LB11668MC

Monolithic Digital IC

For Fan Motor

Two-Phase Half-Wave Driver

ON Semiconductor ${ }^{\text {® }}$
http://onsemi.com

Overview

The LB11668MC is a two-phase uni-polar brushless motor driver for fan motor.

Functions

- Two-phase half-wave drive.
- RD (lock detection) outputs incorporated.
- FG (rotation detection) outputs incorporated.
- Thermal shutdown circuit incorporated.
- Lock protection and automatic return function incorporated.
- Output protection zener diode incorporated.
- Hall input amplifier incorporated.

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum inflow current	I_{N} max		100	mA
Output current	Iout ave		400	mA
	Iout peak		800	mA
Output withstand voltage	$V_{\text {OUT }}$ max		Internal	V
RD output current	$\mathrm{I}_{\text {RD }}$ max		10	mA
RD output withstand voltage	V_{RD} max		28	V
Allowable dissipation	Pd max	Mounted on a board *	750	mW
Operating temperature	Topr		-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

* Specified board : $114.3 \mathrm{~mm} \times 76.1 \mathrm{~mm} \times 1.5 \mathrm{~mm}$, glass epoxy board.

Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Inflow current range	$\mathrm{I}_{\mathrm{IN} 1}$		5 to 25	mA
Common-mode input voltage range	VCOM		0.2 to $\mathrm{V}_{\mathrm{IN}}-2.3$	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R} 1=1 \mathrm{k} \Omega$, unless otherwise specified.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
$\mathrm{V}_{\text {IN }}$ voltage	$\mathrm{V}_{\text {IN }}$	$\mathrm{I}_{\mathrm{IN}}=6 \mathrm{~mA}$	6.9	7.2	7.6	V
CT capacitor charging current	${ }^{\text {I CT }}{ }^{1}$	$\mathrm{CT}=0 \mathrm{~V}$	0.8	1.2	2.0	$\mu \mathrm{A}$
Capacitor discharging current	${ }^{1} \mathrm{CT}{ }^{2}$	$\mathrm{CT}=6.0 \mathrm{~V}$	0.12	0.24	0.4	$\mu \mathrm{A}$
Capacitor charging/ discharging current ratio	R_{CT}	$\mathrm{R}_{\mathrm{CT}}=\mathrm{I}_{\mathrm{CT}}{ }^{1 / \mathrm{I}} \mathrm{CT}^{2}$	4.0	5.0	7.0	
CT charging voltage	$\mathrm{V}_{\mathrm{CT}}{ }^{\mathrm{H}}$	$\mathrm{V}_{\text {CT }} / \mathrm{V}_{\text {IN }}$	66	70	74	\%
CT discharging voltage	$\mathrm{V}_{\mathrm{CT}} \mathrm{L}$	$\mathrm{V}_{\mathrm{CT}} / \mathrm{V}_{\text {IN }}$	36	40	44	\%
Output limit withstand voltage	$\mathrm{V}_{\text {OLM }}$	$\mathrm{I}^{\mathrm{O}}=10 \mathrm{~mA}$	50	53	56	V
Output saturation voltage	$\mathrm{V}_{\mathrm{O}} \mathrm{L} 1$	$\mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}$		0.85	1.1	V
Hall input sensitivity	V_{HN}	Including offset and hysteresis		8	18	mV
RD output saturation voltage	V_{RD}	$\mathrm{I}_{\mathrm{RD}}=5 \mathrm{~mA}$		0.2	0.5	V
RD output leak current	${ }^{\text {IRD }}$	$\mathrm{V}_{\mathrm{RD}}=14 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
Thermal protection function operating temperature	VTH	Design target value *	150	180	210	${ }^{\circ} \mathrm{C}$

* "Design" is a design target and is not measured.

Package Dimensions

unit : mm (typ)
3426A

Pd max - Ta

LB11668MC

Pin Assignment

Block Diagram

Truth table

IN^{-}	IN^{+}	CT	OUT1	OUT2	RD	Mode
H	L	L	L	H	L	Rotation
	L			H		
-	-	H	OFF	OFF	H	Lock protection

$\mathrm{V}_{\mathrm{IN}} 1$

${ }^{\text {I CT }}{ }^{1}$

${ }^{\mathrm{I}} \mathrm{CT}^{2}$

$\mathrm{V}_{\mathrm{CT}} \mathrm{H}, \mathrm{V}_{\mathrm{CT}} \mathrm{L}$

$\mathrm{V}_{\mathrm{OLM}}$

VoL1

V_{HN}

$V_{R D}$

VRL

Application Circuit Example 24V power supply

Notice

- Take care not to cause interference due to wiring of IN^{-}and OUT1.
- In an application of connecting the CT pin to GND, lock protection and restart function are not effective.
- With reverse power - GND connection in the above application figure, the current restricted by the coil resistance flows from GND \rightarrow OUT \rightarrow coil \rightarrow power supply. IC breakage does not occur if the current value is 500 mA or less. If necessary, insert Di between V_{CC} and coil. as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

