

Dual Low Drop Voltage Regulator

TLE 4476

Features

- Output 1: 350 mA; 3.3 V ± 4%
- Output 2: 430 mA; 5.0 V \pm 4%
- Enable input for output 2
- Low quiescent current in OFF state
- Wide operation range: up to 42 V
- Reverse battery protection: up to 42 V
- Output protected against short circuit
- Wide temperature range: -40 °C to 170 °C
- Overvoltage protection up to 65 V (< 400 ms)
- Overtemperature protection
- Overload protection
- Green Product (RoHS compliant)
- AEC Qualified

Functional Description

The TLE 4476 is a monolithic integrated voltage regulator providing two output voltages, Q1 is a 3.3 V output for loads up to 350 mA and Q2 is a 5 V output providing 430 mA. The device is available in the PG-TO252-5-11 (D-Pak) package. Output 2 can be switched ON/OFF via the Enable input EN.

The TLE 4476 is designed to supply microprocessor systems under the severe conditions of automotive applications and is therefore equipped with additional protection functions against overload, short circuit and overtemperature.

Туре	Package				
TLE 4476 D	PG-TO252-5-11				

Figure 1	Pin Configuration (top vi	iew)
----------	---------------------------	------

Table 1	Table 1 Pin Definitions and Functions					
Pin No.	Symbol	Function				
1	I	Input voltage; block to GND directly at the IC with a ceramic capacitor				
2	Q1	3.3 V output; block to GND with a capacitor $C_{Q1} \ge 10 \ \mu\text{F}$, ESR < 2 Ω at 10 kHz				
3	GND	Ground				
4	Q2	5.0 V output; block to GND with a capacitor $C_{Q2} \ge 10 \ \mu$ F, ESR < 3 Ω at 10 kHz				
5	EN	Enable input; to switch ON and OFF Q2, ON with high signal				

f:__:+:

Figure 2 Block Diagram

Table 2Absolute Maximum Ratings

-40 °C < *T*_j < 170 °C

Parameter	Symbol	Limit Values		Unit	Remarks	
		Min. Max.				
Input I			-			
Voltage	V_1	-42	42	V	-	
		_	65	V	<i>t</i> < 400 ms	
Current	I_1	-	-	mA	Internally limited	
3.3 V Output Q1	·					
Voltage	V_{Q1}	-1	36	V	-	
Current	I _{Q1}	_	_	mA	Internally limited	
5.5 V Output Q2			-			
Voltage	V_{Q2}	-1	36	V	-	
Current	I _{Q2}	-	-	mA	Internally limited	
Inhibit EN						
Voltage	$V_{\sf EN}$	-42	42	V	_	
-		-	65	V	<i>t</i> < 400 ms	
Current	I _{EN}	-	_	mA	Internally limited	
Temperatures		•			•	
Junction temperature	Tj	-50	170	°C	-	
Storage temperature	T _{stg}	-50	150	°C	_	

Notes

1. ESD-Protection according to MIL Std. 883: $\pm 2 kV$.

2. Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 3Operating Range

Parameter	Symbol	Symbol Limit Values			Remarks
		Min.	Max.		
Output 1 input voltage	V _{I1}	4.5	42	V	1)
Output 2 input voltage	V _{I1}	5.7	42	V	2)
3.3 V regulator output current	I _{O1}	0	350	mA	-
5 V regulator output current	I _{O2}	0	430	mA	-
Junction temperature	Tj	-40	170	°C	3)
Thermal Resistances					·
Junction case	R _{th,j-case}	-	3	K/W	-
Junction ambient	R _{th,j-a}	-	80	K/W	4)

1) Input voltage $V_{\rm I}$ required for operation of output Q1

2) Input voltage $V_{\rm I}$ required for operation of output Q2

3) The overtemperature protection is set to > 170 °C. The voltage regulator may not be operated continuously at 170 °C as device reliability will be reduced to 500 h statistic lifetime.

4) Worst case regarding peak temperature, zero airflow; mounted on a PCB 80 \times 80 \times 1.5 mm³, 35 μ m Cu, 5 μ m Sn, heat sink area 300 mm².

Note: In the operating range the functions given in the circuit description are fulfilled.

Table 4 Electrical Characteristics

 $V_{\rm I}$ = 13.5 V; $V_{\rm EN}$ > $V_{\rm ENH};$ -40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified.

Parameter	Symbol	Limit Values			Unit	Test Condition	
		Min.	Тур.	Max.			
3.3 V Output Q1				1	4		
Output voltage	V_{Q1}	3.17	3.3	3.43	V	1 mA < I _{Q1} < 250 mA	
Output current limitation	I _{Q1}	350	_	900	mA	1)	
Load regulation	ΔV_{Q1}	_	-	30	mV	1 mA < I _{Q1} < 250 mA	
Line regulation	ΔV_{Q1}	-	-	20	mV	I _{Q1} = 5 mA; 6 V < V ₁ < 28 V	
Power Supply Ripple Rejection	PSRR	-	60	-	dB	20 Hz < $f_{\rm r}$ < 20 kHz ² ; $V_{\rm r}$ = 5 Vpp	
Output capacitor	C_{Q1}	10	-	-	μF	-	
ESR of output capacitor	R _{ESRQ1}	_	-	2	Ω	at 10 kHz	
5.0 V Output Q2						·	
Output voltage	V_{Q2}	4.8	5.0	5.2	V	1 mA < I _{Q2} < 330 mA	
Output current limitation	I _{Q2}	430	-	900	mA	1)	
Drop voltage; $V_{\text{DRQ2}} = V_1 - V_{\text{Q2}}$	V _{DRQ2}	-	0.3	0.7	V	$I_{\rm Q2} = 330 \ \rm mA^{1)}$	
Load regulation	$\Delta V_{\sf Q2}$	-	-	50	mV	5 mA < I _{Q2} < 330 mA	
Line regulation	$\Delta V_{\rm Q2}$	-	-	50	mV	$I_{Q2} = 5 \text{ mA};$ 6 V < V_1 < 28 V	
Power Supply Ripple Rejection	PSRR	-	60	-	dB	20 Hz $< f_r <$ 20 kHz ²); $V_r =$ 5 Vpp	
Output capacitor	C _{Q2}	10	_	_	μF	-	
ESR of output capacitor	R _{ESRQ2}	_	_	3	Ω	at 10 kHz	

Table 4Electrical Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; $V_{\rm EN}$ > $V_{\rm ENH}$; -40 °C < $T_{\rm j}$ < 150 °C; unless otherwise specified.

Parameter Symbol Limit		nit Val	it Values		Test Condition	
		Min.	Тур.	Max.	1	
Current Consumption		•				
Quiescent current; $I_q = I_l - I_{Q1}$	Iq	-	100	150	μA	$T_{\rm j}$ < 85 °C; $V_{\rm EN}$ = 0 V
Quiescent current; $I_q = I_1 - I_{Q1} - I_{Q2}$	Iq	-	300	400	μA	$I_{Q1} = I_{Q2} = 300 \ \mu\text{A};$ $T_j < 85 \ ^{\circ}\text{C}$
Quiescent current; $I_q = I_1 - I_{Q1} - I_{Q2}$	Iq	-	2.5	10	mA	I _{Q1} = 150 mA; I _{Q2} = 300 μA
Quiescent current; $I_q = I_1 - I_{Q2} - I_{Q1}$	Iq	-	5	13	mA	$I_{Q1} = 300 \ \mu\text{A};$ $I_{Q2} = 250 \ \text{mA}$
Enable Input EN						
EN ON voltage	$V_{\rm EN ON}$	1.8	-	-	V	$V_{\rm Q2}{\rm ON}$
EN OFF voltage	$V_{\rm ENOFF}$	-	-	1.0	V	V _{Q2} OFF
Input current	V_{EN}	_	20	30	μA	V _{EN} = 13 V

1) Measured when the output voltage V_{Q} has dropped 100 mV from the nominal value.

2) Guaranteed by design.

Application Information

Figure 3 Application Circuit

Input, Output

The input capacitor $C_{\rm I}$ is necessary for compensating line influences. Using a resistor of approx. 1 Ω in series with $C_{\rm I}$, the LC circuit of input inductivity and input capacitance can be damped. To stabilize the regulation circuits of the stand-by and main regulator, output capacitors $C_{\rm Q1}$ and $C_{\rm Q2}$ are necessary. Stability is guaranteed at values $C_{\rm Q1} \ge 10 \ \mu\text{F}$ (ESR $\le 2 \Omega$) and $C_{\rm Q2} \ge 10 \ \mu\text{F}$ (ESR $\le 3 \Omega$) within the operating temperature range.

Enable

Using the enable feature the output 2 (5 V output) can be switched ON or OFF. The enable input can be connected directly to terminal 30 (battery line) or 15 (ignition line). It is also possible to control the output 2 via the microcontroller.

Typical Performance Characteristics

Output Voltage V_{Q2} versus Temperature T_i

Output Current I_{Q2} versus Input Voltage V_1 Enable ON

Output Voltage V_{Q1} versus Temperature T_i

Drop Voltage $V_{\rm DR1}$ versus Output Current $I_{\rm Q1}$

Current Consumption I_q versus Input Voltage V_l

Drop Voltage V_{DR2} versus Output Current I_{Q2} EN ON

Current Consumption I_q versus Input Voltage V_l

Current Consumption I_{a} versus Output Current \vec{I}_{Q1}

Output Voltage V_{Q1} versus Input Voltage V₁

Output Voltage $V_{\rm Q2}$ versus Input Voltage V_1

200

300 mA 400

- I_{02}

Package Outlines

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

Revision History

Version	Date	Changes
Rev. 2.5	2007-03-20	Initial version of RoHS-compliant derivate of TLE 4476 Page 1: AEC certified statement added Page 1 and Page 12: RoHS compliance statement and Green product feature added Page 1 and Page 12: Package changed to RoHS compliant version Legal Disclaimer updated

Edition 2007-03-20 Published by Infineon Technologies AG 81726 Munich, Germany © 2007 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.