

PRODUCTION DATASHEET

DESCRIPTION

The PD70100 and PD70200 devices are part of Microsemi's™ series of Power over Ethernet (PoE) Powered Devices chips (PD). The PD70100 and PD70200 devices transmit integrated power and analog data in a single 12-pin package. They are used in Powered Devices (PD), thus enabling next generation network devices to share power and data over the same cable.

Microsemi's new PD family offers a 45 plug solution to any PD application reconnect compliant with IEEE802.3af and PD702 IEEE802.3at standards and 4-pairs supports extra power applications. The IC including family's components can be used in detection both indoor and outdoor applications.

The device family meets all PD-side-standards such as:

- Detection
- Classification

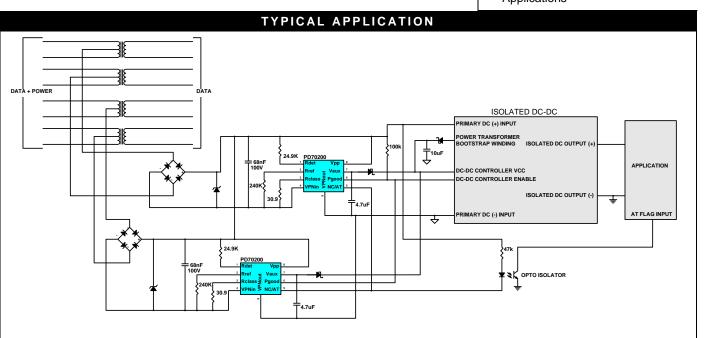
 Integrated isolation switch with inrush current limiter, and overcurrent protection.

 Two-events classification recognition and AT flag generation (PD70200 only).

In addition, the devices have a discharge mechanism for a DC/DC input capacitor, ensuring quick redetection capability in case the RJ-45 plug is disconnected and reconnected within a short time span.

PD70200 IC design specifically supports IEEE802.3at standard, including two-events classification detection that enables the PD to distinguish whether the connected power source equipment (PSE) is IEEE802.3at or IEEE802.3af based.

The PD70100/PD70200 ICs are designed to support 4-pair applications for PDs that require higher power.


KEY FEATURES

- Designed to Support IEEE802.3af and IEEE802.3at standards
- PD Detection & Programmable Classification Signature
- Two-events Classification Flag
- Signature Resistor Disconnection after Detection
- Integrated 0.6Ω Isolating Switch and Inrush Current Limiter.
- 4-pairs support with a single IC for up to 48W
- 4-pairs support with two ICs for up to 96W
- Less than 10µA Offset Current during Detection
- Single DC Voltage Input (37V-57V)
- Wide Operating Temperature Range: -40° to +85°C
- On-chip Thermal Protection
- 12-pin 3x4mm Package
- RoHS Compliant

APPLICATIONS

- Power over Ethernet Powered Devices
- IEEE802.3af & at 10/100/1000 BASE-T
- 4-pair Extra Power Applications
- Indoor as Well as Outdoor Applications

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

PRODUCTION DATASHEET

ABSOLUTE MAXIMUM RATINGS **PACKAGE PIN OUT** Port Negative Out Voltage (VPN_{OUT}).....--0.3V to 74 V_{DC} R_{DET} R_{DET}.....-0.3V to 74 V_{DC} 12 V_{PP} R_{CLASS} , R_{REF}-0.3V to 5 V_{DC} **Exposed** VAUX VAUX-0.3V to 30 V_{DC} Thermal PGOOD, AT_FLAG (with respect to VPN_{OUT})......-0.3V to 74 V_{DC} PGOOD $\mathsf{R}_{\mathsf{CLASS}}$ Pad Electrically ESD Protection*.....±1.5kV HBM NC/ VPNIN connect to AT_FLAG **VPN**_{IN} VPN_{IN} VPN_{OUT} Operating Ambient Temperature-40°C to 85°C Storage Temperature Range.....-65°C to 150°C 6 NC **VPN**_{OUT} Peak Package Solder Reflow Temp (40 seconds max exposure)260°C DFN PACKAGE (Top View) *All pins except pin 11 (VAUX). Pin 11 ESD Protection ±150V HBM. Notes: Exceeding these ratings could cause damage to the device. All voltages are with respect to VPN_{IN}. Currents are positive into, negative out of specified terminal. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" are not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability. XXXX **MSC** DEN PACKAGE MARKINGS Denote Date Code and Lot Identification PD70100 IS MARKED 70100 RoHS / Pb-free 100% matte Tin Pin Finish

	PACKAGE ORDER INFO	THERMAL DATA		
T (0C)	12 Pins DFN 4x3	40 ° C/W THERMAL RESISTANCE-JUNCTION TO AMBIENT		
T _A (°C)	RoHS Compliant / Pb-free	4 ° C/W THERMAL RESISTANCE-JUNCTION TO CASE		
-40 to 85	PD70100ILD (IEEE802.3af)	Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$. The θ_{JA} numbers are guidelines for the thermal performance of		
Note: Availa	PD70200ILD (IEEE802.3at) able in Tape & Reel. Append the letters "TR" to the part number. (i.e. PD70200ILD-TR)	the device/pc-board system. All of the above assume no ambient airflow.		

PRODUCTION DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature -40°C \leq T_{AMB} \leq 85°C. Production tests are done at 25°C T_A.

Parameter	Symbol	Test Conditions / Comment	Min	Тур	Max	Units	
Power Supply							
Input Voltage	V _{PP}	Supports Full IEEE802.3 af/at functionality	0	55	57	V	
Power Supply Current at Operating Mode		$V_{PP} = 55V$		1	3	mA	
DETECTION MODE							
Detection is connected. At this voltage range R _{DET} must be on.	DET _{RANGE}	Measured between V _{PP} and VPN _{IN}	1.3		10.1	V	
Detection Switch ON Resistance PD-detection	R _{DET} -on	$2.5V \le (\Delta V_{PP} \text{ to } VPN_{IN}) \le 10.1V$ Measured between R_{DET} and VPN_{IN}			50	Ω	
Detection is Disconnected	R _{DET} -off	Measured between V _{PP} and VPN _{IN}	10.1		12.8	V	
Detection Switch OFF Resistance	R _{DET} -off	$12.8V \le (\Delta V_{PP} \text{ to } VPN_{IN}) \le$ 57.0V Measured between R _{DET} and VPN _{IN}	2.0			ΜΩ	
Innuit Officet Comment	I _{OFFSET}	1.1V to 10.1V -40°C ≤ T _J ≤ 85°C			16	μA	
Input Offset Current	I _{OFFSET}	1.1V to 10.1V -40°C≤ T _J ≤ 55°C			10	μΑ	
CLASSIFICATION MODE							
Classification Current Source, Turn ON Threshold Range Measured at V _{PP}	V _{TH} -low-on	Turn on for any I _{CLASS} while V _{PP} increases	11.4		13.7	V	
Classification Current Source, Turn OFF Threshold Range Measured at V _{PP}	V _{TH} -high-off	Turn off while V _{PP} increases	20.9		23.9	٧	
Current Limit Threshold	I _{CLASS} -LIM		50.0	68	80.0	mA	
Input Current I _{PP} When Classification Function is Disabled	I _{CLASS} -DIS	Class 0 R _{CLASS} =Disconnect			4.0	mA	
		Class 1 R_{CLASS} = 133 Ω ±1%	9.0	10.5	12.0	mA	
Input Current I _{PP} When Classification	I FNI	Class 2 R _{CLASS} = 69.8 Ω±1%	17.0	18.5	20.0	mA	
Function is Enabled	I _{CLASS} -EN	Class 3 R _{CLASS} = 45.3 Ω±1%	26.0	28.0	30.0	mA	
		Class 4 R _{CLASS} = 30.9 Ω±1%	36.0	40.0	44.0	mA	
MARK							
Mark, Working Voltage Range	V _{MARK}	When voltage decreases Measured between V _{PP} to VPN _{IN}	4.9		10.1	V	
Mark Current	I _{MARK}	Chip current	0.25		4	mA	
ISOLATION SWITCH							

Rev. 2.0

PRODUCTION DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature -40°C \leq T_{AMB} \leq 85°C. Production tests are done at 25°C T_A.

Parameter	Symbol	Test Conditions / Comment	Min	Тур	Max	Units
Isolation Switch MOSFET Switches from Off to I _{LIM-LOW}	V _{SW-START}		36		42	V
Isolation Switch MOSFET Switched Off	V_{SW-OFF}		30.5		34.5	V
Startup Current Limit, I _{LIM}	I _{LIM-LOW}		105	240	325	mA
VPN _{IN} to VPN _{OUT} Threshold Voltage for I _{LIM - LOW} to I _{LIM-HIGH} Switchover	V _{DIFF}	When VPN_{IN} to $VPN_{OUT} \le V_{DIFF}$, Isolating switch switches over from $I_{LIM-LOW}$ to $I_{LIM-HIGH}$.			0.7	V
Over Current Protection Current Limit	OCP		1500	1800	2000	mA
Continuous Operation Load Current	I _{LOAD}	Isolating switch at I _{LIM-HIGH} PD70100 PD70200		350 600	450 1123	mA mA
Continuous Operation Total RDS _{ON}	SW-RDS _{ON}	Total resistance between VPN _{IN} and VPN _{OUT} Isolating switch at I _{LIM-HIGH}			0.6	Ω
DC/DC CAPACITOR DISCHARGER						
DC/DC Input Capacitance		For reference only Guaranteed by design (not tested on production)		220		μF
Discharge Current.		$7.0V \le VPP \text{ to } VPN_{OUT} \le 30V$	22.8	32	50	mA
Full Discharge Time for Full Discharge of Input Capacitance	T _{DSC}	V _{PP} < UVLO threshold Guaranteed by design (not tested in production)			500	ms
AT_FLAG						
Output Low Voltage		$I_{OL} = 0.75 \text{mA}$ $I_{OL} \text{ MAX} = 5 \text{mA}$			0.4 2.5	V
Leakage Current		$V_{ATFLAG} = 57V$			1.7	μA
PGOOD						
Output Low Voltage		$I_{OL} = 0.75 \text{mA}$ $I_{OL} \text{MAX} = 5 \text{mA}$			0.4 2.5	V
Leakage Current		$V_{PGOOD} = 57V$			1.7	μA
		1 0005				'
THERMAL SHUTDOWN						
Thermal Shutdown Temperature			180	200	220	°C
			_	_		
VAUX (Reference to VPN _{OUT)}						
VAUX Output Voltage On	VAUX-on	Isolating switch at I _{LIM-HIGH} and PGOOD = Low	9.5	10.5	11.8	V
Output Current Peak	I _{VAUXP}	Capacitor = 30uF When T _{LOAD} ≤ 5mS Isolating switch at I _{LIM-HIGH} and PGOOD = Low	0		10	mA

PRODUCTION DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, the following specifications apply over the operating ambient temperature -40°C \leq T_{AMB} \leq 85°C. Production tests are done at 25°C T_A.

Parameter	Symbol	Test Conditions / Comment	Min	Тур	Max	Units
Output Continuous Current	I _{VAUXC}	When T _{LOAD} ≤10mS Isolating switch at I _{LIM-HIGH} and PGOOD = Low	0		2	mA
VAUX Output Current Limit	I _{VAUX}	Isolating switch at I _{LIM-HIGH} and PGOOD = Low	10		32	mA

PRODUCTION DATASHEET

PD70100 Functional Block Diagram

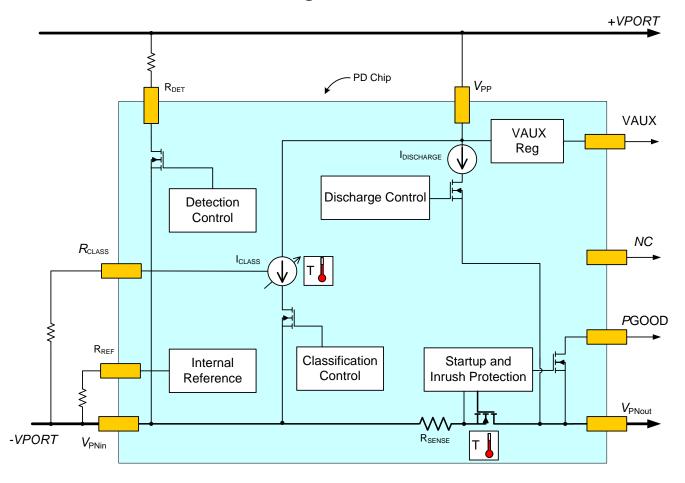


Figure 1: PD70100 Functional Block Diagram

PRODUCTION DATASHEET

PD70200 Functional Block Diagram

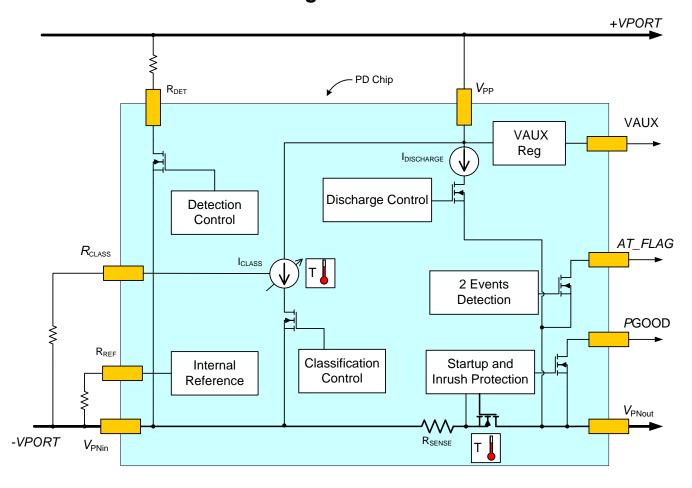


Figure 2: PD70200 Functional Block Diagram

Microsemi

PD70100 & PD70200

IEEE 802.3af/at PD Front End IC

PRODUCTION DATASHEET

	FUNCTIONAL PIN DESCRIPTION					
Pin	PD70100 Pin Name	PD70200 Pin Name	Туре	Description		
1	R _{DET}	R _{DET}		Valid Detection resistor. Connect external 24.9K Ω detection resistor between RDET and VPP		
2	R _{REF}	R _{REF}		Bias current resistor. Connect a 243k 1% resistor between this pin and VPN_{IN}		
3	R _{CLASS}	R _{CLASS}		Power classification setting. Connect external class resistor between RCLASS and VPN_{IN}		
4	\(\pi\)	\(\pi\)	_	VPort Negative input. Connected to the isolating SW input. N-channel MOSFET source. The exposed thermal PAD should be		
5	VPN _{IN}	VPN _{IN}	Power	connect to these pins.		
6	N.C	N.C				
7		VDV	D /O .	Vport Negative output. Connected to the isolating SW output. N-channel MOSFET Drain. Primary side Ground.		
8	8 VPN _{OUT} VPN _{OUT}		Power/Gnd	A decent ground plane should be deployed around this pin whenever is possible		
9	N.C	AT_FLAG	Open drain	The two-event detector should discern between AF and AT classification waveforms and outputs the AT_FLAG (PD70200 only)		
10	PGOOD	PGOOD	Open drain	After startup a PGOOD flag is generated in order to optionally inform the application DC/DC converter that the power rails are ready.		
11	VAUX	VAUX	Power	Auxiliary output voltage to VPN _{OUT} . Can be used for DC-DC startup for bootstrap initiation.		
12	VPP	VPP	Power High voltage positive input, reference to VPN _{IN} and high voltage positive input, reference to VPN _{OUT} during capacitor disc			
EP	EPAD	EPAD		Connect to VPN _{IN} . EPAD should be connected to a large copper area for improved thermal management.		

PRODUCTION DATASHEET

THEORY OF OPERATION

DETAIL DESCRIPTION

PD70100/PD70200 IC provides IEEE 802.3af/at compliant PD Front-End functions including Detection, Physical Layer Classification, Two-Events Classification (PD70200 only), Auxiliary Voltage Output, Power Good, Soft-Start Current Limiting, Over-Current Protection, and Bulk Capacitor Discharge.

DETECTION

IEEE 802.3af/at compliant detection is provided by means of a 24.9K Ω resistor connected between V_{PP} and R_{DET} pin. R_{DET} pin is connected to VPN_{IN} via an open drain MOSFET with a maximum specified RDS $_{ON}$ of 50Ω . Internal logic monitors V_{PP} to VPN_{IN} and connects the R_{DET} pin to VPN_{IN} when the rising V_{PP} to VPN_{IN} voltage is between 2.5V and 10.1V. When rising V_{PP} to VPN_{IN} voltage exceeds 10.1V, the MOSFET is switched off. Once above 10.1V, falling V_{PP} to VPN_{IN} voltage between 2.45V and 4.85V will reconnect R_{DET} pin to VPN_{IN} .

PHYSICAL LAYER CLASSIFICATION

Physical Layer (hardware) Classification per IEEE 802.3af/at is generated via a regulated reference voltage of 1.2V, switched onto the $R_{\rm CLASS}$ pin. Internal logic monitors the $V_{\rm PP}$ to $VPN_{\rm IN}$ voltage and connects the 1.2V reference to $R_{\rm CLASS}$ pin at a rising $V_{\rm PP}$ to $VPN_{\rm IN}$ voltage threshold between 11.1V and 13.5V. Once $V_{\rm PP}$ to $VPN_{\rm IN}$ has exceeded the rising threshold, there is a 1V minimum hysteresis between the $V_{\rm PP}$ rising (turn-on) threshold and the $V_{\rm PP}$ falling (turn-off) threshold.

The 1.2V reference stays connected to the R_{CLASS} pin until the V_{PP} to VPN_{IN} rising voltage exceeds the upper turn-off threshold of 20.9V to 23.9V. The 1.2V reference voltage is disconnected from the R_{CLASS} pin at V_{PP} to VPN_{IN} voltages above the upper threshold.

Classification current signature is provided via a resistor connected between R_{CLASS} pin and $\text{VPN}_{\text{IN}}.$ The classification current is therefore the current drawn by the PD70100/PD70200 IC during the classification phase, and is simply the 1.2V reference voltage divided by the R_{CLASS} resistor value. The maximum current available at the R_{CLASS} pin is current limited to 55mA (typical).

TWO-EVENTS DETECTION AND AT FLAG

The PD70200 IC provides IEEE 802.3at Type 2 compliant detection of the "Two Events Classification Signature", and generation of the AT flag. This feature is available on the PD70200 IC only.

Simply put, the "Two Events Classification Signature" is a means by which an IEEE 802.3at Type 2 Power Source can inform a compliant Power Device (PD) that it is AT Type 2 compliant, and as such is capable of providing AT Type 2 power levels.

The Power Source communicates with a Type 2 compliant signature by toggling the V_{PP} to VPN_{IN} voltage twice (2 "events") during the Physical Layer Classification phase. The V_{PP} to VPN_{IN} voltage is toggled from the Physical Layer Classification's voltage level (13.5V to 20.9V) down to a voltage "Mark" level. Voltage "Mark" level is specified as a V_{PP} to VPN_{IN} voltage of 4.9V to 10.1V.

PD70200 IC recognizes a V_{PP} to VPN_{IN} falling edge from Classification level to Mark level as being one event of the Two-Events Signature. If two such falling edges are detected, PD70200 will assert AT flag by means of an open drain MOSFET connected between AT_FLAG pin and VPN_{OUT} .

AT_FLAG pin is active low; a low impedance state between AT_FLAG and VPN $_{\rm OUT}$ indicates a valid Two-Events Classification Signature was received, and the Power Source is AT Type 2 compliant.

AT_FLAG MOSFET is capable of 5mA of current and can be pulled up to V_{PP} .

SOFT START AND INRUSH CURRENT PROTECTION

PD70100/PD70200 IC contains an internal isolation switch, that provides ground isolation between Power Source and PD application during Detection and Classification phases. The isolation switch is a N-channel MOSFET, wired in a common source configuration where the MOSFET's Source is connected to Power Source ground at VPN $_{\rm IN}$, and the MOSFET's Drain is connected to application's primary ground at VPN $_{\rm OUT}$.

PRODUCTION DATASHEET

THEORY OF OPERATION

Internal logic monitors V_{PP} to VPN_{IN} voltage and keeps the MOSFET in a high impedance state until V_{PP} to VPN_{IN} voltage reaches turn-on threshold of 36V to 42V. Once V_{PP} to VPN_{IN} voltage exceeds this threshold, the MOSFET is switched into one of two modes.

The mode into which the MOSFET is switched is determined by the voltage developed across the MOSFET, or put another way, the VPN_{OUT} to VPN_{IN} differential voltage. Two modes are defined below:

Isolation Switch Modes					
VPN _{OUT} to VPN _{IN}	Mode	Description			
> 0.7V	Soft Start Mode	Limits VPN _{OUT} current to 240mA (typical)			
≤ 0.7V Normal Operating Mode		Limits VPN _{OUT} current to 1.8A (typical)			

By controlling the MOSFET current based on VPN_{OUT} to VPN_{IN} voltage, inrush currents generated by fully discharged bulk capacitors can be limited. This method limits current to a maximum of 350mA, compliant with IEEE 802.3af/at specification.

Soft Start current limiting is required to reduce occurrences of voltage sag at the PD input during device power-up. A comparison is shown in Figure 3.

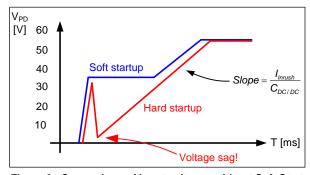


Figure 3. Comparison of input voltages without Soft Start (Hard startup), and with Soft Start (Soft startup).

Once bulk capacitance has charged up to a point where VPN_{OUT} to VPN_{IN} differential voltage is less than 0.7V, the isolation MOSFET is switched into normal operating mode with MOSFET current limit set at 1.8A (typical), to provide over-current protection.

PD70100 and PD70200 ICs are different in their respective isolation MOSFET's continuous current handling capability:

PD70100: 450mA (max.) PD70200: 1123mA (max.)

An adequate heat sink for the PD70100/PD70200 IC's exposed pad must be provided to achieve these current levels without damaging the IC. A large, heavy copper fill area and/or a heavy ground plane with Thermal Vias is recommended. Electrically the exposed pad ground plane should be connected to $VPN_{\rm IN}$

Internal logic monitoring V_{PP} to VPN_{IN} will place the isolation switch MOSFET in a high impedance state if voltage between V_{PP} and VPN_{IN} drops below 31V to 34V.

OVER-CURRENT PROTECTION

Over-current protection is provided on the PD70100/PD70200 IC using the Isolation MOSFET Switch, which limits the VPN $_{\rm OUT}$ current to 1.8A during normal operation. See previous description of Soft Start.

POWER GOOD

During Soft-Start mode, the PD70100/PD70200 IC monitors VPN_{OUT} to VPN_{IN} differential voltage. When this voltage is less than 0.7V (max.), the IC enters normal operation mode and the isolation switch current limit is increased to 1.8A (typical). At this same 0.7V (max.) threshold the Power Good signal is asserted by means of an open drain MOSFET between PGOOD and VPN_{OUT}.

PGOOD pin is active low; a low impedance state between PGOOD and VPN_{OUT} indicates the Soft-start mode has finished and the isolation switch has transitioned into normal operating mode.

PGOOD MOSFET can handle current of 5mA and can be pulled up to $\ensuremath{V_{PP}}$.

PRODUCTION DATASHEET

THEORY OF OPERATION

AUXILIARY VOLTAGE OUTPUT

PD70100/PD70200 IC provides a 10.5V (typical) regulated output to be used as a start-up supply for DC/DC controllers whose V_{CC} is provided via a bootstrap winding. This regulated supply is available at VAUX pin, and is referenced to VPN_{OUT} pin. VAUX supply is designed for low-duty operation, and should not be designed as a primary housekeeping supply. The current capability is continuous 2mA, with 10mA peak (\leq 10ms). VAUX output is current-limited at 10mA (min.).

For stability, the VAUX regulator requires a minimum of $4.7\mu F$ ceramic capacitor connected directly between VAUX and VPN_{OUT} pins.

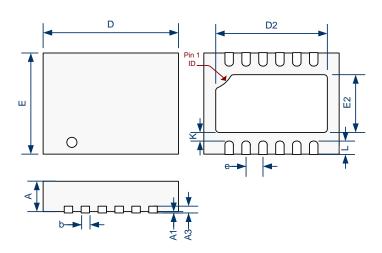
THERMAL PROTECTION

Both PD70100 and PD70200 IC include temperature sensors which individually monitor both the isolation MOSFET and the Classification Current Source for over temperature conditions. In case of an over temperature condition, the sensor will activate protection circuitry which will disconnect its respective monitored function.

BULK CAPACITOR DISCHARGE

The bulk capacitor discharge circuitry eliminates the need to place a diode in series with the V_{PP} line to prevent an application's bulk capacitance from discharging through the detection resistor and the isolation switch MOSFET's body diode. Discharge current through the detection resistor can cause failure of the detection signature in cases where a PD is connected and the bulk capacitance is not fully discharged.

During normal operation, PD70100/PD70200 IC continuously monitors voltage at V_{PP} to $VPN_{IN}.$ Should V_{PP} to VPN_{IN} voltage fall below isolation switch turn-off threshold (31V to 34V), isolation switch MOSFET is immediately placed in a high-impedance state. At this point the internal logic monitors the voltage at V_{PP} to $VPN_{OUT}.$ If V_{PP} to VPN_{OUT} voltage is between 1.5V to 32V, a 23mA (min.) constant current source is connected across the V_{PP} and VPN_{OUT} pins. This constant current source provides bulk capacitor discharge.


A 220 μF bulk capacitance can be discharged from 32V to 1.5V in a maximal period of 292ms.

PRODUCTION DATASHEET

LD

12 Pin Plastic DFN 4x3 mm

	MILLIN	METERS	Inc	HES	
Dim	MIN	MAX	MIN	MAX	
Α	0.80	1.00	0.031	0.039	
A1	0.00	0.05	0.000	0.002	
А3	0.20	REF	0.008	REF	
D	4.00	BSC	0.157 BSC		
Е	3.00	BSC	0.118 BSC		
D2	3.00	3.70	0.118	0.146	
E2	1.40	1.80	0.055	0.071	
е	0.50 BSC		0.0197 BSC		
K	0.20 MIN		0.008	3 MIN	
L	0.30	0.50	0.012	0.020	
b	0.18	0.30	0.007	0.012	

Note:

1. Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm(.006") on any side. Lead dimension shall not include solder coverage.

Microsemi.

PD70100 & PD70200

IEEE 802.3af/at PD Front End IC

PRODUCTION DATASHEET

The information contained in the document is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi. Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp

Revision History

Revision Level /	Para. Affected	Description
Date		
0.1 / April 2010		Preliminary Release
0.3 / June 2010		Add Classification Pulse Diagrams
0.3 27 Jul 10		Changing catalog numbers metrology
0.3 12 Nov 10		Extensive changes to document format and Theory of Operation; corrected package drawing; added Product Highlight and Typical Characteristics
0.4 Dec 23 2010		Package update
0.5 Jan 05 2011		Package update
0.6 Jul 13 2011		Specification Update
1.0 March 2012		Updated Document Address Footer & Characteristics
1.1 Oct 28 2014		Updated Pin 2 Description on page 7
2.0 October 2015		Updating IC P/N from PD70100A to PD70100 (PDN 152044)

© 2015 Microsemi Corp.

All rights reserved.

For support contact: sales_AMSG@microsemi.com

Visit our web site at: www.microsemi.com Cat. Num: DS_PD70100_PD70200