error interrupt request
	30.9.10.9 Deserialized data match interrupt request

	30.9.11 Buffered SPI operation
	30.9.12 Continuous peripheral chip select
	30.9.13 Peripheral chip select expansion and deglitching
	30.9.14 DMA and interrupt conditions
	30.9.14.1 Transmit FIFO underflow flag (TFUF)
	30.9.14.2 Receive FIFO overflow flag (RFOF)

	30.9.15 Modified SPI transfer format
	30.9.16 LVDS pad usage
	30.9.17 DSPI connections to eTPU_A, eMIOS and SIU
	30.9.17.1 DSPI_B connectivity
	30.9.17.2 DSPI_C connectivity
	30.9.17.3 DSPI_D connectivity

	30.9.18 Power saving features
	30.9.18.1 Stop mode (External Stop mode)
	30.9.18.2 Module disable mode

	30.10 Initialization/Application information
	30.10.1 How to manage DSPI queues
	30.10.2 Switching master and slave mode
	30.10.3 Baud rate settings
	30.10.4 Delay settings
	30.10.5 DSPI Compatibility with the QSPI of the MPC500 MCUs
	30.10.6 Calculation of FIFO pointer addresses
	30.10.6.1 Address calculation for the first-in entry and last-in entry in the TX FIFO
	30.10.6.2 Address calculation for the first-in entry and last-in entry in the RX FIFO

	Chapter 31 Enhanced Serial Communication Interface (ESCI)
	31.1 Introduction
	31.1.1 Bibliography
	31.1.2 Acronyms and abbreviations
	31.1.3 Glossary
	31.1.4 Overview
	31.1.5 Features
	31.1.6 Modes of operation
	31.1.6.1 Module idle condition
	31.1.6.2 SCI mode
	31.1.6.3 LIN mode
	31.1.6.4 Disabled mode

	31.2 External signal description
	31.2.1 Detailed signal descriptions
	31.2.1.1 eSCI transmit pin (TXD)
	31.2.1.2 eSCI receive pin (RXD)

	31.3 Memory map and register definition
	31.3.1 Memory map
	31.3.2 Register descriptions
	31.3.2.1 Baud Rate Register (eSCI_BRR)
	31.3.2.2 Control register 1 (eSCI_CR1)
	31.3.2.3 Control register 2 (eSCI_CR2)
	31.3.2.4 SCI data register (eSCI_DR)
	31.3.2.5 Interrupt Flag and Status Register 1 (eSCI_IFSR1)
	31.3.2.6 Interrupt Flag and Status Register 2 (eSCI_IFSR2)
	31.3.2.7 LIN Control Register 1 (eSCI_LCR1)
	31.3.2.8 LIN Control Register 2 (eSCI_LCR2)
	31.3.2.9 LIN transmit register (eSCI_LTR)
	31.3.2.10 LIN receive register (eSCI_LRR)
	31.3.2.11 LIN CRC polynomial register (eSCI_LPR)
	31.3.2.12 Control register 3 (eSCI_CR3)

	31.4 Functional description
	31.4.1 Module control
	31.4.2 Frame formats
	31.4.2.1 Data frame formats
	31.4.2.1.1 Inverted data frame formats

	31.4.2.2 Break character formats
	31.4.2.3 Idle character formats

	31.4.3 Baud rate and clock generation
	31.4.3.1 Module clock
	31.4.3.2 Transmitter clock
	31.4.3.3 Receiver clock

	31.4.4 Baud rate tolerance
	31.4.4.1 Faster receiver tolerance
	31.4.4.2 Slower receiver tolerance

	31.4.5 SCI mode
	31.4.5.1 SCI mode configuration
	31.4.5.2 Transmitter
	31.4.5.2.1 Transmitter states and transitions
	31.4.5.2.2 Frame and character transmission
	31.4.5.2.3 CPU controlled SCI data frame transmission
	31.4.5.2.4 DMA controlled SCI data frame transmission
	31.4.5.2.5 Parity generation
	31.4.5.2.6 Preamble transmission
	31.4.5.2.7 Break character transmission

	31.4.5.3 Receiver
	31.4.5.3.1 Receiver states and transitions
	31.4.5.3.2 Receiver input mode selection
	31.4.5.3.3 Dual wire mode
	31.4.5.3.4 Single wire mode
	31.4.5.3.5 Loop mode
	31.4.5.3.6 Frame and character reception
	31.4.5.3.7 Break character detection
	31.4.5.3.8 Idle character detection
	31.4.5.3.9 CPU controlled SCI data frame reception
	31.4.5.3.10 DMA controlled SCI data frames reception
	31.4.5.3.11 Receiver overrun
	31.4.5.3.12 Wake-up frame reception
	31.4.5.3.13 Bit sampling
	31.4.5.3.14 Bit synchronization
	31.4.5.3.15 Start Bit Sampling
	Start bit qualification
	Start bit verification

	31.4.5.3.16 Data bit sampling
	31.4.5.3.17 Stop bit verification
	31.4.5.3.18 Parity checking

	31.4.5.4 Reception error reporting
	31.4.5.5 Multiprocessor communication
	31.4.5.5.1 Idle-Line wake up
	31.4.5.5.2 Address-Mark wake up

	31.4.6 LIN mode
	31.4.6.1 LIN mode configuration
	31.4.6.2 LIN frame formats
	31.4.6.2.1 LIN byte field reception
	31.4.6.2.2 Standard LIN frames
	31.4.6.2.3 CRC Enhanced LIN frames

	31.4.6.3 LIN TX frame generation
	31.4.6.3.1 CPU controlled LIN TX frame generation
	31.4.6.3.2 DMA Controlled LIN TX frame generation

	31.4.6.4 LIN RX frame generation
	31.4.6.4.1 CPU Controlled LIN RX frames generation
	31.4.6.4.2 DMA Controlled LIN RX frames generation

	31.4.6.5 LIN error reporting
	31.4.6.5.1 Physical bus error detection
	31.4.6.5.2 Unrequested activity detection
	31.4.6.5.3 Standard bit error detection
	31.4.6.5.4 Fast bit error detection
	31.4.6.5.5 Slave-not-responding-error detection
	31.4.6.5.6 Checksum error detection
	31.4.6.5.7 CRC error detection
	31.4.6.5.8 Overflow detection

	31.4.6.6 LIN wake up
	31.4.6.6.1 LIN Wake-Up Request Generation
	31.4.6.6.2 LIN wake-up request detection

	31.4.6.7 LIN protocol engine stop and reset

	31.4.7 Interrupts
	31.4.7.1 Interrupt flags and enables
	31.4.7.2 Interrupt request generation

	31.5 Application Information
	31.5.1 SCI data frames separated by preamble

	Chapter 32 FlexCAN Module
	32.1 Information specific to this device
	32.1.1 Device-specific features

	32.2 Introduction
	32.2.1 Overview
	32.2.2 FlexCAN module features
	32.2.3 Modes of operation

	32.3 External signal description
	32.3.1 Overview
	32.3.2 Signal descriptions
	32.3.2.1 CAN RX
	32.3.2.2 CAN TX

	32.4 Memory map/Register definition
	32.4.1 FlexCAN memory mapping
	32.4.2 Message buffer architecture
	32.4.3 Message buffer structure
	32.4.4 Rx FIFO structure
	32.4.5 Register descriptions
	32.4.5.1 Module Configuration Register (MCR)
	32.4.5.2 Control Register (CR)
	32.4.5.3 Free running timer (TIMER)
	32.4.5.4 Rx Global Mask (RXGMASK)
	32.4.5.5 Rx 14 Mask (RX14MASK)
	32.4.5.6 Rx 15 Mask (RX15MASK)
	32.4.5.7 Error Counter Register (ECR)
	32.4.5.8 Error and Status Register (ESR)
	32.4.5.9 Interrupt Masks 2 Register (IMRH)
	32.4.5.10 Interrupt Masks 1 Register (IMRL)
	32.4.5.11 Interrupt Flags 2 Register (IFRH)
	32.4.5.12 Interrupt Flags 1 Register (IFRL)
	32.4.5.13 Rx Individual Mask Registers (RXIMR0-RXIMR63)

	32.5 Functional description
	32.5.1 Overview
	32.5.2 Transmit process
	32.5.3 Arbitration process
	32.5.4 Receive process
	32.5.5 Matching process
	32.5.6 Data coherence
	32.5.6.1 Transmission abort mechanism
	32.5.6.2 Message buffer deactivation
	32.5.6.3 Message buffer lock mechanism

	32.5.7 Rx FIFO
	32.5.7.1 Precautions when using Global Mask and Individual Mask registers

	32.5.8 CAN protocol related features
	32.5.8.1 Remote frames
	32.5.8.2 Overload frames
	32.5.8.3 Time stamp
	32.5.8.4 Protocol timing
	32.5.8.5 Arbitration and matching timing

	32.5.9 Modes of operation details
	32.5.9.1 Freeze Mode
	32.5.9.2 Module Disable Mode
	32.5.9.3 Stop Mode

	32.5.10 Interrupts
	32.5.11 Bus interface

	32.6 Initialization/Application information
	32.6.1 FlexCAN initialization sequence
	32.6.2 FlexCAN addressing and RAM size configurations

	Chapter 33 FlexRay Communication Controller (FlexRay)
	33.1 Introduction
	33.1.1 Reference
	33.1.2 Glossary
	33.1.3 Color coding
	33.1.4 Overview
	33.1.5 Features
	33.1.6 Modes of operation
	33.1.6.1 Disabled mode
	33.1.6.1.1 Leave Disabled mode

	33.1.6.2 Normal mode
	33.1.6.2.1 Enter Normal mode

	33.2 External signal description
	33.2.1 Detailed signal descriptions
	33.2.1.1 FR_A_RX - Receive Data Channel A
	33.2.1.2 FR_A_TX - Transmit Data Channel A
	33.2.1.3 FR_A_TX_EN - Transmit Enable Channel A
	33.2.1.4 FR_B_RX - Receive Data Channel B
	33.2.1.5 FR_B_TX - Transmit Data Channel B
	33.2.1.6 FR_B_TX_EN - Transmit Enable Channel B
	33.2.1.7 FR_DBG[3], FR_DBG[2], FR_DBG[1], FR_DBG[0] - Strobe Signals

	33.3 Controller host interface clocking
	33.4 Protocol engine clocking
	33.4.1 Oscillator clocking
	33.4.2 PLL clocking

	33.5 Memory map and register description
	33.5.1 Memory map
	33.5.2 Register descriptions
	33.5.2.1 Register reset
	33.5.2.2 Register write access
	33.5.2.2.1 Register write access restriction
	33.5.2.2.2 Register write access requirements
	33.5.2.2.3 Internal register access

	33.5.2.3 Module Version Register (FR_MVR)
	33.5.2.4 Module Configuration Register (FR_MCR)
	33.5.2.5 System Memory Base Address Register (FR_SYMBADR)
	33.5.2.6 Strobe Signal Control Register (FR_STBSCR)
	33.5.2.7 Message Buffer Data Size Register (FR_MBDSR)
	33.5.2.8 Message Buffer Segment Size and Utilization Register (FR_MBSSUTR)
	33.5.2.9 PE DRAM Access Register (FR_PEDRAR)
	33.5.2.10 PE DRAM Data Register (FR_PEDRDR)
	33.5.2.11 Protocol Operation Control Register (FR_POCR)
	33.5.2.12 Global Interrupt Flag and Enable Register (FR_GIFER)
	33.5.2.13 Protocol Interrupt Flag Register 0 (FR_PIFR0)
	33.5.2.14 Protocol Interrupt Flag Register 1 (FR_PIFR1)
	33.5.2.15 Protocol Interrupt Enable Register 0 (FR_PIER0)
	33.5.2.16 Protocol Interrupt Enable Register 1 (FR_PIER1)
	33.5.2.17 CHI Error Flag Register (FR_CHIERFR)
	33.5.2.18 Message Buffer Interrupt Vector Register (FR_MBIVEC)
	33.5.2.19 Channel A Status Error Counter Register (FR_CASERCR)
	33.5.2.20 Channel B Status Error Counter Register (FR_CBSERCR)
	33.5.2.21 Protocol Status Register 0 (FR_PSR0)
	33.5.2.22 Protocol Status Register 1 (FR_PSR1)
	33.5.2.23 Protocol Status Register 2 (FR_PSR2)
	33.5.2.24 Protocol Status Register 3 (FR_PSR3)
	33.5.2.25 Macrotick Counter Register (FR_MTCTR)
	33.5.2.26 Cycle Counter Register (FR_CYCTR)
	33.5.2.27 Slot Counter Channel A Register (FR_SLTCTAR)
	33.5.2.28 Slot Counter Channel B Register (FR_SLTCTBR)
	33.5.2.29 Rate Correction Value Register (FR_RTCORVR)
	33.5.2.30 Offset Correction Value Register (FR_OFCORVR)
	33.5.2.31 Combined Interrupt Flag Register (FR_CIFR)
	33.5.2.32 System Memory Access Time-Out Register (FR_SYMATOR)
	33.5.2.33 Sync Frame Counter Register (FR_SFCNTR)
	33.5.2.34 Sync Frame Table Offset Register (FR_SFTOR)
	33.5.2.35 Sync Frame Table Configuration, Control, Status Register (FR_SFTCCSR)
	33.5.2.36 Sync Frame ID Rejection Filter Register (FR_SFIDRFR)
	33.5.2.37 Sync Frame ID Acceptance Filter Value Register (FR_SFIDAFVR)
	33.5.2.38 Sync Frame ID Acceptance Filter Mask Register (FR_SFIDAFMR)
	33.5.2.39 Network Management Vector Registers (FR_NMVR0-FR_NMVR5)
	33.5.2.40 Network Management Vector Length Register (FR_NMVLR)
	33.5.2.41 Timer Configuration and Control Register (FR_TICCR)
	33.5.2.42 Timer 1 Cycle Set Register (FR_TI1CYSR)
	33.5.2.43 Timer 1 Macrotick Offset Register (FR_TI1MTOR)
	33.5.2.44 Timer 2 Configuration Register 0 (FR_TI2CR0)
	33.5.2.45 Timer 2 Configuration Register 1 (FR_TI2CR1)
	33.5.2.46 Slot Status Selection Register (FR_SSSR)
	33.5.2.47 Slot Status Counter Condition Register (FR_SSCCR)
	33.5.2.48 Slot Status Registers (FR_SSR0-FR_SSR7)
	33.5.2.49 Slot Status Counter Registers (FR_SSCR0-FR_SSCR3)
	33.5.2.50 MTS A Configuration Register (FR_MTSACFR)
	33.5.2.51 MTS B Configuration Register (MTSBCFR)
	33.5.2.52 Receive Shadow Buffer Index Register (FR_RSBIR)
	33.5.2.53 Receive FIFO System Memory Base Address Register (FR_RFSYMBADR)
	33.5.2.54 Receive FIFO Periodic Timer Register (FR_RFPTR)
	33.5.2.55 Receive FIFO Watermark and Selection Register (FR_RFWMSR)
	33.5.2.56 Receive FIFO Start Index Register (FR_RFSIR)
	33.5.2.57 Receive FIFO Depth and Size Register (RFDSR)
	33.5.2.58 Receive FIFO A Read Index Register (FR_RFARIR)
	33.5.2.59 Receive FIFO B Read Index Register (FR_RFBRIR)
	33.5.2.60 Receive FIFO Fill Level and POP Count Register (FR_RFFLPCR)
	33.5.2.61 Receive FIFO Message ID Acceptance Filter Value Register (FR_RFMIDAFVR)
	33.5.2.62 Receive FIFO Message ID Acceptance Filter Mask Register (FR_RFMIDAFMR)
	33.5.2.63 Receive FIFO Frame ID Rejection Filter Value Register (FR_RFFIDRFVR)
	33.5.2.64 Receive FIFO Frame ID Rejection Filter Mask Register (FR_RFFIDRFMR)
	33.5.2.65 Receive FIFO Range Filter Configuration Register (FR_RFRFCFR)
	33.5.2.66 Receive FIFO Range Filter Control Register (FR_RFRFCTR)
	33.5.2.67 Last Dynamic Transmit Slot Channel A Register (FR_LDTXSLAR)
	33.5.2.68 Last Dynamic Transmit Slot Channel B Register (FR_LDTXSLBR)
	33.5.2.69 Protocol configuration registers
	33.5.2.69.1 Protocol Configuration Register 0 (FR_PCR0)
	33.5.2.69.2 Protocol Configuration Register 1 (FR_PCR1)
	33.5.2.69.3 Protocol Configuration Register 2 (FR_PCR2)
	33.5.2.69.4 Protocol Configuration Register 3 (FR_PCR3)
	33.5.2.69.5 Protocol Configuration Register 4 (FR_PCR4)
	33.5.2.69.6 Protocol Configuration Register 5 (FR_PCR5)
	33.5.2.69.7 Protocol Configuration Register 6 (FR_PCR6)
	33.5.2.69.8 Protocol Configuration Register 7 (FR_PCR7)
	33.5.2.69.9 Protocol Configuration Register 8 (FR_PCR8)
	33.5.2.69.10 Protocol Configuration Register 9 (FR_PCR9)
	33.5.2.69.11 Protocol Configuration Register 10 (FR_PCR10)
	33.5.2.69.12 Protocol Configuration Register 11 (FR_PCR11)
	33.5.2.69.13 Protocol Configuration Register 12 (FR_PCR12)
	33.5.2.69.14 Protocol Configuration Register 13 (FR_PCR13)
	33.5.2.69.15 Protocol Configuration Register 14 (FR_PCR14)
	33.5.2.69.16 Protocol Configuration Register 15 (FR_PCR15)
	33.5.2.69.17 Protocol Configuration Register 16 (FR_PCR16)
	33.5.2.69.18 Protocol Configuration Register 17 (FR_PCR17)
	33.5.2.69.19 Protocol Configuration Register 18 (FR_PCR18)
	33.5.2.69.20 Protocol Configuration Register 19 (FR_PCR19)
	33.5.2.69.21 Protocol Configuration Register 20 (FR_PCR20)
	33.5.2.69.22 Protocol Configuration Register 21 (FR_PCR21)
	33.5.2.69.23 Protocol Configuration Register 22 (FR_PCR22)
	33.5.2.69.24 Protocol Configuration Register 23 (FR_PCR23)
	33.5.2.69.25 Protocol Configuration Register 24 (FR_PCR24)
	33.5.2.69.26 Protocol Configuration Register 25 (FR_PCR25)
	33.5.2.69.27 Protocol Configuration Register 26 (FR_PCR26)
	33.5.2.69.28 Protocol Configuration Register 27 (FR_PCR27)
	33.5.2.69.29 Protocol Configuration Register 28 (FR_PCR28)
	33.5.2.69.30 Protocol Configuration Register 29 (FR_PCR29)
	33.5.2.69.31 Protocol Configuration Register 30 (FR_PCR30)

	33.5.2.70 ECC Error Interrupt Flag and Enable Register (FR_EEIFER)
	33.5.2.71 ECC Error Report and Injection Control Register (FR_EERICR)
	33.5.2.72 ECC Error Report Address Register (FR_EERAR)
	33.5.2.73 ECC Error Report Data Register (FR_EERDR)
	33.5.2.74 ECC Error Report Code Register (FR_EERCR)
	33.5.2.75 ECC Error Injection Address Register (FR_EEIAR)
	33.5.2.76 ECC Error Injection Data Register (FR_EEIDR)
	33.5.2.77 ECC Error Injection Code Register (FR_EEICR)
	33.5.2.78 Message Buffer Configuration, Control, Status Registers (FR_MBCCSRn)
	33.5.2.79 Message Buffer Cycle Counter Filter Registers (FR_MBCCFRn)
	33.5.2.80 Message Buffer Frame ID Registers (FR_MBFIDRn)
	33.5.2.81 Message Buffer Index Registers (FR_MBIDXRn)

	33.6 Functional description
	33.6.1 Message buffer concept
	33.6.2 Physical message buffer
	33.6.2.1 Message buffer header field
	33.6.2.1.1 Frame header
	33.6.2.1.2 Data field offset
	33.6.2.1.3 Slot status

	33.6.2.2 Message buffer data field

	33.6.3 Message buffer types
	33.6.3.1 Individual message buffers
	33.6.3.1.1 Individual message buffer segments

	33.6.3.2 Receive shadow buffers
	33.6.3.3 Receive FIFO
	33.6.3.4 Message buffer configuration and control data
	33.6.3.4.1 Individual message buffer configuration data
	Common configuration data
	Specific configuration data

	33.6.3.5 Individual message buffer control data
	33.6.3.6 Receive shadow buffer configuration data
	33.6.3.7 Receive FIFO control and configuration data
	33.6.3.7.1 Receive FIFO configuration data
	33.6.3.7.2 Receive FIFO control data
	33.6.3.7.3 Receive FIFO status data

	33.6.4 FlexRay memory area layout
	33.6.4.1 FlexRay memory area layout (FR_MCR[FAM] = 0)
	33.6.4.2 FlexRay memory area layout (FR_MCR[FAM] = 1)
	33.6.4.3 Message buffer header area (FR_MCR[FAM] = 0)
	33.6.4.4 Message buffer header area (FR_MCR[FAM] = 1)
	33.6.4.5 FIFO message buffer header area (FR_MCR[FAM] = 1)
	33.6.4.6 Message buffer data area
	33.6.4.7 Sync frame table area

	33.6.5 Physical message buffer description
	33.6.5.1 Message buffer protection and data consistency
	33.6.5.2 Message buffer header field description
	33.6.5.2.1 Frame header description
	Frame header content
	Frame header access
	Frame header checks

	33.6.5.2.2 Data field offset description
	Data field offset content
	Data field offset access

	33.6.5.2.3 Slot status description
	Receive message buffer and receive FIFO slot status description
	Transmit message buffer slot status description

	33.6.5.3 Message buffer data field description
	33.6.5.3.1 Message buffer data field read access
	33.6.5.3.2 Message buffer data field write access

	33.6.6 Individual message buffer functional description
	33.6.6.1 Individual message buffer configuration
	33.6.6.1.1 Common configuration data
	33.6.6.1.2 Specific configuration data

	33.6.6.2 Single transmit message buffers
	33.6.6.2.1 Access regions
	33.6.6.2.2 Message buffer states
	33.6.6.2.3 Message buffer transitions
	Application transitions
	Module transitions
	Transition priorities

	33.6.6.2.4 Transmit message setup
	33.6.6.2.5 Message transmission
	33.6.6.2.6 Null frame transmission
	33.6.6.2.7 Message buffer status update
	Message buffer status update after complete message transmission
	Message buffer status update after incomplete message transmission
	Message buffer status update after null frame transmission

	33.6.6.3 Receive message buffers
	33.6.6.3.1 Message buffer transitions
	Application transitions
	Module transitions
	Transition priorities

	33.6.6.3.2 Message Reception
	33.6.6.3.3 Message buffer update
	33.6.6.3.4 Received message access
	33.6.6.3.5 Receive shadow buffers concept

	33.6.6.4 Double transmit message buffer
	33.6.6.4.1 Access regions
	33.6.6.4.2 Message buffer states
	33.6.6.4.3 Message buffer transitions
	Application transitions
	Module transitions
	Transition priorities

	33.6.6.4.4 Message preparation
	33.6.6.4.5 Internal message transfer
	Streaming commit mode
	Immediate commit mode

	33.6.6.4.6 Message transmission
	33.6.6.4.7 Message buffer status update

	33.6.7 Individual message buffer search
	33.6.7.1 Message buffer cycle counter filtering
	33.6.7.2 Message buffer channel assignment consistency
	33.6.7.3 Node related slot multiplexing
	33.6.7.4 Message buffer search error

	33.6.8 Individual message buffer reconfiguration
	33.6.8.1 Reconfiguration schemes
	33.6.8.1.1 Basic type not changed (RC1)
	33.6.8.1.2 Buffer type not changed (RC2)
	33.6.8.1.3 Buffer type changed (RC3)

	33.6.9 Receive FIFOs
	33.6.9.1 Overview
	33.6.9.2 FIFO configuration
	33.6.9.2.1 Single system memory base address mode
	33.6.9.2.2 Dual system memory base address mode

	33.6.9.3 FIFO periodic timer
	33.6.9.4 FIFO reception
	33.6.9.5 FIFO almost-full interrupt generation
	33.6.9.6 FIFO overflow error generation
	33.6.9.7 FIFO message access
	33.6.9.8 FIFO update
	33.6.9.8.1 FIFO interrupt flag update

	33.6.9.9 FIFO filtering
	33.6.9.9.1 RX FIFO frame ID value-mask rejection filter
	33.6.9.9.2 RX FIFO frame ID range rejection filter
	33.6.9.9.3 RX FIFO frame ID range acceptance filter
	33.6.9.9.4 RX FIFO message ID acceptance filter

	33.6.10 Channel device modes
	33.6.10.1 Dual channel device mode
	33.6.10.2 Single channel device mode

	33.6.11 External clock synchronization
	33.6.12 Sync frame ID and sync frame deviation tables
	33.6.12.1 Sync frame ID table content
	33.6.12.2 Sync frame deviation table content
	33.6.12.3 Sync frame ID and sync frame deviation table setup
	33.6.12.4 Sync frame ID and sync frame deviation table generation
	33.6.12.5 Sync frame table access
	33.6.12.5.1 Sync frame table locking and unlocking

	33.6.13 MTS generation
	33.6.14 Key slot transmission
	33.6.14.1 Key slot assignment
	33.6.14.2 Key slot transmission in POC:startup
	33.6.14.3 Key slot transmission in POC:normal active

	33.6.15 Sync frame filtering
	33.6.15.1 Sync frame acceptance filtering
	33.6.15.2 Sync frame rejection filtering

	33.6.16 Strobe signal support
	33.6.16.1 Strobe signal assignment
	33.6.16.2 Strobe signal timing

	33.6.17 Timer support
	33.6.17.1 Absolute timer T1
	33.6.17.2 Absolute / Relative timer T2
	33.6.17.2.1 Absolute timer T2
	33.6.17.2.2 Relative timer T2

	33.6.18 Slot status monitoring
	33.6.18.1 Channel status error counter registers
	33.6.18.2 Protocol status registers
	33.6.18.3 Slot status registers
	33.6.18.4 Slot status counter registers
	33.6.18.5 Message buffer slot status field

	33.6.19 System bus access
	33.6.19.1 System bus access failure types
	33.6.19.1.1 System bus illegal address access
	33.6.19.1.2 System bus access timeout

	33.6.19.2 System bus access failure response
	33.6.19.2.1 Continue after system bus access failure
	33.6.19.2.2 Freeze after system bus access failure

	33.6.20 Interrupt support
	33.6.20.1 Individual interrupt sources
	33.6.20.1.1 Message buffer interrupts
	33.6.20.1.2 FIFO interrupts
	33.6.20.1.3 Wakeup interrupt
	33.6.20.1.4 Protocol interrupts
	33.6.20.1.5 CHI interrupts

	33.6.20.2 Combined interrupt sources
	33.6.20.2.1 Receive message buffer interrupt
	33.6.20.2.2 Transmit message buffer interrupt
	33.6.20.2.3 Protocol interrupt
	33.6.20.2.4 CHI interrupt
	33.6.20.2.5 Module interrupt

	33.6.21 Lower bit rate support
	33.6.22 PE data memory (PE DRAM)
	33.6.22.1 PE DRAM read access
	33.6.22.2 PE DRAM write access
	33.6.22.3 PE DRAM write access limitations

	33.6.23 CHI lookup-table memory (CHI LRAM)
	33.6.24 Memory content error detection
	33.6.24.1 Memory error types
	33.6.24.2 Memory error reporting
	33.6.24.2.1 PE DRAM checkbits
	33.6.24.2.2 PE DRAM syndrome
	33.6.24.2.3 CHI LRAM checkbits
	33.6.24.2.4 CHI LRAM syndrome

	33.6.24.3 Memory error response
	33.6.24.3.1 CHI LRAM memory error response after module read
	33.6.24.3.2 CHI LRAM memory error response after application read
	33.6.24.3.3 PE DRAM error response after module read
	33.6.24.3.4 PE DRAM error response after application read in POC:default config state
	33.6.24.3.5 PE DRAM error response after application read out of POC:default config

	33.6.25 Memory error injection
	33.6.25.1 CHI LRAM error injection
	33.6.25.2 PE DRAM error injection

	33.7 Application information
	33.7.1 Module configuration
	33.7.1.1 Configure System Memory Access Time-Out Register (FR_SYMATOR)
	33.7.1.1.1 System bus wait state constraints

	33.7.2 Initialization Sequence
	33.7.2.1 Module Initialization
	33.7.2.2 Protocol Initialization
	33.7.2.3 CHI LRAM initialization
	33.7.2.4 PE DRAM initialization

	33.7.3 CHI LRAM error injection out of POC:default config
	33.7.4 PE DRAM error injection out of POC:default config
	33.7.5 Shut down sequence
	33.7.6 Number of usable message buffers
	33.7.7 Protocol control command execution
	33.7.8 Message buffer search on simple message buffer configuration
	33.7.8.1 Simple message buffer configuration
	33.7.8.2 Behavior in static segment
	33.7.8.3 Behavior in dynamic segment
	33.7.8.3.1 Transmit data not available
	33.7.8.3.2 Transmit data available

	Chapter 34 Periodic Interrupt Timer (PIT)
	34.1 Information specific to this device
	34.1.1 Device-specific features

	34.2 Introduction
	34.2.1 Overview
	34.2.2 Features

	34.3 Signal description
	34.4 Memory map and register description
	34.4.1 Memory map
	34.4.2 Register descriptions
	34.4.2.1 PIT Module Control Register (PITMCR)
	34.4.2.2 Timer Load Value Register n (LDVALn)
	34.4.2.3 Current Timer Value Register n (CVALn)
	34.4.2.4 Timer Control Register n (TCTRLn)
	34.4.2.5 Timer Flag Register n (TFLGn)

	34.5 Functional description
	34.5.1 General
	34.5.1.1 Timers / RTI
	34.5.1.2 Debug mode

	34.5.2 Interrupts

	34.6 Initialization and application information
	34.6.1 Example configuration

	Chapter 35 Power Management Controller (PMC)
	35.1 Introduction
	35.1.1 Block diagram

	35.2 External signal description
	35.2.1 Detailed signal descriptions
	35.2.1.1 VDDREG
	35.2.1.2 VDDEH1
	35.2.1.3 VRC33
	35.2.1.4 VDD
	35.2.1.5 VRCCTL

	35.3 Memory map/register definition
	35.3.1 Module Configuration Register (MCR)
	35.3.2 Trimming Register (TRIMR)
	35.3.3 Status Register (SR)

	35.4 Functional description
	35.4.1 Bandgap
	35.4.2 5 V LVI
	35.4.3 3.3 V internal voltage regulator
	35.4.4 3.3 V LVI
	35.4.5 1.2 V voltage regulator controller
	35.4.6 1.2 V LVI
	35.4.7 Resets and interrupts
	35.4.7.1 Power-on reset
	35.4.7.1.1 Clock control
	35.4.7.1.2 SIU
	Reset controller state machine
	Synchronizers and Reset filter
	SIU_RSR
	SIU_SRCR
	SIU_CCR

	35.4.7.1.3 Flash memory
	35.4.7.1.4 FMPLL
	35.4.7.1.5 NPC
	35.4.7.1.6 JTAGC
	35.4.7.1.7 e200z4
	35.4.7.1.8 Padring
	WKPCFG
	PLLREF

	35.4.7.2 Interrupts

	35.4.8 Soft-Start (for 1.2 V and 3.3 V regulators)
	35.4.9 ADC test mux

	35.5 Electrical characteristics

	Chapter 36 JTAG Controller (JTAGC)
	36.1 Information specific to this device
	36.1.1 Device-specific parameters
	36.1.2 Device identification register parameters
	36.1.3 Auxiliary TAP controller instructions

	36.2 Introduction
	36.2.1 Overview
	36.2.2 Features
	36.2.3 Modes of operation
	36.2.3.1 Reset
	36.2.3.2 IEEE 1149.1-2001 defined test modes
	36.2.3.3 Bypass Mode

	36.3 External signal description
	36.3.1 Overview
	36.3.2 Detailed signal descriptions
	36.3.2.1 TCK-Test Clock Input
	36.3.2.2 TDI-Test Data Input
	36.3.2.3 TDO-Test Data Output
	36.3.2.4 TMS-Test Mode Select
	36.3.2.5 JCOMP-JTAG compliancy

	36.4 Register definition
	36.4.1 Register descriptions
	36.4.1.1 Instruction Register
	36.4.1.2 Bypass Register
	36.4.1.3 Device Identification Register
	36.4.1.4 CENSOR_CTRL Register
	36.4.1.5 Boundary Scan Register

	36.5 Functional description
	36.5.1 JTAGC reset configuration
	36.5.2 IEEE 1149.1-2001 (JTAG) test access port
	36.5.3 TAP controller state machine
	36.5.3.1 Enabling the TAP controller
	36.5.3.2 Selecting an IEEE 1149.1-2001 register

	36.5.4 JTAGC block instructions
	36.5.4.1 IDCODE instruction
	36.5.4.2 SAMPLE/PRELOAD instruction
	36.5.4.3 SAMPLE instruction
	36.5.4.4 EXTEST-external test instruction
	36.5.4.5 HIGHZ instruction
	36.5.4.6 CLAMP instruction
	36.5.4.7 ACCESS_AUX_TAP_x instructions
	36.5.4.8 BYPASS instruction

	36.5.5 Boundary scan

	36.6 Initialization/application information

	Chapter 37 Nexus Port Controller (NPC)
	37.1 Information specific to this device
	37.1.1 Device-specific features
	37.1.2 Parameter values

	37.2 Introduction
	37.2.1 Overview
	37.2.2 Features
	37.2.3 Modes of operation
	37.2.3.1 Reset
	37.2.3.2 Disabled-Port Mode
	37.2.3.3 Full-Port Mode
	37.2.3.4 Reduced-Port Mode

	37.3 External signal description
	37.3.1 Overview
	37.3.2 Detailed signal descriptions
	37.3.2.1 EVTO_B - Event Out
	37.3.2.2 JCOMP - JTAG Compliancy
	37.3.2.3 MDO - Message Data Out
	37.3.2.4 MSEO - Message Start/End Out
	37.3.2.5 TCK - Test Clock Input
	37.3.2.6 TDI - Test Data Input
	37.3.2.7 TDO - Nexus Test Data Output
	37.3.2.8 TMS - Test Mode Select

	37.4 Register definition
	37.4.1 Register descriptions
	37.4.1.1 Bypass Register
	37.4.1.2 Instruction Register
	37.4.1.3 Nexus Device ID Register (DID)
	37.4.1.4 Port Configuration Register (PCR)

	37.5 Functional description
	37.5.1 NPC reset configuration
	37.5.2 Auxiliary output port
	37.5.2.1 Output message protocol
	37.5.2.2 Output messages
	37.5.2.3 Rules of message

	37.5.3 IEEE 1149.1-2001 (JTAG) TAP
	37.5.3.1 Enabling the NPC TAP controller
	37.5.3.2 Retrieving device IDCODE
	37.5.3.3 Loading NEXUS-ENABLE instruction
	37.5.3.4 Selecting a Nexus client register

	37.5.4 Nexus JTAG port sharing
	37.5.5 MCKO and ipg_sync_mcko
	37.5.6 EVTO sharing
	37.5.7 Nexus reset control
	37.5.8 System clock locked indication

	37.6 Initialization/Application information
	37.6.1 Accessing NPC tool-mapped registers

	Chapter 38 Development Trigger Semaphore (DTS)
	38.1 Introduction
	38.2 Overview
	38.3 DTS device connections
	38.3.1 DTS register access

	38.4 Memory map
	38.5 Register descriptions
	38.5.1 DTS Output Enable Register (DTS_ENABLE)
	38.5.2 DTS Startup Register (DTS_STARTUP)
	38.5.3 DTS Semaphore Register (DTS_SEMAPHORE)

	38.6 Example application

	Appendix A Revision history
	A.1 Revisions 1
	A.2 Changes between revisions 1 and 2
	A.3 Changes between revisions 2 and 3
	A.4 Changes between revisions 3 and 4
	A.5 Changes between revisions 4 and 5
	A.6 Changes between revisions 5 and 6

