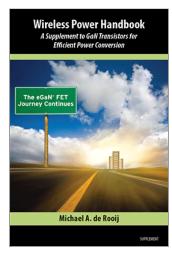


Wireless Power Handbook

A Supplement to GaN Transistors for Efficient Power Conversion


Michael A. de Rooij

Since Nikola Tesla first experimented with wireless power, there has been a quest to "cut the cord" of electrical power – and go wireless! Now, over 100 years later, we finally have the technological capability to achieve Tesla's vision.

Highly-resonant wireless power transfer, based on the generation of magnetic fields, has proven to be a viable path. Magnetic fields offer the necessary requisites – ease of use, robustness and, most importantly are considered safe.

A major challenge for implementing wireless power is the design of the amplifier. From experimental results presented in this book, it is clear that the ZVS Class D topology, fitted with eGaN power transistors provides the best solution. With their low capacitance, zero reverse recovery, and low on-resistance, eGaN FETs ensure low operating losses leading to higher amplifier efficiency and help keep EMI generation low. These devices have a very small footprint and low profile, which is important for mobile and medical applications.

Understanding the many challenges to designing an amplifier for wireless power, such as radiated EMI, multi-mode systems and ways to improve efficiency is the aim of this handbook.

Buy Now

About EPC

Press Releases
Careers

Terms and Conditions of Sale Quality and Environmental Quality Statement Quality Certificates RoHS Statement REACH Statement

REACH Statement
Conflict Mineral Statement

Contact

Markets

DC-DC Conversion Envelope Tracking Wireless Power Radiation Hardened LiDAR Class D Audio Power Inverter

Products

eGaN FETS
Ultra High Frequency
Gen4 eGaN FETS
Enhancement Mode Monolithic
Half-Bridge
eGaN Drivers and Controllers
Demo Boards
DrGaNPLUS

Design Support

Publications

Assembly Basics
Device Models
Demo Boards
Training Videos
How to GaN
eGaN FET Reliability
Application Notes
White Papers
Technical Publications
Articles
University Research
Presentations

Applications

DC-DC Conversion
Isolated DC-DC Brick Converters
Point of Load Converters
Envelope Tracking
Wireless Power
Radiation Hardened
LiDAR
Class D Audio
Power Inverter

FAQ

eGaN Technology
eGaN FET Characteristics
Assembling eGaN FETs
Assembling EPC Lead Free eGaN
FETs
eGaN Devices in Circuits
eGaN Reliability
Lead Free / RoHS

Download EPC Product Selector Guide

Buy eGaN® FETs

Sales Representatives

Copyright © 2015 Efficient Power Conversion Corporation. All rights reserved. privacy statement | terms of use eGaN is a registered trademark of Efficient Power Conversion Corporation, Inc.